
Content-aware Trace Collection and I/O
Deduplication for Smartphones
Bo Mao1, Suzhen Wu2, Hong Jiang3, Xiao Chen2, Weijian Yang2

1Software School, Xiamen University, China
2Department of Computer Science, Xiamen University, China

3Department of Computer Science & Engineering, University of Texas at Arlington, USA
Corresponding author: Suzhen Wu (suzhen@xmu.edu.cn)

Abstract—In this paper, we first introduce a trace collection
tool specifically designed to capture the I/O requests with
important content features in Android-based smartphones, which
are critically important but rarely available in content-aware
designs and optimizations such as JProbe and Netlink. Based on
the analysis of the traces collected from 15 popular applications,
we find that 20% to 40% of the I/O requests on the I/O critical
path of the storage stack are redundant and this data redundancy
is minimally shared among different applications. Based on this
key observation, we propose a content-aware optimization, called
APP-Dedupe, that applies data deduplication on the I/O critical
path to improve both performance and efficiency by reducing
write amplification and improving GC efficiency of the flash
storage on Android smartphones. The evaluation results show
that APP-Dedupe reduces the GC overhead by an average of
41.5%, reduces the response times by up to 15.4% and reduces
the amount of write data by an average of 45.2%.

Index Terms—Smartphones; I/O Deduplication; Trace Collec-
tion; Flash-based Storage

I. INTRODUCTION

Storage is one of the key factors affecting the overall system
performance of the Android-based smartphones [14], [16],
[27]. The mobile applications, often referred to as “APP”, in
Android-based smartphones generate I/O requests that have
different characteristics than those generated by non-mobile
applications. The storage subsystem of smartphones usually re-
lies on flash-based embedded Multi-Media Controller (eMMC)
memory, with either a disk file system (such as Ext4) or a flash
file system (such as F2FS [19]).

Generally speaking, the storage stack of current smart-
phones faces three challenges. First, the performance tends
to degrade after repeated usages, particularly writes, due to
the physical characteristics of the flash memory, also one of
the reasons why smartphones slow down over time [5], [25].
Second, one of these physical characteristics of flash memory
is its limited life cycles [37], [42], [31], i.e., the number of
times each cell can be programmed/written before it fails,
and causes the flash storage to get sluggish after repeated
usages, which affects the storage reliability of smartphones.
Third, the cost of upgrading the flash capacity from one
level to the next level, e.g., from 16GB to 32GB, amounts
to nearly 100 USD for most smartphones (for example, Apple
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iPhones). Therefore, these challenges, pointing to the measures
of performance, reliability and cost, suggest that it is important
to (1) understand the mobile applications and how they interact
with the flash-based eMMC and (2) optimize to reduce write
traffic to the flash-based eMMC in smartphones.

Data deduplication and its applications in flash-based stor-
age systems have been well studied in the literatures [6],
[21], [23], [30], [35], [40]. Some studies have shown that by
leveraging the deduplication technology to reducing the write
traffic, the system performance and reliability of the storage
stack of conventional, non-mobile systems can be significantly
improved [3], [10], [32]. However, the unique characteristics
of mobile devices and mobile applications make straightfor-
wardly applying deduplication in Android-based smartphones
both less effective and more challenging. For example, the
mobile devices have much smaller memory capacity than non-
mobile systems, which implies that mobile applications must
be made memory efficient to attain acceptable performance.
On the other hand, the user-facing nature of smartphones
implies, and confirmed by our experimental observation, that
only one application is usually running in the foreground
while all the other opened applications are hung up in the
background in the Android-based smartphones.

To make data deduplication effective and efficient in smart-
phones, we need to understand and gain insight into the data
redundancy and unique characteristics of mobile applications
by collecting and analyzing content-aware application traces.
Unfortunately, due to the dataset privacy leakage risk, content-
aware trace collections are rarely done in storage systems [9],
let alone publicly available traces with content features, with
the exception of the FIU department traces available in the
SNIA trace repository [18]. To address this problem, we
design a low-overhead content-aware trace collection tool,
which can be used both offline and online. Using this tool,
we collected traces of 15 popular mobile applications. Our
workload analysis of 15 popular mobile applications reveals
that an average data redundancy of 33.1% exists in mobile
applications but this redundancy is minimally shared among
these applications.

Therefore, we propose APP-Dedupe for Android-based
smartphones to address the aforementioned challenges. Instead
of treating data chunks from all application streams equally,
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APP-Dedupe organizes the hash (fingerprint) index in an
application-aware way, effectively grouping the hash index of
the same application (short for APP) together and dividing the
whole hash index into different groups based on the application
types. When an application is running in the foreground, APP-
Dedupe loads the corresponding hash index of the application
into the memory, thus improving the efficiency of the memory
for the hash index. Moreover, it groups the data chunks
of the same application together on the flash to alleviate
the read amplification problem (i.e., fragmentation caused by
deduplication) and exploits the spatial locality to improve
the read performance. The extensive trace-driven experiments
conducted on our lightweight prototype implementation of
APP-Dedupe show that APP-Dedupe reduces the GC overhead
by an average of 41.5%, reduces the response times by up to
15.4% and reduces the amount of write data by an average of
45.2%.

The contributions of this paper are threefold. First, we
design a low-overhead content-aware trace collection tool that
captures the I/O requests in the storage stack in Android-
based smartphones. Second, we collect the traces with content
features from 15 popular applications and perform in-depth I/O
analysis. We find that 20% to 40% of the I/O requests on the
I/O critical path of the storage stack are redundant and this data
redundancy is minimally shared among different applications.
To the best of our knowledge, currently no such study exists
for the Android smartphones. Third, we propose APP-Dedupe
to improve the storage efficiency of Android smartphones.
The trace collection tool, the 15 traces and the image of the
prototype system are available for academic purposes.

The rest of this paper is organized as follows. Section 2
presents the trace collection tool and workload characteristics
in Android-based smartphones. The design and implemen-
tation of APP-Dedupe is presented in Section 3. Section
4 describes the performance results through the extensive
evaluations on the APP-Dedupe prototype. The conclusion is
given in Section 5.

II. TRACE COLLECTION AND ANALYSIS

In this section, we first present the design of a content-aware
trace collection tool in Android-based smartphones. Then we
analyze the workload characteristics of the traces collected by
this tool to motivate our App-Dedupe study.

A. Content-aware trace collection

While trace collections on enterprise storage systems have
been well studied, there is limited effort on trace collection
in mobile systems. In particular, currently only MOST [12]
and BIOtracer [41] are designed for I/O trace collections
in Android-based smartphones and they only capture the
I/O requests behaviors (e.g., size, read/write patterns, etc.)
without including any content values or features. Yet, it is
the content features of the traces that enable one to analyze
the data redundancy characteristics of I/O accesses in Android-
based smartphones. For this reason, we design a content-aware
trace collection tool, called MobileCT. MobileCT collects the
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traces that contain both the basic I/O request information and
the content features as follows. First, it captures the basic
information of I/O request via the bio structure, including time,
R/W, offset and size, while copying the data of the request for
the subsequent hash computing of the content. Second, it splits
the data into 4KB chunks and calculate the MD5 fingerprints
for each of the chunks. Finally, the basic information and hash
values of the I/O requests are recorded in the trace file and
transferred to the user level.

There are two major challenges facing content-aware trace
collection in Android-based smartphones, namely, how to
anonymize the contents to protect the privacy of the users [30]
and how to minimize the interference between the trace cap-
turing operations and the user I/O requests to reduce collection
overhead [41]. For the first privacy challenge, similar to the
FIU traces [18], we also use the MD5 fingerprints to represent
the content feature for the deduplication research without
leakage of the location or personal information [36]. For the
overhead challenge, since the processing resources in Android-
based smartphones are limited and hash computing for chunk
fingerprints can be resource demanding, the aforementioned
interference, if not avoided or minimized, can adversely affect
the application performance and/or the accuracy of the traces.
To address this challenge, MobileCT uses a circular buffer
to temporarily store the write data and delay the subsequent
MD5 computing of the data chunks to avoid the interference
and contention on the CPU resources. Figure 1 shows the
trace collection workflow in MobileCT. JProbe is a servlet
for inspecting the bio→end io() function and Netlink sock is
used for the data transfer between the user space and the kernel
space.

B. Workload characteristics

The traces presented in this paper are collected from 15
applications on the Google Nexus 5 smartphone (running
Android 5.0.1 with Linux Kernel 3.4). We compare the chunk
fingerprints of the 15 data sets using the chunk-level dedu-
plication with 4KB chunk size. The trace characteristics are
summarized in Table I, which shows that the data redundancy
of the mobile applications is between 20% to 40%, with an
average of 33.1%. Of particular interests are the findings that
the IOPS is less than 10 for all the 15 applications and the
write requests dominate in the mobile applications. These
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findings of workload characteristics are consistent with the
previous studies of mobile applications [12], [41].

TABLE I
THE KEY CHARACTERISTICS OF THE 15 MOBILE APPLICATIONS.

APPs Redundancy IOPS Size (MB) Write Ratio
Qiu 40.5% 1.6 55.0 87.9%
58City 32.2% 2.6 153.3 69.4%
Baidu Tieba 39.5% 4.3 213.5 88.6%
Game2048 31.7% 1.7 63.2 89.2%
Meitu 31.3% 5.6 131.6 41.9%
Moji Weather 32.4% 2.6 82.1 63.4%
Opera Browser 33.1% 3.0 72.7 57.5%
Fruit Cool 36.6% 6.0 159.9 47.1%
Sohu News 32.2% 2.0 138.2 84.2%
Tencent 34.1% 1.5 82.6 95.4%
Pea Pod 35.4% 2.1 237.0 67.8%
Wechat 30.0% 4.6 345.5 90.4%
Weibo 29.0% 1.4 97.0 88.5%
Xiami Music 27.3% 7.4 122.9 39.4%
Youdao Dict 31.9% 9.2 136.5 35.2%

The most interesting finding, as shown in Table II, is that the
amount of data redundancy shared between any two different
mobile applications, or the percentage of shared redundancy, is
minimal. The percentage of shared redundancy, the percentage
entry in the table, is the percentage ratio of the number of
common redundant data chunks between the two applications
(row and column) to the total number of data chunks of the
row application. From Table II, we can see that the redundant
data chunks shared by any two different applications are less
than 5% for most cases , which implies that the amount of
redundant data shared by different applications is negligible.
The reason is that different applications usually have different
data contents and data formats. The results are consistent with
the previous studies on non-mobile applications [7], [8], [33]
and indicate that there is very little overlap between hash
indexes of any two different applications. The significance of
this finding is that it makes it possible to effectively group the
hash index of the same application together and partition the
whole hash index into multiple small segments according to
the application types. This in turn helps optimize hash index
locality for optimal cashing efficiency.

C. Motivation

The storage subsystem affects the performance of the mobile
applications in Android-based smartphones [4], [14], [22].
Recent studies have shown that the overlap between the file
system journaling (such as EXT4) and the database journaling
(such as SQLite) activities, also referred to as journal of
journaling[17], [20], [29], is the root cause of the inefficiency
for the flash storage in smartphones. Existing solutions to this
problem to either reduce the journaling overhead in the SQLite
database, such as reducing the SQLite journaling I/Os through
multi-version B-tree [17], minimize the synchronization over-
head, such as WALDIO [20], or optimize the file systems,
such as MobiFS [28] and F2FS [19]. However, none of them
exploits the content redundancy characteristics in the mobile
storage subsystems, which has the potential to improve not
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Fig. 2. System architecture of APP-Dedupe.

only application performance but also system reliability and
efficiency (space and energy).

In this paper, we revisit the flash performance issue in
Smartphones from a fresh perspective based on the content
feature analysis of the mobile applications. Recent studies in
the literature indicate that reducing the amount of I/Os on the
critical path can be much more effective and efficient than
optimizing I/Os in storage systems [24], [15]. I/O dedupli-
cation on the I/O critical path can reduce the I/O traffic at
the cost of computing and memory overhead. Motivated by
the importance of the mobile storage space, performance and
reliability, combined with the observations from the workload
studies, we propose APP-Dedupe to improve the storage
efficiency of Android-based smartphones.

III. THE DESIGN OF APP-DEDUPE

In this section, we first present an architecture overview of
APP-Dedupe, which is then followed by detailed descriptions
of the main functional components of APP-Dedupe.

A. Architecture overview

Figure 2 shows a system architecture overview of our
proposed APP-Dedupe in the context of the storage subsystem
in the Android-based smartphones. APP-Dedupe sits below
the file system and the SQLite database and thus can be
easily incorporated into any existing platforms to accelerate
their storage subsystem performance. Moreover, APP-Dedupe
is independent of the upper file system, which makes APP-
Dedupe amenable to be deployed in a variety of environments,
including the newly proposed MobiFS and F2FS.

APP-Dedupe has three main functional components: Dedu-
plicator, APP-aware Index Partition, and APP-aware Chunk
Store. The Deduplicator module is responsible for splitting
the incoming write data into data chunks, calculating the hash
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TABLE II
THE PERCENTAGE OF SHARING OF DATA REDUNDANCY BETWEEN ANY TWO DIFFERENT APPLICATIONS. NOTE: DUE TO THE SPACE LIMIT, ONLY THE

FIRST WORD OF AN APPLICATION’S NAME IS PRESENTED.

APPs Qiu 58City Baidu Game2048 Meitu Moji Opera Fruit Sohu Tencent Pea Wechat Weibo Xiami Youdao
Qiu 40.5% 0.2% 1.0% 0.1% 0.3% 0.0% 0.1% 0.4% 0.2% 0.0% 0.1% 0.5% 1.5% 0.2% 0.3%
58City 0.3% 32.2% 3.3% 1.3% 3.6% 3.2% 4.3% 3.9% 4.9% 1.2% 3.9% 2.4% 1.6% 4.2% 3.5%
Baidu 0.4% 6.5% 39.5% 0.2% 2.4% 5.5% 7.1% 4.4% 3.9% 0.0% 3.5% 3.2% 3.6% 3.6% 6.4%
Game2048 0.3% 0.7% 1.0% 31.7% 1.0% 2.0% 2.9% 1.5% 0.7% 2.0% 1.4% 0.3% 1.5% 1.0% 2.4%
Meitu 0.3% 3.1% 2.2% 1.3% 31.3% 2.2% 5.9% 6.4% 1.5% 1.1% 2.3% 1.3% 1.6% 4.4% 3.1%
Moji 0.1% 2.7% 4.7% 2.8% 2.3% 32.4% 6.5% 5.5% 3.5% 0.8% 3.5% 1.4% 1.5% 3.8% 3.8%
Opera 0.2% 1.5% 2.7% 3.4% 3.7% 5.7% 33.1% 4.8% 3.0% 1.7% 1.9% 2.1% 1.1% 1.4% 4.2%
Fruit 0.3% 1.1% 2.5% 3.2% 3.8% 6.4% 4.7% 36.6% 2.6% 0.5% 2.2% 2.6% 2.0% 1.7% 2.7%
Sohu 0.4% 5.9% 3.5% 1.3% 1.6% 5.3% 4.5% 3.8% 32.2% 1.1% 2.5% 3.3% 4.6% 2.5% 4.1%
Tencent 0.0% 0.8% 0.0% 2.7% 1.8% 0.8% 2.1% 0.6% 0.8% 34.1% 0.5% 0.2% 0.6% 2.2% 2.8%
Pea 0.2% 6.1% 2.9% 3.9% 4.5% 7.3% 4.5% 5.0% 3.6% 1.2% 35.4% 2.1% 1.1% 6.2% 3.9%
Wechat 1.3% 3.5% 4.8% 0.1% 0.7% 4.2% 3.5% 5.5% 4.3% 0.2% 1.8% 30.0% 5.0% 1.9% 3.0%
Weibo 0.4% 0.4% 1.5% 0.0% 0.6% 0.4% 0.2% 0.9% 1.4% 0.2% 0.1% 2.1% 29.0% 0.4% 0.5%
Xiami 0.2% 5.0% 2.6% 3.3% 5.6% 6.5% 3.6% 3.0% 2.9% 9.3% 6.1% 2.1% 1.3% 27.3% 3.6%
Youdao 0.2% 1.7% 2.7% 5.8% 3.0% 4.6% 5.4% 3.7% 3.2% 2.1% 5.2% 2.1% 1.2% 1.4% 31.9%

value of each data chunk and identifying whether a data chunk
is a duplicate. The APP-aware Index Partition (short for AIP)
module divides the whole hash index into small subsets based
on the application types. When an application is in the active
state, the corresponding hash index subset is loaded from the
back-end eMMC storage into the memory. AIP swaps out
the cached hash index to the back-end eMMC storage when
the corresponding application is hung out in the background.
The APP Chunk Store (short for ACS) module groups the
data chunks of the same application together to alleviate the
data fragmentation problem [13] by fully leveraging the spatial
locality of the user accesses.

B. APP-aware Index Partition (AIP)

Figure 3 illustrates the write workflow in APP-Dedupe.
There are two key data structures used to deduplicate and
redirect the I/O requests, and identify the popular hash index
entries, namely, Map table and App index table , as shown
in Figure 3. While Map table keeps all the information of the
deduplicated write requests whose write data are already stored
on the back-end eMMC storage, App index table maintains
the fingerprints of the data chunks according to the specific
application. The mapping between the items in the Map table
and the items in the APP index table is many-to-1. It means
that an LBA (Logical Block Address) can only be linked to a
unique and distinctive physical data block, i.e., PBA (Physical
Block Address), but multiple LBAs can be linked to the same
PBA.

In order to reduce the memory and processing overhead of
storing and querying the large hash index, AIP only swaps the
corresponding index subset in the memory when the applica-
tion is in the active state. App index table is organized in an
LRU form and maintains the frequency of write requests to
each data chunk (PBA) by using the Count variable (initialized
to “1”), as shown in Figure 3. When a write request hits
App index table, the count value of the corresponding index
entry in App index table is increased by 1, which captures the
temporal locality and frequency of write requests to this PBA.
The Count variable is also used to prevent the referenced data
blocks from being modified or deleted.
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Fig. 3. The write workflow in APP-Dedupe.

When a write request arrives, APP-Dedupe splits the write
data into multiple fixed-size data chunks and calculates their
fingerprints. If a fingerprint hits App index table, meaning
that the corresponding data chunk is a duplicate, the cor-
responding Count value in App index table is incremented.
APP-Dedupe only updates Map table for the duplicate data
chunks, and synchronizes Map table to the back-end eMMC
storage periodically. Otherwise, a new hash index entry is
inserted into App index table and the data chunk is directly
written to the back-end eMMC storage.

C. APP-aware Chunk Store (ACS)

Our experimental observation indicates that the amount of
data redundancy shared by different applications is negligible
and most data redundancy exists among the data chunks of the
same application. To alleviate read performance degradation
problem caused by the data fragmentation associated with
data deduplication, the ACS module stores the data chunks
of the same application in the same container. Moreover, by
exploiting the semantic information of the file access correla-
tion, the ACS module effectively groups the data chunks of
these files together, thus allowing the subsequent read requests
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to fetch them in a single I/O request. In this way, the data
fragmentation problem, which can degrade read performance
(read amplification), is alleviated by concentrating the read
accesses to a single container, thus improving the restore/read
performance.

When a read request arrives at the block layer, hav-
ing missed the upper-level cache, APP-Dedupe first checks
whether the read request hits Map table. If the read request
misses Map table, the read request is directly submitted to the
block device layer. Otherwise, the address of the request will
be replaced by one or more addresses according to Map table,
depending on whether the read request fully hits Map table
or not. If fully hit (i.e., all LBAs of the constituent data
chunks of the request are found), the read request will be
replaced by the new address in Map table. Otherwise, partially
hit (i.e., not all LBAs of the constituent data chunks of the
request are found), the read request will be split into multiple
new read requests based on the locations of the constituent
data chunks of the original read request. Then, the newly
generated read request(s) is (are) submitted to the block layer.
After the completion of these read requests, the read data is
reconstructed and returned to the upper layer.

IV. PERFORMANCE EVALUATIONS

In this section, we first describe the experimental setup
and methodology. Then we evaluate the performance of APP-
Dedupe through both benchmark-driven and trace-driven eval-
uations.

A. Experimental setup and methodology

We implement a prototype of APP-Dedupe on the Google
Nexus 5 smartphone, with Qualcomm MSM8974 Quadcore
2.3 GHz, 2 GByte DRAM, 16 GByte eMMC storage, and
running Android 5.0.1 with Linux Kernel 3.4. The system
and application software is configured with the default settings
without data deduplication as the baseline system. We use both
the benchmark workload, i.e., the Monkey tool, and the trace
replay workload to evaluate the effectiveness of APP-dedupe.
The Monkey tool is a program that runs on the smartphones
to generate for mobile applications pseudo-random streams of
user events such as clicks, touches, and gestures, as well as a
number of system-level events [26]. In our evaluation it runs
to generate pseudo-random streams of user- and system-level
events for the 15 applications listed in Table I. Moreover, A1
SD Bench is used to test the I/O read and write throughput [2].
The trace replay evaluations are driven by the 15 collected
traces that are shown in Table I. In order to evaluate the
internal GC activities within eMMC, we also incorporate
the deduplication functionality into the SSD-based DiskSim
simulator [1]. The reserved free space is set to be 15% and the
greedy cleaning policy is used in the simulation experiments.

B. Performance results

During the benchmark evaluations driven by the Monkey
tool, we use the iostat command to monitor the CPU utilization
and I/O statistics and the dumpsys command to monitor
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Fig. 4. The memory usage and CPU utilization under the benchmark
evaluation driven by the Monkey tool.

the memory usage. Figure 4 shows the memory usage and
CPU utilization. It indicates that, compared with the baseline
system, APP-Dedupe incurs very little memory overhead, by
no more than 2.5% and with an average of 1.6%. The reason is
that APP-Dedupe only loads a subset of the hash index into the
memory when the corresponding APP is running in the fore-
ground. This memory overhead is expected to further diminish
given the trend of increasing memory capacity in smartphones
from one generation to the next. Similarly, the processing
overhead, measured in CPU utilization, is also minimal, by
no more than 2%. The reason is that the CPU resource in
smartphones is usually idle during data transmission [27]. For
example, a recent study has revealed that Android smartphones
spend a significant portion of their CPU active time (up to
58%) waiting for storage I/Os to complete [27]. The very low
memory and processing overheads measured here, combined
with the fact that user interactions with smartphones are
much less intensive than those with the server and enterprise
environment, as evidenced in Table I and previous studies [12],
[41], make the I/O deduplication a feasible solution in Android
based smartphones.

In the benchmark evaluation, we also compare the total
amounts of written data for different schemes, as shown
in Figure 5. Note that “APP-Dedupe generated” means the
total amount of data generated in the APP-Dedupe system
and “APP-Dedupe Written” means the total amount of data
written to the back-end eMMC storage in the APP-Dedupe
system. First, APP-Dedupe generates more data than the
baseline system because the deduplication operations incur
extra metadata overhead. Second, APP-Dedupe reduces the
amount of write data to the back-end eMMC storage by an
average of 45.2%. The significant reduction in write data leads
directly to a notably improved storage efficiency and reduced
cost.

Figure 6 shows the system throughput normalized to the
baseline system under different access patterns driven by
the A1 SD Bench. APP-Dedupe improves the sequential
write throughput by 11.5% but degrades the sequential read
throughput by 30.0%. The reason for the degraded read
performance stems from the fact that deduplication causes the
data to be scattered across the flash memory, i.e., the known
data fragmentation problem [39]. Though APP-Dedupe uses
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APP-aware chunk store to group the related chunks together,
accesses to the deduplicated sequential read data are no longer
sequential, unlike the system without deduplication. Moreover,
since the bandwidth of eMMC in smartphones is much lower
than that of the enterprise SSDs, the performance gap between
random read and sequential read for eMMC is significant. The
increased write throughput comes from the reduced write data.
In contrast, both the baseline system and the APP-Dedupe
system perform similarly in random accesses. The reason is
that eMMC’s random access performance is much lower than
its sequential access performance, which overshadows both the
overhead and performance improvement of deduplication for
the random accesses.
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Figure 7 shows the average response times in the evaluation
driven by the 15 traces, indicating that APP-Dedupe reduces
the average response times of the baseline system by up to
15.4% with an average of 6.2%. The reasons are twofold.
First, APP-Dedupe removes a large portion of the redundant
write requests, thus significantly reducing the request delays.
Second, by reducing the write traffic to the flash-based eMMC,
the internal GC activities are also reduced, thus improving
both the read and write performances. On the other hand, it
is interesting to notice that APP-Dedupe increases the average
response times of the Game2048 and Tencent applications by
1.1% and 2.3%. The reason is that, while these two applica-
tions have relatively very small amount of write data and low
IOPS to begin with, making the amounts of reduced write
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requests and GC activities very small and limiting the benefits
of deduplication. These limited benefits from deduplication are
more than offset by the hash computing overhead incurred by
deduplication.

Figure 8 shows the total GC counts within the eMMC
device in the evaluation driven by the 15 traces, inicating that
APP-Dedupe reduces the GC counts by up to 58.7% with an
average of 41.5%. The reason is that the GC frequency in flash
memory is highly correlated to the amount of data written to
it, i.e., the more the write data, the higher the GC frequency.
The large fraction of write data reduced by APP-Dedupe
leads directly to reduced GC activities [34], [38]. Moreover,
by reducing the GC counts within flash-based eMMC, APP-
Dedupe also improves the reliability and enhances the lifespan
of the smartphone storage system [3].

G
C
 C
o
u
n
t

0

500

1000

1500

2000

2500

3000
Baseline

APP-Dedupe

Fig. 8. The total GC counts within the eMMC device in the evaluation driven
by the 15 traces.

V. CONCLUSION

Performance of the storage subsystem in smartphones plays
an important role in the application performance. This pa-
per proposes APP-Dedupe to detect and eliminate the I/O
redundancy. The extensive benchmark-driven and trace-driven
experiments conducted on our lightweight prototype imple-
mentation of APP-Dedupe show that APP-Dedupe reduces the
GC overhead by an average of 41.5%, reduces the response
times by up to 15.4% and saves the storage capacity by an
average of 45.2%.

It is worth noting that our application of deduplication
to the smartphone storage is still preliminary and an on-
going research topic. As such, some research issues remain
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to be addressed as our future work. First, the issue of power
consumption is critically important in smartphones [11], [27].
Deduplication is effective in reducing the I/O traffic and GC
activities and thus has a potential to improve the storage energy
efficiency. On the other hand, the hash computing consumes
extra processing power. As a result, another important ob-
jective of APP-Dedupe is to improve the energy efficiency,
in addition to the performance improvement and capacity
saving. As a direction of future work, we will investigate
the power consumption issue associated with deduplication
in smartphones. Second, from our experimental results, we
observe that different applications have different data char-
acteristics. Depending on such characteristics, deduplication
may not always improve the performance. Thus, deduplication
for the mobile applications should be dynamically enabled
or disabled. We will investigate how to dynamically apply
deduplication on the smartphone storage at runtime to improve
the flexibility of APP-Dedupe.
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