
GreenSprint: Effective Computational Sprinting in
Green Data Centers

Haoran Cai∗, Xu Zhou†, Qiang Cao∗�, Hong Jiang§, Feng Sheng∗, Xiandong Qi‡,
Jie Yao∗, Changsheng Xie∗, Liang Xiao∗, Liang Gu†

∗Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System of Ministry of Education,

School of Computer Science and Technology, Huazhong University of Science and Technology
§Department of Computer Science and Engineering, University of Texas at Arlington

‡Department of Computer Science and Engineering, Hong Kong University of Science and Technology
† Sangfor Technologies Co., Ltd.

�Corresponding Author: caoqiang@hust.edu.cn

Abstract—Computational Sprinting has proven to be an ef-
fective way to boost the computing performance for bursty work-
loads, which allows a chip to exceed its power and thermal limits
temporarily by turning on all processor cores and absorbing
the extra heat dissipation with certain phase-changing materials.
However, extra power available for sprinting is constrained by
existing power distribution infrastructures. Using batteries alone
to provide the additional power to achieve performance target
not only limits the effectiveness of sprinting, but also negatively
impacts the lifetime of the batteries. Leveraging renewable power
supply in a green data center provides an opportunity to exploit
the maximal potential of Computational Sprinting. However,
the intermittent nature of renewable energy makes it very
challenging. In this paper, we propose GreenSprint, a renewable
energy driven approach that enables a data center to boost its
computing performance efficiently by conducting computational
sprinting. We present four sprinting strategies to address the
challenge imposed by the intermittent and time-varying nature of
renewable energy supply. We build an experimental prototype to
evaluate GreenSprint on a cluster of 10 servers with a simulated
solar power generator. The results show that renewable energy
by itself can sustain different duration lengths of sprinting when
its supply is sufficient and can improve performance by up to
4.8x for representative interactive applications. We also show the
effectiveness of core-count and frequency scaling in the presence
of varied renewable power and limited battery energy.

I. INTRODUCTION

Computational sprinting has been widely explored in re-

cent years [7], [8], [30], [23], [16]. Due to thermal constraints,

some of the processor cores on a chip must be powered off

most of the time, a phenomenon known as dark silicon [16],

[9]. Many recent studies have demonstrated that computational

sprinting, in which idle cores are activated and voltage and/or

frequency are increased to allow the thermal constraints to

be crossed for a short period of time by absorbing the extra

heat dissipation with special phase-changing materials [23],

[8], can effectively and significantly speed up application

performance during workload bursts. For data centers with

interactive workloads (e.g., search, forum, news), while work-

load bursts can be less frequent, the intensity of such bursts

are usually much higher under a variety of circumstances [30],

such as breaking news, online shopping big sales (e.g., the

Black Friday after Thanksgiving), etc. As illustrated by Figure

1, the diurnal workload pattern (dotted line) from a study of a

Google data center [13] consists of several load spikes during

the whole day with varying burst intensities and durations.

There exists a great opportunity for computational sprinting

to guarantee the quality of service in these cases.

0

0.5

1

1.5

0 5 10 15 20

Workload Intensity Grid Power
Sprinting Power Renewable Power

N
or

m
al

iz
ed

Time(Hour)

Fig. 1: Workload pattern for a Google data center [13] and

scaled power demand of sprinting normalized to grid power.

However, many prior works demonstrated that today’s

data centers are already approaching the peak capacity of

their power infrastructures [10], [15] which is similar to the

thermal constraint at the chip level. The extra bursty power

demand required by computational sprinting at the datacenter

level can lead to serious power emergencies [30] as indicated

in Figure 1 by the red ovals when the demand exceeds

the grid power capacity. Rejecting service requests due to

power capacity cap may cause data centers to lose revenue

and customers in the long term. Existing solutions to deal

with bursty power demand mainly focus on battery-backed

power system [25], [12] or one combined with overloading

circuit breaker [30], [23]. However, using battery alone can be

energy inefficient and harms the lifetime of batteries due to

the frequent charging/discharging activities [18]. An emerging

solution to the power emergency problem is to leverage green

energy sources to supplement grid power capacity. In such

green data centers, power-constrained grid can be used as

backup for the renewable power supply or vice versa. Also,

690

2018 IEEE International Parallel and Distributed Processing Symposium

1530-2075/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPS.2018.00078

renewable power solution can tackle the environmental chal-

lenges brought by power consumption and carbon emissions.

Compared with traditional data centers without green power

supply, this solution avoids expensive capital expenditure and

time-consuming construction cycle (ranging in the hundreds of

millions USD and decades of years) of upgrading grid power

infrastructures [26], [31], [27]. In a typical data center, the cap-

ital cost spent on provisioning the grid utility infrastructure is

between $10-$25 for each watt [31]. Therefore, the renewable

power solution brings us an opportunity to deal with burst

power demand in a cost-efficient way.

Thus, in this paper, we first ask and then try to answer

the following questions, can we leverage green power supply
to support computational sprinting in green data centers,
and if so, how? Although renewable energy is an attractive

solution, it is also well known for its intermittent and variable

nature which is also demonstrated in Figure 1 for a typical

solar power supply. Thus, directly conducting sprinting using

renewable energy in a green data center, without appropriate

control, can have negative impacts, for example, reducing the

lifetime of batteries, degrading the performance of services

leading to SLA violations, and even causing power failures

in the data center. Hence, we split the solution into three

cases: (1) When the green power supply complementing the

grid power can fully satisfy the bursty power requirement, we

operate the sprinting with only green power and then charge

the surplus green power into energy storage devices. (2) When

the green power supply is insufficient for the power demand,

the batteries, strategically charged either by renewable source

or grid source during non-sprinting periods, discharge to make

up for the power shortage. (3) When the green power is not

available, certain power management knobs (e.g., server-level

low power state) can be adopted to manage sprinting power

to match the current power provision, potentially resulting in

a performance degradation for some applications. Obviously,

applying computational sprinting by leveraging green power to

provision power bursts in power-constrained data centers can

help significantly save the capital expense while improving

application performance.

Based on the analysis above, we propose GreenSprint,

a green data center based approach that exploits renewable

energy to effectively and efficiently conduct computational

sprinting. To the best of our knowledge, while many prior

works have focused on supporting computational sprinting

at the chip level or at the data center level by utilizing

battery supply only, the issues of computational sprinting in the

presence of green energy at the data center level and its cost-

benefit trade-offs have not been well addressed in the literature.

In exploring the design space of employing renewable energy

for computational sprinting, this paper makes the following

contributions: (1) We propose GreenSprint, a renewable energy

driven approach that enables data center level sprinting by

turning on more cores and boosting their voltage and frequency

in the era of dark silicon, in order to handle occasional work-

load bursts. (2) We present four strategies to determine the core

count and the frequency level for sprinting based on the inter-

mittent and time-varying renewable power supply. Especially,

we propose a Hybrid strategy that combines reinforcement

learning to determine the optimal server setting, targeting at

the power provision safety and the quality of service. (3) We

develop an experimental prototype consisting of 10 servers,

a simulated solar power generator, and a server-level battery

provision to evaluate our approach. Using representative data

center workloads, the evaluation shows that our solution can

improve the average computing performance by up to 4.8x

for SPECjbb, 4.1x for Web-Search, and 4.7x for Memcached

with renewable power supply. (4) Based on the evaluation

results, we present specific analysis on the interplay between

renewable power, battery energy, sprinting duration, workload

characteristics. We draw several insightful observations to

guide computational sprinting in green data centers.

II. POWER INFRASTRUCTURE IN GREEN DATA CENTERS

Considering the fact only part of the cores in the mul-

ticore servers in typical data centers are active due to the

dark silicon phenomenon, it offers the potential to apply

the computational sprinting technique to boost performance

of applications with bursty workloads, particularly interactive

workloads, by turning on additional cores and increasing their

voltage and frequency. This is possible, however, only if

thermal constraints at both the server/chip level and data center

level can be temporarily stretched, i.e., with the necessary

heat-absorbing materials and cooling equipped, and the power

supply infrastructure is able to meet the bursty power demand

of sprinting whenever the demand arises. Since our focus in

this paper is on leveraging renewable energy in data centers

to meet the bursty power demand of computational sprinting,

in this section we will introduce the power infrastructure

for computational sprinting in a green data center and make

appropriate assumptions about the thermal constraints.

Racks with
Battery

Green
Generator

Utility Dependent Racks

Inverter

Diesel
Generator (DG)

Utility
Substation

ATS

…PSS PSS… PSS

PDU

PMK PMK PMK

PSS PSS …PSS …

PDU

PMK PMK PMK

Fig. 2: The Power Infrastructure of GreenSprint

Overview: Figure 2 depicts an architectural overview of

an on-site green data center power hierarchy for computational

sprinting, similar to prior works [32], [10]. To achieve the

sprinting goal, we directly connect the on-site renewable power

supplies such as photovoltaic (PV) and wind to the power

691

distribution unit (PDU) level to provide a dual-power supply

of the grid and renewable power rather than integrating the

renewable energy into the utility power. This can help decrease

the impacts of voltage transients, frequency distortions and

harmonics. Compared with the centralized power integration,

our distributed integration prevents PDUs becoming a power

delivery bottleneck. The existing uniform centralized power

provision mechanism forces all servers to obtain the same or

similar renewable power capacity, significantly limiting the

sprinting power supply. To this end, provisioning renewable

energy on the PDU level allows us to apply computational

sprinting in a data center on a per-rack basis. When we conduct

sprinting, some servers will be powered only by the renewable

energy with a separate green power bus while others will

depend on the grid power. This can help to greatly relieve

the burden on the circuit breakers (CB) and other constrained

power infrastructure.

Renewable power: The greatest challenge facing pow-

ering sprinting with renewable energy is its time-varying,

intermittent power. Therefore, we employ a power-source

selector (PSS) to adaptively switch among different power

sources (i.e., green, battery and grid power). PSS performs

switch tuning based on the discrepancy between the workload

power demand and the green power supply. PSS is also

configured to charge the battery when there is an excess of

green power, and discharge it when green power is insufficient

or unavailable. PSS can identify the switching parameters for

the inverter and charge controllers of batteries to allow for

a full control of every power source. Programmable power

electronics circuitry can be used to implement PSS. However,

since our experimental setup does not provide this functional-

ity, our evaluations account for such control capability in the

form of managing the sprinting decisions. As shown in Figure

2, a server-level power management knob (PMK) receives the

execution output from the PSS to control the power demand

on a per-server basis. When renewable power and battery are

not sufficient, PMK decreases the sprinting intensity to keep

servers within the power budget by considering applications’

diverse characteristics.

Battery: Energy storage devices must be deployed to

support sprinting continuously when the renewable energy is

insufficient. Prior works proposed to rely on uninterruptible

power supply (UPS) devices when the utility power source

suddenly fails [23], [30]. Since we connect the green power

to the PDU level, we also leverage the distributed battery

architecture shown in Figure 2, which is widely employed

by IT companies such as Google [1] (server-level battery) and

Facebook [3] (rack-level) to smooth the supply of the renew-

able power. The former design achieves energy efficiency by

bringing the AC distribution (green and grid) even closer to

the IT load, before it is converted (we adopt this design in our

solution). The distributed design can provide great scalability

and avoid AC-DC-AC double conversion.

However, battery-based sprinting can have significan-

t adversary effects on the battery lifetime because batter-

ies can wear out under irregular charging and discharging

regimes [11]. There are two main factors affecting the bat-

tery failure rate. First, discharging current, which has strong

relationship with the sprinting intensity, indicates the capacity

performance of battery. For example, while the rated capacity

is 24Ah at a 20-hour discharging rate, the capacity drops to

only 12Ah at a 12-min discharging rate. Second, high depth

of discharging (DoD) can degrade the battery lifetime. For the

purpose of prolonging the battery lifetime, we cannot exhaust

the energy of a battery. In our work, we model a server-

level 12V value-regulated lead-acid battery (VRLA), similar

to that used by Li et al. [11]. Batteries are characterized by

their supply time as approximated by Peukert’s Law (Peukert’s

exponent is 1.15 for LA battery [27]), which shows the time

taken to drain a certain capacity for different power demands.

We also assume DoD=40% in our setup, which translates to

a lifetime of 1300 recharge cycles [27].

Thermal concerns at the chip level: Another challenge

is cooling at the server level. A chip multiprocessor’s sprint-

ing level depends on its thermal package and heat sink. In

other words, the thermal constraint at the chip level directly

determines the maximum duration of sprinting. Sprinting

activities produce more heat into the ambient environment

than in normal server mode. Therefore, server system needs to

effectively remove the extra heat and prevents over-heating on

chip-level. Fortunately, prior work [21] found an effective way

to shape the thermal load of a data center. In that work, phase

changing materials (PCM) is used to temporarily store the heat

generated by servers and other equipment during peak loads,

and release the heat when there is excess cooling capacity

during non-sprinting periods. It shows that PCM can delay

the onset of thermal limits by hours. In our work, we assume

servers are equipped with such thermal package for sprinting

and the server can sustain different demands of heat dissipation

resulting from computational sprinting.

III. DESIGN OF GREENSPRINT

In this section, we present GreenSprint, a renewable

energy driven framework that enables data center sprint-

ing by managing power sources and scheduling workloads.

The GreenSprint framework is designed to assist the power

source selector (PSS) and power management knobs (PMK) in

their decision-making process. We present the architecture of

GreenSprint in Figure 3. The main components are Monitor,

Predictor, PSS, and PMK. The Monitor collects the perfor-

mance of workload (e.g., latency and throughput) and the

power used (e.g., battery energy, renewable power, and server

power). The Predictor predicts the workload intensity and the

renewable energy production. The PSS takes these predictions

and the available power to choose appropriate power sources.

The PMK uses the profiling records and the power supply

to manage sprinting activities for busty workloads. In the

following, we emphasize on the details of the PSS and PMK.

A. Power Source Selector

The sprinting power provision can come from renewable

power or battery, depending on the decision made by a power

692

Predictor

Workload
Prediction

Green Energy
Prediction

Power Source
Selector

Power
Management

Knob
Monitor

Power/
Performance

Profiling
Records

Interactive
Workload

Fig. 3: The GreenSprint Architecture

Time

Grid Power Budget

Battery Discharging

Sprinting Power

Po
w

er
(W

)

g

T1 T2 T4 T3

Po
w

er
(W

)

T1 T2 T4T3

RE Supply

Grid Charging

RE Charging

PMK PMK

Fig. 4: An Illustration of Power Source Selector under Differ-

ent Power Supply/Demand Scenarios

source selector (PSS). Figure 4 illustrates how the green power

and battery energy are provided at the rack level. In each case,

the duration of a power burst is divided into a series of discrete

scheduling epochs (T1, T2, ..., Tn) which can be classified

into the following three possible cases:

Case 1: Renewable power, (RESupp), is abundant and

can be independently used for sprinting (from T1 to T2). The

excess power beyond the sprinting needs can be used to charge

the battery. In this period, power supply depends on renewable

power. Sprinting starts from additional cores being activated

and ends when the workload requests are finished or batteries

join back in power supply.

Case 2: Renewable power is insufficient. Due to the time-

varying, intermittent nature (e.g., weather condition, time of

sprinting, etc.), the green power supply temporarily needs the

supplement from other power sources, such as batteries. To

this end, we employ battery power (BattSupp) to supplement

the green power to sustain the sprinting (from T2 to T3)

immediately. To make this work, power management knobs

(PMK) must work cooperatively with PSS. This case ends

when green power supply becomes unavailable.

Case 3: The battery independently sustains the sprinting

when the renewable power is unavailable (from T3 to T4). If

the workload burst can be completed in this period, then we

charge the battery with grid power in anticipation of future

sprints. The worst case happens when there is no sufficient

battery energy left, then overloading circuit breaker (CB) for

the grid power may be the last resort to maintaining sprint-

ing. Recharging is activated when battery depth of discharge

reaches the set goal (40% DoD). To prevent tripping the CBs

with too much power overload, we limit the total power of all

the downstream branches under an upper bound. Again, due to

limitations on batteries, PMK and PSS should cooperate with

each other in case of a power emergency.

To help the PSS determine which case the power system

should step in, GreenSprint makes a judgement on the relation-

ship between RESupp, BattSupp and the power demand Load-
Power in each scheduling epoch. In this design, we calculate

BattSupp based on previous discharging activities. Specifically,

the energy usage of battery during each epoch is recorded by

a controller node in a cluster. The available capacity is derived

from the maximum capacity and the used capacity. To properly

capture Peukert’s effect during discharging, we recalculate the

remaining discharging time after each scheduling epoch.

For RESupp, we present a renewable energy prediction

model for the Predictor with lower complexity and short

time horizons. The prediction is based on the past power

production records. In particular, we continuously calculate

an exponentially weighted moving average (EWMA) of the

past average power production in Equation 1:

RESupp(t) = α ∗RESupp(t− 1) + (1− α) ∗Obs(t) (1)

where Obs(t) is the observed power production and

RESupp(t) is the predicted power supply for the next epoch

(e.g. of 5 minutes) in the current epoch t. α reflects a tradeoff

between stability and responsiveness and it ranges from 0 to 1.

When α varies, we find α=0.3 to be the most consistent, which

weights the model more heavily towards current observed data.

Note that most solar prediction algorithms are accurate when

weather conditions are stable.

B. Power Management Knobs

The power management knob (PMK) is introduced to

manage power demand. When a workload burst occurs and

there is an abundant renewable power supply, the workload

requests can be quickly completed by sprinting without trig-

gering the grid or battery power. Further, the surplus renewable

energy is used to charge the battery. When the power source

can no longer sustain the power demand, we finish sprinting by

deactivating the additional active cores and setting the frequen-

cy to the lowest level, Normal mode. The case where the power

supply is insufficient becomes more complicated. PMK should

determine an appropriate sprinting intensity for better energy

efficiency. In what follows, we present four different power

management strategies for computational sprinting in a green

data center, namely, Greedy, Parallel, Pacing and Hybrid.

The most straightforward solution is to simply activate

all cores and set the highest frequency to temporarily ac-

commodate workload bursts. We call this the Greedy strat-

egy because it needs aggressive power supply. This strategy

does not assume any prediction of the future green energy

production. It greedily tries to run with the maximal sprinting

intensity, seeking maximum improvement on performance for

each application. When the power supply is sufficient or the

workload intensity is moderate, Greedy can strictly ensure

the quality of service (QoS) for latency-critical applications,

further reduce the response time of each request. For example,

693

Greedy can achieve an average 270ms latency for SPECjbb at

70% burst load intensity, while a best-efficiency policy (lower

sprinting intensity and higher response time) can only provide

466ms latency with a 500ms latency constraint. Obviously,

most service providers are willing to deploy Greedy that

improves the user experience by maximal sprinting, which

may bring additional revenue. However, when the power

supply is insufficient, or the workload bursts are intensive, the

service may be unavailable due the high power consumption

of Greedy. When the batteries kick in, considering the burst

duration, lower sprinting intensity may be a better choice

because of lower power consumption, which leads to longer

discharging time. For comparison, we develop the following

three strategies.

During each sprinting interval, each server j = 1, ..., n in

a rack c can operate in a particular sprinting intensity Sj ∈ S.

S is a two-dimensional set consisting of frequency level and

core count. It is ordered from S0, which is the Normal mode

(e.g., 6 cores with 1.2 GHz in our testbed), to Sr, which is the

maximum sprinting mode (e.g., 12 cores with 2.0 GHz). We

also denote the intensity of a workload during this sprinting

interval as Lj ∈ L, which can be any of the w levels,

L1, ..., Lw, between the minimum and maximum intensity

levels for a given application. The power demand for each

sprinting epoch t not only depends on the workload intensity

level Lj,t being served on server j during epoch t but also on

the server configuration Sj . We measure and collect the power

demand (denoted as LoadPowerj(Lj,t, Sj,t)) of an individual

workload for each server settings Sj and workload intensity

levels Lj with a priori knowledge using an exhaustive method

on real servers.

Another two strategies we proposed are called Parallel
and Pacing. Parallel scales only the core count while Pacing
scales only the frequency levels at each time. For Parallel
and Pacing, we intend to explore the impact of two power

scaling techniques on the performance with the renewable

power supply, which has not been well discussed in prior

works. We use the EWMA prediction again to predict the

workload intensity Lpre,t. Then the potential maximal power

demand can be denoted as LoadPowerj(Lpre,t, Sr,t). Then

there exists a power mismatch between power supply and

demand, denoted as Mt =
∑n

j=1 LoadPowerj(Lpre,t, Sr,t)-
PowerSuppt, where PowerSuppt is the sum of RESupp(t)
and BattSupp(t) for the whole rack. The power

reduction PM,t =
∑n

j=1(LoadPowerj(Lpre,t, Sr,t) −
LoadPowerj(Lpre,t, Sj,t)) offered by scaling core count or

frequency level for each epoch t. Therefore, we handle the

power mismatch Mt by carefully managing power reduction

PM,t. Thus, we arrive at the following equation:

∀t ∈ T : RESupp(t) + PBattSupp(t) + PM,t =
n∑

j=1

LoadPowerj(Lpre,t, Sr,t)
(2)

To this end, an optimal setting Sj is achievable to maximize

the overall performance Perfj,t in each epoch t for servers

in rack c. We denote the optimization target as:

max

t∈T∑ j∈c∑
Perfj,t(Lj,t, Sj,t)

(3)

Parallel and Pacing solve the problem under constraints on

service quality of service (QoS), renewable power production,

and battery power supply (e.g., DoD, capacity), which is

similar to some previous studies [25], [32], [20].

Algorithm 1 Reward mechanism

1: // Calculate reward rt based on epoch t and t+ 1
2: QoStarget and QoScurrent represent the target QoS of the workload

and the current latency result. PowerSupp and PowerCurr are the
power supply and the current power demand at time t.

3: Rpower = PowerSupp / PowerCurr //Power reward
4: Rqos = QoStarget / QoScurrent //QoS reward
5: If Rpower > 1 Then
6: If Rqos > 1 Then
7: rt = Rpower+Rqos+1
8: Else
9: rt = Rpower-Rqos+1

10: EndIf
11: Else
12: rt = -Rpower-1
13: EndIf
14: // Update the value of R(ct, at) in lookup table
15: R(ct, at)=R(ct, at) + α[rt + γmaxai∈SR(ct+1, ai) - R(ct, at)]

Finally, we present a Hybrid strategy, which combines

both frequency and core count scaling in Parallel and Pacing
with reinforcement learning. Hybrid tries to learn the optimal

settings to achieve higher energy efficiency and strict QoS

guarantee. In our work, we first fomulate this problem as a

Markov Decision Process (MDP). In an MDP, a decision-

making process must learn the best course of action to

maximize its total reward over time. At each discrete epoch,

the system can observe its current state, ct, and it must choose

an action, at from a finite set of alternatives. Depending

on the chosen action and current state, there is an unknown

probability distribution controlling which state ct+1 it enters

next and the reward rt that it receives. The problem is to

maximize the total discounted reward,
∑T

t=0γ
trt, where γ is

the discounting factor. γ should be positive and less than one,

in order to reflect a preference for rewards in the near future.

In our power management problem, the state ct indicates

the current power supply PowerSupp and workload intensity,

measured during epoch t-1. Specifically, we quantize the power

supply for each server, from the point of idle server power to

the point of maximum sprinting power, into discrete sets by

static step like the workload intensity level L. A small step

improves the energy savings, but it tends to cause frequent

changes in configuration for small changes in workload inten-

sity and power supply. In our design, we empirically determine

the step as 5% to improve energy efficiency. The action at,
which is chosen depending on the state, is the combinations

of core count and frequency levels, i.e. at ∈ S. The reward rt
is determined by the level of QoS relative to the target and

the power consumption relative to the power demand.

Reinforcement learning is a type of unsupervised machine

learning with a focus on online learning [28]. It solves an MDP

694

Configurations RE Batt. (Server level)
RE-Batt 30% servers 10Ah
REOnly 30% servers 0

RE-SBatt 30% servers 3.2Ah
SRE-SBatt 20% servers 3.2Ah

TABLE I: Options for green provision

by maintaining a lookup table R(c,a), which is similar to anoth-

er work [22]. The entry estimates the total discounted reward

that will be received if the action a has been chosen based

on the current state c. In our work, to reduce the complexity

of the problem, we learn the initial values of lookup table

from the profiling data collected by Parallel and Pacing using

Algorithm 1. The power reward and QoS reward in reward

mechanism are defined as Rpower and Rqos respectively. If

Rpower is greater than one, then the power demand has been

satisfied by the power supply, it demonstrates that the server

can be powered normally and the power demand has been

well managed. In this case, if the QoS has been ensured, i.e.

Rqos is greater than one, then we give a positive reward. A

larger reward means sprinting can provide lower response time

for each request. If the QoS can not been ensured, we add

a negative reward. Finally, if Rpower is less than one, then

the power supply can not meet the demand due to sprinting,

therefore the total reward is negative. Once the reward rt has

been calculated, line 15 updates the value of R(ct, at) in the

lookup table. We empirically set the discounting factor γ as 0.9

to allow a balance between short-term and future rewards. The

learning rate α, we used α=0.7 in our experiments, controls

the rate at which the values of R(ct, at) are updated. A large

value of α means that the algorithm learns quickly. Hybrid
uses the lookup table to select the best action at, which

is the one that gives the largest total reward; i.e. at = arg

maxa∈SR(ct,a). In order to improve the decisions, we also

continue to update the values in the lookup table. Hybrid has

a simple algorithm implemented using Python, so its runtime

overhead is negligible (<2ms).

IV. PROTOTYPE EVALUATION

Our scale-down experimental prototype of GreenSprint

uses a cluster of N = 10 servers each with two 6-core

2.0GHz Intel Xeon E5-2620 processors (i.e., 12 cores per

server), 48GB RAM and 1Gbps Ethernet interface and run

our applications hosted on the Ubuntu Linux OS. The cluster

has an NFS storage volume shared by all the servers. The

power consumption of each server is monitored by an external

power meter [2]. Their idle power is around 76W. The dynamic

power consumption can be modulated with 9 frequency states

and sprinting scales the core count from 6 to 12.

To simulate a data center with renewable energy pro-

vision, we randomly choose one of the renewable power

production traces with one-week duration from NREL [6],

including irradiation every minute, and replay the chosen

trace on our prototype. We scale the solar power production

to correspond the power source configuration (Table I) to

simulate the available renewable power output. In this table,

for example, ’RE’ represents renewable energy provision.

Workloads Memory Usage Performance Metric
SPECjbb 10GB jops (99%-ile 500ms constrained)

Web-search 20GB ops (90%-ile 500ms constrained)
Memcached 20GB rps (95%-ile 10ms constrained)

TABLE II: Workload Description

’S’ represents small renewable energy and battery energy

capacity provisions. In our setup, we consider a solar panel

provisioned for a server j with 275W DC output (theoretical

peak power), which is in line with the existing capacities in

Grapesolar [4]. Hence, we can obtain the peak renewable

power AC supply for a single solar panel that generates

PeakRE ∗α = 275∗0.77 = 211.75W . As shown in Figure 5,

for the RE-Batt configuration, we assume that 3 servers in our

prototype are provided with a renewable energy system that is

capable of supplying the maximum green power of 635.25 W.

For the configuration with SRE that provides 3 servers with

smaller renewable power supply, the maximum green power

obtainable is 423.5W. We assume that each server in the cluster

is equipped with a battery unit and the battery energy capacity

is shown in Table I. We use cpufreq to scale frequency and

taskset to redirect workload threads to right cores.

Workloads and Strategies: We consider the following

representative data center workloads (Table II) that exhib-

it different performance characteristics with different peak

power demands on renewable energy and batteries. These

interactive applications are SPECjbb [5], an in-memory key-

value store Memcached benchmark, and Web-search from

Cloudsuite [19]. We measure the maximal sprinting power

demand of each application, yielding 155W for SPECjbb,

156W for Web-Search and 146W for Memcached. We also

evaluate five strategies for comparison. They are Normal,
Greedy, Parallel, Pacing, and Hybrid.

0

200

400

600

0 5 10 15 20

Renewable Power Power Demand

Po
w

er
(W

)

Hours

Medium

Minimum Minimum Maximum

Medium

Fig. 5: The SPECjbb power profile as a function of the

renewable energy availability over time.

A. Performance of GreenSprint

We now compare the performance and power impact

of GreenSprint against the baseline (i.e., without renewable

energy). We first show representative results for SPECjbb. We

generate the workload in the cluster until all 10 servers are

fully utilized to produce a workload burst. As a result, the

aggregate power draw of these servers can exceed the grid

power budget. We statically set the sprinting to the highest

695

0

1

2

3

4

5

6

Min Med Max

Greedy Parallel Pacing ������

Pe
rf

or
m

an
ce

(a) 10 Mins

0

1

2

3

4

5

6

Min Med Max

Greedy Parallel Pacing ������

Pe
rf

or
m

an
ce

(b) 15 Mins

0

1

2

3

4

5

6

Min Med Max

Greedy Parallel Pacing ������

Pe
rf

or
m

an
ce

(c) 30 Mins

0

1

2

3

4

5

6

Min Med Max

Greedy Parallel Pacing ������

Pe
rf

or
m

an
ce

Pe
rf

or
m

an
ce

(d) 60 Mins

Fig. 6: Performance of GreenSprint with varying renewable energy availability and burst durations for SPECjbb using RE-Batt,

normalized to Normal.

0

1

2

3

4

5

6

Min Med Max

RE-Batt RE-SBatt SRE-SBatt REOnly

Pe
rf

or
m

an
ce

(a) 10 Mins

0

1

2

3

4

5

6

Min Med Max

RE-Batt RE-SBatt SRE-SBatt REOnly

Pe
rf

or
m

an
ce

(b) 15 Mins

0

1

2

3

4

5

6

Min Med Max

RE-Batt RE-SBatt SRE-SBatt REOnly

Pe
rf

or
m

an
ce

(c) 30 Mins

0

1

2

3

4

5

6

Min Med Max

RE-Batt RE-SBatt SRE-SBatt REOnly

Pe
rf

or
m

an
ce

(d) 60 Mins

Fig. 7: Performance of GreenSprint for SPECjbb using different power configurations, normalized to Normal.

intensity. For instance, when the workload saturates all 10

servers with 12 active cores, the aggregate power consumption

hits 1550W. If the grid power infrastructure can support 10

servers to operate at Normal mode, then the power budget of

the grid can be 1000W. From the renewable energy side, if

renewable energy can supply 3 servers in the cluster (i.e., RE-

Batt configuration), then the grid can conservatively support

the other 7 servers sprinting at sub-optimal performance (e.g.,

12 core-sprinting with 1.5GHz or 7 core-sprinting with 2GHz).

As specified above, we inject the workloads to deliberately

induce power burst durations of 10, 15, 30 and 60 minutes.

We use the average throughput (jops) of whole cluster as our

performance metric for SPECjbb. To find out the impact of

renewable power supply, we mainly focus on the analysis of

green-provisioned servers.

Figure 5 shows the evolution of the aggregated peak

power of the 3 green-provisioned servers running SPECjbb at

given different levels of renewable energy availability. We see

high variation of the renewable power production over time.

We have evaluated such performance consequences for all the

cases of medium availability over different power shortage

durations. Moreover, we consider the minimum availability

case for comparison where the sprinting goal can only be

achieved by the batteries.

Impact of renewable energy availability and burst du-
ration: Figure 6 presents the average performance of SPECjbb

under different renewable energy availability and power burst

durations using the RE-Batt configuration. As shown in this

figure, for the maximum availability of renewable energy, three

servers in the cluster can be directly powered by renewable

energy with full-sprinting and the performance is always the

best with 4.8x gains over Normal. Further, the surplus green

power can be used to charge the battery for later use.

In the case of minimum and medium availability levels

of renewable energy, the performance varies with different

lengths of burst duration. For short bursts (10-minute dura-

tion), even when the renewable energy is unavailable, battery

alone is able to completely handle the sprinting operation with

maximal performance. For the durations of 15, 30, and 60 min-

utes, the performance varies significantly for different strate-

gies. The performance improvement decreases relatively for

longer burst durations, especially for the minimum availability

(60-minute), in which the performance improvement drops to

1.8x for Parallel. Comparing with the 4.8x improvement with

sufficient renewable power supply, battery-based sprinting is

unsatisfactory. However, for medium availability, battery can

supplement the green power to sustain the sprinting perfor-

mance. For 60-minute durations, Sprinting can still provide

up to 3.4x performance gains over Normal.

Impact of power management knobs: We adopt two

techniques in power management knobs, scaling core counts

(Parallel) and scaling frequency (Pacing). In these figures,

Pacing slight outperforms Parallel in all cases. We attribute

these results to higher energy efficiency of frequency scaling.

Also, it demonstrates that decreasing the number of cores can

still influence the performance after mitigating the oversub-

scription on cores. For the Greedy strategy with battery-based

power supply, the system achieve the same results as Hybrid
that always performs the best. This indicates that sprinting

as much as possible for SPECjbb using battery receives much

better energy efficiency. However, due to the higher start point

of power needed to wake up servers, Greedy underperforms

Pacing because it loses the opportunity to utilize the lower

green power supply periods. Hybrid always performs the best

because it always learns the optimal combinations of scaling

core count and frequency for better performance.

696

0

1

2

3

4

5

Min Med Max

Greedy Parallel Pacing ������
Pe

rf
or

m
an

ce

(a) 10 Mins

0

1

2

3

4

5

Min Med Max

Greedy Parallel Pacing ������

Pe
rf

or
m

an
ce

(b) 15 Mins

0

1

2

3

4

5

Min Med Max

Greedy Parallel Pacing ������

Pe
rf

or
m

an
ce

(c) 30 Mins

0

1

2

3

4

5

Min Med Max

Greedy Parallel Pacing ������

Pe
rf

or
m

an
ce

(d) 60 Mins

Fig. 8: Performance of GreenSprint for Web-Search with RE-SBatt, normalized to Normal.

0

1

2

3

4

5

Min Med Max

Greedy Parallel Pacing ������

Pe
rf

or
m

an
ce

(a) 10 Mins

0

1

2

3

4

5

Min Med Max

Greedy Parallel Pacing ������
Pe

rf
or

m
an

ce

(b) 15 Mins

0

1

2

3

4

5

Min Med Max

Greedy Parallel Pacing ������

Pe
rf

or
m

an
ce

(c) 30 Mins

0

1

2

3

4

5

Min Med Max

Greedy Parallel Pacing ������

Pe
rf

or
m

an
ce

(d) 60 Mins

Fig. 9: Performance of GreenSprint for Memcached with RE-SBatt, normalized to Normal.

B. Impact of green configurations
We also evaluate the other three green configurations

(RE-SBatt, SRE-SBatt, and REOnly) using SPECjbb. We

only show the result of the Hybrid strategy to examine the

differences among these configurations in Figure 7.
Impact of renewable energy: Configurations with RE-

SBatt and SRE-SBatt show the difference of renewable power

supply. When we use smaller green power, the performance

degrades accordingly. However, powering two or three servers

with green energy has a great effect on the cap-ex cost. Max-

imal performance can always be achieved during maximum

green power supply. In the REOnly configuration, the per-

formance results with minimum renewable energy availability

are the same as the Normal mode because there is no power

supply for sprinting, when all servers return to the Normal
mode powered by the grid utility. With only renewable energy

supply, GreenSprint significantly improves performance, from

2.2x (medium availability) to 4.8x (maximum availability) for

the 60-minute long power burst.
Impact of battery: Given the minimum renewable en-

ergy availability, in configurations with the battery (RE-SBatt

and RE-Batt) and with the minimum renewable energy avail-

ability, performance impact for the REOnly configuration can

be reduced since the battery can supply additional power.

Therefore, battery is preferred as a complement to deal with

bursty power demand when there is no green power supply.

We notice that configurations with small battery capacity

(RE-SBatt and SRE-SBatt) show less improvement than the

REOnly configuration when sprinting lasts for 60 minutes

or longer, because the battery is not able to sustain such

long operations for the entire sprinting duration. For different

capacity of battery, RE-Batt (10Ah) performs better than RE-

SBatt (3.2Ah) for the minimum and medium green power

availability and can sustain more than 10 minutes at the

maximal power burst. This implies that we can significantly

improve the performance, irrespective of renewable energy

availability, by purchasing a larger capacity of battery.

C. Impact of application characteristics

We also evaluate another two applications, Web-Search

and Memcached under the RE-SBatt configuration.

Web-Search: Web-Search is the query serving portion

of a production web search service and has high memory

footprint. It is fairly compute intensive due to scoring and

sorting search hits. In Figure 8, Pacing shows no more benefits

than Parallel, relative to SPECjbb, and similar performance

under varied conditions. Especially, when the green energy

availability is minimum, lowering core count from 12 to 6

is slightly better in performance than decreasing frequency.

Therefore, scaling core count can be a better choice in a

battery-based power system for Web-Search because lowering

chip frequency has a great impact on throughput. For longer

durations, battery-based sprinting can barely achieve perfor-

mance improvement over the Normal mode.

When the renewable energy supply is sufficient, Green-

Sprint can achieve 4.1x performance gain over the baseline.

In face of reduction in green power, batteries can help sustain

sprinting. In the medium case, although scaling frequency can

significantly affect the performance of Web-Search, it achieves

higher energy efficiency than scaling core counts, resulting in

better performance. Different from constrained energy capacity

of a battery system, the green power is time-varying, resulting

in dynamically adjusted server power demand.

Memcached: Memcached is used as a caching service

in the back-ends and loads the memory with the necessary

data from disk before handling client requests. In Figure 9,

the maximal performance improvement for Memcached is

4.7x, similar to Web-Search. For the medium and maximum
green supply, the results show a similar trend to SPECjbb.

Pacing performs better under different cases because of the

697

1

2

3

4

10 15 30 60

Int=12 Int=10 Int=9 Int=7

Burst Duration (Mins)

 P
er

fo
rm

an
ce

(a) Impact on burst durations

2.4

2.5

2.6

2.7

2.8

Greedy Parallel Pacing Hybrid

Int=9 & Min

 P
er

fo
rm

an
ce

(b) Impact on strategies

Fig. 10: Performance impact of workload burst intensity,

normalized to Normal.

characteristics of Memcached, i.e., less computation intensive

and need more on parallelism. Greedy is no more beneficial for

both Web-Search and Memcached under battery-based supply

because the optimal energy efficiency points are not always

achieved with the maximal sprinting intensity.

D. Impact of workload burst intensity

To evaluate the performance of GreenSprint for different

burst intensities, we generate the workload of SPECjbb by

several other burst patterns to draw power bursts. In Figure 10,

for example, ’Int=9’ indicates the case that the peak burst load

is the maximal processing capability of running workloads on

9 cores at 2.0 GHz. Figure 10(a) shows the case of RE-SBatt
configuration and medium availability with Hybrid. According

to the results, the performance is much lower (from 3.6x to

2.6x) when the burst intensity decreases (from Int=12 to Int=7)

for different burst durations. Obviously, sprinting may lose

the advantage on performance when burst intensity is low.

In the case ’Int=7’, GreenSprint can only provide 2.6x-1.7x

improvement with the duration from 10 minutes to 60 minutes

compared with Normal. Figure 10(b) presents the performance

of four strategies with ’Int=9’ and minimum availability. The

duration is 10 minutes. In this case, Greedy performs the worst

because, when the burst intensity becomes lower, maximal

sprinting on 12 cores is less efficient than other strategies.

Lower sprinting intensity, though higher response time under

QoS constraint, can extend the discharging time of battery to

achieve better overall throughput.

E. Summary of Observations

In summary, we find that: (1) Sprinting can significantly

improve performance by activating more cores. (2) Despite

of the intermittent nature, renewable energy can effectively

support computational sprinting in power constrained data

centers. (3) Batteries alone can achieve performance improve-

ment for short sprinting durations. However, batteries are

not appropriate for longer durations. (4) Renewable energy

can supplement battery to reduce performance impact. (5)

Compared with scaling core count for interactive applications,

scaling frequency is more energy efficient in utilizing the

battery energy. In other words, those interactive applications

have high expectations of parallelism, so scaling core count is

not the best choice to get better energy efficiency. (6) Sprinting

in turn can increase the renewable power utilization due to

higher power demand and energy efficiency.

F. TCO Consideration

-400

-200

0

200

400

600

12 24 36

B
en

ef
it

on
 R

ev
en

ue

 ($
/K

W
/Y

E
A

R
)

Yearly Sprinting Durations(Hours)

Profitable with
Sprinting

Fig. 11: POI with additional renewable energy, battery and

cooling investment

Although we have considered sprinting activities with

the support of renewable energy and battery that already

exist in green data centers, we will illustrate whether the

cost of additional green provision can be justified. Thus, we

consider the revenue increase due to sprinting for two reasons.

First, sprinting raises the power demand with renewable or

battery energy. Second, performance improvement by sprinting

can provide additional revenue for a cloud provider such

as Google, where a large majority of its revenue comes

from its data center operations. Conservatively, we assume its

revenue is $0.28/KW/min due to operations [14]. However,

due to the implementation of renewable energy (PV panels

in our design), we estimate the green-power capacity to be

$4.74/W [33]. In addition, we ensure that PV panels are

amortized over 25 years (lifetime). We assume the cost of

batteries to be $50/KW/year [14]. In addition, we include the

cost of adding the wax (PCM) into the server cost, although the

additional cost is almost negligible representing less than 0.1%

of the server cost [21]. Subtracting the capital expenditure of

green power and battery, we can then capture the revenue by

sprinting as a function of total sprinting durations in a year.

As shown in Figure 11, all values to the right of the cross-

over point (around 14 hours per year in this case) indicate

profitable operations despite of the additional capital cost. This

suggests that investing in additional green provision may be

worthwhile when conducting as much computational sprinting

in data centers as possible.

V. RELATED WORK

Computational Sprinting: Prior work proposed a three-

phase methodology that enables safe computational sprint-

ing at data center level which combines data center circuit

breakers, energy storage devices and thermal energy storage

technologies to control sprinting activities [30]. However,

it is no doubt that simply relying on batteries to supply

additional power demand cannot fully exploit the potential of

sprinting due to strict lifetime constraints. More importantly,

the associated carbon footprint expansion still poses significant

challenges for large data centers sprinting.

698

Data center Power provisioning: With the rapid adop-

tion of cloud computing and tremendous data sets flush-

ing into today’s data center, the computing resources are

increasing continually to their existing sites to support ser-

vices(i.e.,scaling out), which leads data centers to be power-

constrained [10]. That is, today’s data centers are already

approaching the peak capacity of their power infrastructures.

Li et al. proposed a real solar-power server-level prototype

called Oasis [10] to scale out data center power capacity eco-

nomically and sustainably. Our work differs from Oasis in the

following three aspects: (1) GreenSprint exploits the sprinting

technique to increase the processing capacity in a short period

and leverages green power to deal with the power emergency

due to the sprinting. Oasis focuses on incremental solar

power integration in case of the performance degradation. We

emphasizes the role of performance sprinting. (2) GreenSprint

pays more attention to the power and performance impact

of both core count and frequency scaling techniques. Oasis

dynamically adjusts its load processing speed in response to

the energy supply only with DVFS. (3) Green energy and

battery in GreenSprint are called upon only for occasional

power bursts. In contrast, Oasis has more frequent green and

battery energy demands because of its scale-out designs.

The high cost of power provisioning and consumption

in data centers draws attentions to underprovision the power

infrastructure [17], [24], [31], [27], [14], [29], [32]. Different

from power capping work, first, data center sprinting with

renewable energy can provide more power to servers instead

of throttling their power when they need it most. Second,

sprinting in green data center is designed for temporarily

boosting the computational capacity to achieve better perfor-

mance, while existing works on data center provisioning are

trying to save capital or operating expenses. Also, we must

consider the intermittent nature of green power and energy

storage device simultaneously. This characteristic of the green

mechanism calls for power management schemes to handle

the varied power supply and limited energy storage capacity.

Green energy as a power source, as opposed to single energy

storage supply, has the potential to provide a long-term power

supply for data center sprinting.

VI. CONCLUSION

In this paper, we propose GreenSprint, a renewable en-

ergy driven framework that enables data center sprinting to

handle occasional workload bursts. We present four strategies

to address the challenge imposed by the intermittent and time-

varying renewable power supply. We develop an experimental

prototype to evaluate our approach. Using representative data

center workloads, the results show that our solution can

improve the average computing performance significantly by

a factor of 4.8x for SPECjbb, 4.1x for Web-Search, and 4.7x

for Memcached with sufficient renewable power supply.

ACKNOWLEDGMENT

This work is supported in part by the Wuhan Na-

tional Laboratory for Optoelectronics Fund under Grant

No.0106187015 and No.0106187027, and the US NSF under

Grant No.CCF-1704504 and No.CCF-1629625. We would like

thank to Rajiv Nishtala for the help on some detailed problems

of Faban in last August. We also thank Yaqi Xing and Chuanyi

Qi from our lab for the advice on paper writing. We appreciate

the suggestions from reviewers to help improve the quality of

our paper.

REFERENCES

[1] Google Summit. http://www.google.com/corporate/datacenter/events/
dcsummit2009.html, 2009.

[2] Zh-101 portable electric power fault recorder and analyzer, 2009.
[3] Facebook. Hacking conventional computing infrastructure. http://

opencompute.org/, 2011.
[4] Grapesolar. www.grapesolar.com/, 2014.
[5] SPECJBB 2013:Java Business Benchmark. http://www.spec.org/

jbb2013/, 2014.
[6] Measurement and instrumentation data center. http://www.nrel.gov/

midc/, 2015.
[7] A. Raghavan et al. Computational sprinting. In HPCA, 2012.
[8] A. Raghavan et al. Computational sprinting on a hardware/software

testbed. In ASPLOS, 2013.
[9] A. Raghavan et al. Utilizing dark silicon to save energy with computa-

tional sprinting. Micro, 2013.
[10] C. Li et al. Enabling datacenter servers to scale out economically and

sustainably. In MICRO, 2013.
[11] C. Li et al. Enabling distributed generation powered sustainable high-

performance data center. In HPCA, 2013.
[12] C. Li et al. Power attack defense: Securing battery-backed data centers.

In ISCA, 2016.
[13] D. Wang et al. Energy storage in datacenters: what, where, and how

much? In SIGMETRICS, 2012.
[14] D. Wang et al. Underprovisioning Backup Power Infrastructure for

Datacenters. In ASPLOS, 2014.
[15] G. Wang et al. Increasing large-scale data center capacity by statistical

power control. In EuroSys, 2016.
[16] H. Esmaeilzadeh et al. Dark silicon and the end of multicore scaling.

In ISCA, 2011.
[17] L. Barroso et al. The case for energy-proportional computing. Computer,

2007.
[18] L. Liu et al. Heb: deploying and managing hybrid energy buffers for

improving datacenter efficiency and economy. In ISCA, 2015.
[19] M. Ferdman et al. Clearing the clouds: a study of emerging scale-out

workloads on modern hardware. In ASPLOS, 2012.
[20] M. Haque et al. Greenpar: Scheduling parallel high performance

applications in green datacenters. In ICS, 2015.
[21] M. Skach et al. Thermal time shifting: leveraging phase change materials

to reduce cooling costs in warehouse-scale computers. In ISCA, 2015.
[22] R. Nishtala et al. Hipster: Hybrid task manager for latency-critical cloud

workloads. In HPCA, 2017.
[23] S. Fan et al. The computational sprinting game. In ASPLOS, 2016.
[24] S. Govindan et al. Benefits and Limitations of Tapping into Stored

Energy for Datacenters. In ISCA, 2011.
[25] S. Govindan et al. Leveraging stored energy for handling power

emergencies in aggressively provisioned datacenters. In ASPLOS, 2012.
[26] T. Keller et al. Ship: A scalable hierarchical power control architecture

for large-scale data centers. TPDS, 2012.
[27] V. Kontorinis et al. Managing distributed ups energy for effective power

capping in data centers. In ISCA, 2012.
[28] V. Mnih et al. Human-level control through deep reinforcement learning.

Nature, 2015.
[29] W. Zheng et al. Exploiting Thermal Energy Storage to Reduce Data

Center Capital and Operating Expenses. In HPCA, 2014.
[30] W. Zheng et al. Data center sprinting: Enabling computational sprinting

at the data center level. In ICDCS, 2015.
[31] X. Fan et al. Power provisioning for a warehouse-sized computer. In

ISCA, 2007.
[32] X. Zhou et al. Underprovisioning the grid power infrastructure for green

datacenters. In ICS, 2015.
[33] D. Feldman. Photovoltaic (PV) Pricing Trends: Historical, Recent, and

Near-Term Projections. Joint Technical Report, 2012.

699

