
Leverage Redundancy in Hardware Transactional Memory to
Improve Cache Reliability

Zhichao Yan
University of Texas-Arlington

Arlington, Texas
zhichao.yan@mavs.uta.edu

Hong Jiang
University of Texas-Arlington

Arlington, Texas
hong.jiang@uta.edu

Witawas Srisa-an
University of Nebraska-Lincoln

Lincoln, Nebraska
witty@cse.unl.edu

Sharad Seth
University of Nebraska-Lincoln

Lincoln, Nebraska
seth@cse.unl.edu

Yujuan Tan
Chongqing University
Chongqing, China

tanyujuan@cqu.edu.cn

ABSTRACT

Soft error is a type of transient errors that occur due in part to reduc-
tions in capacitance and operating voltages in modern electronic
components. Recently, the problem of soft errors has become more
prevalent due to several design factors, including aggressive device
scaling and newer energy-efficient designs, thus significantly threat-
ening the reliability of computer systems. Since the occurrence of
soft errors is non-deterministic, detecting them and recovering from
them can be quite challenging. A common way to detect soft errors
is to execute two identical program instances and then compare
their results. Although this approach is effective, it is not efficient
as both non-trivial computation and memory resources must be
invested to support such redundant executions.

The introduction of hardware transactional memory (HTM) in
modern chip multiprocessors (CMPs) provides an opportunity to
leverage its redundant information to address the emerging relia-
bility concerns including soft errors. In this work, we propose and
implement a reliability-enhanced HTM system, called RE-HTM,
which leverages redundancy to detect soft errors occurring in the
L1 data cache and then recover from them. We then empirically
evaluate RE-HTM and the results indicate that RE-HTM is more
effective than the existing approach of running two redundant
execution instances while incurring lower runtime overhead on
protecting L1 data cache from soft errors.

CCS CONCEPTS

• Computer systems organization → Parallel Architectures;
Redundancy; Reliability;

KEYWORDS

Soft errors, transactional memory, cache

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP 2018, August 13–16, 2018, Eugene, OR, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00
https://doi.org/10.1145/3225058.3225093

ACM Reference Format:

Zhichao Yan, Hong Jiang, Witawas Srisa-an, Sharad Seth, and Yujuan Tan.
2018. Leverage Redundancy in Hardware Transactional Memory to Improve
Cache Reliability. In ICPP 2018: 47th International Conference on Parallel
Processing, August 13–16, 2018, Eugene, OR, USA. ACM, New York, NY, USA,
Article 4, 10 pages. https://doi.org/10.1145/3225058.3225093

1 INTRODUCTION

Soft errors in computer systems can occur due to various sources
including alpha particles of package decay, energetic neutrons and
protons of cosmic rays, thermal neutrons, environmental random
noise, and signal integrity problems. When a soft error occurs, it
can lead to silent data corruption (SDC) that may affect various com-
puter components including processors and cache memories [27].
As such, their occurrences can degrade the dependability and cor-
rectness of modern computer systems. For example, a message
corrupted only by a single bit, caused Amazon to shut down all
communications between its S3 servers in 2008 [1]. That particu-
lar service disruption lasted several hours, resulting in significant
losses in terms of financial and productivity.

With respect to microprocessors, there are two major compo-
nents that are orthogonally vulnerable to soft errors. The first com-
ponent is the main processing unit plus its internal storage com-
ponents such as registers and latches that are vulnerable to soft
errors. The second component vulnerable to soft errors is L1
cache, which is the focus of this work. Aggressive scaling of
semiconductors creates opportunities for processor designers to
enlarge the capacities and increase the levels of on-chip cache mem-
ories. Knowing that soft errors can occur in caches, researchers
have traditionally been focusing on the simplest pattern of soft
error, single-event upset (SEU) through the use of error correction
code (ECC). This is especially true in the L1 cache, where ECC, due
to its simplicity, is commonly used to meet the low-latency and
low-power design requirements of L1 cache.

However, due to the power constraint in modern processors,
power efficient design techniques such as power gating, dynamic
voltage and frequency scaling (DVFS) [18, 20] are often adopted by
designers to reduce the CPU’s supply voltage. While these tech-
niques can reduce energy consumption, they also make on-chip
memory cells more prone to multi-cell upset (MCU) by energetic
particles or environmental random noises. As we continue to scale

https://doi.org/10.1145/3225058.3225093
https://doi.org/10.1145/3225058.3225093

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Z. Yan et al.

SRAM cells to finer technology nodes, the MCU rate also exponen-
tially increases because more memory cells are likely to be affected
by the strikes from energetic particles. Recently, a MCU error re-
sulted in a corruption of several hundred bits along entire columns
and rows [16]. To deal withMCU, complex ECC schemes are needed.
However, as such schemes incur high space and time overheads
they are often infeasible for applications in high performance and
low-latency L1 data caches. Consequently,modern L1 cache systems,
despite of using ECC, can still suffer from soft errors, especially for
more MCU type of soft errors.

In this paper, we propose to leverage the inherent redundancy in
HTM to protect data in the L1 data cache from the impact of soft er-
rors. HTM is a new feature adopted by several chip manufacturers,
such as Intel and IBM, in their commercial CMP productions [37, 39].
It usually provides some dedicated hardware resources to store in-
termediate results and only make these results visible after the
transaction commits its work. If the available space redundancy
during each transaction’s execution is sufficient not only to detect
occurrences of soft errors in critical program execution regions but
also to recover from them by aborting and re-executing the transac-
tion, we can enhance reliability of computer systems by protecting
the vulnerable L1 data cache from any soft errors. We choose to
focus on L1 data cache because current Intel’s HTM implementation
have adopted the L1 data cache as its speculative buffer that can
be further exploited to help detect and recover from soft errors. In
addition, L1 cache, due to performance constraint, cannot combat
multi-bit corruptions by simply employing complex ECC mechanisms,
an approach commonly used in lower level cache and main memory
(more discussion is provided in Section 2).

In this study, we design a reliability-enhanced HTM system,
called RE-HTM, wherein we add a function handler to the commit
stage for each transaction to check whether soft errors have oc-
curred during a transaction’s lifetime. It maintains the difference
(“delta”) between the old and new versions of each transactional
modification to protect the written data. The delta information can
be used to check the equality of the old version and changes to the
new version in the commit stage.

In summary, we make the following contributions in this work.
(1) We introduce a novel RE-HTM scheme to leverage the redun-
dancy existing in HTM to detect occurrences of soft errors. (2) We
extend an HTM interface to integrate the function to detect and re-
cover soft errors during the transaction’s lifetime. (3) We prototype
the RE-HTM system and explore various benefits and trade-offs.

The rest of the paper is organized as follows. Section 2 describes
background and motivation for this work. Section 3 elaborates on
the design of RE-HTM. We present the evaluation and analysis of
RE-HTM in Section 4 and conclude the paper in Section 5.

2 BACKGROUND AND MOTIVATION

In this section, we provide background on soft errors and discuss
the motivation for this work, which leverages specific interfaces
provided by a modern HTM system to enhance reliability.

2.1 Background

Sources of Soft Errors. As the complementary metal oxide semi-
conductor (CMOS) feature sizes continue to shrink, the radiation

from deep space, packaging materials, thermal neutrons, environ-
mental random noise, and signal integrity problems have caused
interference faults to occur at an increasing rate [24, 40]. Further-
more, the exponential increase in the number of transistors on
a chip due to fabrication- technology scaling, has reduced nodal
capacitances and required lower voltages. The benefits of such
practice are improved performance while dissipating less energy.
However, this also reduces the critical charge (Qcr it) required to
excite a circuit node, making systems more susceptible to errors
caused by the surrounded environmental factors. These environ-
mental radiation-induced faults are referred to as soft errors.

When a soft error occurs, one or more bits in a silicon chip
incorrectly flip causing the affected location to contain an erro-
neous result. With the current practice of integrating high-density,
high-speed, low-capacitance, and low-voltage memory devices into
microprocessor chips, memory’s reliability, especially for the static
random access memory (SRAM), commonly used to implement
caches, can also suffer from such radiation-induced soft errors. As a
result, ensuring reliability from soft errors becomes as a first-class
design constraint for processor designers. Unfortunately, soft errors
occur non-deterministically and therefore, detecting and recovering
them can be very challenging.
A Study of Soft Errors in SRAM. Specifically, soft error rate
(SER) for SRAM can be estimated by the Hazucha-Svensson model
in Equation 1, where this SER is a linear function of the memory
cell area size but an exponential function of the critical charge,
where critical charge can be simplified as a linear function of the
power supply voltage [11]. More specifically, the critical charge
Qcr it can be defined as the sum of two quantities: a capacitance and
a conduction component, which is shown in Equation 2. Usually,
Vdd is the power supply voltage, Cn is the node capacitance, Idp
is the maximum drain conduction current of the PMOS and Tf is
the flipping time of the cell. The conduction component, which
is the product of Idp and Tf , can be ignored in SPICE simulations
to characterize the critical charge Qcr it [29]. As a result, SER of
SRAM is an exponential function of its power supply voltage.

SER = Constant × Flux ×Area × e
−
Qcr it
Qcoll (1)

Qcr it = Vdd ×Cn + Idp ×Tf (2)

A recent report (shown in Table 1, one FIT represents one failure
per 109 hours) [34] reveals that the SER for individual SRAM cells,
used to construct caches, increases when the feature size is reduced
from 65nm to 40nm [3]. This reversal of a long-term SER trend due
to scaling is likely to continue into the future [13], making SRAM
more vulnerable to soft errors. At the same time, there will be more
and more MCU soft errors with the fabrication-process scaling. As
such, soft errors are already a major reliability concern for both
current and future high-performance CMP’s cache memories.
Error Correction Code (ECC). Advanced ECC techniques can
protect SRAM from multiple-bit soft errors. However, the high
overheads in both area and latency become a major obstacle to inte-
grate these techniques into the L1 cache [22], because the industry
generally favors simple and cheap design. In Table 2, we list the
overheads of Single Error Correct and Double Errors Detect (SECDED)

Leverage Redundancy in Hardware Transactional Memory to Improve Cache Reliability ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Table 1: Soft error rates in different types of electronic com-

ponent

Type SER (FIT/bit) SER Comment

SRAM 10−4-10−2 Reversal of a decline trend to an increase trend with design rule

DRAM 10−10-10−5 A downward trend due to fixed cell capacitance as design rule shrinks

Logic 10−5-10−3 Trend remaining flat as process technology shrinks

Table 2: Space overheads in different types of error correc-

tion code

Single Bit Correct - Double Bit Detect Double Bit Correct - Three Bit Detect

Data

Bits

ECC Total Overhead ECC Total Overhead

Bits Word Bits Word

16 6 22 27% 11 27 41%

32 7 39 18% 13 45 29%

64 8 72 11% 15 79 19%

128 9 137 7% 17 145 12%

and Double errors Correct and Triple Errors Detect (DECTED) under
various data word length configurations. As such, L1 cache often
uses simple ECC schemes, while L2 and L3 caches can possibly
adopt more complex and powerful ECC schemes. In practice, how-
ever, cache designs usually sacrifice reliability for performance in
addition to the constraints of power and area budget. For exam-
ple, all three levels of cache in Intel’s Haswell i7-4770k processor
are protected by single-bit ECC scheme, and in the newer Intel’s
Skylake i7-6700K processor, both the L1 and L2 levels of cache are
protected by single-bit ECC scheme while adopting multi-bit ECC
scheme to protect its L3 cache. Single-bit ECC can only detect two
bits error and correct one bit error at most. Thus, it can suffer from
MCU soft errors. Interleaved ECC can improve the capability to
detect and correct multi-bits errors but also consumes more power.
However, interleaved ECC schemes are not capable of handling soft
errors that corrupt several hundred bits along entire columns and
rows [16].

In summary, the high SER of SRAM in conjunction with the use
of simple ECC schemes makes L1 cache especially vulnerable to soft
errors, especially for more and more MCU soft errors in the future.

Detection and Recovery from Soft Errors. Recent research fo-
cus has been on protecting the processor’s internal structures from
soft errors [6, 8, 26, 28, 32, 36]. However, the result of the afore-
mentioned SER studies and a common practice in modern cache
design indicate that more efforts should be spent on protecting data
in the L1 data cache from soft errors. This subsection focuses on
existing work on detecting and recovering from soft errors, which
can be categorized into hardware- and software-based solutions, to
address this need. Both categories define their replicated spheres
and use redundant information to detect and recover the corrupted
data [26].

Hardware-based solutions usually replicate inputs while collect-
ing outputs to make comparisons to detect soft errors. Specific
forward or backward retry policies are used to facilitate the re-
covery from soft errors [32]. Earlier systems utilized complex re-
dundant hardware components such as dual modular redundancy
(DMR) or triple modular redundancy (TMR) to meet system reliabil-
ity requirements. Solutions based on simultaneous multithreaded
(SMT) processors such as FaulTM [38], can achieve redundancy

acquire_lock (&mutex)

// do critical section

// function calls,

// memory operations.

release_lock (&mutex)

Retry: xbegin Abort // Enter RTM execution, Abort is fallback path

cmp mutex, 0 // Check to see if mutex is free

jz Success

xabort $0xff // Abort transactional memory if mutex busy

Abort:

check EAX and do retry policy

actually acquire lock or wait

to retry

Success:

cmp mutex, 0 // If mutex not free, then was not RTM execution

jz Commit

mov mutex, 0 // non-RTM unlock (for compatibility)

Commit: xend // commit RTM execution

Figure 1: Transactional memory interface in Intel’s transac-

tional synchronization extensions, where XBEGIN, XEND,

and XABORT are new instructions used in the Restricted

Transactional Memory (RTM) mode

by executing two identical copies of the same program as indepen-
dent threads. The outputs are then compared to detect transient
faults [28, 36]. Generally approaches that run redundant threads or
transactions, require double theprocessing resources.

In addition there are software based solutions that execute re-
dundant threads in SMT processor. Software Anomaly Treatment
(SWAT) [19], can monitor abnormal software behaviors, diagnose
these behaviors to identify transient faults, and recover from them [33].
At the same time, these solutions can analyze the structure of a
program to assess possible impacts of soft errors and then select
test cases to detect and recover from soft errors [6, 8]. As such, the
software-based solutions are more practical, as they do not need
any hardware modification. However, they can be slow and require
manual injection of monitoring code.

2.2 Motivation

Modern Transactional Memory Systems. Transactional mem-
ory (TM) can simplify concurrent programming by organizing a
group of load and store instructions to execute in an atomic way.
After more than two decades of development, TM finally enjoys
mainstream adoption by themicroprocessor industry. HTM systems
provide a simple and clean interface to provide atomicity, consis-
tency and isolation. They automatically isolate each transaction and
provide programmers with the ability to compose complex code
sections using the provided TM interfaces. As a result, the whole
transaction behaves as an atomic operation, which can guarantee
the serializability and recoverability. Such atomicity provides an
ideal environment to integrate reliability enhanced feature as part
of TM interfaces. This can be achieved without interfering with
current capability to detect and recover from atomicity violations.

In Intel’s Transactional Synchronization Extensions (TSX), which
wemodeled in our implementation, instructions such as XBEGIN and
XEND are used to label a transactional region [14]. It organizes the
intermediate results in its internal speculative buffer in the L1 cache
before exposing them to the concurrent transactions. Instruction
XABORT is used to abort a transaction and roll back the processor’s
state to that before the execution of XBEGIN. Note that TSX only
provides transactional support at the L1 cache (i.e. transaction
with its modifications overflow L1 cache will be aborted), which
is sufficient for our work to protect vulnerable data in the L1 data

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Z. Yan et al.

cache, and our RE-HTM can be extended to protect L2 cache when
L2 cache is included in HTM’s speculative buffer in future.

In order to maintain transactional semantics (atomicity, consis-
tency, and isolation), any memory modification in a transaction
cannot be accepted until the transaction commits its work (e.g.,
XEND in TSX) [12, 30]. Thus, for each modified data in a transaction,
there are at least two versions of this data: the original version with-
out any transactional modifications and a new version resulting
from a transactional modification plus some register state informa-
tion. This redundant information is used to revert to the state before
transaction starts its work on abort and commit the transactional
computations on commit, respectively. A transactional conflict oc-
curs when two or more concurrent memory accesses are issued to
the same shared data, of which at least one access comes from a
transaction and one of them is a write operation [10]. HTM sys-
tems can then detect any transactional conflicts and schedule the
conflicted transactions in cache coherence protocol to guarantee
correctness.

From this perspective, existing HTM systems have already in-
tegrated several hardware resources to help detect and resolve
conflicts, and then make decisions to commit or abort transactions.
In Intel’s TSX, the conflict resolution mechanism has been further
extended to provide programmable fallback paths so that devel-
opers can specify tasks to perform based on reported abort codes.
Throughout this paper, we borrow the same TM interface as TSX to
integrate the capability to detect and recover corrupted data due to
soft errors. To illustrate how this fallback mechanism works in TSX,
we present Figure 1, which shows how traditional lock-based code
can be translated into a TM-based code in TSX.

In Figure 1, a program enters a transaction via XBEGIN. Its fall-
back path is located at the address of Abort. In this example, the
abort code is set to “0xff” in a specified register (e.g., EAX) and the
abort handler checks this code to perform retry or wait for other
prerequisites before responding [14]. If no conflicts are detected,
the transaction commits its work via XEND. Note that because the L1
cache is used as a speculative buffer, transactions overflow from L1
cache are aborted and re-executed through the controls of software
handlers.

The availability of a fallback mechanism means that we can ex-
tend existing TM interfaces to check whether any soft errors had
occurred during a transaction’s lifetime. We can further optimize
the HTM structures to maintain all necessary redundancy informa-
tion to protect transactional data in the L1 data cache. This added
functionality can be supported by existing TM interface without
interfering with its ability to protect accesses by concurrent threads.
As a result, we propose that modern TM systems can be used as a
low-cost reliability solution to improve the on-chip memory relia-
bility.

3 SYSTEM DESIGN AND IMPLEMENTATION

In this section, we describe our design and implementation of the
proposed RE-HTM system. Specifically, we define the replicated
sphere to protect the data in the vulnerable L1 data cache.We exploit
existing redundancy in the version management module of HTM
to protect the vulnerable data. The ultimate goal of the proposed
system is improving system reliability at a fairly low cost.

3.1 Architectural Overview

RE-HTM is an enhancement to a typical CMP system with two level
on-chip caches. The organization is based on a private L1 data cache
per core and a shared inclusive L2 cache per chip. It supports lazy
conflict detection and lazy version management transactional
memory features as part of its hardware cache coherence protocol.
Currently, RE-HTM only supports the inclusive cache because it
needs to leverage the lazy version management feature. Specifically,
it utilizes the L1 data cache to buffer the transactional writes at
the cache line granularity during a transaction’s execution. It then
checks whether the memory access operations overlap with other
executing transactions to detect any transactional conflict. The
buffered content is either committed or aborted at the end of the
transaction. When a transaction begins to access a dirty cache line,
the system writes the dirty cache line back to the inclusive L2 cache.
This is done to maintain an old copy of data in the L2 cache. Dirty
data in the L2 cache is then written back to the main memory when
it is evicted from the L2 cache. A transaction is aborted when its
modifications are evicted from the L1 data cache. Our approach
is designed to protect the vulnerable L1 cache. We also assume
that the lower level memory such as L2 cache and main memory
have already been protected by more complex ECC schemes. This
is because these lower level memory systems can usually tolerate
longer latency to achieve higher reliability [7, 15, 17].

We implemented the aforementioned system by extending the
Intel’s TSX interface in our simulated CMP system to support de-
tection and correction of soft errors. We used the same instruction
prefixes as TSX throughout this paper to make our design fully
compatible with this interface. Specifically, we modified the XEND
instruction to check for any occurrence of soft errors within a trans-
action’s lifetime. Figure 2 compares the approaches used by the
current state-of-the-art FaulTM and our proposed system. On the
left side, FaulTM spawns a new thread running the redundant trans-
action to be used to check for transient faults. This requires that
both threads are synchronized and a comparison is performed just
prior to commit [38]. Our RE-HTM approach, on the other hand,
simply detects any occurrence of soft errors in the commit stage
without the need to spawn another redundant thread. During the
execution, our approach injects redundant copy of data to protect
(the selection process is explained in section 3.2).

When a transaction enters in its commit stage, any data incon-
sistency within a transaction indicates that soft error has occurred.
When this is detected, the transaction is aborted. The system then
re-executes the transaction to recover from an error and determine
whether the error is caused by a transient or a permanent hardware
error. The re-execution control can be done by simply extending
the specific abort handler. While permanent hardware damage can
also be checked by this process, we omit it in this work because it
only focuses on its capability to detect and correct the corrupted
data when any soft error occurs.

3.2 Replicated Sphere

In order to detect occurrences of soft errors within a transaction,
the system needs to check contents of the protected variables in
the replicated sphere and verify that there is no data corruption
occurring within the transaction’s lifetime.

Leverage Redundancy in Hardware Transactional Memory to Improve Cache Reliability ICPP 2018, August 13–16, 2018, Eugene, OR, USA

TX
Redundant

TX Useful Computation

Barrier Synchronization

Check Soft Errors

Spawn a new shadow

thread to run a

Redundant TX

Execute useful

computation in

transaction

Wait both TX and

Redundant TX to enter

in their commit stages

Compare both write sets

to check soft errors

TX

Execute useful computation

in transaction

Execute useful computation

intransaction

Execute useful computation

in transaction

Compare the protected

datum in replicated sphere to

check soft errors

Inject Delta of Write Set

Inject An Extra Copy of

Selected Read Set (Read

Only with Multiple Usages)

Inject delta of written data

Inject an copy of read-only

with multiple usages datum

Figure 2: Execution mode comparison between FaulTM and the proposed reliability-enhanced HTM system

As shown in Figure 3, we have to protect all written data within
a transaction to avoid any data corruption happens during the
transaction lifetime. We do not protect any read-only memory
content that is only read once (e.g., condition variables) within
a transaction because it can be re-fetched from the lower level
memory. However, when a read-only memory content is loaded
multiple times, we need to maintain its correct value in the L1 data
cache for subsequent accesses as some transactional read-only data
may be silently evicted from the L1 cache. Therefore, our replicated
sphere also includes each read-only variable in a transaction when
it is loaded more than once.

Currently, HTM provides limited virtualizing support for trans-
actions, which may induce the transactional abortions. As such,
programmers need to be tactful to avoid such unnecessary trans-
actional aborts. In this work, we disabled the hardware prefetcher
from loading data from the lower-level memory into the L1 cache.
Such prefetching can increase the number of aborts due to the re-
source contention. To achieve this goal, for the variables that are
used by the previous transactions, we combine the commit opera-
tions of the previous transactions to write back the values to the
lower level cache and invalidate the copy in the L1 cache. We also
extended the lazy commit approach used by Intel’s TSX to commit
written data and apply it to all data (including previously loaded
data).

Soft error detection requires that we collect the write-set content
at each write operation and compare it with the latest content
at the commit time. For read-only data, we need to verify that
the two copies are the same. These different types of data can be
analyzed by their dependence relationship within the transaction
code. Therefore, the compiler can help to identify the data that we
need to protect.

Figure 4 illustrates the process to detect occurrences of soft
errors for transactional writes. As shown, our modified version-
management module computes the difference between the new and
the old versions of each transactional modification (delta) and then
stores the new version in the L1 data cache. The old and delta values
are stored in the L2 cache. In the commit stage, it compares these
values to check whether a soft error has occurred. It is coupled
with the lazy conflict detection and lazy version management of the
hardware transactional memory. When a transaction finishes its
work, it sends its read and write addresses to the cache controller

inject with delta

inject with extra copy

Figure 3: Replicated sphere defined in reliability enhanced

HTM system

/* update old content 5

in memory address 0x100

with r1's content 8 */

xbegin {

store r1, (0x100);

}xend

L1 Cache (8-way set-associative)

8

5
3

L2 Cache (8-way set-associative)

new version old version injected delta

comparator

soft error

Check in Commit

Figure 4: Integrated management of delta value in version-

management module

and perform conflict detection. If no transactional conflict is de-
tected, the transaction commits its modifications in the L1 cache.
We also modified the cache coherence protocol to help the L2 cache
hold the old and delta values. It can be extended to permit the old
and delta values to be swapped to the main memory by maintaining
some tables to track the information. For each read-only memory
content with multiple accesses within a transaction, the version-
management module stores an extra copy in the L2 cache. Note
that the inclusive L2 cache already has this capability. It can also
check for equality when any data is evicted from the L1 cache or in
the commit stage to guarantee that the data in L1 is not corrupted.
Because our base system implements an inclusive L2 cache which
contains all the contents reside in the L1 data cache, we simply
added an extra compare operation in the commit stage or when
some read set data is silently evicted from the L1 data cache. As a
result, we can use the same comparator circuit with the delta input
port to be set to “0”.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Z. Yan et al.

When a transaction commits its work, the content of thewrite-set
is written to the L2 cache or the main memory and becomes globally
visible to the whole system. We have added a compare and check
operation to this stage. It involves verifying the expected data values
in the replicated sphere. An equal write-set entry in it is marked
as ready to be committed. Subsequently, the system commits the
transactional computation. Otherwise, it aborts and restarts the
transaction to recover from soft error. This compare-and-check
operation is implemented as an extended soft-error handler.

3.3 Optimizations

We only use (delta) to check for value equality, and therefore, we do
not need to store its contents. Storing the delta value instead of the
new data can save memory. Because our system uses a counting
Bloom filter [5] to calculate the summary signature to represent
the delta content of the write-set instead of storing the delta value
for each entry in the L2 cache, using delta can also reduce the false
positives of Bloom filter. As shown in Figure 5, we integrated a
counting Bloom filter to store delta contents. It is worth noting
that when multiple write operations are performed on the same
variable within a transaction, our system removes the old delta
before adding the new delta content to the counting Bloom filter.
This operation can be determined by checking whether the written
variable exist in the write set.

We choose a 4-bit counter to avoid possible overflow of the
counting Bloom filter. With 4-bit, the overflow probability is less
than 1.37 x 10−15 xm = 2.80 x 10−12, wherem is the vector size of the
Bloom filter, chosen to be 2048 in our system. This signature-based
design removes the extra space overheads at a cost of a counting
Bloom filter. In the commit stage, the system performs an XOR
operation of the new and old values of the counting Bloom filter to
detect any occurrence of soft errors. In addition to reducing space
in the L2 cache, this approach also reduces the write traffic to the
L2 cache.

Because the L1 cache is used as a speculative buffer, a trans-
actional write-set overflow triggers a transaction abortion. This
type of abort is due to the limited support on virtualizing trans-
actional memory. As such, developers need to design alternative
execution paths to handle the various aborting cases. When a trans-
action degrades to software executionmode, it executes like existing
software-based methods that maintain data redundancy in software
and compare results to check for soft errors. Programmers need
to specify the execution path in this case. To mitigate the effect of
aborts due to overflowed transactions, we suggest that developers
divide each large transaction into several smaller transactions, each
of which can fit in the L1 data cache. It is the developer’s responsi-
bility to guarantee the functional equivalence between an original
large transaction and the subsequent smaller transactions.

Another suggestion that can improve performance is to avoid
having unsupported system calls and I/O operations in transactions.
These instructions can induce transactional abortions. These kind
of aborts come from the inherent problem of limited hardware
support to virtualing transactional memory. For example, running a
transaction several times may results in several aborts due to the OS
related activities. The following work [31] has been implemented
to alleviate this type of abort. However, since the adoption of HTM

in CMP is still in its infancy, this type of abort must still be avoided
by the programmers.

In the commit stage, each transaction may experience a time de-
lay that can leave previously compared values (i.e., already checked
for soft errors) unprotected until the transaction is fully commit-
ted. Fortunately, most transaction sizes are relatively small due
to limited hardware resource for HTM. Small transactions mean
smaller delay windows. Still we choose to tackle this issue by de-
signing a greedy policy that commits an equal entry to the L2 cache
without waiting for all the compare-and-check operation to finish.
While the system still needs to maintain the old value to allow the
system to roll back once an occurrence of soft error is detected,
this optimization increases the performance of the common case;
i.e., transactions not experiencing soft errors. This is done to re-
duce commit delays caused by comparing and checking all entries.
We design a specific software handler to revert the old value in
DRAM, when we find the occurrence of soft error during the pro-
cess to greedily commit the equal entries. At the same time, we
design a hardware component in the commit stage to accelerate
the compare-and-check operation, which is shown in Figure 4.

3.4 Overheads

This approach only applies to systemswithHTM support. Currently,
there are vendors such as IBM and Intel, who include HTM features
with their CMPs. RE-HTM is based on their limited HTM support
and adds the counting bloom filter and comparators that constitute
the additional hardware overheads. The hardware comparators’
overhead is trivial. Implementing the 4-bits counting bloom filter
with vector size of 2048 needs 1KB of SRAM. As a result, it adds
about 3.1% overheads on SRAM comparing with 32KB L1 data cache,
which is much less than the space overheads in different types of
error correction code as shown in Table 2

4 SYSTEM EVALUATION AND ANALYSIS

In this section, we evaluate the overhead of our proposed RE-HTM
system with the base system and compare it against the traditional
redundant execution methods, such as FaulTM.

4.1 Experimental Environment

We use Simics [21] to simulate a 16-core CMP system with HTM
functionality based on GEMS 2.1 [23]. These 16 cores are inter-
connected via an on-chip network with the mesh topology. We
configure the 4 memory controllers integrated in the system to ac-
cess the main memory. We model the CMP system’s HTM feature
similar to Intel’s TSX extension. The L1 data cache adds extra bits
to label the transactional read-set and write-set, working as the
transactional buffer, while the L2 cache adopting the interleaved
DECTED code to correct double errors and detect triple errors, the
L2 cache contains all the datum stored in the L1 data cache. The
detailed configuration parameters are listed in Table 3. Main mem-
ory also adopts the interleaved ECC scheme to guarantee the data’s
correctness from corruption.

There are two orthogonal components of protecting the L1 data
cache from soft errors. The first component is to analyze the pro-
gram and identify the vulnerable data. The second component is
to propose some mechanism to protect the vulnerable data in the

Leverage Redundancy in Hardware Transactional Memory to Improve Cache Reliability ICPP 2018, August 13–16, 2018, Eugene, OR, USA

// during transaction

execution, where X, Y

and Z are variables,

whose old values are

9, 8 and 7

xbegin{

store 109 X

store 208 Y

store 307 Z

store 409 X

store 508 Y

}xend

X, Y, Z

Write Set Signature

100, 200, 300

Counting Bloom Filter

X

Y

109

208

Z 307

Transactional Version Log

9

8

7

addr new old

Maintain transactional version log and calculate delta contents

between the old and new version in counting Bloom filter

remove and add the new delta contents (X and Y) of the

entries already exist in the write-set (first update counting

Bloom filter and then to the transactional version log)

X, Y, Z

Write Set Signature

400, 500, 300

Counting Bloom Filter

X

Y

409

508

Z 307

Transactional Version Log

9

8

7

addr new old

subtract entries in counting Bloom filter by

all the value contents (both old and new)

stored in transactional version log to check

data inconformity in commit stage

100

200

300

delta

400

500

300

delta

400, 500, 300

Counting Bloom Filter

409

508

307

9

8

7

new old

XOR

Transactional Version Log

Figure 5: Store delta contents in counting Bloom filter

Table 3: Configuration of The Simulated CMP System

Processor Core 2.0 GHz in-order, single issue

L1 Cache 32 KB 8-way, 64-byte line, write-back, 2-cycle latency

L2 Cache 8 MB 8-way, inclusive, write-back, 20-cycle latency

Main Memory 4 GB, 4 banks, 300-cycle latency

L2 Directory Bit vector of sharers, 6-cycle latency

Interconnect Mesh, 2-cycle wire latency, 1-cycle route latency

code snippets. In this work, we provide support for the second
component by leveraging HTM to protect L1 data cache from soft
errors. Program analysis techniques can help programmers to locate
data with specific features and then to protect such data in trans-
actions to guarantee correctness. Developing effective approaches
to identify code locations vulnerable to soft errors still needs more
investigation, such as exploiting the program vulnerability fac-
tor [9, 35], and we will explore it as our future work. In this work,
however, we rely on the developer to identify the vulnerable data in
a program. To do so, the input program is transformed into several
snippets and the vulnerable snippets, as specified by the developers,
are protected by HTM as transactions.

Note that the importance of various data sometimes depends on
their access pattern. For example, a branch condition that is only
used once can be safely loaded from L2 cache or main memory, and
thus, needs no protection. This type of data can be located within
a program by using existing static and dynamic program analyses
to identify their resiliency [6, 8]. On the other hand, variables that
are used to control conditional branches, frequently read, or shared
by multiple threads are instances of such critical and vulnerable
data that need protection. Similar to FaulTM, our system expects
programmers or compilers to generate code that protect vulnerable
data by including them as part of transactions.

Because our focus is not on developing approaches to identify
these critical data, we, instead, choose the STAMP benchmark
suite [25] to conduct our evaluation to learn the overheads and
benefits of RE-HTM system. The STAMP benchmark suite already
provides locations of one type of critical data—variables shared

by multiple threads. In doing so, we can assume that all identified
transactions represent code regions vulnerable to soft errors since
data in these transactions are shared by multiple threads. In Table 4,
we summarize the key characteristics of the selected applications
from the STAMP benchmark suite. The transactional read-set and
write-set are maintained at the cache line granularity. Note that we
excluded the Bayes application in our evaluation because it has ex-
hibited unpredictable behavior and high variability in its execution
time [4]. We choose the baseline TM system to be the one with lazy
version management and lazy conflict management, which behaves
like Intel’s TSX implementation.

We find that the STAMP benchmark suite already has several
applications that spend more than 95% of the overall execution time
in the transactional code. This means that our proposed system
is being tested under rigorous workload (i.e., a large number of
transactions and data to be protected from the soft errors). For
applications that spend less time in transactional codes, we can use
them to evaluate the overheads of protecting only a small portion
of the code.

To inject soft errors, we use Simics to dynamically change the
L1 cache content. We then record the changed locations to en-
sure repeatability. A prior study has shown a convincing evidence
that 99.78% transient faults occurring in selected programs can
be pruned to exploit their equivalences [8]. Based on this impor-
tant observation, we simplify our soft error injection model by
randomly injecting soft errors to 5% of the transactions in these
applications, which represent on average 0.0015% to 4.95% of the
overall execution time in our selected applications.

4.2 Evaluation Results and Analysis

As part of our overhead analysis, we decompose the overall execu-
tion time into the following non-overlapped components: times due
to non-transactional work (NoTrans), transactional work (Trans),
barrier synchronization (Barrier), conflict resolution (Conflict), and
detection of soft errors (Check). The “Conflict” time only exists in

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Z. Yan et al.

Table 4: Workload Characteristics of Benchmarks

Input Parameters Granularity Contention

Read-set Write-set

avg max avg max

intruder -a10 -l4 -n2038 -s1 fine high 5.5 30 3.4 23

kmeans -m40 -n40 -t0.05 -i random-n2048-d16-c16.txt fine low 3.8 7 1.7 2

ssca2 -s13 -i1.0 -u1.0 -l3 -p3 fine low 2.0 3 2.0 2

vacation -n4 -q60 -u90 -r16384 -t4096 middle low 56.9 99 8.2 18

labyrinth -i random-x32-y32-z3-n64.txt coarse high 91.1 311 90.7 252

genome -g256 -s16 -n16384 coarse high 24.1 234 5.9 151

yada -a20 -i 633.2 coarse high 37.3 421 30.2 370

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1
.0

7
0

E
x
e
c
u

ti
o
n

 T
im

e
 N

o
r
m

a
li

z
e
d

 t
o
 B

a
se

li
n

e
 T

M
 s

y
st

e
m

 NoTrans Trans Barrier Check

B F
yadakmeans vacation

R
labyrinth genomessca2intruder

B F R B F RB F R B F R B F R B F R

1
.1

1
9

1
.0

1
4

1
.5

1
6

1
.3

8
3

1
.2

6
1

1
.2

9
3

1
.0

4
1

1
.0

0
8

1
.0

3
5

1
.2

9
1

1
.1

9
5

1
.1

7
1

1
.1

8
2

Figure 6: Distribution of execution times under the single-

threaded configuration. B, F and R denote the baseline TM

system, the FaulTM system, and the proposed signature-

based RE-HTM system, respectively.

multi-threaded configurations, while the “Check” time only exists
in FaulTM and the RE-HTM system.

We compare the overheads of our RE-HTMwith those of FaulTM
on protecting the L1 cache because it is the most relevant work
to our approach. While FaulTM has some potential capability to
protect some errors in the processor datapath. However, it lacks
the evaluation on the coverage of datapath. More specifically, with-
out the lockstep technique [2], we believe neither FaulTM nor
our approach can really protect the core data path. The reason is
that, besides the modifications in the L1 cache, FaulTM can only
compare the register files that cannot protect the latches within
the core (lacking the synchronization mechanism to compare the
results). As a result, a practical approach is to separating different
protection mechanisms on different components. As in our work,
we only use RE-HTM to protect the L1 cache from soft errors.

As illustrated in Figure 6, we measured the execution times of
seven applications in the single-threaded configuration on three
different systems: baseline HTM (B), FaulTM (F) and counting
Bloom filter signature-based (R) RE-HTM systems. In this mode, we
find that “R” outperforms “F” and only incurs an average overhead
of 12.8% when compared to the baseline system; “F”, on the other
hand, incurs an average overhead of 22.5%. Note that FaulTM needs

to spawn a redundant reliable thread to execute the replicated
transaction.

For those applications spending most of their time in transac-
tions, “R” spends more time on “Check” because these applications
usually have bigger read-set and write-set, requiring more time to
check protected data. Furthermore, “R” spends more time on “Trans”
(0.003% to 0.16%) to maintain the necessary redundancy informa-
tion, and “F” also spends more time on “Trans” because it needs to
wait for its replicated reliable transaction to finish, whereas, our
approach calculates the longer one as its “Trans” part.

Some applications have barriers to synchronize transactions
when entering the commit stage. “F”, by running two threads,
spends non-trivial amount of time on “Barrier” and “Check”. For
those applications spending less time in transactions, the overheads
of “R” are impacted by the size of the transactional read-set and
write-set.

To observe our RE-HTM system’s behaviors undermultithreaded
settings, we evaluate these systems under 2-, 4-, 8- and 16-thread
configurations, respectively. Here we choose the applications “vaca-
tion”, “labyrinth”, “gnome” and “yada”, which spend most of their
time in transactional regions. Due to their high densities of trans-
actions, these applications would likely exhibit different behaviors
than those in the single-threaded setting as more transactions are
executed in parallel. Table 5 reports the speedups of “B”, “F” and “R”
under the specified multi-threaded configurations. We find that “R”
can achieve higher speedups than “F” across various configurations
because it doesn’t require the system to spawn an identical thread
to check for soft errors, thus freeing extra threads to execute useful
computation.

In Figure 7, we also decompose the overall execution times into
the five components as previously described. Because “F” needs
an extra thread to replicate each transaction, the recorded results
begin with 2-thread configuration. From this part, we find that
“R” performs much better than “F” under the same multi-threaded
configurations. It even outperforms “F” when it employs fewer
threads than “F”.

As the number of threads increases, we observe that “Trans” and
“Check” decrease accordingly. This is because the transactional re-
gions are executed in parallel so more transactions can be executed
in a given time. At the same time, we observe that “Barrier” and
“Conflict” also increase. This is because concurrent transactions
incur more overheads on barrier synchronizations and conflict reso-
lutions. This is especially true for “R”, in which soft error detection
is done by having both the transaction (TX) and reliable threads
enter the commit stage. In some execution instances, TX might try

Leverage Redundancy in Hardware Transactional Memory to Improve Cache Reliability ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Table 5: Execution Time Speedups under Multi-threaded Configurations

1-thread 2-thread 4-thread 8-thread 16-thread

B F R B F R B F R B F R B F R

vacation 1.00 N/A 0.77 1.66 0.66 1.36 2.40 1.13 1.96 3.01 1.78 2.56 3.45 2.40 3.01

labyrinth 1.00 N/A 0.84 1.07 0.72 0.90 1.13 0.86 0.99 1.29 0.96 1.15 1.44 1.14 1.26

genome 1.00 N/A 0.85 1.68 0.79 1.45 2.80 1.39 2.42 3.97 2.28 3.42 4.90 3.28 4.31

yada 1.00 N/A 0.85 1.41 0.77 1.23 2.31 1.31 2.00 3.00 1.99 2.43 3.54 2.39 3.00

0.0

0.5

1.0

1.5

2.0

2.5

E
x
e
c
u

ti
o
n

 T
im

e
 N

o
r
m

a
li

z
e
d

 t
o
 B

a
se

li
n

e
 T

M
 S

y
st

e
m

 u

n
d

e
r
 V

a
r
io

u
s

M
u

lt
i-

th
r
e
a
d

e
d

 C
o
n

fi
g
u

r
a
ti

o
n

s

RF
V L G

Y yada

G genome

L labyrinth

V vacation

16-thread8-thread4-thread

 NoTrans Trans Barrier Conflict Check

2-thread

Y
B RFB RFB RFB RF

V L G Y
B RFB RFB RFB RF

V L G Y
B RFB RFB RFB RF

V L G Y
B RFB RFB RFB

Y

Figure 7: Execution times of selected applications under var-

ious multi-threaded configurations

to enter the commit stage first. At this point, it must wait for the
Redundant TX to also enter the commit stage. In doing so, other
threads can conflict with the waiting TX. In this scenario, both TX
and Redundant TX must be aborted. We find this scenario to occur
frequently enough to result in significant increase in both “Barrier”
and “Conflict” overheads for “F”.

In summary, we find that employing more threads does not result
in significant speedups in most applications, which is dependent
on the characteristics of the benchmark suite. However, our design
incurs much less overhead than “F” while employing a smaller num-
ber of threads. This indicates that our RE-HTM is more execution
and space efficient.

5 CONCLUSION AND FUTUREWORK

In this work, we propose a reliability-enhanced HTM system that
exploits this feature to protect L1 data cache from soft errors. Our
solution protects vulnerable data by enclosing them in transactions.
We define the replicated sphere to maintain redundancy informa-
tion and extend existing RTM interface to integrate the functionality
of detecting soft errors and recovering from them. We compare the
performance of our RE-HTM system to that of FaulTM, a state-of-
the-art HTM based soft errors detection system and find that our
approach is as effective as FaulTM in terms of soft errors detection
and recovery but incur much lower overhead. Our approach con-
sistently achieves higher speedups than FaulTM under the same
number of executing threads because our method does not employ
threads to replicate execution.

As for future work, we plan to evaluate the effectiveness of our
system in detecting permanent and intermittent errors. We will
evaluate our designs using more real-world applications in addition
to these transactional memory applications. We will apply program
analysis techniques to help automatically locate code sections that
have potential to be more vulnerable to soft errors, for example,
we can give higher priority to protect the code sections who has a
higher probability suffering from the silent data corruption. At the
same time, the framework of this RE-HTM system is easy to extend
to detect any dynamical abnormal behaviors during the runtime.
We plan to exploit redundancy information existing in HTM sys-
tem’s checkpoint and transactional log to address other reliability
concerns including soft errors occurring in processing units. Lastly,
we plan to use this framework to detecting the concurrency errors.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their valuable
feedbacks and constructive suggestions. This research is partially
supported by National Natural Science Foundation of China (NSFC)
under Grant No.61402061, Chongqing Basic and Frontier Research
Project of China under Grant No.cstc2016jcyjA0274, research grant
from NetApp and the U.S. National Science Foundation (NSF) under
Grant Nos. CCF-1704504 and CCF-1629625. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the funding agencies.

REFERENCES

[1] [n. d.]. Amazon S3 Availability Event: July 20, 2008. Retrieved May 30 2018 from
http://status.aws.amazon.com/s3-20080720.html

[2] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, Maurizio Peri,
and Saverio Pezzini. 2003. Fault-tolerant Platforms for Automotive Safety-critical
Applications. In Proceedings of the 2003 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES). 170–177.

[3] A. Dixit and Alan Wood. 2011. The Impact of New Technology on Soft Error
Rates. In Proceedings of the International Reliability Physics Symposium (IRPS).
5B.4.1–5B.4.7.

[4] Aleksandar Dragojevic and Rachid Guerraoui. 2010. Predicting the Scalability of
an STM A Pragmatic Approach. In Proceedings of the Workshop on Transactional
Computing (TRANSACT).

[5] Li Fan, Pei Cao, and et.al. 2000. Summary Cache: A Scalable Wide-Area Web
Cache Sharing Protocol. IEEE/ACM Transactions on Network 8 (2000), 281–293.
Issue 3.

[6] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke. 2010.
Shoestring: Probabilistic Soft Error Reliability on the Cheap. In Proceedings of
the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 385–396.

[7] S. L. Gong, M. Rhu, J. Kim, J. Chung, and M. Erez. 2015. CLEAN-ECC: High
reliability ECC for adaptive granularity memory system. In 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[8] Siva Kumar Sastry Hari, Sarita V. Adve, Helia Naeimi, and Pradeep Ramachan-
dran. 2012. Relyzer: Exploiting Application-level Fault Equivalence to Analyze
Application Resiliency to Transient Faults. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating

http://status.aws.amazon.com/s3-20080720.html

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Z. Yan et al.

Systems (ASPLOS). 123–134.
[9] Siva Kumar Sastry Hari, Timothy Tsai, Mark Stephenson, Steve Keckler, and Joel

Emer. 2015. SASSIFI: Evaluating Resilience of GPU Applications. In The 11th
Workshop on Silicon Errors in Logic - System Effects (SELSE).

[10] T. Harris, J. Larus, and R. Rajwar. 2010. Transactional Memory (2nd edition).
Morgan & Claypool.

[11] P. Hazucha and C. Svensson. 2000. Impact of CMOS Technology Scaling on The
Atmospheric Neutron Soft Error Rate. IEEE Transactions on Nuclear Science 47, 6
(2000), 2586–2594.

[12] M. Herlihy and J. Moss. 1993. Transactional Memory: Architectural Support
for Lock-Free Data Structures. In Proceedings of the International Symposium on
Computer Architecture (ISCA). 289–300.

[13] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba. 2010. Impact of Scaling
on Neutron-Induced Soft Error in SRAMs From a 250 nm to a 22 nm Design Rule.
IEEE Transactions on Electron Devices 57 (2010), 1527–1538.

[14] Intel. 2012. Intel Architecture Instruction Set Extensions Programming Reference.
[15] D. W. Kim and M. Erez. 2016. RelaxFault Memory Repair. In 2016 ACM/IEEE 43rd

Annual International Symposium on Computer Architecture (ISCA).
[16] Jangwoo Kim, Nikos Hardavellas, Ken Mai, Babak Falsafi, and James Hoe. 2007.

Multi-bit Error Tolerant Caches Using Two-Dimensional Error Coding. In Proceed-
ings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 197–209.

[17] J. Kim, M. Sullivan, and M. Erez. 2015. Bamboo ECC: Strong, safe, and flexible
codes for reliable computer memory. In 2015 IEEE 21st International Symposium
on High Performance Computer Architecture (HPCA).

[18] Wonyoung Kim, M.S. Gupta, Gu-Yeon Wei, and D. Brooks. 2008. System Level
Analysis of Fast, Per-Core DVFS Using On-Chip Switching Regulators. In Pro-
ceedings of the 14th IEEE International Symposium on High Performance Computer
Architecture (HPCA). 123–134.

[19] Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V. Adve,
Vikram S. Adve, and Yuanyuan Zhou. 2008. Understanding the Propagation of
Hard Errors to Software and Implications for Resilient System Design. In Pro-
ceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 265–276.

[20] P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey. [n. d.]. (A Voltage Reduc-
tion Technique for Digital Systems. In Proceedings of the 37th IEEE International
Conference on Solid-State Circuits (ISSCC).

[21] P. Magnusson, M. Christensson, and et.al. 2002. Simics: A Full System Simulation
Platform. Computer 35 (2002), 50–58.

[22] Mehrtash Manoochehri, Murali Annavaram, and Michel Dubois. 2011. CPPC:
Correctable Parity Protected Cache. In Proceedings of the 38th Annual International
Symposium on Computer Architecture (ISCA). 223–234.

[23] M. Martin, D. Sorin, and et.al. 2005. Multifacet’s General Execution-driven
Multiprocessor Simulator (GEMS) Toolset. SIGARCH Computer Architecture News
33 (2005), 92–99. Issue 4.

[24] T.C. May and Murray H. Woods. 1979. Alpha-Particle-Induced Soft Errors in
Dynamic Memories. IEEE Transactions on Electron Devices 26, 1 (1979), 2–9.

[25] C. Minh, J. Chung, and et.al. 2008. STAMP: Stanford Transactional Applications
for Multi-Processing. In Proceedings of the International Symposium on Workload
Characterization (IISWC). 35–46.

[26] Shubu Mukherjee. 2008. Architecture Design for Soft Errors. Morgan Kaufmann
Publishers Inc.

[27] S.S. Mukherjee, J. Emer, and S.K. Reinhardt. 2005. The Soft Error Problem: An
Architectural Perspective. In Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA). 243–247.

[28] S.S. Mukherjee, M. Kontz, and S.K. Reinhardt. 2002. Detailed Design and Evalua-
tion of Redundant Multithreading Alternatives. In Proceedings of the International
Symposium on Computer Architecture (ISCA). 99–110.

[29] R. Naseer, Y. Boulghassoul, J. Draper, Sandeepan DasGupta, and A. Witulski. 2007.
Critical Charge Characterization for Soft Error Rate Modeling in 90nm SRAM.
In Proceedings of the 40th IEEE International Symposium on Circuits and Systems
(ISCAS). 1879–1882.

[30] Ravi Rajwar and Martin Dixon. 2012. Intel Transactional Synchronization Exten-
sions. In Intel Developer Forum.

[31] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. 2005. Virtualizing Transactional
Memory. In Proceedings of the 32Nd Annual International Symposium on Computer
Architecture (ISCA). 494–505.

[32] Steven K. Reinhardt and Shubhendu S.Mukherjee. 2000. Transient Fault Detection
via Simultaneous Multithreading. In Proceedings of the International Symposium
on Computer Architecture (ISCA). 25–36.

[33] Siva Kumar Sastry Hari, Man-Lap Li, Pradeep Ramachandran, Byn Choi, and
Sarita V. Adve. 2009. mSWAT: Low-cost Hardware Fault Detection and Diagnosis
for Multicore Systems. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 122–132.

[34] C. Slayman. 2011. Soft Error Trends and Mitigation Techniques in Memory
Devices. In Proceedings of the Annual Reliability and Maintainability Symposium
(RAMS). 1–5.

[35] Vilas Sridharan and David R. Kaeli. 2010. Using Hardware Vulnerability Factors to
Enhance AVF Analysis. In Proceedings of the 37th Annual International Symposium
on Computer Architecture (ISCA). 461–472.

[36] T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng. 2002. Transient-Fault Recovery
Using SimultaneousMultithreading. In Proceedings of the International Symposium
on Computer Architecture (ISCA). 87–98.

[37] Amy Wang, Matthew Gaudet, Peng Wu, José Nelson Amaral, Martin Ohmacht,
Christopher Barton, Raul Silvera, and Maged Michael. 2012. Evaluation of Blue
Gene/Q Hardware Support for Transactional Memories. In Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques
(PACT). 127–136.

[38] Gulay Yalcin, Osman Unsal, and Adrian Cristal. 2013. FaulTM: Error Detection
and Recovery Using Hardware Transactional Memory. In Proceedings of the
Conference on Design, Automation and Test in Europe (DATE). 220–225.

[39] Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar. 2013. Per-
formance Evaluation of Intel Transactional Synchronization Extensions for High-
performance Computing. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC). 19:1–19:11.

[40] J.F. Zielger and H. Puchner. 2004. SER–history, Trends and Challenges: A Guide
for Designing with Memory ICs. Cypress Inc.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivation

	3 System Design and Implementation
	3.1 Architectural Overview
	3.2 Replicated Sphere
	3.3 Optimizations
	3.4 Overheads

	4 System Evaluation and Analysis
	4.1 Experimental Environment
	4.2 Evaluation Results and Analysis

	5 Conclusion and Future Work
	References

