
HUS-Graph: I/O-Efficient Out-of-Core Graph Processing with
Hybrid Update Strategy

Xianghao Xu
Wuhan National Laboratory for

Optoelectronics, School of Computer
Science and Technology, Huazhong
University of Science and Technology

xianghao@hust.edu.cn

Fang Wang∗†
Wuhan National Laboratory for

Optoelectronics, School of Computer
Science and Technology, Huazhong
University of Science and Technology

wangfang@hust.edu.cn

Hong Jiang
Department of Computer Science &
Engineering, University of Texas at

Arlington
hong.jiang@uta.edu

Yongli Cheng
College of Mathematics and

Computer Science, FuZhou University
chengyongli@fzu.edu.cn

Dan Feng
Wuhan National Laboratory for

Optoelectronics, School of Computer
Science and Technology, Huazhong
University of Science and Technology

dfeng@hust.edu.cn

Yongxuan Zhang
Wuhan National Laboratory for

Optoelectronics, School of Computer
Science and Technology, Huazhong
University of Science and Technology

zyx@hust.edu.cn

ABSTRACT
In recent years, a number of out-of-core graph processing systems
have been proposed to process graphs with billions of edges on
just one commodity computer, due to their high cost efficiency.
To obtain the better performance, these systems adopt a full I/O
model that accesses all edges during the computation to avoid the
ineffectiveness of random I/Os. Although this model ensures good
I/O access locality, it loads a large number of useless edges when
running graph algorithms that only require a small portion of edges
in each iteration. A natural method to solve this problem is the
on-demand I/O model that only accesses the active edges. However,
this method only works well for the graph algorithms with very
few active edges, since the I/O cost will grow rapidly as the number
of active edges increases due to larger amount of random I/Os.

In this paper, we present HUS-Graph, an efficient out-of-core
graph processing system to address the above I/O issues and achieve
a good balance between I/O amount and I/O access locality. HUS-
Graph first adopts a hybrid update strategy including two update
models, Row-oriented Push (ROP) and Column-oriented Pull (COP).
It can adaptively select the optimal update model for the graph
algorithms that have different computation and I/O features, based
on an I/O-based performance predictionmethod. Furthermore, HUS-
Graph proposes a dual-block representation to organize graph data,
which ensures good access locality. Extensive experimental results

∗This author is the corresponding author.
†Also with Shenzhen Huazhong University of Science and Technology Research
Institute.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP 2018, August 13–16, 2018, Eugene, OR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00
https://doi.org/10.1145/3225058.3225108

show that HUS-Graph outperforms existing out-of-core systems
by 1.4x-23.1x.

CCS CONCEPTS
• Theory of computation → Graph algorithms analysis; •
Hardware → External storage;

KEYWORDS
graph computing, out-of-core, hybrid update strategy

ACM Reference Format:
Xianghao Xu, Fang Wang, Hong Jiang, Yongli Cheng, Dan Feng, and Yongx-
uan Zhang. 2018. HUS-Graph: I/O-Efficient Out-of-Core Graph Processing
with Hybrid Update Strategy. In ICPP 2018: 47th International Conference on
Parallel Processing, August 13–16, 2018, Eugene, OR, USA. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3225058.3225108

1 INTRODUCTION
Graph data has been widely used to model and solve many problems
in different areas such as social networks, web graphs, chemical
compounds and biological structures. However, with the real-world
graphs growing in size and complexity, processing these large and
complex graphs in a scalable way has become increasingly more
challenging. While a distributed system (e.g., Pregel [17], Power-
Graph [11], GraphX [12] and BlitzG [6]) is a natural choice for
handling these large graphs, a recent trend initiated by GraphChi
[15] advocates developing out-of-core support to process large
graphs on a single commodity PC.

Out-of-core graph processing systems (e.g. GraphChi [15], X-
Stream [19] and GridGraph [25]) utilize secondary storage to pro-
cess very large graphs and achieve scalability without massive
hardware. Furthermore, they overcome the challenges faced by
distributed systems, such as load imbalance and significant commu-
nication overhead. When processing an input graph, these systems
divide the vertices of the graph into disjoint intervals and break the
large edge list into smaller shards containing edges with source or
destination vertices in corresponding vertex intervals. They process

https://doi.org/10.1145/3225058.3225108
https://doi.org/10.1145/3225058.3225108

ICPP 2018, August 13–16, 2018, Eugene, OR, USA X. Xu et al.

0 2 4 6 8 10 12
0

20

40

60

80

100

120

a
ct

iv
e
 v

e
rt

ic
e
s

(%
)

iterations

 PageRank BFS WCC

Figure 1: The percentage of active edges per iteration

one vertex interval and its associated edge shard at a time. To obtain
the better performance, these systems adopt a full I/O model to
utilize the sequential bandwidth of disk and minimize the random
I/Os. In this way, each edge shard is loaded entirely into memory,
even though a large number of edges in the shard are not needed.

Figure 1 shows the percentage of active edges (the edges that
have active sources vertices and are needed in current iteration)
per iteration for different algorithms on LiveJournal graph [1]. For
PageRank1, all edges are always active as all vertices compute their
PR values in each iteration. For BFS and WCC, the number of active
edges is small in most iterations. In this case, the pursuit of high I/O
bandwidth overshadows the usefulness of data accesses. Repeat-
edly loading the useless edges incurs significant I/O inefficiencies
that degrade the overall performance. The natural method to solve
this problem is the on-demand I/O model that only accesses the
active edges. However, this method only works well for the graph
algorithms with very few active edges. It incurs a large amount of
small random disk accesses when the number of active edges is
large due to the discontinuous distribution of active edges on disk.
This dilemma motivates us to propose a new out-of-core system
that enables switching between full I/O model and on-demand I/O
model adaptively based on the number of active edges.

In this paper, we present HUS-Graph, an I/O-efficient out-of-core
graph processing system with hybrid update strategy. Our work is
inspired by state-of-art shared-memory graph processing systems
([2], [20]) that utilize an adaptive update model to handle graphs
with different densities of active edges (percentage of active edges in
all edges). When the density of active edges is sparse, these systems
adopt a push-style model to only traverse the active edges and push
updates to their destination vertices, which skips the processing
of useless edges. When the density of active edges is dense, these
systems adopt a pull-style model where each vertex collects data
from its neighbors through its incoming edges and then updates
its own value with the collected data, which eliminates atomic
operations and enables full parallelism. By adaptively switching
between the two models, the system can handle different active
edges densities with optimal performance. We extend this hybrid
solution to disk-based scenario. However, this is non-trivial work
due to the following reasons. First, in both push and pull models,
the vertices access their neighbors to update or obtain data. This
can cause a large number of random and frequent disk accesses in
out-of-core systems when the vertices values are too large to be
1This is a standard implementation of PageRank. There is another implementation
of PageRank (PageRank-Delata) where vertices are active in an iteration only if they
have accumulated enough change in their PR value.

cached in memory, which impacts the overall performance. Second,
in order to gain optimal performance, it requires us to explore
an effective performance prediction mechanism that guides the
system to adaptively switch between push and pull model. HUS-
Graph solves these problems by adopting a locality-optimized graph
representation and an I/O-based performance prediction method.
The main contributions of our work are summarized as follows.
• Locality-optimized graph representation. HUS-Graph
proposes a dual-block representation to organize the graph
data. It divides the vertices into several disjoint intervals and
groups the outgoing and incoming edges of a vertex inter-
val in out-blocks and in-blocks according to the source and
destination vertices respectively. By restricting data access
to each out-block or in-block and corresponding source and
destination vertices, access locality can be ensured under the
dual-block representation.
• Hybrid update strategy. HUS-Graph proposes two update
models, Row-oriented Push (ROP) and Column-oriented Pull
(COP), to accommodate different computation and I/O loads.
When running algorithms with sparse active edges sets,
ROP only traverses the active edges and pushes updates
to vertices, which fully avoids the loading of useless data.
When running algorithms with dense active edges sets, COP
streams all edges and update vertices by pulling updates
from neighbors, which overcomes the challenges of random
disk accesses and eliminates write conflicts among different
threads. By utilizing an I/O-based performance prediction
method, HUS-Graph can dynamically select the optimal up-
date model based on the I/O loads of current iteration.
• Extensive experiments. We evaluate HUS-Graph on sev-
eral real-world graphs with different algorithms. Extensive
evaluation results show that HUS-Graph outperformsGraphChi
and GridGraph by up to 3.3x-23.1x and 1.4x-11.5x respec-
tively due to its efficient hybrid update strategy that brings
a great improvement of I/O performance.

The rest of the paper is organized as follows. Section 2 presents
the background and motivation. The system design is detailed in
Section 3. Section 4 presents an extensive performance evaluations.
We discuss the related works in Section 5 and conclude this paper
in Section 6.

2 BACKGROUND AND MOTIVATION
In this section, we first introduce the I/O issues of out-of-core graph
processing systems. Then we present the prominent features of
the adaptive push/pull model and its applying in shared-memory
and distributed systems. This helps motivate us to propose a new
out-of-core system that utilizes the hybrid update strategy to solve
the I/O issues of current out-of-core systems.

2.1 I/O Issues in Out-of-Core Systems
As many works [15, 19, 25] have shown, out-of-core graph process-
ing systems can efficiently process billion-scale graphs on a single
machine. They process large graphs by efficiently using the disk
drives. As the major performance bottleneck is disk I/O overhead
[21], these systems are usually optimized for the sequential perfor-
mance of disk drives and eliminate random I/O by scanning the

Out-of-Core Graph Processing with Hybrid Update Strategy ICPP 2018, August 13–16, 2018, Eugene, OR, USA

V1

V2

V3

V6

V4

V5

source vertex destination vertex write read

The push model The pull model

Figure 2: The Push and Pull models

entire graph data in all iterations of graph algorithms. This full I/O
model can bewasteful for algorithms that access only small portions
of data during each iteration, such as BFS in Figure 1. On the other
hand, the on-demand I/O model that is based on the active edges
can fully avoid loading the useless data. Unfortunately, it incurs a
large amount of small random disk accesses due to the randomness
of the active vertices. As we know, random access to disk drives
delivers much less bandwidth than sequential access. Therefore,
only accessing the useful data for out-of-core graph processing is
an overkill when the number of active vertices is large.

2.2 Adaptive Push/Pull Model
The push and pull update models are extensively used in graph
processing. As shown in Figure 2, in the push model, each vertex
passes the updates to its neighbors through its outgoing edges. In
the pull model, each vertex collects data from its neighbors through
its incoming edges, and then updates its own value with the col-
lected data. Actually, different densities of active edges sets call for
different update models. Specifically, sparse active edges set prefers
the push model, as the system only traverses the outgoing edges of
the active vertices where new updates are made. Contrarily, dense
active edges set prefers the pull model, as it significantly reduces
the contention in updating vertex states via locks or atomic opera-
tions. Inspired by this principle, several shared-memory systems
[2, 20] and distributed systems [22, 24] adopt an adaptive update
model during graph processing. For example, Ligra [20] proposes a
lightweight graph processing framework that adaptively switches
between the push and pull models according to the densities of
active edges sets in a shared-memory machine. Gemini [24] ex-
tends such adaptive design to distributed systems and proposes a
sparse-dense signal-slot model.

The current out-of-core systems either use the push model [13,
19, 25] or the pull model [5, 15]. Furthermore, the push model
for these systems is based on all vertices rather than the active
vertices, since they normally put a higher priority on I/O access lo-
cality rather than I/O amount. We argue that the adaptive push/pull
model can efficiently solve the I/O issues of out-of-core systems
and achieve a good balance between I/O access locality and I/O
amount. When running algorithms with sparse active edges sets,
the push model enables selective data access that only traverses the
active edges, which fully avoids the loading of useless data. When
running algorithms with dense active edges sets, the pull model

Hybrid Update Strategy

I/O-based Performance Prediction Method

HUS-Graph

Graph Algorithms

Storage Devices

Dual-block Graph Representation

Figure 3: The HUS-Graph Architecture

sequentially accesses the edges of all vertices, which overcomes the
challenges of random disk accesses and enables full parallelism.

3 SYSTEM DESIGN
In this section, we first introduce the system overview of HUS-
Graph. Then, we present the detail designs including the graph
representation, hybrid update strategy and the I/O-based perfor-
mance prediction method.

3.1 System Overview
A graphG = (V ,E) is composed of its vertices V and edges E. For a
directed edge e = (u, v), we refer to e as v’s in-edge, and u’s out-edge.
Additionally, u is an in-neighbor of v, v is an out-neighbor of u.
Running a graph algorithm on G is to read and update V and E and
updates are propagated from source vertices to destination vertices
through the edges. In addition, undirected graph is supported by
adding two opposite edges for each pair of vertices.

Like previous out-of-core graph processing systems, HUS-Graph
focuses on maximizing the I/O performance as well. It improves the
I/O performance by achieving a good balance between I/O amount
and I/O access locality. To achieve this, it adopts a hybrid update
strategy including Row-oriented Push (ROP) and Column-oriented
Pull (COP), inspired by shared-memory systems. Figure 3 presents
the system architecture of HUS-Graph. To efficiently support the
hybrid update strategy, HUS-Graph adopts a dual-block represen-
tation to organize the graph data, which provides fast loading of
out-edges (in ROP) and scanning of in-edges (in COP). By restrict-
ing data access to each out-block or in-block and corresponding
source and destination vertices, locality can be ensured under the
dual-block representation. In addition, HUS-Graph implements an
I/O-based performance prediction method that enables the system
to dynamically select the optimal update model based on the I/O
loads of current iteration.

HUS-Graph is novel in two aspects compared with current out-
of-core graph processing systems. First, HUS-Graph handles graph
algorithms that have different computation and I/O loads (number
of active edges) with hybrid update strategy to achieve a optimal
performance. While current out-of-core systems either adopt a
push-style update [13, 19, 25] or a pull-style update [5, 15]. Second,
HUS-Graph achieves a good balance between I/O amount and I/O
access locality, while current out-of-core systems improve the I/O
access locality at the expense of larger amount of disk I/O, which

ICPP 2018, August 13–16, 2018, Eugene, OR, USA X. Xu et al.

1

2

3

4

5

6

8
7

9

10

(a) Example graph

in-shard 1

in-block (1, 1)

2, 4 -> 1

4 -> 2

2, 4 -> 3

1 -> 4

1, 2, 3 -> 5

in-block (2, 1)

6 -> 1

6, 9 -> 2

6, 9, 10 -> 3

6, 7, 10 -> 5

Interval 1

1, 2, 3, 4, 5

Interval 2

6, 7, 8, 9, 10

in-shard 2

in-block (1, 2)

1, 2 -> 6

1, 5 -> 7

1, 2 -> 9

5 -> 10

in-block (2, 2)

7, 9 -> 6

9, 10 -> 7

6, 7, 9 -> 8

8 -> 10

(b) In-blocks

Interval 1

1, 2, 3, 4, 5

Interval 2

6, 7, 8, 9, 10

out-shard 1

out-block (1, 1)

1 -> 4, 5

2 -> 1, 3, 5

3 -> 5

4 -> 1, 2, 3

out-block (1, 2)

1 -> 6, 7, 9

2 -> 6, 9

5 -> 7, 10

out-shard 2

out-block (2, 1)

6 -> 1, 2, 4, 5

7 -> 5

8 -> 1

9 -> 2, 4

10 -> 4, 5

out-block (2, 2)
6 -> 8

7 -> 6, 8

8 -> 10

9 -> 6, 7, 8

10 -> 7

(c) Out-blocks

Figure 4: Illustration of the dual-block representation

degrades the overall performance especially when the number of
active edges is small.

3.2 Graph Representation
The hybrid update strategy requires the system to store both out-
edges and in-edges of vertices to support the adaptive processing.
Unlike previous systems [20, 24] that use 1-dimensional partitioning
to store the out-edges/in-edges, HUS-Graph adopts a 2-dimensional
partitioning and implements a dual-block representation to improve
the locality of vertex access.

Like many out-of-core systems, HUS-Graph first splits the ver-
tices V of graph G into P disjoint intervals. Each interval associates
two edge shards, in-shard and out-shard, to respectively store the
in-edges and out-edges of the vertices within the interval. Moreover,
each in-shard is further partitioned into P in-blocks according to
their source vertices. Similarly, each out-shard is partitioned into
P out-blocks according to their destination vertices. In this way,
both in-edges and out-edges are partitioned into P × P edge blocks.
Each in-block (i , j) or out-block (i , j) contains edges that start from
vertices in interval i and end in vertices in interval j. By selecting
P such that each in-block or out-block and the corresponding ver-
tices can fit in memory, HUS-Graph can ensure good locality when
processing each in-block or out-block.

Figure 4 shows the dual-block representation of an example
graph for HUS-Graph. The vertices are divided into two equal in-
tervals (1, 5) and (6, 10), the in-edges and out-edges are respectively
partitioned into four in-blocks and four out-blocks according to
the two intervals. For example, the out-edge (1, 6) is partitioned
out-blocks (1, 2) since vertex 1 belongs to interval 1 and vertex 6
belongs to interval 2.

The storage format of edges in in-blocks and out-blocks is similar
to GraphChi’s Shard format [15]. In addition, the indices to the
edges for each vertex are also stored. We refer to in-index(i, j) as the
vertices indices structure of in-blocks(i, j) and out-index(i, j) as the
vertices indices structure of out-blocks(i, j). This enables selective
loading of the active edges in ROP and parallel update in COP as
introduced in Section 3.3. The dual-block representation is similar to
the grid [25] or Destination-Sorted Sub-Shard [10] representations

that also use a 2-dimensional partitioning. Differently, the dual-
block representation stores both in-edges and out-edges to enable
hybrid processing.

Algorithm 1 Pseudo code of HUS-Graph execution

1: for each interval i do
2: Out ← NewActiveVerticesSet
3: /* Identify the active vertices in interval i*/
4: Vactive ← GetActiveVertices(i)
5: /* Determine the update strategy, using the I/O-based per-

formance prediction method*/
6: model ← UpdateModelSelection(Vactive)
7: if model = ROP then
8: /* Implement ROP model, using Alg. 2*/
9: RowOrientedPush(i,Out ,Vactive)
10: else
11: /* Implement COP model, using Alg. 3*/
12: ColumnOrientedPull(i,Out)
13: end if
14: end for

3.3 Hybrid Update Strategy
Like many out-of-core systems, HUS-Graph processes the input
graph one vertex interval at a time. Algorithm 1 shows the compu-
tation procedure of HUS-Graph in one iteration. For the processing
of each vertex interval, HUS-Graph proposes two update mod-
els, Row-oriented Push (ROP) and Column-oriented Pull (COP), to
accommodate different I/O and computation loads of graph algo-
rithms. ROP is applied when the number of active edges is small
while COP is applied when the number of active edges is large. The
selection of update model is discussed in Section 3.4. For both ROP
and COP, we maintain two copies of vertex values for each interval
i, source interval Si and destination interval Di . Si stores the vertex
values of previous iteration, serving as the source vertices.Di stores
the vertex values of current iteration, serving as the destination
vertices. Figure 5 and Figure 6 respectively illustrate the executions
of ROP and COP with the example graph in Figure 4(a).

Row-oriented Push. ROP processes the input graph by pushing
updates through the out-edges. Algorithm 2 shows the procedure

Out-of-Core Graph Processing with Hybrid Update Strategy ICPP 2018, August 13–16, 2018, Eugene, OR, USA

S1

S2

D1 D2

1 -> 4, 5

2 -> 1, 3, 5

3 -> 5
4 -> 1, 2, 3

S1

S2

1 -> 6, 7, 9
2 -> 6, 9

5 -> 7, 10

6 -> 1, 2, 4, 5
7 -> 5
8 -> 1

9 -> 2, 4
10 -> 4, 5

6 -> 8
7 -> 6, 8
8 -> 10

9 -> 6, 7, 8
10 -> 7

1 -> 6, 7, 9

2 -> 6, 9
5 -> 7, 10

D1 D2

S1

S2

6 -> 1, 2, 4, 5
7 -> 5
8 -> 1

9 -> 2, 4
10 -> 4, 5

6 -> 8
7 -> 6, 8
8 -> 10

9 -> 6, 7, 8
10 -> 7

1 -> 4, 5
2 -> 1, 3, 5

3 -> 5
4 -> 1, 2, 3

6 -> 1, 2, 4, 5
7 -> 5
8 -> 1

9 -> 2, 4
10 -> 4, 5

6 -> 8
7 -> 6, 8
8 -> 10

9 -> 6, 7, 8
10 -> 7

1 -> 4, 5
2 -> 1, 3, 5

3 -> 5
4 -> 1, 2, 3

1 -> 6, 7, 9
2 -> 6, 9

5 -> 7, 10

D1 D2

access out-block (1, 1) access out-block (1, 2) synchronize the vertex values

read write

(a) Processing vertex interval 1

S1

S2

D1 D2

S1

S2

1 -> 6, 7, 9
2 -> 6, 9

5 -> 7, 10

6 -> 8
7 -> 6, 8
8 -> 10

9 -> 6, 7, 8
10 -> 7

D1 D2

S1

S2

6 -> 1, 2, 4, 5
7 -> 5
8 -> 1

9 -> 2, 4
10 -> 4, 5

1 -> 4, 5
2 -> 1, 3, 5

3 -> 5
4 -> 1, 2, 3

6 -> 1, 2, 4, 5
7 -> 5
8 -> 1

9 -> 2, 4
10 -> 4, 5

6 -> 8
7 -> 6, 8
8 -> 10

9 -> 6, 7, 8
10 -> 7

1 -> 4, 5
2 -> 1, 3, 5

3 -> 5
4 -> 1, 2, 3

1 -> 6, 7, 9
2 -> 6, 9

5 -> 7, 10

D1 D2

access out-block (2, 1) access out-block (2, 2) synchronize the vertex values

1 -> 4, 5
2 -> 1, 3, 5

3 -> 5
4 -> 1, 2, 3

1 -> 6, 7, 9
2 -> 6, 9

5 -> 7, 10

6 -> 1, 2, 4, 5
7 -> 5
8 -> 1

9 -> 2, 4
10 -> 4, 5

6 -> 8
7 -> 6, 8

8 -> 1
9 -> 6, 7, 8

10 -> 7

(b) Processing vertex interval 2

Figure 5: Execution procedure of ROP

S1

S2

D1 D2

S1

S2

D1 D2

S1

S2

6 -> 1, 2, 4, 5
7 -> 5
8 -> 1

9 -> 2, 4
10 -> 4, 5

6 -> 8
7 -> 6, 8
8 -> 10

9 -> 6, 7, 8
10 -> 7

1 -> 4, 5
2 -> 1, 3, 5

3 -> 5
4 -> 1, 2, 3

1 -> 6, 7, 9
2 -> 6, 9

5 -> 7, 10

D1 D2

access in-block (1, 1) access in-block (2, 1) synchronize the vertex values

1, 2 -> 6
1, 5 -> 7
1, 2 -> 9
5 -> 10

6 -> 1
6, 9 -> 2

6, 9, 10 -> 3
6, 7, 10 -> 5

7, 9 -> 6
9, 10 -> 7

6, 7, 9 -> 8
8 -> 10

2, 4 -> 1
4 -> 2

2, 4 -> 3
1 -> 4

1, 2, 3 -> 5

1, 2 -> 6
1, 5 -> 7
1, 2 -> 9
5 -> 10

6 -> 1
6, 9 -> 2

6, 9, 10 -> 3
6, 7, 10 -> 5

7, 9 -> 6
9, 10 -> 7

6, 7, 9 -> 8
8 -> 10

2, 4 -> 1
4 -> 2

2, 4 -> 3
1 -> 4

1, 2, 3 -> 5

read write

(a) Processing vertex interval 1

S1

S2

D1 D2

S1

S2

D1 D2

S1

S2

6 -> 1, 2, 4, 5
7 -> 5
8 -> 1

9 -> 2, 4
10 -> 4, 5

6 -> 8
7 -> 6, 8
8 -> 10

9 -> 6, 7, 8
10 -> 7

1 -> 4, 5
2 -> 1, 3, 5

3 -> 5
4 -> 1, 2, 3

1 -> 6, 7, 9
2 -> 6, 9

5 -> 7, 10

D1 D2

access in-block (1, 2) access in-block (2, 2) synchronize the vertex values

1, 2 -> 6
1, 5 -> 7
1, 2 -> 9
5 -> 10

6 -> 1
6, 9 -> 2

6, 9, 10 -> 3
6, 7, 10 -> 5

7, 9 -> 6
9, 10 -> 7

6, 7, 9 -> 8
8 -> 10

2, 4 -> 1
4 -> 2

2, 4 -> 3
1 -> 4

1, 2, 3 -> 5

1, 2 -> 6
1, 5 -> 7
1, 2 -> 9
5 -> 10

6 -> 1
6, 9 -> 2

6, 9, 10 -> 3
6, 7, 10 -> 5

7, 9 -> 6
9, 10 -> 7

6, 7, 9 -> 8
8 -> 10

2, 4 -> 1
4 -> 2

2, 4 -> 3
1 -> 4

1, 2, 3 -> 5

(b) Processing vertex interval 2

Figure 6: Execution procedure of COP

of ROP to execute a vertex interval i. ROP successively accesses the
out-edges of active vertices and updates their out-neighbors from
out-block (i, 0) to out-block (i, P-1) (Line 2 ∼ 16). For the processing
of each out-block (i , j) (0 ≤ j ≤ P − 1), ROP first loads vertex
values of Si and D j as well as the corresponding out-index. Then,
each active vertex locates their out-edges in the out-block based on
the corresponding out-index and loads them into memory (Line 7).
As soon as the edges are loaded, ROP traverses the loaded edges
and pushes the updates to their out-neighbors with a user-defined
update function (Line 8 ∼ 14). In this process, the vertex values in
Si are read-only while the vertex values in D j are write-only. If the
value of any out-neighbor is changed, this out-neighbor is added to
the new active vertices set andwill be scheduled in the next iteration.
After the active edges in all out-blocks of interval i (in the ith row)
are processed, ROP synchronizes the vertex values by replacing the
values of source intervals with the values of destination intervals
for subsequent computation (Line 17 ∼ 19).

In the example of Figure 5, ROP iterates over out-block (1, 1) to
out-block (1, 2) when processing interval 1. The active vertices of
current iteration are vertex 2, 5 and 10. Therefore, ROP successively
loads and processes the out-edges of vertex 2 and 5 when executing
each out-block.When the processing of the first row of out-blocks is
finished, ROP synchronizes the vertex values of all source intervals
and destination intervals and moves to the next row.

Algorithm 2 Pseudo code of RowOrientedPush function

1: Load f romDisk(Si)
2: for j from 0 to P-1 do
3: Load f romDisk(D j)

4: OutIndex ← out − index(i, j)
5: for each active vertex v in Vactive do
6: out − deдree ← OutIndex(v + 1) −OutIndex(v)
7: edдes ← LoadOutEdдes(OutIndex(v),out −
deдree,out − block(i, j))

8: for each edge e in edдes do
9: neiдhbor ← e .dst
10: UserDe f inedFunction(v,neiдhbor)
11: if IsChanдed(neiдhbor) then
12: Out .add(neiдhbor)
13: end if
14: end for
15: end for
16: end for
17: for j from 0 to P-1 do
18: Swap(Sj ,D j)

19: end for

ROP puts a higher priority on I/O amount rather than I/O access
locality when processing a graph. It enables selective disk I/O and

ICPP 2018, August 13–16, 2018, Eugene, OR, USA X. Xu et al.

minimizes the amount of data transfer. Furthermore, with the row-
oriented process order, ROP can overlap the processing of out-
blocks to fully exploit the multi-threading when executing a vertex
interval, since the destination intervals of different out-blocks in a
row are disjoint.

Column-oriented Pull. COP processes the input graph by
pulling updates through the in-edges and update the vertices. Algo-
rithm 3 shows the procedure of COP when executing a vertex inter-
val i. COP streams the in-edges from in-block (0, i) to in-block (P-1, i)
(Line 2 ∼ 19). For the processing of each in-block (j, i) (0 ≤ j ≤ p−1),
COP streams all in-edges of the in-block and load the vertex values
of Sj andDi . For each vertex in interval i , it locates its own in-edges
and accesses its in-neighbors based on the corresponding in-index
of the in-block (Line 8). Then, it collects data from the in-neighbors
by reading Sj and updates its own value with a user-defined update
function (Line 9 ∼ 12). If the value of any vertex in Di is updated,
this vertex is added to the new active vertices set. After all in-blocks
of the interval i (in the ith column) are processed, COP replaces
the Si with Di to synchronize the vertex values (Line 20).

Algorithm 3 Pseudo code of ColumnOrientedPush function

1: Load f romDisk(Di)

2: for j from 0 to P-1 do
3: Load f romDisk(Sj)
4: InIndex ← in − index(j, i)
5: edдes ← LoadInEdдes(in − block(j, i))
6: for each vertex v in Di do
7: in − deдree ← InIndex(v + 1) − InIndex(v)
8: inedдes ← edдes .locate(InIndex(v), in − deдree)
9: for each edge e in inedдes do
10: neiдhbor ← e .src
11: if IsActive(neiдhbor) then
12: UserDe f inedFunction(neiдhbor ,v)
13: if IsChanдed(v) then
14: Out .add(v)
15: end if
16: end if
17: end for
18: end for
19: end for
20: Swap(Si ,Di)

In the example of Figure 6, COP iterates over in-block (1, 1) to
in-block (2, 1) when processing interval 1. During the computation,
each vertex in interval 1 can pull updates from their in-neighbors
through the in-edges to update its own value in parallel. After the
processing of the first column of in-blocks, COP replaces S1 with
D1 and moves to the next column.

Contrary to ROP, COP improves the I/O access locality at the
expense of larger amount of disk I/O. Although it can not overlap the
processing of the in-blocks in a column due to the write conflicts,
the parallelism within each in-block can be achieved. Note that
ROP only accesses the out-edges stored in out-blocks while COP
only accesses the in-edges stored in in-blocks. By restricting data
access to each out-block or in-block and corresponding source and
destination vertices, both ROP and COP ensure the access locality.

Table 1: Notations

Notation Definition

G the graph G = (V ,E)
V vertices in G

E edges in G

P number of intervals
Ai active vertices set of interval i
di out-degree of vertex i
M size of an edge
N size of a vertex value
Tsequential sequential disk access throughput
Trandom random disk access throughput

3.4 I/O-based Performance Prediction Method
The key to gain optimal performance is to select the fastest update
model between ROP and COP. Shared-memory systems [2, 20] se-
lect between push and pull model by empirically setting a threshold
θ and comparing the threshold with the computing loads of current
iteration (number of edges processed). For example, Ligra [20] sets
θ to |E |/20 in all its applications. If the number of active edges
is smaller than θ , the push model is applied. Otherwise, the pull
model is applied. Unlike shared-memory systems [2] or distributed
systems [8, 9] whose performance depend on CPU performance or
communication cost, the performance of an out-of-core system is
mainly up to the I/O costs of loading edges from disk [21]. Instead
of finding a threshold that indicates the system to select proper up-
date model, HUS-Graph proposes a simple I/O-based performance
prediction method that enables the system to dynamically select the
optimal update model based on the I/O loads of current iteration.

Concretely, we refer to Crop as the time cost of loading the
active edges in ROP model, and refer to Ccop as the time cost of
loading all in-edges in COP model. The time cost can be calculated
by the total size of data accessed divided by the random/sequential
throughput of disk access. Supposing the active vertices set of
vertex interval i is Ai , the number of the active edges is

∑
v ∈Ai dv ,

where dv denotes the out-degree of vertex v. Let M be the size of
an edge structure and N be the size of a vertex value record. For the
ease of expression, we assume the number of vertices and edges in
each interval are equal to |V |/P and |E |/P respectively. In addition,
Trandom andTsequential respectively represent the random access
and sequential access throughput. For easy reference, we list the
notations in Table 1.

In ROP, HUS-Graph only loads the out-edges of the active ver-
tices. In addition, corresponding source and destination vertices as
well as the vertices indices are also loaded into memory. Therefore,
Crop of vertex interval i can be stated as:

Crop =

∑
v ∈Ai dv ×M + (

2 |V |
P + |V |) × N

Trandom

Out-of-Core Graph Processing with Hybrid Update Strategy ICPP 2018, August 13–16, 2018, Eugene, OR, USA

In COP, HUS-Graph loads the in-edges of all vertices within an
interval. ThusCcop of vertex interval i is constant and can be stated
as:

Ccop =

|E |
P ×M + (

2 |V |
P + |V |) × N

Tsequential

If Crop ≤ Ccop , we have

∑
v ∈Ai dv ×M + (

2 |V |
P + |V |) × N

|E |
P ×M + (

2 |V |
P + |V |) × N

≤
Trandom

Tsequential

The parameters Ai , dv , |E | and |V | can all be collected and com-
puted in the runtime. Furthermore, the disk access throughput
Trandom and Tsequential can be measured by using several mea-
surement tools such as fio [19] before we conduct the experiments.
This provides an accurate performance estimate that enables the
system to select the optimal update model.

To reduce the extra computational overhead, HUS-Graph calcu-
lates and compares Crop and Ccop just when the number of active
vertices is less than a user-modified threshold α . In our experiments,
α is empirically set to 5% of all vertices. If the number of active
vertices is larger than α , HUS-Graph selects COP model regardless
of the current active vertices.

3.5 Fine-grained Parallelism in HUS-Graph
HUS-Graph provides fine-grained parallelism to improve the system
performance in both ROP and COP. It exploits the power of multi-
thread CPU as follows.

For ROP, it enables overlapped processing of different out-blocks
when executing a vertex interval. Since the destination intervals of
different out-blocks in a row are disjoint, worker threads that takes
charge of different out-blocks can overlap with each other to enable
high-degree parallelism. For COP, the processing of the in-blocks
in a column can not be overlapped. However, the high parallelism
within an in-block is still valid. Specifically, COP creates several
worker threads that take charge of different destination vertices
and their associated in-edges within an in-block. There is no write
conflict between these worker threads and the access of in-edges is
sequential since the in-edges are sorted by the destination vertices.
Furthermore, CPU processing and disk I/O are overlapped as much
as possible thanks to the parallel processing between different out-
blocks or within an in-block. For example, the out-edges of the next
out-block can be loaded before the processing of current out-block
is finished if the memory is sufficient.

4 EVALUATION
In this section, we first introduce the evaluation environment and
the graph algorithms. Then, we explore the effects of the system de-
signs including hybrid update strategy and I/O-based performance
prediction method. Next, we compare HUS-Graph with state-of-art
out-of-core systems in terms of runtime of graph algorithms and
I/O amount. Finally, we evaluate the scalability of HUS-Graph.

Table 2: Datasets used in evaluation

Dataset Vertices Edges Type

LiveJournal [1] 4.8 million 69 million Social Graphs
Twitter2010 [14] 42 million 1.5 billion Social Graphs
SK2005 [4] 51 million 1.9 billion Social Graphs
UK2007 [3] 106 million 3.7 billion Web Graphs
UKunion [3] 133 million 5.5 bilion Web Graphs

4.1 Experiment Setup
All experiments are conducted on a 16-core commodity machine
equipped with 16GB main memory and 500GB 7200RPM HDD, run-
ning Ubuntu 16.04 LTS. In addition, a 128GB SATA2 SSD is installed
to evaluate the scalability. The datasets for our evaluation are all
real-world graphs with power-law degree distributions, summa-
rized in Table 2. LiveJournal, Twitter2010 and SK2005 are social
graphs, showing the relationship between users within each online
social network. UK2007 and Ukunion are web graphs that consist of
hyperlink relationships between web pages, with larger diameters
than social graphs. The in-memory graph LiveJournal is chosen to
evaluate the scalability of HUS-Graph. The other four graphs are
respectively 1.5x, 2.1x, 3.9x and 6.1x larger than available memory.

The benchmarks algorithms used in our evaluation include three
traversal-based graph algorithms, Breadth-first search (BFS), Weak
Connected Components (WCC), and Single Source Shortest Path
(SSSP), and a representative sparse matrix multiplication algorithm
known as PageRank. BFS, WCC and SSSP vary the number of
active vertices in different iterations and can effectively evaluate
the hybrid update strategy of HUS-Graph. We run these algorithms
until convergence. For PageRank, all vertices are always active as
each vertex receives messages from its neighbors to compute the
new rank value in all iteration. We run five iterations of PageRank
on each dataset.

We compare HUS-Graph with two state-of-art out-of-core sys-
tems, GraphChi [15] andGridGraph [25]. GraphChi is an extensively-
used out-of-core graph processing system that supports vertex-
centric scatter-gather computationmodel. It exploits a novel parallel
sliding windows (PSW) method to minimize random disk accesses.
GridGraph uses a 2-Level hierarchical partition and a streaming-
apply model to reduce the amount of data transfer, enable stream-
lined disk access, and maintain locality. For all compared systems,
we provide 8GB memory budget, 16 execution threads for the exe-
cutions of all algorithms.

4.2 Effect of Hybrid Update Strategy
Figure 7 shows the effect of the hybrid update strategy of HUS-
Graph, by comparing the Hybrid model that adaptively switches
between ROP and COP with two baseline approaches that respec-
tively implement ROP and COP in all iterations. Figure 7(a) and
Figure 7(c) shows the comparisons of runtime with different models
on Twitter2010 and SK2005. Figure 7(b) and Figure 7(d) shows the
corresponding comparisons of I/O amount. As we see from the
results, the Hybrid model always achieves the best performance, as
it selects the optimal I/O model and update model for each vertex

ICPP 2018, August 13–16, 2018, Eugene, OR, USA X. Xu et al.

BFS WCC SSSP
0

50

100

150

200

250

300

ru
n
tim

e
(s

)

 ROP COP Hybrid

(a) Comparison of execution time (Twit-
ter2010)

BFS WCC SSSP
0

15

30

45

60

75

I/
O

 a
m

o
u
n
t(

G
B

)

 ROP COP Hybrid

(b) Comparison of I/O amount (Twit-
ter2010)

BFS WCC SSSP
0

300

600

900

1200

1500

1800

ru
n
tim

e
(s

)

 ROP COP Hybrid

(c) Comparison of execution time (SK2005)
BFS WCC SSSP

0

60

120

180

240

300

360

I/
O

 a
m

o
u
n
t(

G
B

)

 ROP COP Hybrid

(d) Comparison of I/O amount (SK2005)

Figure 7: Comparison of different update strategies when
runtime BFS, WCC and SSSP on Twitter2010 and SK2005

0 5 10 15 20 25 30
0

50

100

150

200

250

300

ru
n
tim

e
(s

)

iteration

 ROP

 COP

 Hybrid

(a) BFS

0 5 10 15 20 25 30
0

100

200

300

400

ru
n
tim

e
(s

)

iteration

 ROP

 COP

 Hybrid

(b) WCC

Figure 8: Effect of the I/O-based performance prediction
model

interval in each iteration. For BFS and SSSP where the number of
active vertices is small in most iteration, COP has the worst per-
formance as it loads the entire edges in each iteration. For WCC
where most vertices are active in the first few iterations, ROP has
the worst performance due to the significant overheads of random
disk accesses.

As to I/O amount, ROP enables selective data access based on
the active vertices and accesses the least amount of data for all
algorithms. COP streams the whole of data to achieve good I/O
access locality. Thus, it accesses the most amount of data. Based on
the I/O-based performance prediction method, the Hybrid model
dynamically selects between ROP and COP. Therefore, the I/O
amount for the Hybrid model is moderate.

4.3 Effect of I/O-based Performance Prediction
Method

To evaluate the effectiveness of the I/O-based performance predic-
tion method, we run BFS and WCC on Ukunion with three different
update models, ROP, COP and Hybrid, and report the runtime of
different models in each iteration (30 iterations) in Figure 8.

Table 3: Execution time (in seconds)

PageRank BFS WCC SSSP

LiveJournal

GraphChi 16.6 20.9 24.4 21.4
GridGraph 10.9 5.2 5.1 6.1
HUS-Graph 2.2 3.9 3.5 4.5

Twitter2010

GraphChi 928.6 1624.3 913.7 1913.9
GridGraph 451.9 598.9 522.5 660.4
HUS-Graph 230.3 70.6 74.8 106.8

SK2005

GraphChi 970.3 4973.6 2769.1 5415.8
GridGraph 669.1 4066.3 3338.7 4180.7
HUS-Graph 291.3 424.5 289.2 605.3

UK2007

GraphChi 2774.8 7154.5 6862.8 11495.8
GridGraph 1242.2 6025.2 4783.8 7029.4
HUS-Graph 600.5 1278.2 1068.3 1750.7

Ukunion

GraphChi 3376.6 24062.3 15665.8 56650.9
GridGraph 1829.3 18929.2 13265.1 25554.2
HUS-Graph 922.9 1897.9 1223.6 2797.9

As shown in Figure 8, the performance gap between ROP and
COP is quite significant. The performance of COP is relatively
constant since it loads all graph data in per iteration, while the per-
formance of ROP depends on the number active vertices. For BFS,
ROP outperforms COP in most iterations, except in few iterations
(iteration 11 ∼ 17) where there are a large number of active vertices
that cause frequent random disk accesses. For WCC, COP performs
better in the first few iterations when most vertices remain active,
while ROP performs better when many vertices reach convergence.
HUS-Graph is able to select the optimal update model based on
the I/O-based performance prediction method in most iterations,
except iteration 10 of BFS and iteration 5 of WCC. These wrong
predictions are usually around the intersection of the ROP’ and
COP’ performance curves. This indicates that we can implement a
more accurate and fine-grained performance evaluation and pre-
diction method to find the critical point where the update strategy
switches between ROP and COP.

4.4 Comparison to Other Systems
We report the execution time of the chosen algorithms on dif-
ferent datasets and systems in Table 3. We can see that HUS-
Graph achieves a significant speedup over GraphChi andGridGraph.
Specifically, HUS-Graph outperforms GraphChi by 3.3x-23.1x and
GridGraph by 1.4x-11.5x.

Out-of-Core Graph Processing with Hybrid Update Strategy ICPP 2018, August 13–16, 2018, Eugene, OR, USA

PageRank BFS SSSP
0

60

120

180

240

300

360

420

I/
O

 a
m

o
u
n
t(

G
B

)

 GraphChi

 GridGraph

 HUS-Graph

(a) Twitter2010

PageRank BFS SSSP
0

500

1000

1500

2000

2500

I/
O

 a
m

o
u
n
t(

G
B

)

 GraphChi

 GridGraph

 HUS-Graph

(b) SK2005

PageRank BFS SSSP
0

300

600

900

1200

1500

1800

I/
O

 a
m

o
u
n
t(

G
B

)

 GraphChi

 GridGraph

 HUS-Graph

(c) UK2007

Figure 9: I/O amount comparison

GraphChi utilizes the vertex-centric scatter-gather processing to
maximize sequential disk access. However, it writes a large amount
of intermediate updates to disk, which incurs great I/O overheads. In
addition, it needs a subgraph construction phase to construct the in-
memory vertex-centric data structure, which is a time-consuming
process [19]. GridGraph combines the scatter and gather phases
into one streaming-apply phase to avoid writing the intermedi-
ate results to disk. Furthermore, it supports the selective schedul-
ing to skip the edge blocks that are not scheduled. Nevertheless,
these systems both load the entire graph in each iteration, which
is wasteful for the propagation-based algorithms that only have a
small number of active vertices in most iterations. And that is just
the greatest strength for HUS-Graph that enables selective data
access to avoid loading useless data. For the three propagation-
based algorithms BFS, WCC, and SSSP, HUS-Graph respectively
outperforms GraphChi and GridGraph by 11.2x and 6.4x on average.
For the PageRank algorithm where all vertices are always active,
HUS-Graph implements COP model and loads the whole of data in
each iteration like other systems. Thanks to more compact storage
that leads to less amount of I/O and more fine-grained utilization
of parallelism, HUS-Graph remains outperforming GraphChi and
GridGraph by 4.6x and 3.2x respectively.

We compare the amount of I/O traffic of HUS-Graph versus
Graphchi and GridGraph in Figure 9. For PageRank, the I/O amount
of HUS-Graph is respectively 3.9x and 1.9x smaller than that of
GraphChi andGridGraph. This is attributed to HUS-Graph’s storage
format that is more space-efficient than the edge list format that
GridGraph uses. For the two propagation-based algorithms BFS
and SSSP, the I/O amount of HUS-Graph is respectively 18.4x and
8.8x smaller than that of GraphChi and GridGraph, thanks to the
selective data access of HUS-Graph. In addition, GraphChi has to
write a large amount of intermediate data (edge values) to disk for
subsequent computation, while GridGraph and HUS-Graph only
writes vertex values back to disk during the computation.

4.5 Scalability
We evaluate the scalability of HUS-Graph by observing the improve-
ment when more hardware resource is added. Figure 10 shows the
effect of number of threads on system performance. For the rel-
atively small graph LiveJournal whose data can completely fit in
memory, the degree of parallelism has significant impact on system
performances of HUS-Graph and GridGraph due to the efficient use
of parallelism. However, GraphChi shows poor scalability as we

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

ru
n
tim

e
(s

)

threads

 GraphChi

 GridGraph

 HUS-Graph

(a) PageRank on Twitter2010

0 2 4 6 8 10 12 14 16
0

2000

4000

6000

8000

ru
n
tim

e
(s

)

threads

 GraphChi

 GridGraph

 HUS-Graph

(b) BFS on UK2007

Figure 10: Effect of the number of thread on performance

GraphChi GridGraph HUS-Graph
0

700

1400

2100

2800

3500

ru
n
tim

e
(s

)

 HDD

 SSD

(a) WCC

GraphChi GridGraph HUS-Graph
0

1000

2000

3000

4000

5000

ru
n
tim

e
(s

)

 HDD

 SSD

(b) SSSP

Figure 11: Effect of I/O devices on performance

increase the number of threads. Themain blame is GraphChi’s deter-
ministic parallelism that limits the utilization of multi-threads [15].
On the other hand, for the large graph UK2007, system performance
is limited by disk I/O. Therefore, thread number has relatively less
impact on the performances of the three systems.

Figure 11 shows the performance improvement of WCC and
SSSP on SK2005 when using different I/O devices. Compared with
disk performance, GraphChi, X-Stream and HUS-Graph achieves a
speedup of 1.4x, 1.6x and 1.9x respectively when using SSD. This
indicates that HUS-Graph can benefit more from the utilization of
SSD, since HUS-Graph enables selective (random) data access to
load the active edges, which works well on SSD.

5 RELATEDWORK
Out-of-core graph processing systems enable users to analyze, pro-
cess and mine large graphs in a single PC by efficiently using disks.
GraphChi [15] is a pioneering single-PC-based out-of-core graph
processing system that supports vertex-centric computation and is
able to express many graph algorithms. By using a novel parallel

ICPP 2018, August 13–16, 2018, Eugene, OR, USA X. Xu et al.

sliding windows method to reduce random I/O accesses, GraphChi
is able to process large-scale graphs in reasonable time.

Following GraphChi, a number of out-of-core graph processing
systems are proposed to improve the I/O performance. X-Stream
[19] uses an edge-centric approach in order to minimize random
disk accesses. In each iteration, it streams and processes the entire
unordered list of edges during the scatter phase and applies up-
dates to vertices in the gather phase. GridGraph [25] combines the
scatter and gather phases into one streaming-apply phase and uses
a 2-Level hierarchical partition to break graph into 1D-partitioned
vertex chunks and 2D-partitioned edge blocks. It avoids writing
updates to disk and enables selective scheduling to skip the inac-
tive edge blocks. VENUS [5] explores a vertex-centric streamlined
computing model that enables streams the graph data while per-
forming computation. Besides the single-machine systems, several
distributed systems [7, 18] also support out-of-core processing to
improve the scalability. However, all these systems improve the
I/O access locality at the expense of loading all graph data in all
iterations, even though a large amount of data is not needed.

FlashGraph [23] and Graphene [16] implement a semi-external
memory graph engine that stores the vertex values in memory
and adjacency lists on SSDs, and closes the performance gap be-
tween in-memory and out-of-core graph processing. They both
rely on expensive SSD arrays and large memory to provide high
IO bandwidth and cache all vertex data. Although these systems
enable selective data accesses to only access the useful data, they
are designed to match up the performance of in-memory process-
ing, while most of out-of-core systems are HDD-friendly and aim
to achieve reasonable performance with low hardware costs. [21]
provides a general optimization for out-of-core graph processing,
which removes unnecessary IO by employing dynamic partitions
whose layouts are dynamically adjustable. However, it incurs signif-
icant extra computation overheads to construct the dynamic shards
and synchronize the computation.

6 CONCLUSION
In this paper, we present an I/O-efficient out-of-core graph pro-
cessing system called HUS-Graph that maximizes the I/O perfor-
mance by achieving a good balance between I/O amount and I/O
access locality. HUS-Graph adopts a hybrid update strategy includ-
ing Row-oriented Push (ROP) and Column-oriented Pull (COP), to
schedule disk I/O adaptively according to running features of graph
algorithms. Furthermore, HUS-Graph adopts a locality-optimized
dual-block graph representation to organize the graph data and
an I/O-based performance prediction method that enables the sys-
tem to dynamically select the optimal update model based on the
I/O loads of current iteration. Our evaluation results show that
HUS-Graph can be much faster than GraphChi and GridGraph, two
state-of-the-art out-of-core systems.

ACKNOWLEDGMENTS
This work is supported in part by NSFC No.61772216, National
Key R&D Program of China NO.2018YFB10033005, National De-
fense Preliminary Research Project(31511010202), Hubei Province

Technical Innovation Special Project (2017AAA129), Wuhan Appli-
cation Basic Research Project(2017010201010103), Project of Shen-
zhen Technology Scheme JCYJ20170307172248636, Fundamental
Research Funds for the Central Universities. This work is also sup-
ported by CERNET Innovation Project NGII20170120.

REFERENCES
[1] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.

Group formation in large social networks: membership, growth, and evolution.
In KDD’06. ACM, 44–54.

[2] Scott Beamer, Krste Asanović, and David Patterson. 2013. Direction-optimizing
breadth-first search. Scientific Programming 21, 3-4 (2013), 137–148.

[3] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. 2008. A large time-aware
web graph. In ACM SIGIR Forum, Vol. 42. ACM, 33–38.

[4] Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: compression
techniques. InWWW’04. ACM, 595–602.

[5] Jiefeng Cheng, Qin Liu, Zhenguo Li, Wei Fan, John CS Lui, and Cheng He. 2015.
VENUS: Vertex-centric streamlined graph computation on a single PC. In ICDE’15.
IEEE, 1131–1142.

[6] Yongli Cheng, Hong Jiang, Fang Wang, Yu Hua, and Dan Feng. 2017. BlitzG:
Exploiting high-bandwidth networks for fast graph processing. In INFOCOM’17.
IEEE, 1–9.

[7] YongLi Cheng, Fang Wang, Hong Jiang, Yu Hua, Dan Feng, and XiuNeng
Wang. 2016. DD-Graph: A Highly Cost-Effective Distributed Disk-based Graph-
Processing Framework. In HPDC’16. ACM, 259–262.

[8] Yongli Cheng, Fang Wang, Hong Jiang, Yu Hua, Dan Feng, and Xiuneng Wang.
2016. LCC-Graph: A high-performance graph-processing framework with low
communication costs. In IWQoS’16. IEEE, 1–10.

[9] Yongli Cheng, FangWang, Hong Jiang, Yu Hua, Dan Feng, Jun Zhou, and Lingling
Zhang. 2017. A Communication-reduced and Computation-balanced Framework
for Fast Graph Computation. In Frontiers of Computer Science. https://doi.org/10.
1007/s11704-018-6400-1

[10] Yuze Chi, Guohao Dai, Yu Wang, Guangyu Sun, Guoliang Li, and Huazhong Yang.
2016. Nxgraph: An efficient graph processing system on a single machine. In
ICDE’16. IEEE, 409–420.

[11] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. Powergraph: Distributed graph-parallel computation on natural graphs. In
OSDI’12. 17–30.

[12] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework.. In OSDI’14. 599–613.

[13] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim,
Jinha Kim, and Hwanjo Yu. 2013. TurboGraph: a fast parallel graph engine
handling billion-scale graphs in a single PC. In KDD’13. ACM, 77–85.

[14] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. InWWW’10. ACM, 591–600.

[15] Aapo Kyrola, Guy E Blelloch, and Carlos Guestrin. 2012. Graphchi: Large-scale
graph computation on just a pc. In OSDI’12. USENIX, 31–46.

[16] Hang Liu and H Howie Huang. 2017. Graphene: Fine-Grained IO Management
for Graph Computing.. In FAST’17. 285–300.

[17] Grzegorz Malewicz, MatthewHAustern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In SIGMOD’10. ACM, 135–146.

[18] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel.
2015. Chaos: Scale-out graph processing from secondary storage. In SOSP’15.
ACM, 410–424.

[19] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-
centric graph processing using streaming partitions. In SOSP’13. ACM, 472–488.

[20] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In ACM Sigplan Notices, Vol. 48. ACM, 135–146.

[21] Keval Vora, Guoqing Xu, and Rajiv Gupta. 2016. Load the edges you need: A
generic I/O optimization for disk-based graph processing. In USENIX ATC’16.
507–522.

[22] Zhigang Wang, Yu Gu, Yubin Bao, Ge Yu, and Jeffrey Xu Yu. 2016. Hybrid
pulling/pushing for i/o-efficient distributed and iterative graph computing. In
SIGMOD’16. 479–494.

[23] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E Priebe,
and Alexander S Szalay. 2015. FlashGraph: Processing billion-node graphs on an
array of commodity SSDs. In FAST’15. 45–58.

[24] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A computation-centric distributed graph processing system. In OSDI’16. 301–316.

[25] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-scale
graph processing on a single machine using 2-level hierarchical partitioning. In
USENIX ATC’15. 375–386.

https://doi.org/10.1007/s11704-018-6400-1
https://doi.org/10.1007/s11704-018-6400-1

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 I/O Issues in Out-of-Core Systems
	2.2 Adaptive Push/Pull Model

	3 System Design
	3.1 System Overview
	3.2 Graph Representation
	3.3 Hybrid Update Strategy
	3.4 I/O-based Performance Prediction Method
	3.5 Fine-grained Parallelism in HUS-Graph

	4 Evaluation
	4.1 Experiment Setup
	4.2 Effect of Hybrid Update Strategy
	4.3 Effect of I/O-based Performance Prediction Method
	4.4 Comparison to Other Systems
	4.5 Scalability

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

