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ABSTRACT CCS CONCEPTS

Surveillance video cameras are ubiquitous around us. Full-feature
object-detection models such as YOLOv2 can automatically an-
alyze surveillance videos in real-time with high accuracy while
consuming huge computational resources. Directly applying these
models for practical scenarios with large-scale deployed cameras re-
quires prohibitively expensive computation. This, however, is both
wasteful and unnecessary considering the fact that the concerned
anomalous events occur rarely among these massive volumes of
video streams. Therefore, in this paper, we propose a Fast Filtering
System for Video Analytics (FFS-VA), a pipelined multi-stage video
analyzing system, to make video analytics much cost-effective. FFS-
VA is designed to filter out vast but non-target-object frames by
two prepositive stream-specialized filters and a small full-function
tiny-YOLO model, to drastically reduce the number of video frames
arriving at the full-feature model in the back-end. FFS-VA presents
a global feedback-queue mechanism to balance the processing rates
of different filters in both intra-stream and inter-stream processes.
FFS-VA also designs a dynamic batch technique to achieve an ad-
justable trade-off between throughput and latency. FFS-VA reason-
ably distributes all tasks on CPUs and GPUs to fully exploit the
underlying hardware resources. We implement a FFS-VA prototype
and evaluate FFS-VA against the state-of-the-art YOLOv2 under
the same hardware and representative video workloads. The ex-
perimental results show that under a 10% target-object occurrence
rate on two GPUs, FFS-VA can support up to 30 concurrent video
streams (7X more than YOLOv2) in the online case, and obtain 3x
speedup when offline analyzing a stream, with an accuracy loss of
less than 2%.
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1 INTRODUCTION

Increasing numbers of surveillance video cameras with low cost
and high quality have been ubiquitously deployed in residential
and office buildings, on street corners, and other key public areas
all over a city, to monitor potential accidents, and to record critical
clues. In traditional practices, the video surveillance collects live
streams to an operational center for further manual observations,
which is labor-intensive, error-prone and expensive. Automatic
video analysis based on object detection using machine learning
has been introduced recently into video surveillance with a promise
to mitigate human intervention while significantly improving both
the overall performance and accuracy. The use cases of automatic
analysis for surveillance videos can be categorized into two main
types [37]: (1) real-time analysis to detect anomalies or occasional
events; and (2) post-facto analysis to look for a certain event or
object retroactively.

Early automatic analysis employs support vector machine, but
its accuracy and function are limited [40]. Benefitting from the
recent development in complex model structures based on neural
network (NN), the accuracy and speed of object detection have
been significantly improved. In 2014, R-CNN [30] first achieves
53.7% mean average precision (mAP) on PASCAL VOC 2010 [22].
Afterwards, SSD [35](74.3% mAP, 59 frame per second (FPS)), R-
FCN [14](83.6% mAP, 5 FPS),and YOLOv2 [16](76.8% mAP, 67 FPS)
have been proposed to continuously improve both accuracy and
detection speed, making real-time online analysis and high-speed
offline analysis for video streams feasible in practical scenarios.

However, these existing object detection full-feature models with
high-accuracy are extremely computationally hungry. For example,
using YOLOv2, a powerful GPU (e.g., GTX Titan X GPU) only
supports up to two concurrent video streams at 30 FPS. Considering
that a typical video surveillance generally deploys hundreds of
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high-quality cameras, these full-feature models are ill-equipped to
perform real-time analysis for large-scale video streams directly,
due to their unacceptably high hardware cost.

Fortunately, in large-scale video analysis, a typical anomalous
event or object for detection occurs rarely and when it does occur it
appears in a tiny fraction of all frames. For example, serious traffic
jam takes place for the main routes in a big city, the average blocked
time in a day is less than 5% [10]. Therefore, passing all frames over
these weighty but accurate models actually wastes considerable
computational capability, which is totally unnecessary. The key
idea is to fast filter out most non-target-object frames while leaving
the remaining frames to be precisely analyzed by the full-feature
models.

In order to efficiently and effectively employ these highly ac-
curate object detection models on limited computing devices to
achieve real-time detection for large-scale high-definition video
streams, we propose FFS-VA, a fast filtering system for video analyt-
ics, to dramatically reduce the number of frames actually reaching
the full-feature reference model by filtering out vast amounts of
non-target-object frames (e.g., frames without target objects or
with a number less than a predefined threshold of target objects) to
support both fast offline analysis and large-scale online analysis.

FFS-VA is a pipelined multi-stage filtering system designed for
efficiently analyzing large-scale videos. Considering that most cam-
eras in surveillance are of fixed viewpoint, we design and train
a stream-specialized difference detector (SDD) to remove frames
only containing background and a stream-specialized network
model (SNM) to identify target-object frames. The remaining frames
are further screened to filter out those whose target objects are
fewer than a predefined threshold, by passing a small-scale but full-
function Tiny-YOLO-Voc model (T-YOLO) that is shared by multi-
ple streams. Finally, the surviving frames are fed into an ultimate
full-feature reference model for high-precision analysis. FFS-VA
is designed to run on the mainstream heterogeneous servers with
several GPUs and CPUs.

To fully exploit the potentials of the underlying hardware with
CPUs and GPUs, FFS-VA must address three key challenges. First,
the workloads imposed on all models should be evenly distributed
on CPUs and GPUs of the heterogeneous server. To this end, all
SDDs are executed on the CPU, both SNMs and T-YOLO are ex-
ecuted on a single GPU. The full-feature reference model runs
on another GPU alone. In order to achieve a high computational
efficiency, adding a queue between any two consecutive stages
unlocks all stages from synchronous lock steps, enabling them to
be pipelined in an asynchronous manner. Second, the number of
frames progressing in the four stages within a stream is gradually
and proportionally decreasing due to filtering. The filter at a later
stage is much slower than one in an earlier stage in processing speed.
The number of frames entering each stage varies significantly due
to the unpredictable video contents. To dynamically balance the
loads among filters within a stream and among multiple streams,
FFS-VA builds a global feedback mechanism to orchestrate the pro-
cessing speed of all stages based on their respective queue controls.
Third, to process each frame, its corresponding network model (e.g.,
SNM) and image data must be loaded from the CPU memory to the
GPU memory. To reduce the data exchange frequency between the
CPU and GPU memories and improve computational efficiency, a
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large and static batch size is intuitively better for obtaining high
computational efficiency but at the cost of lengthened processing
latency. FFS-VA adopts a dynamic batch mechanism to dynamically
determine batch size according to current video contents in a short
period of time.

Leveraging these system-level optimizations, FFS-VA is able to
efficiently perform both online and offline video analytics on large-
scale video streams. Experimental results show that, compared with
the state-of-the-art YOLOv2 system with the same hardware envi-
ronment consisting of two CPUs and two GPUs, FFS-VA supports
up to 7X more concurrent video streams in online video analysis,
and obtains 3X speedup in offline video analysis, with a negligible
accuracy loss of less than 2%.

In summary, the key contributions of our work are:

(1) We propose a fast filtering system for video analytics (FFS-
VA) for large-scale video surveillance in both online and
offline scenarios.

(2) FFS-VA introduces pipelined multi-stage filters and a global
feedback-queue mechanism.

(3) FFS-VA designs a dynamic batch scheme with a video-content-
based batch-size adjustment to automatically tradeoff be-
tween latency and throughput.

(4) We implement a FFS-VA prototype system to compare FFS-
VA with the state-of-the-art YOLOv2, which indicates that
FFS-VA improves the overall throughput by up to 7x under
the same hardware environment.

The rest of this paper is organized as follows. Section 2 intro-
duces the background of video analysis and key observations that
motivate this research. The design and implementation of FFS-VA
are presented in Sections 3 and 4 respectively. Section 5 evaluates
the performance, sensitivity of key design parameters, and limita-
tions of FFS-VA. Prior studies most relevant to FFS-VA are reviewed
in Section 6. Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION

The deployment of thousands of surveillance video cameras is
expected to improve urban management, monitor and prevent po-
tential crimes and accidents, and record clues of anomalous events.
Unfortunately, an enormous challenge remains in how to timely
identify a few of specific scenes in a sea of surveillance video frames
at an acceptable cost, latency, and accuracy. In the early days of the
practice, surveillance videos would be live streamed to an opera-
tional center for manual analysis, which can be error-prone and
very expensive. With the increasing scale of surveillance, automatic
analysis based on machine learning has been widely introduced
into the video contents analysis.

2.1 Convolutional Neural Network Models

Since Convolutional Neural Network (CNN) [36] has great image
recognition capabilities and can recognize the characteristics of the
target objects with ease, they are usually used for the detection of
specific targets. In what follows, we briefly introduce the design,
training, and inference process of typical CNN models for video
analysis.

CNN consists of a series of connected layers, including convo-
lutional layer (CONV), fully connected layer (FC), pooling layer
(POOL), and so on. The CONV layer is responsible for extracting
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local features from high-resolution feature maps. The POOL layer
is in charge of organizing the local features from the CONV layer
and abstracting them into a low-resolution feature map. The FC
layer is used to output the actual prediction based on the outcome
of preceding layers. By combining several such layers in a certain
order and configuring all layers with appropriate weights, a CNN

model is formed. Figure 1 shows a small CNN structure.

conv POOL
[ |

v

Figure 1: The structure of CNN.

To obtain a specialized CNN model on a video stream, we first
label a set of frames containing the predefined target events to form
a training dataset. Then, a set of new CNN architectures (configura-
tions of all layers) are designed to inherit from the characteristics of
the corresponding successful CNN models, such as AlexNet [2] and
VGG-16 [18]. After that, the CNNs can automatically learn the char-
acteristics of the target objects from the training dataset and update
their weights by the stochastic gradient descent algorithm [23].
Finally, we determine the best one from these architectures as our
CNN model according to accuracy and execution time.

Once the specific CNN model is determined, it can be used as
further inferencing on a video stream by passing all frames in the
video stream one by one. For each video frame, the CNN gives a
predicted probability of whether target events occur in this frame.

2.2 Object Detection

Object detection technology has been widely used to automatically
analyze video contents, such as detecting accidents [19] and traffic
congestion [21], searching a certain object [11], understanding the
flow of vehicles and pedestrians to provide users with the most
reasonable traffic planning [8], etc., which greatly reduce the cost
of manpower in video analysis.

Since 2012, CNN has been rapidly developed and deployed due
to its high predictive accuracy compared with traditional methods.
Thanks to these deep-learning models, current object detection has
achieved great success in detection speed and accuracy. In terms
of the use of spatial-temporal information on video frames, [25]
and [20] correct the detection results by using relevant timing and
context information, which greatly improves the accuracy of ob-
ject detection. For static image detection, the accuracy of R-CNN
(53.7%) [30], fast R-CNN (65.7%) [31], faster R-CNN (70.4%) [33],
and R-FCN (83.6%) [14] has been continually improved, but the exe-
cution speed of these object detection techniques remains relatively
low and inadequate for real-time detection. Recently, advanced
methods such as YOLOv2 (67 FPS) [16] and SSD (59 FPS) [35] have
been developed to achieve real-time detection, but they are compu-
tationally expensive as a powerful GPU (e.g., GTX Titan X GPU)
merely supports the analysis of two concurrent video streams in
real time.

2.3 Motivation

As a fundamental requirement for large-scale surveillance video
analysis, users expect to know whether their concerned anomalous
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events occur in a timely manner. A typical anomalous event can
be generally described as three questions: 1) what is the target
object? 2) how many times the objects will appear? and 3) what
has happened? For example, at a crossroad, more cars detected
than usual (pre-defined or calculated over statistics) means a traffic
jam [29].

The key goal of automatic analysis for large-scale surveillance
videos is to identify concerned scenes that contain the target object
occurrences and then extract their relevant information according
to user requirement [26]. The applicable scenarios for video analysis
can be roughly classified into two categories: offline and online.
In the offline case, all stored videos need to be processed as fast
as possible to capture interesting scenes. In the online case, an
analytic system is expected to support more live streams while
timely determining any anomaly that the users are concerned about.

Indeed, the frames without the target objects generally are not
worth further analyzing and need to be filtered out. The compu-
tationally expensive full-feature models should only process the
frames with the target object(s). Therefore, we define the target
object ratio (TOR) as:

TOR = numtarget—object—frames/numall—frames (1)
where numgj_frames is the total number of all frames in the video
stream during a given period of time, and num; arget—object—frames
is the number of frames containing the target objects. TOR can help
characterize the frequency of the target object frames that appear in
a video slice. TOR is primarily determined by both video contents
and filtering conditions, objectively reflecting the actual utiliza-
tion of a video analytic system. For large-scale surveillance videos,
TOR is generally low in long-period videos, which means that the
anomalous events are actually infrequent for all monitored videos.
According to the analysis results of numerous webcams [41], the
target-object occurrence rate in a day is only 8%.

Therefore, under the actual low TOR, passing all frames over
a full-feature model such as YOLOv2 is a huge waste of computa-
tional resources. This insight motivates us to design an effective and
efficient fast filtering system to identify the frames with anomalous
events from massive video frames. And then only those identified
frames are worth performing over the subsequent full-feature mod-
els to further extract interesting information. Therefore, we design
two prepositive stream-specialized filters and a global pipelined
multi-filter architecture to achieve the aforementioned goal.

Additionally, the mainstream cost-effective servers for automatic
video analysis generally consist of dual CPUs and two GPUs [5],
which can analyze up to four-way streams using YOLOv2 in real-
time. As an important motivation in practice, it is desirable for the
same server to handle more streams. Therefore, the fast filtering
system should evenly distribute all tasks on CPUs and GPUs and
exploit the maximal potential of the underlying hardware to boost
the overall performance under the promised latency and negligible
accuracy loss.

3 DESIGN

FFS-VA is designed to perform a fast filtering for large-scale video
analysis in real-time using commercially available servers. In this
section, we first describe the overall structure of FFS-VA, before
elaborating on the design of the three filters.
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3.1 Overview of FFS-VA

Figure 2 illustrates the architectural overview of FFS-VA, which
consists of three cascaded filters of (1) a specialized difference detec-
tor (SDD), (2) a specialized network model (SNM), and (3) a globally
shared object detection model Tiny-YOLO-Voc (T-YOLO).

CPU GPU O GPU O GPU 1

Specific |
Events |

e .
e .
Videca . I

SDD SNM T-YOLO

Queue Queue Queue

Figure 2: Architecture of FFS-VA. FFS-VA adds three filters
before the reference NN to filter out frames that are not re-
lated to the user-defined events.

3.1.1 Main Functions. First, the target events to detect, such as
the occurrences of cars, persons, etc., as well as their counts, are
predefined by users. For each given video stream, both SDD and
SNM are specialized for it and its predefined events. The two filters
are then followed by a T-YOLO model that is globally shared by
all streams. As a result, FFS-VA supports various target events are
detected in multiple concurrent video streams.

In the FFS-VA, SDD is dedicated to filtering out background
frames. SNM is used to identify the target-object frames to filter
out the non-target-object frames. Afterwards, T-YOLO is employed
to filter out the frames containing fewer than a threshold number
of target objects. Finally, the surviving frames are input to the full-
feature reference model for final, high-precision identification and
analysis. The details of filters are illustrated in Subsection 3.2. For
clarity and meaningful evaluation, we choose the state-of-the-art
full-feature model, YOLOv2 [16], as the reference model for FFS-VA
in this paper.

3.1.2  Pipelining of Functions. The three prepositive filters and
final full-feature model form a four-stage pipelined architecture.
Each filter is connected by its corresponding input and output
queues for reading and forwarding frames. In fact, all frames of
a video stream should pass its dedicated SDD, the very first filter
along the pipeline. And then, the number of frames processed by
each subsequent filter decreases gradually in proportion to the
filtering rate of the prepositive filter. The processing speed of each
filter in the pipeline also exhibits gradual decrease accordingly. Note
that the input frame rate of each stage is varied with the fluctuation
of video contents over time. In order to dynamically balance loads
across filters, we propose a global feedback-queue mechanism, as
detailed in Subsection 4.3, to coordinate the processing speed of
various filters and streams.

In order to fully exploit the potential of hardware while ensuring
the execution speed of these models, SDDs are executed on the
CPUs, and SNMs and T-YOLO are executed on a single GPU. The
powerful full-feature model uses another GPU alone. Besides, in
FFS-VA, each prefetching stage and filter are associated with an
independent thread. Through the parallel and pipelined structure
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of multiple threads, FFS-VA achieves a high analyzing throughput.
Although only two GPUs are used in our prototype, FFS-VA can
conveniently scale the processing capacity to expanding scenarios
as a server with more GPUs or a server cluster, which is discussed
in Section 4.

3.2 Detailed Design of Filters

The prepositive filters of FFS-VA are three models of small to mod-
erate complexity that are commonly used in a cascaded manner, to
classify or identify target objects as needed.

3.2.1 Specialized Difference Detector (SDD). SDD calculates the
distance between the reference image and the unlabeled frame to
determine whether these two frames are identical. For simplicity,
the reference image is usually computed as the average of dozens of
background frames. The distance between two video frames can be
characterized by Mean Square Error (MSE), Normalized Root Mean
Square Error (NRMSE), or Sum of Absolute Differences (SAD). Take
MSE as an example, if MSE is larger than the threshold 64,77, an
obvious content change is construed to have occurred in the current
frame. Otherwise, the frame is considered as a background frame.
Note that most surveillance video cameras are deployed in a fixed
viewpoint. Hence, the background frames can be safely discarded.

Naturally, the threshold 8y; ¢ has a direct and critical affect on
the processing efficiency and accuracy. A low dy;¢r may result in
poor filtering efficiency, while a high 64;7f can lead to a high error
rate. Furthermore, the threshold 64,7 may vary greatly in different
scenes. For example, a video with a mostly empty sidewalk (a static
background) might have a small §4; . However, a background with
changing light color and intensity in the same scene (a dynamic
background) results in a larger §4; . Weather, light intensity, etc.
can all contribute to the value of MSE [24], so the filtering efficiency
of SDD varies greatly at different scenes.

SDD processes 1007100-pixel images at 100K FPS. In the FFS-VA,
the real detection speed of SDD is 300X faster than the reference
model YOLOv2, as demonstrated in Section 5.

3.2.2  Specialized Network Model (SNM). Another key filter used
in FFS-VA is SNM. SNM utilizes a CNN to detect whether a video
frame contains target objects. Generic models can classify and rec-
ognize thousands of object classes no matter what the scenes are,
but the universality of these methods also leads to huge computa-
tional overhead and long execution time. SNM can only identify a
class of predefined target objects in the specific video stream, and
thus trading off reducing the universality for boosting its speed
(70x real-time). In addition, for a fixed-angle camera, the position
and the moving trail of the target object in the scenes are relatively
fixed. Using SNM for rapid image recognition in this case can ensure
the accuracy to be over 95% [7].

In fact, SNM is a three-layer CNN (CONV, CONV, and FC). The
design and training process is shown in Subsection 2.1. When a
video frame is inferred by SNM, SNM first outputs a predicted
probability ¢ of the target object appearing in the frame. If ¢ is
below the threshold cy,,,, no target object is considered to be in
the frame. If c is higher than cp; 4, the frame is a target-object
image. Otherwise, it is unsure whether the frame is target-object
or non-target-object.
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In our design, a threshold t,,. is utilized (between c;,,, and
Chigh) to help SNM distinguish target-object frames and non-target-
object frames. SNM puts the target-object frames (¢ > tpr.) into
the T-YOLO queue, and the non-target-object frames (¢ < tp,¢) are
filtered out.

Experiments show that SNM processes 50*50-pixel images at
5K FPS using about 200 KB GPU memory. It is 30X faster than the
reference network YOLOv2 on the real hardware platform.

3.2.3  Tiny-YOLO-Voc (T-YOLO). The third filter of FFS-VA is a
small object detection network, T-YOLO [44], which is used to filter
out the frames where the number of target objects is less than a
certain level. T-YOLO consists of 9 CONV layers and 6 POOL layers,
and is trained by a VOC dataset with 20 classes. Benefiting from
fewer classes and smaller model size, T-YOLO can perform at 220
FPS for 416416 pixel images with 1.2 GB GPU memory usage.

T-YOLO can recognize multiple target objects in one image. First,
T-YOLO divides the input image into a 13*13 grid cells automatically.
Each grid cell predicts 5 bounding boxes and confidence scores for
these boxes. If the confidence score exceeds the threshold (e.g., 0.2),
one target object is considered to appear in the image. By combining
the individual grid cell detections of target objects, the total number
of target objects appearing in the video frame can be obtained.

As a filter shared among all video streams being processed, T-
YOLO needs to traverse each T-YOLO queue of all streams one by
one and extract at most num;_,j, video frames from the queue
for detection, skipping the stream if its queue is empty.

Here we employ a generic model identifying tens of classes
for two main reasons: 1) For different video streams, sharing the
same model can reduce the switch overhead of loading different
models (e.g., 1.2 GB for T-YOLO). 2) We not only support to detect
different target objects for different video streams, but also support
the detection of multiple target objects within a video stream, to
facilitate the understanding of the scene.

3.3 Accuracy

In video surveillance, users are particularly concerned about miss-
ing scenes rather than missing frames. Given a live stream with 30
FPS, in a scene, target objects could continuously appear in a series
of frames. Even if just a few legible frame within this set of frames
is identified, the scene is in fact correctly identified. This means
that the rest of the frames in the frame set pertaining to the scene
can be considered redundant or duplicate and filtered out without
affecting the detection accuracy of the target scene.

Besides, it is possible for a frame to be recognized by the ref-
erence model but filtered out by its preceding filters, i.e., a false
negative by the latter. The false negative events can be categorized
into two cases. On one case where a merely partial appearance of
target objects, i.e., partial scene in which not all target objects or in-
complete target object (e.g., head of vehicle) appear, can be detected
by the reference model but missed by the T-YOLO model. Never-
theless, its subsequent frames in the same scene can contain entire
target objects that the T-YOLO model is able to correctly detect. In
this case, the scene is considered correctly detected. On the other
hand, if dozens of continuous frames containing the complete target
objects are filtered out incorrectly, then the scene is considered lost.
The latter case should be avoided as much as possible.
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If we slightly relax the filtering condition of a filter (e.g., set
the real filtering threshold slightly below the target threshold) and
forward a little more frames to the follow-up filters (the latter filter
can detect the results of the previous again), the false negative
events could be reduced. Therefore, the cascaded structure and
relaxed filtering conditions can also prevent excessive filtering
errors. To quantitatively analyze the accuracy of FFS-VA, we define
the error rate as the number of all false-negative frames divided by
the number of all input frames. And we elaborate on these issues
in Subsection 5.3.

4 IMPLEMENTATION

4.1 Training SDD and SNM

We apply the model training method mentioned in [7] to train the
SDDs and SNMs for each video stream. For each video stream, we
first label its video frames by using YOLOv2. These labeled data
are divided into two subsets as a training dataset and a test dataset.
The former is used to train the SDD and the SNM for each video
stream and the latter is used to select a set of suitable thresholds for
8diff> Clow> and cpjgp to meet the requirement for accuracy and
speed by comparing the predicted results against the real truths.

Different from NoScope [7], which uses specialized filters to
query for target-object frames in a single off-line video and only
extracts one frame from every 30 frames, FFS-VA designs the spe-
cialized filters to filter out the non-target-object video frames from
large-scale video streams in both online and offline modes. For each
online video stream, FFS-VA is designed to process at a rate of at
least 30 FPS. In addition, the main metric of NoScope is throughput,
but FFS-VA also pays attention to latency.

Before each filter is executed, raw frames need to be resized to
meet the filter’s feature size. The resizing times of SDD, SNM, and
T-YOLO are 40us, 150us, and 400us respectively.

4.2 Filter Control

4.2.1 FilterDegree. Although the thresholds cjq,, and cp;yp, ba-
sically determine the prediction probability of a video frame, the
values between the two thresholds may also be acceptable. Because
different video streams have different c;,,, and cp;4p values, the
choice for £y, can vary. So we compute the ¢, value as follows:

tpre = (Chigh — Clow) * FilterDegree + ¢y, (2)
FilterDegree is a parameter set by users, which reflects the aggres-
siveness of filtering. When FilterDegree = 1 (tpre = cpign), the
output frames have a high credibility, but it increases the probabil-
ity of false negative events. When FilterDegree = 0 (tpre = Cjow)s
more frames pass to the T-YOLO filter in this case, which bring a
heavier burden to the T-YOLO filter. Therefore, FilterDegree can
directly affect filtering efficiency and accuracy of FFS-VA. In our
system, the cases tpre < Cjoyy and tpre > cpjgp are not considered.
This is because values within this range would result in a dramati-
cally increase of error rate (e.g., 2.4%) or a remarkable decrease of
throughput (e.g., 60%).

4.2.2  NumberofObjects. NumberofObjects reflects the intensity
of the target objects in the predefined events. If the number of
target objects appearing in a frame is less than NumberofObjects,
the target object is considered to have a low intensity, which is
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outside the scope of the user’s interest. Otherwise, it is likely that
some unexpected events have occurred.

In fact, T-YOLO can not only monitor the intensity of the target
object, achieving purposeful filtering based on user needs, but also
catch and correct the false positive results of SNM. For example,
if a non-target-object frame is passed by the SNM accidentally, T-
YOLO can still filter out the frame by counting the number of target
objects, reducing the false positive events of FFS-VA.

4.3 System Optimization

In this section we introduce several methods to optimize throughput
and latency of FFS-VA.

4.3.1 Feedback Queue. The primary goal of FFS-VA is to maxi-
mize its throughput of processing video frames. For offline video
analytics, FFS-VA is expected to handle all frames as quickly as pos-
sible at a high throughput. For online scenarios, FFS-VA is expected
to support more concurrent live streams. Note that the processing
speed of one type of filter is often different from that of another.
SDD processes 10x faster than SNM and 100x faster than T-YOLO.
Because of the speed imbalance among the different filters and the
fluctuation of TOR over time for a given video stream, the number
of video frames processed by each filter also varies over time. When
frames arrive in bursts, their processing filter threads could block.

In order to obtain high throughput at runtime with dynamic
workloads, we propose a global feedback-queue mechanism. Due
to the limited processing power of a filter, FFS-VA controls the
detecting speed of a filter in an earlier stage in the pipeline by
detecting the queue depth of the filter at a later stage. For example,
when the T-YOLO queue depth exceeds a threshold, the SNM thread
automatically slows down or even gets blocked, and stops pushing
frames to the T-YOLO queue until the T-YOLO queue is free. Because
of the existence of bypass, the filter at an earlier stage can work well
even if a filter at a later stage is blocked. As long as the foremost
prefetching process can keep at least 30 FPS, the video stream is
being analyzed in real-time.

For some videos, the number of target-object frames varies
greatly over time. In this case, a sudden increase in the propor-
tion of target objects can significantly impact the T-YOLO queue
depth and detection speed. Therefore, it is necessary to balance
loads among video streams. In order to do this, for the video streams
with a long T-YOLO queue depth, FFS-VA extracts no more than
num;_y o1, frames from the queue per cycle. Otherwise, a fewer
number of frames are processed by the T-YOLO filter in this cycle.

In the offline case, FFS-VA adaptively adjusts queue depth of
each filter to obtain the highest throughput for a stream. In the
online case, when the execution speed of T-YOLO is lower than a
certain level (e.g.,140 FPS) for a period of time (e.g.,5s), it means
this FFS-VA instance has spare ability to serve extra streams. Con-
sequently, a new stream can be considered to add into the instance.
In contrast, when any queue of T-YOLO or SNM is longer than its
predefined threshold, it means that the FFS-VA instance overloads.
The corresponding video stream is re-forwarded to another FFS-VA
instance with spare capacity immediately.

The setting of the queue depth thresholds is important. Too
small an threshold may reduce the throughput while too large
an threshold will increase feasible overloads and latency. Unless
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otherwise stated, we initially and empirically determine 2, 10, and
2 as the queue depth thresholds of the SDD queues, SNM queues,
and T-YOLO queues respectively.

4.3.2  Dynamic Batching. Since each video stream has its own
SNM, it results in loading these models frequently when process-
ing frames coming from different video streams. Even if a GPU
has a strong parallel processing power, loading the network model
for every frame significantly lowers the overall computational effi-
ciency. To overcome this problem, we propose to process a batch
of frames fed into a SNM at a time, which can greatly reduce the
amount of model loading. For example, when the batch size is 30,
the frequency of model loads is reduced by 30x.

Feedback-queue can achieve a higher throughput by static batch.
However, a triggering strategy based on a fixed number of input
frames per batch can lead to unnecessary delay if the number of
frames being fed is less than the batch size. Besides, since we set
a limit on the queue depth threshold, when the number of video
frames fed from the SNM queue reaches the queue depth, the next
frame requests from SNM are also delayed automatically. For exam-
ple, when the batch size is greater than the queue depth threshold,
video frames have to wait in the SNM. In addition, the batching
operation itself can also introduce additional latency, especially for
a large batch size.

In order to solve these problems, we propose a dynamic batch
method based on a feedback-queue mechanism. If there are enough
video frames in the SNM queue, SNM pops out a batch of (Batch-
Size) image from the queue for SNM prediction. Otherwise, the
frames are popped from the SNM queue until the queue is empty.
Experimental results show that compared with using the feedback-
queue mechanism alone, the dynamic batch mechanism reduces
the average latency by 50% while lowering the throughput by only
16%, ensuring better real-time performance.

Note: Although we use two GPUs as a representation in the
design, tasks of SNM or T-YOLO can be reasonably distributed
across multiple GPUs to increase the overall performance in a single
FFS-VA instance. Moreover, FFS-VA can effectively scale to multi-
GPU or multi-server platforms by deploying multiple instances to
support large scale video analysis. And load balancing can also be
achieved by the re-forwarding of video streams between FFS-VAs
instances. More details about FFS-VAs running on a server cluster
platform will be elaborated in the future.

5 EVALUATION
5.1 Experimental Setup

Table 1: Information of Evaluation Videos.
Video Name Resolution Object FPS  TOR
Coral 1280720  Person 30FPS 50%
Jackson 600400 Car 30FPS 8%

We use two real-world public videos, Jackson [43] and Coral [42],
as our evaluation workloads. Their relevant information is summa-
rized in Table 1. Each video contains about 10 million video frames
in the time span of one day. We extract typical non-overlapping
video clips from each video file to simulate multiple video streams.
Jackson describes the scenes of various vehicles (e.g., car, bus, truck,
etc.) traveling at a crossroad. Coral describes the scenes of people
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watching colorful fish in an aquarium. Even for the same video, the
number of target objects varies greatly with time. Hence, we can
analyze the impact of scenes with different TOR values on the fil-
tering performance. For fairness, the feature sizes of YOLOv2 used
in both FFS-VA and the baseline are similar to be set as 416*416.

Hardware Platform We perform our experiments on a plat-
form with two NVIDIA Geforce GTX1080 GPUs, dual Intel Xeon
E5-2683 v3 CPU, and 128 GB DRAM. The multi-core CPUs provide
good support for multi-threaded evaluation workload.

First, we explore the throughput of a video stream in offline
situation and the maximum number of video streams a system
can support in online situation. Second, we analyze the effect and
sensitivity of filtering thresholds in FFS-VA to the overall system
accuracy and filtering efficiency. Finally, we study the impact of
the dynamic batch mechanism on the throughput and latency. For
the sake of simplicity, we select 5000 consecutive frames from each
video stream to perform the inference tasks.

5.2 System Performance
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Figure 3: The throughput and latency as a function of the

number of video streams with a TOR value of 0.103. Cases
failing to meet the real-time requirements (throughput < 30
FPS) are not shown in the figure.
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number of video streams with a TOR value of 1.000. Cases
failing to meet the real-time requirements (throughput < 30
FPS) are not shown in the figure.
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Figure 3 shows the throughput and latency as a function of the
number of video streams at a low TOR.

Offline analysis. With a single video stream, which represents
the offline analysis performance, the maximum throughput FFS-VA
can support is 404 FPS, which is 3x that supported by YOLOv2.
Compared with YOLOv2 the total execution time is reduced by
72.3%. In addition, for a 55 GB video file, the entire system uses less
than 8 GB CPU memory, which implies greatly increased support
capacity for long-time high-definition video files.

Online analysis. Experiments show that our system can sup-
port up to 30 video streams for real-time detection, which is 7 X
more than what YOLOv2 can support. In addition, the dynamic
batch mechanism has a 50% lower latency than using the feedback-
queue mechanism alone in all cases, but at the cost of 20% reduc-
tion in the number of supported video streams. Compared with
the YOLOv?2, although FFS-VA has a latency of several seconds,
these delays are insignificant and tolerable in normal applications,
especially in intelligent video surveillance [1].

For video streams with 1.000 TOR as an extreme case, Figure
4 shows that SDDs and SNMs filter out fewer video frames and
most of the frames are still fed to the T-YOLO for filtering, limiting
the amount of increase in the overall throughput. In this case, FFS-
VA can only support 5-6 video streams in real time. The offline
detection throughput, implied by the single-stream performance,
has also dropped noticeably in our experimental platform, and the
overall execution time is close to the YOLOv2. This is because, on
the same hardware platform, we use a GPU to perform YOLOv2
and another GPU is used to perform inefficient filtering, while the
baseline YOLOv2 can perform on both GPUs.

Figure 5 presents the ratio of frames executed in each filter with
different TOR during the day. SDD filters out few frames due to
frequent movement and scene changes in the daytime. The filtering
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efficiency of SNM is largely related to TOR. And T-YOLO can all
work well in any case. It is worth noting that different time periods,
weather, video contents, illumination, etc., may all affect the filter’s
performance of each stage, and we only show a small part of them
because of the space restrictions.

In order to better understand the impact of TOR on the perfor-
mance of FFS-VA, we extract a set of video clips with different TOR
values and use FFS-VA to analyze them. Figure 6a shows that the
maximum number of video streams supported by FFS-VA increases
as TOR decreases. In this case, the execution speed of offline detec-
tion also accelerates with a decreasing TOR. Figure 6b shows the
execution time of video streams, normalized to that of the longest
execution time, with an even TOR distribution between 0 and 40%.
Except the very low TOR, there is not much difference between
these execution times. This shows that load balancing is well per-
formed.

5.3 Sensitivity of Key Thresholds

Next, we examine how two key thresholds in FFS-VA, FilterDegree
and NumberofObjects, impact the filtering efficiency and accuracy
of FFS-VA. To verify the accuracy of FFS-VA, all the filtered frames
by FFS-VA are completely detected by the reference model YOLOv2.

5.3.1 FilterDegree. Figure 7a illustrates the effect of the Filter-
Degree threshold on the number of output frames and the filtering
error rate for the detection of cars. As the threshold increases, more
frames whose prediction probability c is between cjo,, and cpign
are filtered out.

Figure 7b shows the results of person detection. The adjustment
of the FilterDegree value has little effect on the filtering efficiency
in this case. This is because during the entire observed time period,
the aquarium is in the tourist peak and all frames contain many
persons, which prevents SNM from filtering out any video frame.

5.3.2  NumberofObjects. As shown in Figure 8a, for car detec-
tion, as NumberofObjects increases, the number of output frames
decreases significantly (about 80%). This is because, in this video,
the size of a car is relatively large in a scene that can only contain
no more than three target objects. Figure 8b illustrates the case of
person detection. The number of output frames gradually decreases
with the increase of NumberofObjects.

Table 2: Statistics of error frames in 5000 consecutive video
frames.

Error Frame Number of Frames

An isolated single error frame 3

2-3 isolated-continuous error frames 5
Continuously-error frames less than 30 73
Continuously-error frames more than 30 140

5.3.3  Accuracy analysis. To better understand the error rate, we
first analyzed the false-negative frames for car detection with a TOR
value of 0.25. Table 2 illustrates the statistics of these error frames.
The cases of an isolated single-error frame and 2-3 error frames
do not affect the correct identification of the scene. In addition, a
series of consecutive error frames whose size is less than a certain
level (e.g., 30 frames) is usually caused by a distinguish criterion for
partial-appearance of target object between T-YOLO and YOLOv?2.
In most cases where there are many consecutive error frames, it
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Figure 8: Number of output frames and error rate as a func-
tion of NumberofObjects. In Figure 7(b), the number of fil-
tered video frames approaches 0 as NumberofObjects further
increases beyond 12.

is because a single partially appeared vehicle is waiting for traffic
lights. By analyzing these images, we observe that only about 50
frames out of a total of 5000 frames are those with actual scene
losses.

In addition, as shown in Figure 8, the error rate is relatively high.
This is due to for the detection of small and dense targets, such
as persons in the crowd, T-YOLO generally identifies fewer target
objects than YOLOvVZ2, resulting in a high error rate. In this case,
Figure 8b shows that if one or two object misjudgment can be toler-
ated by relaxing the filtering threshold, the error rate will be greatly
reduced (80.7% and 94.8% respectively). Even if relaxing filtering
conditions may have a little impact on the filtering efficiency of
the system (about 12.6% and 22.2% respectively), it is worthwhile
to ensure the overall accuracy of the system. Therefore, it exists a
trade-off between accuracy and filtering efficiency.

In short, the experiments show that thanks to the relaxed filtering
conditions and the cascaded structure, the actual cases of missing
scenes is less than 2% in our system, which is arguably negligible.

5.4 Batch Mechanism

We analyze the impacts of the static batch, feedback-queue, and
dynamic batch mechanisms on overall throughput and latency on
10 video streams.

5.4.1 Throughput of FFS-VA. Figure 9a shows the throughput
of the static batch, feedback-queue, and the dynamic batch mecha-
nisms respectively with 0.203 TOR. When BatchSize is low, these
three methods can process a full batch of video frames at a time
from the SNM queue. While SNM processes the current batch of
video frames, SDD quickly pushes enough video frames to the SNM
queue to form the next batch of video frames, thus having little
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impact on the throughput. When BatchSize is high, for the static
batch mechanism, the throughput can still continue to increase with
sufficient data provided by SNM queues. For the feedback-queue
mechanism, the wait for video frames increases the execution time,
resulting in a slight decrease in throughput (about 8%). For the dy-
namic batch mechanism, the smaller batch size leads to a decrease
in computation efficiency, resulting in a lower throughput.

Figure 10a shows the experimental results with 0.980 TOR. In
this case, most of the frames are eventually executed by T-YOLO no
matter what the BatchSize value is. Therefore, BatchSize has little
effect on the throughput in this case.

5.4.2  Average Latency. Figure 9b and 10b show that when Batch-
Size is small, the difference in average latency between the feedback-
queue and the dynamic batch mechanisms is very small. As Batch-
Size increases, more video frames need to wait a period of time in
the feedback-queue because of the fixed batch size. For the dynamic
batch mechanism, since the batch size can be adjusted automati-
cally according to video contents, the average latency is basically
unchanged. Due to the same queue management mechanism, for
video streams with 0.980 TOR, average latency has a similar trend.

In summary, for videos with a low TOR value, the feedback-
queue mechanism has a greater throughput, and the dynamic batch
mechanism has a smaller average latency. For videos with a high
TOR value, there is not much difference in throughput between
the feedback-queue and dynamic batch mechanisms, but the dy-
namic batch mechanism has a lower average latency and should be
considered first.

5.5 Limitations and Remedies

While the FFS-VA filtering system is shown to be highly effective
in real-time object detection for large-scale video streams, there
remain some limitations.
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Target Object Rate Sensitivity. In practice, a sudden increase
in TORs in video streams can lead to poor filtering efficiency, even
if the probability of multiple videos having their TORs increase
simultaneously is extremely low. If necessary, we can temporarily
store these video frames in the storage system, to be processed later.
For some latency-sensitive scenes, it is necessary to allocate more
GPUs to provision for peak-load periods.

Error Rate. The reason for the cases of relative high error rates
is the performance difference between T-YOLO and the reference
model YOLOv2. Deep compression [6] (e.g., pruning, sparsity con-
straint) can transform a larger but more accurate NN model to a tiny
model without compromising the accuracy of the prediction, result-
ing in a 3x throughput improvement[32]. Therefore, we can replace
T-YOLO with a high-precision mode that was deeply compressed
to obtain a low error rate.

Scene Switch. We train SDD and SNM models for each fixed-
angle camera and specific target object, so the changes of video
scene may affect the detection accuracy. If the scene change in
the video is periodic (e.g., alternating between day and night), the
training data just needs to include representative frames under all
conditions. However, when the scene changes dramatically or the
function and position of the camera have changed, the previous
specialized models will no longer work. If there are no saved models
in the past that can match the current environment, a new network
model needs to be trained according to the new scene, which takes
about one hour.

Single Target Object. In this paper, we assume that there is
only one user-interested target object for each video stream. If
multiple target objects exist in a video stream, the structure of the
specialized network model only needs to be changed to support the
identification of all the target objects in the video.

6 RELATED WORK

Prior studies relevant to FFS-VA can be classified into three main
categories, model cascades, object detection and video monitoring.

Model Cascades. Cascade is defined as a sequence of classifiers
to improve inference speed. Paul Viola et al. [27] proposed the first
cascade, the Viola-Jones detector, which cascades traditional image
processing features. The sub-windows which are not rejected by
an initial classifier are processed by a sequence of classifiers. If
any classifier rejects the sub-window, no further processing is per-
formed. Recent work has concentrated on learning cascades. [39]
achieves an optimal trade-off between accuracy and speed by learn-
ing a complexity aware cascade. [9] configured a CNN cascade for
real-world face detection to accurately differentiate faces from the
backgrounds. [38] proposed a cascaded regression approach for
facial point detection to make more accurate predictions. In our
filtering system, we use a cascade to filter out video frames that
we do not care about, not specific to the features. Besides, FFS-VA
focuses on improving the processing throughput of the system
rather than the effectiveness of a single model.

Object Detection. SPPnet [17] and Fast R-CNN [31] have achieved
a very high accuracy for the image object detection, by using region
proposal object detection methods. OverFeat [28] and YOLO [15]
have achieved a high detection speed by skipping the proposal
step altogether, and predicting bounding boxes and confidences for
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multiple categories directly. Our goal is to increase the throughput
of the overall system using these models and some other models
for filtering in practice.

Video Monitoring. Video monitoring involves many tasks [34],
including vehicle tracking [4], object detection [13] and so on. Each
task has been tailored for a specific system (e.g., vehicle count-
ing [12], license plate detection [6], cars or pedestrians tracking [3]).
And the main target objects are car and pedestrian. Our filtering
system focuses on video analysis, and several objects (e.g., dogs,
cats) can be detected in FFS-VA to facilitate the understanding of
the scene if needed. Besides, more event-related details (e.g., detail
behavior analysis) can be fine-grainedly detected by the back-end
network model instead of just trajectory analysis.

7 CONCLUSION

In real life, there are a lot of camera resources to be explored. And
NN makes it easy to extract semantic information from these videos.
However, its computational efficiency is low. Besides, the huge
number of video frames in the large-scale video streams also poses
a great challenge to NN. In response, we propose a filtering system
that equips a SDD model, a SNM model, and a global T-YOLO model
for each video stream, filtering out the video frames that the users
are not concerned about in the video, and reducing the number
of video frames that need to be detected by the full-feature model.
The experimental results show that our filtering system provides
3-7x scalability improvement over the state-of-the-art YOLOv2. In
addition, the reference model in this paper is an object detection
network, but FFS-VA can also be applied to other fields, such as face
recognition, by configuring other appropriate reference models.
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