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Abstract—The extremely strict code length constraint is the
main drawback of lowest density, maximum-distance separable
(MDS) array codes of distance greater than 3. To break away
from the status quo, we proposed in [5] a family of lowest
density MDS array codes of (column) distance 4, called XI-
Code. Compared with the previous alternatives, XI-Code has
lower encoding and decoding complexities, and much looser
constraint on the code length, thus is much more practical. In
this paper, we present a new family of lowest density MDS
array codes of (column) distance 4, called RΛ-Code, which is
derived from XI-Code, and outperforms the latter substantially in
terms of encoding complexity, decoding complexity, and memory
consumption during encoding/decoding. The inherent connection
between RΛ-Code and XI-Code and how the former is derived
from the latter may provide inspiration for the readers to derive
new codes from other existing codes in a similar way.

I. INTRODUCTION

Array codes [2] are a special class of erasure codes, in

which symbols are column vectors and hence each codeword

is a two-dimensional array. The error model of array codes

is that, if one component of a column is an error or erasure,

then the whole column is considered an error or erasure. This

makes array codes be particularly suitable for correcting burst

errors in communication networks, as well as disk (node)

failures in storage systems. The main advantage of array codes

is use of only simple XOR and cyclic shift operations in

their encoding and decoding procedures, making them quite

efficient in terms of computational complexity. Maximum-

distance separable (MDS) array codes are array codes that

provide a certain level of fault tolerance with the minimum

redundancy, hence are particularly practical.

MDS array codes are widely employed in modern storage

systems to prevent data loss caused by disk/node failures

and latent sector errors. In this application scenario, the data

content is usually dynamic. That is, since the redundant

information is constructed from the data content, to maintain

the consistency, whenever a data element (e.g., a sector or a

filesystem block) is changed, the coding elements to which

the element contributes must be updated (read-modify-write)

accordingly. In array codes, the average number of coding

elements that must be updated whenever a data element is

modified, is referred to as update complexity. Update complex-

ity is a key performance metric of particular concern by array

codes designed for storage systems, since it dictates the access

time to the disk/node array even in the absence of failures,

and it will also directly translate into costly communication

overhead when array codes are employed in distributed storage

systems (e.g., datacenter and cloud environments). Moreover,

if array codes are employed in disk arrays composed of flash

solid-state devices (SSDs), the update complexity will also

affect the lifetime of the SSDs.

In order to minimize the update complexity, an interesting

subclass of array codes, called lowest density array codes,

have gained much attention in recent years [3][11][10][9]

[4][7][8][6]. These codes contain a minimal number of

nonzero elements in their parity check matrices, so that they

can achieve the lower bound of update complexity. Unfor-

tunately, most of the existing lowest density array codes

are of distance 3, which may be insufficient for massive

storage systems with hundreds of thousands storage devices

in distributed environments. Although there exist a few lowest

density array codes of distance 4 or 5 [4][8][9], their parameter

constraints are so strict that they can hardly be applied to

practical systems. To fill the gap, in our previous work [5]

we proposed XI-Code — a family of lowest density MDS

array codes of column distance 4, which has several attractive

properties and much looser constraints on the code length. So

far, XI-Code remains the most practical and efficient class of

lowest density MDS array codes of column distance 4.

In this paper, we present a new family of lowest density

MDS array codes of column distance 4, called RΛ-Code,

which is derived from XI-Code. In general, RΛ-Code retains

the following properties of XI-Code: a) capable of correcting

both triple erasures and a single error combined with one

erasure, b) optimal update complexity, and c) supporting code

length of p or p+1, where p is an odd prime; and outperforms

the latter in the following three aspects:

• The encoding complexity is around 16.7 ∼ 22.2 percent

lower than that of XI-Code.

• The decoding complexity is up to 16.7 percent lower than

that of XI-Code.

• The column size is half that of XI-Code, meaning that the

memory consumption during encoding/decoding is half

that of XI-Code.

It is worth mentioning that, the encoding/decoding complexity

of RΛ-Code is also demonstrably lower than the currently

established “lower bound”[1][7], which may interest the the-

oretical community.
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II. RΛ-CODE

Since RΛ-Code is derived from XI-Code, it is necessary to

briefly review the construction and properties of the latter first.

In XI-Code, each codeword is a (p− 1)× (p+ 1) array of

bits, where p is an odd prime. The first column is a pure data

column, while the last column is a pure parity column. Except

for these two columns, each of the other columns contains

p− 3 data bits and two parity bits. To facilitate the following

description, we let 〈x〉 = xmod p, and use bi,j to denote the

ith bit in the jth column, where i and j both count from 0.

Assume that each codeword is a (p + 1) × (p + 1) array

with every column containing two extra imaginary 0-bits.

Specifically, in each extended codeword, bi,j is an imaginary

0-bit if i+j = p or i = j. The parity bits are stored in the first

row, last row and last column, and are computed as follows:

bi,p =

p−1⊕
t=0

bi,t, 1 ≤ i ≤ p− 1 (1)

b0,j =

p−1⊕
t=1

bt,〈j−t〉, 1 ≤ j ≤ p− 1 (2)

bp,j =

p−1⊕
t=1

bt,〈j+t〉, 1 ≤ j ≤ p− 1 (3)

It can be seen that, there are three types of parity bits, which

are constructed by XORing data bits along lines of slopes 0,

1, and −1 respectively. Note that the imaginary 0-bits do not

really participate in the calculations, i.e., each parity bit is

constructed from only p− 2 data bits in practice.

It was proven in [5] that XI-Code is a class of lowest density

MDS array codes of (column) distance 4, i.e., XI-Code can

recover up to three erasures or one erasure combined with a

single error, and its update complexity is 3. Moreover, since the

first column is a pure data column, the code can be shortened

by assuming that the first column is an imaginary 0-column,

i.e., the code length of XI-Code can be p+ 1 or p.

A. From XI-Code to RΛ-Code

Given a (p+1)× (p+1) array defined above, we only use

bi,j(1 ≤ i ≤ (p − 1)/2, 0 ≤ j ≤ p − 1) to store user data,

and for (p + 1)/2 ≤ i ≤ p, 0 ≤ j ≤ p − 1, let bi,j ← bp−i,j ,

where ← is an assignment operator. Then, compute the parity

bits according to (1)–(3), and we will find that bi,p = bp−i,p

and b0,j = bp,j hold due to the symmetry of the information

part. Since bi,j = bp−i,j holds for 0 ≤ i, j ≤ p, we can delete

the last (p+1)/2 rows of the array. Observe that for 1 ≤ j ≤
p − 1, we have

⊕p−1
t=(p+1)/2 bt,〈j−t〉 =

⊕(p−1)/2
t=1 bt,〈j+t〉 due

to symmetry, thus b0,j =
⊕(p−1)/2

t=1 (bt,〈j−t〉 ⊕ bt,〈j+t〉) holds.

From the above, the following equations define a new array

code of size (p+ 1)/2× (p+ 1), which we call RΛ-Code:

bi,p =

p−1⊕
t=0

bi,t, 1 ≤ i ≤ (p− 1)/2 (4)

b0,j =

(p−1)/2⊕
t=1

(bt,〈j−t〉 ⊕ bt,〈j+t〉), 1 ≤ j ≤ p− 1 (5)

Now let us look into the minimal working example, i.e., the

RΛ-Code with p = 5. Figure 1 shows the distribution of data

bits, parity bits, and imaginary 0-bits in a codeword, as well

as the parity sets of the code.

0 1 2 3 4 5
0 0 0
1 0 0
2 0 0

data parity

0 1 2 3 4 5
0 1 2 3 4
1 14a 2a 13a 24a 3a a
2 23b 34b 4b 1b 12b b

Figure 1. The structure of the codeword and the parity sets of the RΛ-Code
with p = 5, where each parity set is labeled with an integer/letter.

Geometrically speaking, there are two types of parity sets,

one formed along rows and the other formed by (broken) lines

along diagonals of slopes 1 and -1 that resembles the letter

“Λ”. We refer to the two types of parity sets as “row parity

sets” and “Λ parity sets” respectively. Each row parity bit is

obtained by XORing the data bits along the same row, and

each Λ parity bit is obtained by XORing the data bits along

the diagonal of slope 1 and the diagonal of slope −1 that

traverse the parity bit itself.

Essentially, RΛ-Code is the XI-Code with the following

constraint: for 0 ≤ i, j ≤ p, equation bi,j = bp−i,j holds.

Therefore, we have the following theorem:

Theorem 1: For any odd prime p, the RΛ-code defined above

is a lowest density MDS array code of column distance 4.

B. Encoding of RΛ-Code

From (4) and (5) we can find that, the expression bi,〈j−i〉⊕
bi,〈j+i〉 is involved in calculating both bi,p and b0,j , thus

the encoding complexity can be reduced if we evaluate the

common expression first and reuse the result in encoding.

Note that only the common expressions that do not involve

any imaginary 0-bits are useful. As an example, let us look

into Figure 1. There are four useful common expressions

in total, however, this does not imply that we can save 4

XORs during encoding. The reason is that some common

expressions cannot be used simultaneously, e.g., b1,0 ⊕ b1,2
and b1,0 ⊕ b1,3, similarly b2,0 ⊕ b2,1 and b2,0 ⊕ b2,4. In this

example, an alternative encoding scheme is to first evaluate

common expressions b1,0 ⊕ b1,2 and b2,0 ⊕ b2,1, then reuse

the results in the calculations of the corresponding parity bits,

which can save 2 XORs.

From the above, the key to the encoding algorithm is using

as many common expressions as possible. To achieve this goal,

we present the respective schemes for the following two cases:

4|(p − 3) and 4 � (p − 3). For the first case, it is possible to

avoid using the common expressions that involve data bits of

column 0, so that all the selected common expressions can be

used by the shortened RΛ-Code. Let us take the RΛ-Code with

p = 7 for instance, whose parity sets are shown in Figure 2.

The best scheme is to use the following common expressions:

b1,2 ⊕ b1,4, b1,3 ⊕ b1,5, b2,1 ⊕ b2,4, b2,3 ⊕ b2,6, b3,1 ⊕ b3,2 and

b3,5⊕ b3,6, since none of them involves data bits of column 0.

For the second case, however, we cannot maximize the number
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of compatible common expressions without using the common

expressions that involve data bits of column 0.

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6
1 16a 2a 13a 24a 35a 46a 5a a
2 25b 36b 4b 15b 26b 3b 14b b
3 34c 45c 56c 6c 1c 12c 23c c

Figure 2. The parity sets of the RΛ-Code with p = 7

In what follows we present a formal encoding algorithm

that is optimized for reusing common expressions.

Algorithm 1 (Optimized Encoding Algorithm):

1. For 1 ≤ i ≤ (p − 1)/2, set bi,p ← 0 and C(i) ←
{0, 1, · · · , p− 1};

2. For 1 ≤ j ≤ p−1, set b0,j ← 0 and R(j) ← {1, 2, · · · , (p−
1)/2};

3. Set A ← {3, 4} and a ← 3.

4. Let a ← a+ 4;

5. If a < p− 1, then let A ← A∪{a, a+1} and goto Step 4.

6. If 4 � (p− 3), then remove p− 2 from A.

7. For i = 1, 2, · · · , (p− 1)/2 do

8. for a ∈ A do

9. j ← 〈ia〉;
10. v ← bi,〈j−i〉 ⊕ bi,〈j+i〉;
11. bi,p ← bi,p ⊕ v;

12. remove 〈j − i〉 and 〈j + i〉 from C(i);
13. b0,j ← b0,j ⊕ v;

14. remove i from R(j).

15. Let bi,p ← bi,p ⊕
(⊕

t∈C(i) bi,t

)
.

16. For j = 1, 2, · · · , p− 1 do

17. b0,j ← b0,j ⊕
(⊕

t∈R(j)(bt,〈j−t〉 ⊕ bt,〈j+t〉)
)

.

C. Decoding of RΛ-Code

Since RΛ-Code is derived from the XI-Code, naturally the

decoding algorithms of the latter can be adjusted and then

applied to the former. Note that by utilizing the symmetry of

the extended RΛ-Code, the decoding algorithms of XI-Code

can be simplified while being applied to RΛ-Code. Moreover,

as with encoding, the decoding complexity of RΛ-Code can

be reduced by reusing certain common expressions. Before

discussing the specific decoding algorithms, we first give a

proposition and two theorems that have been proven in [5].

Proposition 1: For any prime number p and integer 0 <
δ < p, all numbers 1, 2, · · · , p − 1 occur exactly once in

the sequence δ, 〈2δ〉, · · · , 〈(p − 1)δ〉. Moreover, for any two

integers 1 ≤ x, y ≤ p− 1, x+ y = p iff 〈xδ〉+ 〈yδ〉 = p.

Theorem 2: For xi, yi ∈ GF(2), i = 1, 2, · · · , p − 1, if

both x〈(p−d1)/2〉 and y〈(p−d2)/2〉 are known, then other xi(i 
=
p− d1) and yi(i 
= p− d2) can be obtained from

xi ⊕ yi = ai, i 
= p− d1, p− d2 (6)

x〈i−d1〉 ⊕ y〈i−d2〉 = ci, i 
= d1, d2 (7)

where ai, ci ∈ GF(2) and 0 < d1, d2, d2 − d1 < p.

Theorem 3: For x1, x2, · · · , xp−1 ∈ GF(2), if both xu and

xp−u are known, then other xi can be obtained from

xi ⊕ x〈i+δ〉 = ai, i 
= p− δ, 〈p− δ/2〉 (8)

where ai ∈ GF(2), i = 1, 2, · · · , p− 1 and 0 < δ, u < p.

1) Correcting Three Erasures: Suppose that the lth, mth

and rth columns of a codeword are erased, where 0 ≤ l <
m < r ≤ p. We use S

(0)
i and S

(Λ)
j to denote the ith row

syndrome and the jth Λ syndrome respectively, where 1 ≤
i ≤ (p − 1)/2 and 1 ≤ j ≤ p − 1. Set the three erased

columns to be zeros, then according to (4) and (5), the row

and Λ syndromes can be calculated as follows:

S
(0)
i =

p⊕
t = 0

bi,t (9)

S
(Λ)
j = b0,j ⊕

⎛
⎝

(p−1)/2⊕
t=1

(bt,〈j−t〉 ⊕ bt,〈j+t〉)

⎞
⎠ (10)

Note that all the 0-bits (including the erased bits) do not really
participate in the calculations. As with encoding, common

expressions can be first evaluated and reused during the

syndrome calculations. The specific procedure is quite similar

to the encoding algorithm, thus we do not give the pseudocode

again. It should be noted that, the available common expres-

sions during syndrome calculations are fewer than those of the

encoding procedure, since the common expressions involving

erased bits are useless.

Now let us consider the extended RΛ-Code of size (p +

1)× (p+1). As with [5], we use S
(1)
j and S

(−1)
j to denote the

jth diagonal and anti-diagonal syndromes respectively, where

1 ≤ j ≤ p−1. Then according to the symmetry of the extended

RΛ-Code, we can let S
(0)
i ← S

(0)
p−i for (p + 1)/2 ≤ i ≤

p and let S
(1)
j ← S

(Λ)
j and S

(−1)
j ← S

(Λ)
p−j for 1 ≤ j ≤

p − 1, where ← is an assignment operator. After obtaining

all the syndromes, we can recover the three erased columns

using the Algorithm 1 described in [5]. However, owing to

the symmetry of the extended RΛ-Code, some steps of the

decoding procedure are unnecessary or redundant. To make the

difference clear, we describe the simplified decoding algorithm

in the following. To facilitate the description, we let d1 =
m− l, d2 = r − l, and δ = d2 − d1 = r −m.

Algorithm 2 (All-Erasure Decoding): First, according to (1)

and the definition of S
(0)
i , we have

bi,l ⊕ bi,m ⊕ bi,r = S
(0)
i , 1 ≤ i ≤ p− 1 (11)

Next, we distinguish between the following two cases:

Case 1: The row parity column is erased, i.e., r = p.

In this case, from (2), (3) and the definitions of diagonal

and anti-diagonal syndromes, we have

bi,l ⊕ b〈i−d1〉,m = S
(1)
〈i+l〉 (12)

bi,l ⊕ b〈i+d1〉,m = S
(−1)
〈i−l〉 (13)

where 0 ≤ i ≤ p − 1. The above equations are simpler than

that of [5], since bp,j = b0,j holds in the extended RΛ-Code.
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According to the proof of Lemma 1 in [5], the erased bits in

the lth and mth columns can be rearranged as

bp,l, bd1,m, b〈2d1〉,l, b〈3d1〉,m, · · · , b〈(p−1)d1〉,l, bp,m (Seq .A)

b0,m, bd1,l, b〈2d1〉,m, b〈3d1〉,l, · · · , b〈(p−1)d1〉,m, b0,l (Seq .B)

Every two adjcent elements are associated either by (12)

or by (13), and each sequence contains two imaginary 0s.

Therefore, the erased bits in the lth and mth columns can be

easily retrieved by using (12) and (13) alternately. It should

be noted that, for RΛ-Code, b〈id1〉,m = b〈(p−i)d1〉,m and

b〈id1〉,l = b〈(p−i)d1〉,l hold since 〈id1〉 + 〈(p − i)d1〉 = p
(according to Proposition 1). Consequently, using either of

the two sequences is sufficient to recover all the erased bits in

the lth and mth columns. Finally, the row parity bits can be

calculated as bi,p = bi,l⊕bi,m⊕S
(0)
i , where 1 ≤ i ≤ (p−1)/2.

Case 2: The row parity column is available.

In this case, from (2), (3) and the definitions of diagonal

and anti-diagonal syndromes, we have

bi,l ⊕ b〈i−d1〉,m ⊕ b〈i−d2〉,r = S
(1)
〈i+l〉, i 
= d1, d2 (14)

bi,l ⊕ b〈i+d1〉,m ⊕ b〈i+d2〉,r = S
(−1)
〈i−l〉, i 
= p− d1, p− d2 (15)

where 1 ≤ i ≤ p − 1. Let Mi = bi,m ⊕ b〈i+d1〉,m and Ri =
bi,r ⊕ b〈i+d2〉,r, then adding (11) to (14) results in

M〈i−d1〉 ⊕R〈i−d2〉 = S
(0)
i ⊕ S

(1)
〈i+l〉, i 
= d1, d2 (16)

According to the symmetry of the extended RΛ-Code, we have

bi,m = bp−i,m and b〈i−d1〉,m = b〈p−i+d1〉,m, thus M〈i−d1〉 =
Mp−i. Similarly, we have R〈i−d2〉 = Rp−i, S

(0)
i = S

(0)
p−i and

S
(1)
〈i+l〉 = S

(1)
〈p−i−l〉. Then, from (16) we can get

Mp−i ⊕Rp−i = S
(0)
p−i ⊕ S

(1)
〈p−i−l〉, i 
= d1, d2 (17)

which is equivalent to

Mi ⊕Ri = S
(0)
i ⊕ S

(−1)
〈i−l〉, i 
= p− d1, p− d2 (18)

From the symmetry of the extended RΛ-Code, it can be

immediately determined that M〈(p−d1)/2〉 = b〈(p−d1)/2〉,m ⊕
b〈(p+d1)/2〉,m = 0 and R〈(p−d2)/2〉 = b〈(p−d2)/2〉,r ⊕
b〈(p+d2)/2〉,r = 0. Then according to Theorem 2, we can

easily evaluate Mi and Ri (except Mp−d1
and Rp−d2

) for

1 ≤ i ≤ p− 1 from (16) and (18). Again, differing from XI-

Code, we only need to evaluate half of the Mis and Ris due

to the symmetry.

Next, according to Theorem 3 and the definitions of Mi and

Ri, we can further retrieve all the data bits in the mth and rth

columns. As with the last step, only half of the erased data

bits need to be evaluated. Take the mth column for instance,

the erased bits can be rearranged as bd1,m, b〈2d1〉,m, · · · ,

b〈(p−1)d1/2〉,m, b〈(p+1)d1/2〉,m, · · · , b〈(p−2)d1〉,m, b〈(p−1)d1〉,m,

where every two adjcent elements are associated by an Mi.

Observe that b〈id1〉,m = b〈(p−i)d1〉,m, thus only the erased bits

bd1,m, b〈2d1〉,m, · · · , b〈(p−1)d1/2〉,m need to be evaluated.

Finally, retrieve the data bits in the lth column using

(11), and then recalculate the missing parity bits according

to (2), (3) and the definitions of diagonal and anti-diagonal

syndromes, e.g., b0,m = S
(1)
m ⊕ bd1,l ⊕ bp−δ,r. �

For equidistant erasures, there is an easier way to decode.

The interested readers are referred to [5] (Algorithm 2) for

more details.

2) Correcting One Erasure Combined with One Error:
Suppose that the lth column is erased and the f th column

is in error, where 0 ≤ l,m ≤ p. For a possibly corrupted

codeword, we first set the bits in the erased column to be zeros,

then obtain the row syndromes S
(0)
i , diagonal syndromes S

(1)
i

and anti-diagonal syndromes S
(−1)
i as with the last subsection.

Observe that bi,j is an imaginary 0-bit if 〈i + j〉 = 0 or

〈i − j〉 = 0, thus we also have S
(1)
0 = S

(−1)
p = 0. Once

all the syndromes are obtained, the corrupted codeword can

be corrected by using the Algorithm 3 described in [5].

It is worth mentioning that, in this case most of the common

expressions can be reused during the syndrome calculations,

since there is at most one erased column. Therefore, even

though RΛ-Code and XI-Code use the same decoding algo-

rithm in this error pattern, the computational complexity of

the former is much lower than that of the latter.

III. COMPLEXITY ANALYSIS AND COMPARISON WITH

XI-CODE

To demonstrate the advantages of RΛ-Code over XI-Code,

in this section we analyze and compare their encoding and

decoding complexities.

A. On the Lower Bound of Encoding/Decoding Complexity

In array codes, the encoding (decoding) complexity is

usually defined as the average number of XOR’s required

for computing (recovering) a parity (erased) bit. And previous

works [1][7] usually assume that the lower bound of encod-

ing/decoding complexity for MDS array codes is k−1, where

k is the dimension of the code. So far, to the best of our

knowledge, the lower bound k − 1 is applicable to all the

MDS codes in the literature. However, as we will see below,

both the encoding and decoding complexities of RΛ-Code are

lower than the above lower bound. Therefore, we will only

compare the encoding/decoding complexity of RΛ-Code with

that of XI-Code and the currently established “lower bound”.

B. Encoding Complexity of RΛ-Code

Let n denote the code length of RΛ-Code, then n ∈
{p+ 1, p}. From the encoding rules of RΛ-Code, each parity

bit is constructed from exactly n − 3 data bits, thus requires

n − 4 XORs to obtain. However, the above calculation does

not take into consideration the fact that the reuse of com-

mon expressions can save some XOR’s. In general, reusing

one common expression saves one XOR operation. With the

optimized encoding algorithm (Algorithm 1), the standard RΛ-

Code can use (p−3)(p−1)/4 common expressions regardless

of the fact that 4|(p−3) or not, hence always saves (p−3)/6
XOR’s per parity bit. For the shortened RΛ-Code, the number

of common expressions that can be used simultaneously is also

(p−3)(p−1)/4 if 4|(p−3), and is (p−5)(p−1)/4 if 4 � (p−3).
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We summarize the encoding complexity of RΛ-Code in Table

I. It can be seen that, the encoding complexity of the standard

(shortened) RΛ-Code is about 16.7 (up to 22.2) percent lower

than the “lower bound”.

Table I
THE ENCODING COMPLEXITIES OF RΛ-CODE AND XI-CODE

code
“lower bound” XI-Code

RΛ-Code
length 4|(p− 3) 4 � (p− 3)
p+ 1 p− 3 p− 3 5(p− 3)/6

p p− 4 p− 4 p− 4− p−3
6

p− 4− p−5
6

C. Decoding Complexity of RΛ-Code

The main differences between the RΛ-Code decoding and

the XI-Code decoding lie in the following two aspects: the

reuse of common expressions and the evaluation of Mi and

Ri. Therefore, we can determine the decoding complexity of

RΛ-Code based on that of XI-Code. Note that the effect of

reusing common expressions depends on the specific erasure

pattern. Suppose x columns of the first p columns are erased,

then x(p − 1)/2 common expressions will lose effectiveness

in the worst case. Now let us consider the triple-erasure

decoding without reusing common expressions. If the row

parity column is one of the erasures, or the three erased

columns are equidistant, then it requires n−4 XORs to recover

each missing bit, where n is the code length. If three of the

first p columns are erased and they are non-equidistant, then

it requires about n− 10/3 XORs on average to recover each

missing bit. The decoding complexities of RΛ-Code and XI-

Code are shown in Table II, noting that we only consider the

most complicated and common erasure pattern, i.e., three non-

equidistant columns of the first p columns are erased. Clearly,

the decoding complexity of RΛ-Code is about 16.7 percent

lower than the “lower bound” as p → ∞.

Table II
THE DECODING COMPLEXITIES OF RΛ-CODE AND XI-CODE WHILE

CORRECTING TRIPLE ERASURES

code
“lower bound” XI-Code

RΛ-Code
length 4|(p− 3) 4 � (p− 3)

p+ 1 p− 3 p− 4
3
− 4

p−1
p− p+5

6

p p− 4 p− 7
3
− 4

p−1
p− p+11

6
p− p+9

6

For the error pattern where one column is erased and another

column is in error, the cost of syndrome calculations is the

only difference between the RΛ-Code decoding and the XI-

Code decoding. Therefore, here we only compare the RΛ-Code

decoding and the XI-Code decoding in terms of the number of

XORs required to correct the corrupted codeword. Since they

have different column sizes, for the sake of fairness, we will

use the number of column-wise (rather than bit-wise) XORs in

the comparison. Table III shows the number of column-wise

XORs required to correct one erasure combined with a single

error, noting that we only consider the most complicated and

common case, i.e., neither the erased column nor the erroneous

column is the row parity column. In this error pattern, the

column-wise XOR cost of RΛ-Code is about 16.7 percent

lower than that of XI-Code as p → ∞.

Table III
THE NUMBER OF COLUMN-WISE XORS REQUIRED TO CORRECT ONE

ERASURE COMBINED WITH A SINGLE ERROR, WHERE C = 2
p−1

.

code length XI-Code
RΛ-Code

4|(p− 3) 4 � (p− 3)

p+ 1 3p− 4 + C 3p− p+3
2

+ C
p 3p− 7 + C 3p− p+9

2
+ C 3p− p+7

2
+ C

IV. CONCLUSION

We have presented a new class of lowest density MDS

array codes of (column) distance 4, called RΛ-Code, which

is derived from XI-Code (the most practical and efficient

alternative before) and hence inherits the advantages of the

latter. Compared with XI-Code, RΛ-Code has three important

improvements: (a) the encoding complexity is about 16.7 ∼
22.2 percent lower than that of XI-Code, (b) the decoding

complexity is up to 16.7 percent lower than that of XI-Code,

and (c) the column size is half that of XI-Code, meaning that

the memory consumption during encoding/decoding is half

that of XI-Code. Owing to these significant improvements,

we believe that RΛ-Code will replace XI-Code as the most

efficient lowest density MDS array codes of distance 4.
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