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ABSTRACT
Key-value stores are increasingly adopting LSM-trees as their
enabling data structure in the backend storage, and persisting
their clustered data through a file system. A file system
is expected to not only provide file/directory abstraction
to organize data but also retain the key benefits of LSM-
trees, namely, sequential and aggregated I/O patterns on the
physical device. Unfortunately, our in-depth experimental
analysis reveals that some of these benefits of LSM-trees can
be completely negated by the underlying file level indexes
from the perspectives of both data layout and I/O processing.
As a result, the write performance of LSM-trees is kept at a
level far below that promised by the sequential bandwidth
offered by the storage devices. In this paper, we address
this problem and propose LDS, an LSM-tree based Direct
Storage system that manages the storage space and provides
simplified consistency control by exploiting the copy-on-write
nature of the LSM-tree structure, so as to fully reap the
benefits of LSM-trees.

Running LSM-trees on LDS as a baseline for comparison,
we evaluate LSM-trees on three representative file systems
(EXT4, F2FS, BTRFS) with HDDs and SSDs respectively, to
study the performance potentials of LSM-trees. Evaluation
results show that the write throughputs of LSM-trees can
be improved by from 1.8× to 3× on HDDs, and from 1.3×
to 2.5× on SSDs, by employing the LSM-tree friendly data
layout of LDS.
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1 INTRODUCTION
Log-Structured Merge-trees (LSM-trees) have been applied
to both local and distributed environments for large-scale key-
value stores, such as LevelDB [19], RocksDB [16], HBase [66],
BigTable [7], Cassandra [32], PNUTS [11], InfluxDB [23], etc.,
because LSM-trees are capable of buffering random writes in
memory and then performing sequential writes to persistent
storage, which is the best expected access pattern for both
hard-disk drives and solid-state devices [22, 28, 43, 60]. To
benefit from these potential advantages of LSM-trees, other
popular database storage backend systems that traditionally
organize data in B-trees have also begun to use LSM-trees in
their new releases, such as MongoDB [13] and SQLite4 [61].

Ideally, an LSM-tree expects to store its data to storage
space contiguously, but a file system that manages the storage
can prevent this from happening by virtue of file-system
indexing, as demonstrated by an example depicted in Figure 1.
Usually a file system stores the file index in the forms of file
metadata (i.e., inodes) and resource allocation map (i.e.,
block bitmaps), to respectively locate the file/directory data
blocks and find free blocks for storing the data to write.
Maintaining these index blocks, on the one hand, incurs
more non-sequential I/Os, which harms performance for both
HDDs and SSDs [22, 28, 35, 43, 46, 60]. Moreover, all these
index blocks must be updated synchronously with the data
blocks for strict data consistency, which requires significant
extra work to carry out [8, 9, 18, 21, 31, 51].

To address these problems and fully reap the benefits of
LSM-trees, we present LDS, an LSM-tree conscious key-value
storage system that maps the LSM-tree data directly onto the
block storage space without additional indexes to preserve
the intended sequential write access patterns, and manages
data consistency by exploiting the inherent index mechanism
and the copy-on-write nature of the LSM-tree structure to
avoid the overhead associated with consistency enforcement.
As a result, LDS completely eliminates the complicated and
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Figure 1: An example of how a sequential pattern expected
from LSM-tree is broken up by a file system on the block
storage. Note that the inodes and allocation map are placed
and updated by different file systems.

expensive file-level index operations in storing LSM-tree data,
and substantially reduces the number of I/Os and strongly
preserves the disk write sequentiality. These advantages of
LDS are applicable to both HDDs and SSDs.

We implement a prototype of LDS based on LevelDB to
assess the benefits of directly storing the LSM-trees, in com-
parison with storing the LSM-trees through three representa-
tive file systems with different characteristics of data layout
and I/O processing, namely, ext4 (update-in-place) [40], f2fs
(log-based without wander-tree updating) [33], and btrfs (B-
tree structured and copy-on-write) [55]. Experimental results
show that LDS consistently and substantially improves the
write performance under all workloads examined. On HDDs,
the write throughput is improved by at least 1.8×, and up to
3×. On SSDs, the write throughput is improved by at least
1.3×, and up to 2.5×. The read performance also benefits
from the LDS design due to the shortcut in indexing the
LSM-tree data.

The rest of the paper is organized as follows. In Section 2
we present the necessary background and an in-depth analysis
of LSM-trees running on file systems to motivate our LDS
research. The design and implementation of LDS are detailed
in Section 3. We evaluate LDS in Section 4. Related work
is presented in Section 5. Finally, we conclude our work in
Section 6.

2 BACKGROUND AND MOTIVATION
2.1 LSM-Tree and LevelDB
A standard LSM-tree comprises a series of components C0,
C1,..., CK with exponentially increasing capacities [46], where
C0 resides in memory while all other components reside on
disk, and all the keys in a component are kept sorted for fast
retrieval. Every time the amount of data in Cx reaches its
capacity limit, the component’s data will be rolling merged
to Cx+1.

To amortize the cost of merge, state-of-the-art LSM-tree
based key-value stores split each on-disk component into
chunks [16, 19], and only partially merge a component (one
or several chunks) when its size reaches the limit, a function
called compaction1. Specifically, a compaction process on Cx

1In a special case, a target chunk in component x is directly pushed to
component x+1 or lower components (including from the in-memory
component to the first on-disk component) without the actual merge

will select a target chunk there in a round-robin manner [19],
and merge it into Cx+1. All chunks in Cx+1 overlapped with
the target chunk are read out to participate in the merge sort
process. After the compaction, new chunks generated from the
merge are written to Cx+1 and obsolete chunks participating
in the merge will be deleted. The chunk write operation can
be regarded as a copy-on-write process from the LSM-tree’s
viewpoint: a copy of each of the key-value pairs in a new chunk
exists in the obsolete chunks. In other words, interrupted
write operations of chunks can be recovered and redone,
because the original chunks are not to be deleted before all
the new chunks have been safely persisted. Besides the out-
of-place chunk writes, LSM-tree generates write-ahead logs
to an on-disk backup in order to make the component C0
recoverable upon a crash.

Let us take LevelDB, a widely used LSM-tree key-value
store based on the partial merge introduced above, as a
concrete example. Figure 2 demonstrates the structure of
LevelDB, in which C0 consists of two sorted skiplists (the
MemTable and ImmTable), and each on-disk component is
referred to as a level (L0 ∼ L3 in the figure) that contains
multiple chunks (sorted string tables, or SSTs). An SST
includes a body of sorted key-value pairs and a tail that
indexes a read request to the body. Decoding the tail always
begins from its last bytes (the footer in the LevelDB terms).
A write request is first appended to the Backup Log and
then inserted to the MemTable, which will be marked as
Immutable (ImmTable) if its size reaches its capacity limit.
Compaction on C0 dumps the ImmTable onto disk as an L0
chunk, and compaction on an on-disk component Ln merges
one of its SST to Ln+1. A separate structure is maintained to
keep track of the metadata of all the SSTs, called LSM index
(i.e., the version) that is backed by the MANIFEST. Each
SST has a unique ID that is recorded in the MANIFEST
along with its metadata.A compaction that makes a change
on a level’s structure must update the MANIFEST, which is
also implemented in a logging manner, called a version edit
or Δversion.

2.2 LSM-Tree on File Systems
Generally, local LSM-tree based key-value stores, such as
LevelDB, persist data to the storage through a file system,
referred to as LSM-on-FS in this paper. In an LSM-on-FS
implementation, all data (e.g., chunk, log, etc.) are stored
in the form of files. Intuitively, file systems are supposed
to enable LSM-tree data to be stored in large, sequential
I/Os, a desirable property for the low-level storage devices
such as HDDs and SDDs. Unfortunately, such expected large,
sequential I/Os are actually broken into non-sequential, small
I/Os due to the need to access the file system index (FS index),
as explained next.

Generally, FS index includes the file metadata (e.g., inode)
and the resource allocation map (e.g., bitmap), which are
all stored in the file system blocks of a fixed size (e.g., 4KB)

sort. This is also regarded as a compaction because at least one com-
ponent has its structure changed.
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Figure 2: LevelDB implementation of LSM-tree. The in-
memory component, C0, is composed of two sorted skiplists
(the MemTable and ImmTable), and each on-disk component
(C1, C2, etc.) is a level (L0, L1, etc.). There are three types
of disk writes throughout the runtime, as indicated in the fig-
ure: write-ahead log for backing up the memory tables (Step
1); writing the newly generated chunks (SSTs) in compaction
(Step 4); and updating the LSM index when compaction fin-
ishes (Step 5).

as constituents of the file data. Consequently, updates to
LSM chunks or LSM index come into force by non-sequential,
small writes to update FS index, causing various degrees of
I/O amplification, i.e., increased number and intensity of
I/Os that are often small and non-sequential, depending on
the nature of a given file system.

First, for an in-place-update file system, such as ext4, the
metadata of the files are usually aggressively stored in one
place, and the resource allocation map is stored in a different
place, while the user data are stored in other places where
sufficient free space is available, within or without a group
“block group” in ext4). Writes to the data blocks of a file
inevitably lead to I/Os for updating the FS index. Failed
writes in a crash can bring the file system to an inconsistent
status [53], resulting in space leakages or file corruptions. To
maintain the data consistency, in-place-update file systems
usually employ a journal to obtain atomic updates to the
inodes and bitmap, which introduces additional overheads.
That is, writing the journal becomes an integral part of and in
addition to the usual FS index updates. Therefore, we regard
the journal also as FS index for such file systems. Since user
data blocks and index blocks are stored in separate places,
the amplified I/Os of in-place update are usually random
accesses to the storage device.

Second, for a log-based file system [56], an instance of
out-of-place update, although updates to the FS index can
be contiguous to the user data, it must update the entire
metadata path from the root inode to the user data as well as
the allocation map, a phenomenon known as the wandering-
tree update [33, 55, 56]. In addition, measures must be taken
to reclaim the dead data blocks for the out-of-place-update
file systems, a process known as garbage collection (GC).
How to implement an efficient GC is crucial for a practical
log file system, especially in an LSM-tree environment that
produces a very high volume of garbage in the compaction
process. We have experimented on running the LSM-tree on
NILFS2 [30], a log-structured file system implementation on

Linux, and found that after writing data in the amount of only
one-tenth the size of the file system’s volume, the file system
ceases to work because no space is left. F2fs [33] is a practical
log-structured file system that resolves the wandering-tree
update problem by introducing a Node Address Table (NAT)
for the metadata blocks and storing the resource allocation
map in an in-place-update manner, at the cost of losing the
benefits of logging feature and resulting in more random I/Os.
One problem of the log file system is that the clustered user
data (such as LSM-tree log) can be fragmented across the
storage space [70].

The third type of file systems are the copy-on-write (CoW)
file systems, another instance of out-of-place update, such
as btrfs [55], which also update the index in a wandering
fashion, except that they do not guarantee that the updates
are physically contiguous.

In both types of the out-of-place-update file systems, as
the FS index is written to a new place in each update, an
anchor in a definite place must be periodically updated to
record the latest location of the FS index in order not to
lose track of the updated data. Each update to the anchor
represents a new version of the file system. Successful updates
to the file data but without checking the version can result in
an actual failed file update if a crash happens. Accordingly,
we regard the anchor also as an integral part of the FS index
for such file systems.

As introduced in the previous subsection, an LSM-tree has
its own index to locate and describe the data chunks. When
running on a file system, the LSM index and the LSM chunks
are all organized in files by the underlying file system. A
single update to an LSM-tree chunk in effect entails multiple
physical updates (write I/Os) of the following two types: (1)
updates to FS blocks for the LSM-tree chunk data (e.g., 4
I/Os for a 4MB chunk); (2) updates to FS blocks for the
FS index (at least 2 I/Os, depending on the file system
organization). The same processes are repeated in updating
the LSM index, as: (1) updates to FS blocks for the LSM
index; and (2) updates to FS blocks for the FS index. Figure 3
illustrates the write patterns of LSM-tree through the three
representative file systems and LDS respectively. It shows
that there is a significant amplification of the numbers of I/Os
in that the expected large, sequential write I/Os from LSM-
trees are actually converted into larger numbers of small, and
potentially non-sequential write I/Os on the storage device
through file systems.

To provide additional insight, Figure 4a shows how large
the fractions of total I/Os are actually FS index I/Os when
LSM-trees run through the three representative file systems.
We also show in Figure 4b the I/O latencies of persisting
different sized requests on raw HDD and SSD devices. In our
experiments for Figure 4a, we identify the FS index I/Os by
analyzing the block trace results of sequentially writing the
LevelDB with the backup log disabled, so that only chunk
files and the MANIFEST file are persistently updated. For
Figure 4b, each result is obtained by sending a sequence of
write-fsync request pairs to the raw device sequentially for
ten seconds, and the average response time of requests is used
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Figure 3: Figures a, b and c show the write patterns of LSM-trees through three representative file systems, in which the large
writes are updates to the LSM chunks while the small writes are updates to FS index and LSM index. Figure d shows that the
FS index writes are completely eliminated by LDS, leaving on the LSM index writes. The experiments for this figure are run
with the backup log disabled under sequential workloads.
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Figure 4: (a) I/O distributions when storing LSM-trees
through three representative types of file systems. (b) I/O
latencies of persisting different sized requests on HDD and
SSD.

as the latency measurement. The experiment results clearly
show that file-system induced index I/Os, while small in size,
far outnumber the actual user data I/Os and substantially
degrade the performance of LSM-tree applications.

While large SSTs incur lower FS index overheads, they
have limitations. First, a larger SST always results in larger
index data considering the fact that key-value pairs are meant
to be small [2, 45, 46, 69], which leads to a longer search
path. On the contrary, a smaller SST can be well organized
to fit the index data into one storage block to enable efficient
search. Second, compaction on large SSTs requires reserving
sufficient free storage space to admit the new SSTs [20], and
takes a long time to finish the merging process, which can
block more urgent operations, lead to performance thrashing
and degradation in the long run [17]. In this paper, we focus
on the SST settings adopted by LevelDB (e.g., 2∼4MB), and
provide a high performance storage system that exploits the
LSM-tree structure to completely eliminate the FS index.

2.3 Motivation
The above analysis of LSM-trees running on file systems
reveals a significant disconnect and discrepancy between
LSM-tree’s intended sequential, aggregated write I/Os and
the resulting file-system non-sequential (random), small write

I/Os due to the two-level indexes (LSM index and FS index).
This discrepancy not only adversely impacts the performance
of LSM-trees, but also harms the performance and endurance
(e.g., SSDs) of the underlying storage devices in the stressful
LSM-tree environments.

One of the benefits of file system is its support of objects
(files) with dynamically varying sizes, an abstraction that
enables a database store to provide whatever higher level
objects it wishes [62]. However, with the popularity of key-
value stores and the wide deployments of LSM-trees, the
uniform data objects from the applications benefit little from
the file system abstraction. It is thus necessary to understand
the overheads induced by the storage stack in order to develop
a high-performance and reliable LSM-tree storage system. In
this paper, we study the behaviors of different file systems in
storing the LSM-tree data, and design a system that employs
the LSM index to directly manage the storage space and
retain the desirable properties of LSM-trees. Given the fact
that key-value stores have been acting as a storage engine for
relational databases such as MySQL [65], distributed stores
such as MongoDB, or file systems that aim to accelerate
small writes [15, 25, 54], our proposed LSM-tree Directly
managed Storage, LDS, provides new opportunities for the
design of storage systems to achieve significant improvement
in both performance and consistency maintenance, as will be
detailed in the remainder of the paper.

3 DESIGN AND IMPLEMENTATION
The purpose of LDS is to eliminate extra FS indexes and per-
form direct mapping between LSM-tree data and its physical
location. We achieve this by designing an LSM-tree friendly
on-disk layout and explicitly separating log store from chunk
store. In this section we first introduce the LSM-tree cus-
tomized disk layout, and how the LSM-tree data is classified.
Then we describe the principles governing storage manage-
ment in LDS. The section is concluded with discussions on
important implementation issues.
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3.1 Disk Layout
The on-disk layout of LDS is depicted in Figure 5. The entire
volume is divided into three areas: version log area, backup
log area, and slot area. All the slots in the slot area have
identical size and are numbered sequentially by their offsets
(slot IDs) to the first slot. A slot can contain an LSM-tree
chunk that also has an ID (chunk ID) derived from the offset,
thus LDS can immediately locate the physical position of a
given chunk. The two log areas contain continuous log objects
with the legal format illustrated in Figure 6, in which the
magic and CRC fields are used to ensure the integrity of
the log object, the type and SN (sequence number) fields
are used to identify live log objects in recovery (described
in Section 3.3), and the size field tells how many bytes the
payload contains. Live objects are objects that should be
taken into consideration in a recovery. The opposite are the
outdated object that should be ignored.

The version log contains two main types of objects. (1)
Base Version (BV) contains a complete description of the
LSM-tree at the time the base version is generated: the
metadata of all the chunks etc. A chunk’s metadata consists
of the chunk ID, the level it belongs to, the smallest and
largest keys of the chunk. Besides, LDS replicates the storage
format information in the base version. (2) ΔVersion (ΔV)
describes the result of a compaction, e.g., the obsolete chunks
that should be deleted and the new chunks that should be
added. All the Δversions and their corresponding base version
can be merged to a new base version, a process called trim.
The backup log mainly contains the Write-Ahead-Log (WAL)
objects that provide a backup for the in-memory key-value
pairs that have not been persisted to the on-disk structure
(i.e., MemTable and ImmTable in Figure 2).

The slot area stores the LSM-tree chunks, and each for
one chunk. As introduced before, a chunk consists of a body
that contains sorted key-value pairs, and a tail section to
index the requested keys in the body. Since LSM-trees cannot
always generate a chunk with the exact length of its hosting
slot, the body and tail of a chunk may not fully occupy a slot,
a small padding area is used to make the tail right-aligned
with its slot boundary, as shown in Figure 7, therefore right

… … 

body tail 
Slot #0 

padding 

Figure 7: Chunk package. Padding is used to fill the gap be-
tween the body section in the left side and the tail section in
the right side of a slot.

end of the tail can be immediately located 2. This storage
solution does not cause external fragmentation in the storage
space and deleting a chunk immediately frees its hosting
slot for re-allocation. Thus, LDS does not have the garbage
collection and defragmentation problems of general CoW
systems [33, 55]. However, the padding area within a slot
can lead to internal fragmentation, which is discussed in
Section 3.4.

3.2 LSM-tree Managed Storage
A complete LSM-tree includes the version (LSM-tree index),
the backup log (on-disk backup of the in-memory LSM-tree
component), and the chunks (self-indexed key-value groups).
In this subsection we introduce how to maintain write con-
sistency to these three areas.

A version represents a snapshot of the backup state and the
chunk organization. The organization can be changed in the
future if any chunk is removed from or inserted into a level,
which only happens in a compaction process. After a com-
paction finishes, the metadata of the chunks that participate
in the compaction should be deleted from the version, and
the metadata of the chunks generated from the compaction
should be added to the version. Recall that the trivial move
of a chunk from one level to another is also regarded as a
compaction operation, including the memory table dump. If
the memory table is compacted to a disk chunk, the start
point of live objects in the backup log is reset. The new start
point is recorded in the version that represents this memory
compaction. LSM-tree does not update the version in-place,
instead, it commit the change (Δversion) by appending it in
the version log and merges a group of Δversions with the base
version to generate a new base version. Only a successfully
committed Δversion guarantees the compaction results are on
the LSM-tree. Otherwise, any results of the compaction are
discarded as if nothing had happened. Since the new chunks
are always written in free slots and are not seen by other
compactions before the Δversion is committed, a corrupted
compaction has no impact on the original data. For the mem-
ory compaction, as the reset start point of the backup log
is recorded in the Δversion, a failed Δversion simply cancels
that reset. In other words, the committing of a Δversion (1)
deletes the old chunks from the version, (2) adds the new
chunks to the version, and (3) resets the start point of the
backup log, in an atomic way.

2Searching a key in a chunk begins from the last bytes of the tail, i.e.,
the SST footer in LevelDB.
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Figure 8: Trim to generate a new base version. The Δversions
share the same SN with their base version.

Slots usage status (allocated or free) can be obtained by
inspecting the base version and Δversions. On a restart the
recovery process will construct a bitmap online for tracking
the slots usage when executing the trim. We refer to this
bitmap as online-map, to distinguish it from the traditional
bitmap that is separately stored in the persistent storage and
must be regarded for consistency control. Allocating slots in
the runtime immediately flips their status in the online-map
(from free to allocated) to prevent them from being allocated
again. However, only a successfully committed Δversion will
maintain the flipping outcome if a crash happens. Flipping a
slot’s status from allocated to free to delete a chunk must be
performed after the Δversion is committed; otherwise, data
can be corrupted because the LSM-tree may be recovered
to the previous Δversion that has been committed, but the
slot has been re-allocated to store the wrong data. For exam-
ple, considering a slot allocated in Δversion x, and freed in
Δversion y, if the slot’s status in the online-map is flipped to
free before Δversion y is committed, it is possible that the slot
is allocated to store a new chunk when a crash happens. As
a result, on a restart the system recovers the slot to Δversion
x but the slot has stored the wrong data. Not freed slots
in the online-map when crash happens never lead to space
leak since the trim process in the recovery will construct the
online-map according the committed versions.

If a compaction generates new chunks, LDS must allocate
free slots from the slot area to persist these chunks. The
allocation can be implemented in any way that is based on
the online-map. A new chunk will be assigned an ID according
to the offset of its allocated slot, so that from the chunk ID
recorded in the version we can directly know the chunk’s
hosting slot. The default allocation implementation in LDS
is similar to the threaded logging in LFS [33, 56], but with
the slot as the primary unit. That is, LDS always advances
in one direction in scanning the online-map for free slots and
wraps around when the end is reached. If a complete round
of a scan fails to find sufficient free slots, a “space full” status
is reported.

Although the online-map is a pure in-memory data struc-
ture of very small size (e.g., for a 100GB storage with 4MB
slots, only 3.2KB memory is required), the allocation pro-
cess can become inefficient when the space approaches full
because it requires scanning more bits in the online-map to
find a free one. To accelerate the allocation process, LDS also
maintains a small list of the free slots to be allocated in the
near future, called partial-list. A find_free thread is triggered
in the background to append free slot IDs to the partial-list
when its size drops below a threshold.

3.3 Log Write
Logs are an important component in an LSM-tree. Besides
the backup log for supporting the memory tables, the version
is also updated in a logging manner (i.e., Δversion). In this
section we introduce the efficient log mechanism in LDS and
how to recover a consistent state from a crash with the logs.

3.3.1 Strict Appending and Crash Recovery. Version log
and backup log are both used in a cyclical way, a common
usage for logging or journaling. A log stored via a file system
generally must update file index after an appending operation.
For the file system itself that adopts a log, e.g., journaling in
ext4, a super block is set at the beginning of the journal area
(journal super) [53] and is updated afterwards to identify live
and outdated journal items. In contrast, LDS updates the
log with only one physical appending operation, without the
need to update any other identification data. LDS achieves
this by using some special fields in the log object, such as
type and SN (Figure 6), to identify live objects.

For the version log, the latest base version is used as an
separation for live and outdated objects, as shown in Figure 8.
A base version is persisted each time when the trim process
is performed. We now assume that the version area begins
with a legal object, and we will talk about how to identify if
the log wraps around later on. In a recovery, LDS scans all
the objects in the version log area from the beginning until
garbage is encountered (i.e., illegal format or smaller SN value
than the latest scanned one), and identifies the latest base
version (with the largest SN value) and all its subsequent
Δversions that have the same SN value, to recover the version
structure and online-map. For the backup log, as has been
introduced in Section 3.2, the start point of the live objects
can be obtained from the the Δversion that corresponds to
the latest memory compaction. Recovering the memory table
is achieved by scanning the backup log from the start point.

Both the version log and the backup log will wrap around
when the remaining space in the end of their log area is not
enough to hold the requested object. To make the wrapping
status identifiable to the recovery process, LDS introduces
two special objects. As shown in Figure 9, one is appended
adjacent to the last object when the log wraps, called the
wrapping object at the right (WOR), and the other is placed
at the beginning of the log area when the log wraps, called
the wrapping object at the left (WOL). The WOL includes
a pointer to the first live object when the log wraps around,
while the WOR is only a boundary identifier that informs the
recovery process to return to the beginning of the log area. In
practice, for the version log only the WOL takes effect since
LDS always scans objects from the beginning of the log area
and it only needs a trace of the right-end live objects, while
for the backup log only the WOR takes effect because the
Δversion has specified the start point but it needs to know
the wrapping boundary if the log has wrapped. Nevertheless,
LDS does not immediately turn to the right portion pointed
by the WOL when scanning the version log, because they
probably have been outdated (by the trim process). As the
wrapping objects have the same SN as the right-end object

147



LSM-tree Managed Storage for Large-Scale Key-Value Store SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

WOL WOR 

Figure 9: The wrapping object at the left (WOL) and the
wrapping object at the right (WOR).

when the log wrapped around, LDS knows whether they have
been outdated by finding the base version following the WOL.
LDS turns to the right portion if it can not find a live base
version from the legal objects in the left: this implies the
objects in the left are all live Δversions and their base version
exists in the right portion.

Since the log areas are generally not large in size, scanning
the log area will not be as costly as one may think. For
instance, for a 100GB storage configured with 4MB LSM-tree
chunks, a 2MB version log is sufficient with periodic trimming,
and a 16MB backup log is sufficient for the two memory tables
(Figure 2) with consideration of the object header overhead.
Even without trimming in the runtime, which is the case in
LevelDB, no more than 50MB version data is accumulated
with sustained random writes filling up the storage. Besides,
loading physically contiguous data blocks to memory is the
best way to leverage superior sequential bandwidth of the
underlying storage devices. For example, with a 150MB/s
sequential read bandwidth of the commodity HDDs, it only
takes 0.33 second to load the 50MB version log to memory,
and performing the scanning in memory is fast. We evaluate
the recovery cost in Section 4.4.

3.3.2 Commit Policy. In LDS, each compaction result
(Δversio) is committed to the version log to provide a con-
sistent state of the latest on-disk structure, while the Write-
Ahead-Logs (WALs) are committed to the backup log for
the purpose of recovering the in-memory key-value pairs.
Not-committed Δversion before a crash would invalidate all
work the compaction process has done, and delayed com-
mitting prevents other compactions from operating on the
chunks related to this not-committed Δversion. In LevelDB,
the Δversion is committed immediately.

Not-committed WALs of recent insertions to the backup
log before a crash will cause the insertions lost. However,
committing each WAL is extremely expensive because the
I/O latency is several orders of magnitude longer than the
memory operations. Low-latency and byte-addressable NVM
technologies are promising for the WAL committing [29], but
have not been widely used. As a result, users must make
their own trade-off between the performance and durability.
For example, some applications make frequent fsync calls to
commit recent writes in order to ensure high durability [26,
47], at the cost of throughput degradation, while others may
disable the backup log or flush accumulative logs to OS cache
for high throughput by sacrificing durability [37, 57]. LDS
inherits the LevelDB policy that flushes each WAL to the OS
cache in default. Users should explicitly set the synchronizing
option of an insertion request if they want the insertion to

be durable. LDS guarantees that the insertions cached by
the OS are committed to the backup log if a synchronizing
request is received.

The commit policy described above raises a problem of how
to identify the start point of the backup log in a recovery,
since the start point object pointed by the Δversion may
not have been persisted. To resolve this problem, LDS also
records the SN of the start point object in the Δversion. If the
recovery process finds that the SN of the start point object
does match the one recorded in the Δversion, the backup log
is simply ignored.

3.4 Internal Fragmentation
The padding between the body and tail sections of a chunk
(Figure 7) can cause internal fragmentation that leads to
some wasted storage space in LDS.

In the merge sort of a compaction, the merge process
traverses multiple chunks in parallel and sorts their key-value
pairs in the body of a new chunk. The tail of the new chunk
is updated along with the increasing of the body. The chunk
is packed after examining the size of the body and tail. If the
merge process finds that adding one more key-value pair to
the body would cause the package to overflow the slot size,
it will not add this key-value pair, but turns to perform the
packing. In this case internal fragmentation can occur in that
the slot has some free space but insufficient for the next key-
value pair of the merge process. This kind of fragmentation
also exists in file systems because it is hard to generate a
chunk file exactly aligned with the file-level block size (e.g.,
4KB). As long as the sizes of key-value pairs are less than
the file-level block size, which is a common case in LSM-tree
key-value stores [2, 45, 46, 69], the internal fragmentation in
LDS will not be more detrimental than that in file systems.

However, at the end of the merge sort, in particular, the
last chunk must be packed no matter how little data it
contains. Such a chunk in LDS is called an odd chunk that
has a variable size, and too many odd chunks existing in a
level can cause significant internal fragmentation. To reduce
the internal fragmentation caused by odd chunks, we make
a small change to the processing of the odd chunk in each
compaction from level L to level L+ 1. Instead of placing
it in level L+ 1, the odd chunk is retained in level L and
has two possibilities in the future operations. One is that
it is picked by the next compaction of level L − 1 as the
overlapped chunk. The other is that it is attached to its next
adjacent chunk that will participate in the next compaction
of level L. In both cases the odd chunk is assimilated and
absorbed. By doing so, each level has at most one odd chunk,
regardless of the size of the store. As the odd chunk does not
overlap with any chunks in levels L and L+1, placing it in
level L does not break the tree structure. Another alternative
way is preferentially selecting the odd chunk as a victim for
compacting, instead of selecting in a round-robin manner.
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3.5 Implementation
We implemented a prototype of LDS based on LevelDB 1.18
to evaluate our design.

The first task is to manage the storage space, called the
I/O layer. We use ioctl to obtain the properties of the storage
partition and initiate the space by writing an initial ver-
sion in the version log. The I/O operations on the physical
space are implemented by open/write/mmap system calls.
For a synchronous request, sync_file_range [42] is called
with the necessary flags set3 to ensure that data is persisted.
Although LDS can take control of the buffer management
work and choose proper flush opportunities to achieve better
performance without losing data consistency, such as enabling
concurrent merging and flushing in the background process,
we currently implement this function in the prototype to work
in the same way as in LevelDB, so as to provide unbiased
evaluation results. In general, LDS distinguishes three types
of write requests, as chunk, version log and backup log, and
handles them separately according to the design described
above. A total of 456 lines of code is written to implement
the I/O layer. The second task is to modify LevelDB to make
it runnable on LDS’s I/O layer, primarily a new implementa-
tion of the env interface, on which totally 32 lines of code is
written.

3.6 Scalability
3.6.1 Using Pre-allocated File Space. LDS can be used as

the storage engine to manage the low-level storage devices by
providing the key-value interfaces (put/get/delete). Nonethe-
less, running LDS on a file space pre-allocated by a file system
is readily feasible. For users, using a pre-allocated file space is
exactly the same as using the raw device, but LDS internally
can not use sync_file_range directly on the pre-allocated file
space because of the usage limitation of sync_file_range and
the potential file-system interference on the allocation of the
physical space.

Generally speaking, the address space (in bytes) of a pre-
allocated file space starts from 0 and is statically mapped to
LDS. The file system that allocates the file space maintains
the mapping between the file space and the storage space
in an inode. sync_file_range only ensures that data in the
range of the file space is synced to the corresponding storage
space [42], but does not ensure that the inode data (mapping
information) is synced. If the file system updates in-place [40],
the mapping information does not change when writing and
syncing data in the file space, and there is no problem to
retrieve the synced data after a crash. However, if the file
system updates out-of-place [33, 55], writing and syncing in
its file space always results in the data being persisted in
a new storage location, and the mapping data in the inode
should be updated to keep track of the new location. In such
a case, synced data in the file space is lost after a crash if the
mapping data is not synced. Hence, fsync/fdatasync must

3SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE |
SYNC_FILE_RANGE_WAIT_AFTER

be used to inform the file system of syncing the mapping
information.

The backup log in the pre-allocated file space needs to be
specially processed for update-out-of-place file systems. As
stated in Section 3.3.2, the backup logs usually are not synced
out at the same pace as the slot or version data. However,
fsync on the pre-allocated file space applies to the whole file
space, leading to a performance drop in the case where users
choose to commit the backup log lazily. A practical solution
is to designate a separate allocated file space for the backup
log. Actually, separately storing the backup log in a different
storage space has been a practical way to improve logging
efficiency [12], which we will not elaborate any further in this
paper.

3.6.2 Storage Size Adjustment. Being applicable to both
raw device space and filesystem-allocated space, LDS enables
flexible space adjustment according to user requirements of
either expanding or shrinking the storage space by setting
a special field in the version to describe the storage space it
manages.

Expanding the storage space, i.e., joining a new device or
requesting more space from the file system, is achieved by
re-constructing the online-map to embody the expanded slots
of the new space. A new version is generated to include the
information of the joined space. To shrink the storage space,
i.e., removing a device or giving back some space to the file
system, LDS first copies the chunks in the shrunk slots to
other free slots, then trims the versions and re-constructs the
online-map to exclude the shrunk slots. In the trim process,
the chunks that are originally stored in the shrunk slots are
assigned new IDs according to their new hosting slots.

4 EVALUATION
This section presents the experimental results that demon-
strate the benefits of LDS.

4.1 Environment Setup
The experiments were conducted on a machine equipped
with two Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.00 GHz
processors and 32GB RAM. The operating system is 64-bit
Linux 4.4. The HDD used, Seagate ST2000DM001, has a
1.8TB capacity with a 152MB/s sequential write speed, and
the SSD used, Intel SSD DC S3520 Series 2.5in, has a 480GB
capacity with a 360MB/s sequential write speed. Note that
HDDs have a slightly faster speed on the outer cylinders. Our
experiments select the partitions starting from 800GB of the
HDDs for each system to minimize such hardware impacts
on individual experiment. The write caches of the drives are
disabled, to ensure the data being safely stored.

We compare the performance of LDS with that of LevelDB
(1.18) running on three typical file systems, ext4 (update-in-
place) [40], f2fs (log-based) [33], and btrfs (copy-on-write) [55].
All the file systems are mounted with the noatime option to
eliminate potential overheads irrelevant to our evaluations.
The chunk (SST) size is configured to be 4MB in LevelDB.
The version log and backup log in LDS are configured to
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be 64MB and 16MB respectively, and the slot size is 4MB.
This configuration does not trigger the trim process on the
version log, which is the practice in LevelDB. The cost of the
trim process is evaluated together with the recovery process
(Section 4.4). Data compression in LevelDB is disabled in all
experiments.

4.2 Write Performance
In this subsection we use the default benchmarks in LevelDB
(db_bench) to evaluate the insertion performance of LDS
and LSM-on-FS under the sequential and random workloads
respectively. We also evaluate the insertion performance in
the synchronous mode. The average key-value pair size is
116 Bytes (i.e., 16B key, values range from 1B to 200B with
uniform distribution).

4.2.1 Sequential Workload. Figure 10 shows the perfor-
mance under the sequential workload in terms of run time as
a function of the number of insertions. From the figure we
can see that LDS performs the best on both HDDs and SSDs.
To further analyze the results, we take a closer look at the
time cost in Figure 11 by examining the contributions to the
run time by different types of operations/events. LSM-tree
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Figure 10: Sequential insertion performance (lower is better).

has a foreground thread (Front) for the write-ahead log (Log)
and MemTable inserting (Mem), and triggers the background
thread (Back) to do compaction when the MemTable is con-
verted to ImmTable. The foreground operation is slowed down
(Wait) if the background thread does not finish the process
in time. Under sequential workload, there is no merge sort in
the compaction and chunk writes only happen in dumping
the ImmTable to L0. Compaction on an on-disk level is a
trivial moving operation that only updates the LSM-index.

On HDDs, the background process in LSM-on-FS is slow
because of the frequent FS index updates for both LSM
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Figure 11: A breakdown of run time for sequential insertions.

chunk and LSM index, and there are waiting times in the
foreground. On SSDs, as all the systems can quickly finish
the background processing due to the low latency of flash,
the foreground costs (mainly the logging cost) dominate the
overall performance. Nevertheless, different file systems incurs
respective overheads for the log requests because they have
their own processing mechanisms for the write system calls
(translated from fflush of LevelDB) that push the WALs to
OS cache. For example, they will check there are enough free
blocks for the write in order to guarantee the future flush
will not fail [68].

4.2.2 Random Workload. The performance results under
random workloads are shown in Figure 12, in terms of run
time as a function of the number of insertions. Random
insertions incur frequent compaction merge operations in the
background and need a long time to perform the merge sort
and chunk writes. As a consequence, the foreground process
waits for the background process most of the time and the
system with the best efficiency in chunk writes performs the
best, as shown in the cost distributions of the run time for
random insertions in Figure 13. The background process
can block the foreground process because each level of the
LSM-tree has a capacity limit as well as the two memory
tables, as introduced in 2.1. When the memory tables are full
and the room in L0 is under pressure, the foreground process
must slow down the insertion operations or wait until the
background compaction has produced enough room in L0.

4.2.3 Synchronous Insertion. The above two workloads are
run with the backup log in the default setting, i.e., only
flushing each write-ahead log to the OS buffer. However,
users sometimes want the insertions they have issued are
durable once the insertion request returns successfully. We
use the synchronous mode provided by LevelDB to evaluate
the performance in such case. In the synchronous mode,
the insertion throughput is completely determined by the
write efficiency for the backup log, whether the workload is
sequential or random. The insertion efficiencies measured as
insertion operation latencies are shown in Figure 14.

For an insertion request in synchronous mode, LDS can
achieve an efficiency equivalent to writing the same size of
data on the raw storage device (refer to Figure 4b). This is
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Figure 13: A breakdown of run time for random insertions.

because LDS only incurs one I/O in the backup log area. In
LSM-on-FS, there are several FS index blocks that need to
be updated together with the backup file update, in order
to guarantee the request persisted both in the storage and
in the file system. F2fs is optimized for small synchronous
requests by implementing a roll-forward mechanism [33],
which eliminates many of the FS index updates, therefore
it performs better than ext4 and btrfs. However, f2fs still
has to update one block for the FS index (i.e., direct node in
f2fs), and results in longer latency than LDS.

4.3 Read Performance
We load 1 billion random key-value pairs with a fixed size (16B
key and 100B value) to set up a 100GB dataset to evaluate
the read performance. The available OS cache is limited to
1GB to emulate a 100× storage/memory configuration. A
larger storage system can have even higher storage/memory
configuration ratio [63]. The number of concurrent threads
for read are set to 4 on HDDs, and 16 on SSDs. We measure
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Figure 14: Insertion latency in the synchronous mode. Each
WAL is guaranteed to be persisted.

the throughput and read amplification in cold cache and
warm cache respectively, as shown in Figure 15.

For a read request of a key, it is sent to a chunk after looking
up the LSM index that resident in memory. Then, different
systems translate the chunk ID to the on-disk location of
the chunk data. Unlike LSM-on-FS where the FS index (file
metadata) must be read to locate the chunk data, LDS can
determine the chunk location directly from the LSM index.
As different systems organize the storage space and design
data indexing mechanism with their own ways, they induce
different read amplifications, which not only influence the
cache efficiency, but also impact the read performance. For
example, ext4 clusters multiple inodes in one block, while
f2fs exclusively allocates a block for each node object [33].
However, it is still interesting to see that the performance of
btrfs is particularly low. A further analysis of the trace shows
that btrfs has significantly higher read traffic than others as
shown in Figure 15c.

Read amplification is accounted for by the average I/O
traffic of the processed requests. In cold cache, almost all
requests are processed with I/Os to load the storage blocks
that potentially contains the requested key-value data to the
memory cache, so there are high read amplification. With
the caches warmed up, a fraction of I/Os are avoided due to
cache hits, resulting in lower read amplification. Especially,
for a single read request btrfs incurs 8 I/Os in cold cache,
of which half are larger than 512KB, much more than other
systems both in terms of the number and size of I/Os. As we
use the same mmap system call to read chunk data from the
underlying storage, the difference in read amplification can
be only caused by the internal data layout of the different
systems. The high read amplification of btrfs is also observed
by Mohan etc. [44].

4.4 Recovery
In this subsection we evaluate the cost of recovering the
in-memory version from the on-disk version log. Recovering
the memory table from the backup log is a similar procedure
but without the need to scan the entire log area to locate
valid objects. Our evaluation on LDS always assumes the
worst case, that is, we always scan the entire version log area
(64MB) even when we have determined all the live objects,
and only after the scan finishes we begin to perform the trim.
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The total time cost on the LevelDB recovery process is used to
measure the recovery performance. Experiments on LSM-on-
FS were executed after the file system has been prepared, and
file system consistency check during the mounting time [38]
is not taken in account. We use the random workload in
Section 4.2 to insert 100∼1000 million key-value pairs to
generate different sizes of version data (from 3MB to 47MB).

0

10

20

30

40

50

10 20 30 40

R
ec

ov
er

y 
Ti

m
e 

(s
)

LDS
EXT4
F2FS
BTRFS

H
D

D

0

1

2

3

10 20 30 40

R
ec

ov
er

y 
Ti

m
e 

(s
)

LDS
EXT4
F2FS
BTRFS

S
S

D

Version ata ize (MB)

Figure 16: Recovery time as a function of the size of the ac-
cumulated version data.

Figure 16 shows the recovery time for different sizes of
accumulated version data. The recovery cost mainly comes
from I/O cost of loading the version data and CPU cost
of performing the trim. While performing trim is a similar
process for all systems that costs time proportional to the
version data size, which takes 0.1 second for a 3MB version

data and 2 seconds for a 47MB version data, the variance
in recovery time is attributed to the I/O cost. As we know,
log-structured file systems always allocate blocks for all the
files at the logging head on the block address space. While
the version file (a logical log to the application) is periodically
appended mixed with SST file writes, it becomes fragmented
by the file-system log, a problem similar to the known log-on-
log phenomenon [70]. As a result, the recovery time required
for f2fs is significantly longer than other systems on HDD.
Fragmenting the version file can also happen in the general
CoW file system [50] (e.g., btrfs). Moreover, btrfs has a high
read amplification as shown in Section 4.3, therefore, reading
the version file of btrfs is a costly operation on both HDDs
and SSDs.

LDS spends slightly more time than others when the ver-
sion data is small. This is because in the worst-case scenario
LDS must load the entire log area and perform a thorough
scan to find the live objects regardless of the version data
size, which takes a constant time of 0.35 second on HDD
and 0.18 second on SSD. With this small trade-off, LDS can
perform efficient log updates in the runtime.

4.5 Space Utilization
We compare the space utilizations of different systems in this
subsection to study the impact of the internal fragmentation
in LDS. We define the utilization as the number of fix sized
key-value pairs a system can accommodate on a storage
device with a given capacity. The experiment for each system
is done by using the random workload to fill up a 100GB
storage device with key-value pairs of 116 Bytes (16B key and
100B value), until “space full” is reported by the system. In
order to examine the effectiveness of the LDS optimization to
reduce the odd-chunk induced fragmentation, we also run a
test on LDS without this optimization (labeled as plain-LDS).

A comparison of the space utilization is shown in Figure 17.
From the figure we can see that, without taking any measures
to reduce fragmentation, plain-LDS has the lowest utilization,
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Figure 17: Total key-value pairs inserted when the system
reports ‘space full’ on a 100GB storage device.

accommodating an amount of key-value pairs that is about
97% of f2fs, 93% of ext4 , and 94% of btrfs. Our investiga-
tion shows that the space wastage mainly comes from odd
chunks. With the aforementioned fragmentation reduction
optimization, LDS achieves the best space utilization among
all the systems. The inefficiency in file systems mainly comes
from the FS-index induced space overhead, which is more
obvious in f2fs because it needs quite a few blocks to store
the node address table.

4.6 Overheads on Pre-allocated File Space
Although LDS is designed as a raw device space manager
for LSM-trees, it readily supports the feature of using a
pre-allocated file space with some limitations as stated in
Section 3.6.1. In this subsection we conduct experiments to
evaluate the limitations when LDS uses a pre-allocated file
space from the three representative file systems, i.e., the
impact of the file-system interference. While ext4 is known as
an update-in-place file system4, the other two are out-of-place-
update file systems. We hence keep using sync_file_range
on the ext4-allocated file space, and disable the journaling of
ext4 since mapping data in the inode is not updated when
writing the LSM-tree data. On the file space pre-allocated
by f2fs or btrfs, fsync is used to guarantee that the updated
mapping data is synced together with the LSM-tree data.
Evaluation results show that there are two kinds of overheads
induced from the file system interference on the pre-allocated
file space.

The first kind is the system call overhead of flushing the
WAL from user space to OS cache in the default commit
policy, in which each of the LevelDB’s logging requests is
translated to a write system call and is eventually processed
by the corresponding file system that allocates the file space.
This kind of overhead is almost the same as the one when
LevelDB runs directly on file systems, as the Log cost shown
in Figure 11. Employing mmap to implement the flushing
can significantly minimize the WAL overheads, since flushing
the log to the OS cache will be a memcpy operation that
does not lead to system calls after the page table entries of
the log area have been established.

4We assume that ext4 updates in-place strictly.

The other kind is the I/O overhead induced by the file
system interference, which mainly exists on the out-of-place-
update file systems because they always allocate new stor-
age blocks for any LDS writes and need to sync the file
metadata when the LDS data is synced. For example, on
HDDs, the overhead of using btrfs-allocated file space is
about 2.5× higher than using raw space, which is equivalent
to the conventional way of running LevelDB on btrfs because
the wandering-update can not be avoided. This value is 1.4×
for f2fs-allocated file space, or half the overhead of running
LevelDB on f2fs since the NAT has been established for the
pre-allocated file space and most of the time one indirect
node needs to be synced [33] when the LDS data is synced.
For the ext4-allocated file space, while it does not need to
update the file metadata, the overhead is equivalent to using
raw space. For example, in the pre-allocating process, ext4
determines all the physical blocks that will belong to the pre-
allocated file, and creates an inode that maps the file space
(file offsets) to the physical block space (i.e., LBAs). Since
the file system updates in-place, subsequent writes from LDS
to the file space directly go to the corresponding physical
blocks, and only syncing the data written in the file space is
enough to guarantee the data consistency because the map-
ping information in the inode does not change. Therefore,
LDS can work on the ext4-allocated file space the same way
as on the raw space.

5 RELATED WORK
5.1 Write-optimized Data Structures
Traditional database systems such as SQL Server [64] em-
ploy B+trees as the backend structures, which are excellent
for reads, but have poor performance for writes. Fractal-
trees [4–6] are write-optimized data structures as LSM-trees,
which maintain one global B+tree with a buffer in each node,
and updates descend the B+tree to the leaf nodes in batch
through the buffers of the intermediate nodes, a similar idea
as the LSM-tree has proposed [46]. Write-optimized data
structures have been widely used as storage engines in mod-
ern data stores [7, 19, 54, 61, 65, 66]. This paper focuses on
optimizing the storage stack of LSM-tree based key-value
stores.

5.2 Optimizations on LSM-trees
With the popularity of LSM-trees in large data stores, a lot
of techniques have been researched to optimize the write
efficiency of LSM-trees. Most of the work contribute to reduc-
ing the write amplification. VT-tree [59] optimizes the write
amplification in highly sequential workloads by only merging
the overlapped portions of chunks. Wisckey [37] reduces the
value induced amplification by moving the values out of the
LSM-tree to a separate log, a similar way implemented in
Bitcask [58] that uses an in-memory hash table to index the
value log. LSM-trie [69] uses the hash prefix of a key to index
the levels, and by allowing overlapped chunks within a level it
significantly reduces the write amplification as the size-tiered
compaction strategy in Cassandra [1] or the stepped-merge
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mechanism [24] does. TRIAD [3] optimizes the write am-
plification by exploiting the skewed workloads and delaying
the compaction process. PebblesDB [52] introduces the Frag-
mented LSM-tree (FLSM) mechanism that allows overlapped
chunks within a level to avoid data rewriting, and provides
tunable parameters to users for trade-off between write I/O
and read latency.

Our work is different from and orthogonal to the above
existing work in that we optimize the LSM-tree by providing
an LSM-tree friendly on-disk data layout.

5.3 Bypassing Storage Stack Layers
In the initial days of the database field, data was directly
stored on the block storage that has small capacity, and the
application was responsible for the block/segment allocation
and data consistency [36]. The file system was designed to
provide directory hierarchy abstraction and data store of
arbitrary sized objects, by organizing the storage space with
uniform file-level blocks and introducing an indirect map
between the data objects and the underlying storage space [41,
62]. Stonebraker [62] examined the overheads of database
systems caused by different OS components including file
systems. Engler and Kaashoek [14] proposed to completely
eliminate the OS abstractions and allow applications to select
efficient implementations from the hardware. Nevertheless,
with the rapid growth of storage capacity in the following tens
of years, it was profitable to share a storage with multiple
applications and offload the complicated storage management
work to a file system. However, with the advent of big data,
e.g., large-scale key-value stores [7, 19, 69], the data size is
easy to grow out of the storage capacity, and the application
that is in charge of the large and uniform data objects benefits
little from the file system layer. In contrast, file systems
can have negative impacts on a high-performance data store
because of the extra indirections and consistency enforcement.

For example, recent work on key-value stores have persisted
their data bypassing the file system because of observed per-
formance degradation [48]. Papagiannis etc. propose the sys-
tem Iris [49] to reduce the software overheads pronounced in
the I/O path with low-latency storage devices. NVMKV [39]
is a key-value store that makes a radical step by directly
hashing each individual key-value pair into the sparse FTL
space of SSDs. Nevertheless, they did not explicitly quantifies
the overheads caused by the data deployments of different
file systems, and how the LSM-tree applications are affected
remains unclear.

In this paper, with an in-depth study of the overheads
caused by storing the LSM-trees through the representa-
tive file systems, we design the LDS that directly manages
the storage with the LSM-tree structure to provide a high-
performance key-value store.

5.4 New Storage Technology
New technology such as multi-stream NVM has been pre-
sented to be aware of the application-layer data streams [27],
which can be an opportunity for LDS to store the LSM-tree

data in an NVM-friendly way. FlashBlade [63] builds up a
flash-based storage array that moves the flash translation
functions at the array-level software, and requires the soft-
ware to carefully regulate the user data to sequential stream.
LDS provides an easy way to manage the flash translation
functions at the application layer because it eliminates the
extra I/Os in the storage stack and retains the sequential
I/O pattern of LSM-trees.

Some other work exploit the properties of new storage
medias from application layer. LOCS [67] optimizes the per-
formance of LSM-tree applications via exposing the channels
of SSD to the upper application to unearth the bandwidth
utilization of SSD. Lee etc. [34] proposed an application-
managed flash system that resolves the discrepancy between
application-layer logging and flash-layer logging to improve
both the application performance and flash management
overhead. Colgrove etc. [10] introduced a storage system by-
passing the the kernel block device with a custom kernel
module and translating application-level random writes into
compressed sequential writes, to benefit the underlying flash
array [63].

While LDS provides high performance for LSM-tree based
key-value stores on both HDD and SSD devices, there are
potential benefits that can be gained from LDS if the internal
characteristics of SSDs are taken into consideration. For
instance, the expensive garbage collection operations in flash
storages can be eliminated as LDS always discards the storage
space in the unit of slot that can be erased without data
migration. Besides, we plan to augment LDS to be flash-
aware so that it can perform the wear-leveling work, which
is simpler and more convenient for LDS.

6 CONCLUSION
In this paper we present LDS, a Log-structured-merge-tree
based Direct Storage system that employs the LSM-tree
structure (a widely used structure for large-scale key-value
stores) to manage the underlying storage space, so as to retain
the full properties of the LSM-trees. An LDS prototype based
on LevelDB shows that LDS delivers significant performance
improvement and I/O reduction compared to LSM-trees
running on state-of-the-art file systems.
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