
GC-aware Request Steering with Improved Performance and

Reliability for SSD-based RAIDs

Suzhen Wu‡, Weidong Zhu‡, Guixin Liu‡, Hong Jiang∗, Bo Mao†�
‡Computer Science Department of Xiamen University, China

∗Department of Computer Science & Engineering at University of Texas-Arlington, USA
†Software School of Xiamen University, China

�Corresponding author: maobo@xmu.edu.cn

Abstract—SSD-based RAIDs have been widely deployed in
high-end enterprise systems to provide high-performance and
highly reliable storage for data-intensive computing. However,
SSD-based RAIDs suffer from significant performance degra-
dation whenever user I/O requests conflict with the ongoing
Garbage Collection (GC) operations which introduces tail latency.
Moreover, the performance characteristics of SSDs make the
traditional HDD-based RAID reconstruction algorithms are not
compatible with or suitable for SSD-based RAIDs. In this paper,
we proposed GC-aware Request Steering (short for GC-Steering),
a scheme aware of the GC process within an SSD-based RAID, to
significantly boost the performance and reliability of SSD-based
RAIDs. GC-Steering effectively outsources the popular read
requests and all write requests addressed to the SSD currently
in the GC state to a staging space such as a dedicated spare SSD
or the reserved space of each SSD within the RAID. GC-Steering
also accelerates the performance of the failure-recovery process
by both request steering and parallel recovery. Our extensive
evaluations on a lightweight GC-Steering prototype driven by
HPC-like and real-world enterprise workloads show that the
GC-Steering scheme significantly reduces the average response
time by an average of 63.3% and 65.8%, compared with the
state-of-the-art LGC and GGC schemes. Moreover, GC-Steering
scheme also significantly reduces the average response times by an
average of 55.7% during RAID reconstruction than the normal
state.

Index Terms—SSD-based RAIDs, Garbage Collection, Request
Steering, Parallel Reconstruction

I. INTRODUCTION

Flash memory technology is disrupting the storage media

market, leading to a significant evolutionary investment and

innovation in the storage systems market [4]. Flash-based

Solid State Disks (SSDs) have emerged as alternatives to

Hard Disk Drives (HDDs), increasingly replacing or coexist-

ing with HDDs in desktops, enterprise storage systems and

large-scale data centers [13], [24]. In addition to read and

write operations that are common in both HDDs and SSDs,

flash-based SSDs require additional time-consuming erase and

garbage collection (GC) operations. The process time of an

erase operation is an order of magnitude more than that of a

read or write operation [1], [29]. Moreover, the performance

of the incoming user I/O requests during the GC period will be

significantly degraded by the GC process [18], [31], due to the

sever contention between the external user I/O requests and

the internal GC-induced requests. The internal GC-induced

performance degradation is the primary cause of slowdowns

for SSD-based storage systems which causes significant tail

latency [36], [38].

On the other hand, a single SSD cannot satisfy the per-

formance, capacity and reliability requirements of the high-

performance computing and enterprise environments. Thus

it is necessary to apply the RAID (Redundant Array of

Independent Disks) [26] algorithm to SSDs to build large-

scale SSD-based storage systems with high performance and

high reliability [2], [6]. Similar to HDD-based RAIDs, the

performance of SSD-based RAIDs is restricted by the slowest

device in the array. Therefore, the intermittent performance

degradation of the individual SSDs within an SSD-based

RAID caused by the GC process will cause SSD-based RAIDs

to exhibit serious performance variability [12], [36]. Kim

et al. [17] found that the uncoordinated GC processes on

individual SSDs significantly degraded the performance of

SSD-based RAIDs.

Moreover, recent studies on the data collected from a

majority of flash-based SSDs at Facebook data centers over

a period of nearly 4 years reveal that SSD failures are

relatively common events with 4.2%-34.1% of SSDs reporting

uncorrectable errors [23]. Similar studies on flash reliability

based on the data collected over a 6-year period on SSDs

used in production in Google data centers find that 1%-

2% of flash-based SSDs are replaced annually due to the

suspected hardware problems over the first 4 years in the

production [28]. These studies imply that it is important and

urgent to investigate and improve the failure-recovery process

for SSD-based RAIDs.

To this end, we propose GC-aware Request Steering (short

for GC-Steering), a scheme aware of the GC process within

an SSD-based RAID, to address both the performance and

reliability issues of SSD-based RAIDs alluded to above. The

main idea behind GC-Steering is to fully exploit the workload

characteristics and utilize the pre-reserved space (e.g., staging

space such as a dedicated SSD or the reserved space of each

SSD within RAID) in an SSD-based RAID to alleviate the

negative impact of the GC process on the system performance

and reliability. By proactively migrating “hot” read data to the

staging space, the subsequent read requests addressed to an

SSD currently in the GC state can be alternatively serviced

by the staging space without being interfered by the ongoing

GC process. The incoming write requests addressed to an SSD

296

2018 IEEE International Parallel and Distributed Processing Symposium

1530-2075/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPS.2018.00039

currently in the GC state are also temporally redirected to the

staging space. Consequently, the contention between the exter-

nal user I/O requests and the internal GC-induced requests is

significantly alleviated, if not completely eliminated. For the

RAID failure-recovery process, by temporarily redirecting all

write requests and popular read requests originally targeting

at the degraded SSD-based RAID to the staging space, the

recovery speed is also accelerated. Moreover, by exploiting the

parallel access characteristics of flash-based SSDs, the failure-

recovery process can be further improved.

The rest of this paper is organized as follows. Background

and motivation are presented in Section II. We describe the

design details of the GC-Steering scheme in Section III. The

performance evaluation is presented in Section IV. The related

work is presented in Section V. We conclude this paper and

point out the directions for future research in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we first describe how GC operations degrade

the performance of SSD-based RAIDs. Then we elaborate

on why the existing RAID failure-recovery algorithms are

not suitable for SSD-based RAIDs. We conclude the section

by presenting and analyzing the workload characteristics to

motivate our new GC-aware performance optimization and

failure-recovery scheme for SSD-based RAIDs.

A. The adverse impact of GC on SSD-based RAIDs

Due to the unique physical features of NAND flash, write

requests are serviced out-of-place rather than in-place. In flash

memory, data can only be written to erased pages (a.k.a.,
free pages), where the in-place (before-write) pages become

invalid (stale) after out-of-place write operations. At some

point, invalid pages in a block, called a victim block, must

be freed by copying (read followed by write) the data in

the valid pages in that block into a free block, before the

victim block is erased and made available for subsequent write

data. This process is known as the Garbage Collection (GC)

process that significantly affects the user I/O performance of

SSD-based storage systems [14], [18], [38]. Equally important,

since each memory cell in a block has a limited number

of erase cycles, GC also significantly affects the reliability

(endurance) of SSD-based storage systems. Therefore, how to

address the performance and reliability issues caused by GC

of SSDs has become a critically important challenge when

deploying flash-based SSDs into HPC and enterprise storage

systems.

This negative GC impact on an SSD-based RAID is ar-

guably much more significant than on an individual SSD [8].

For example, the frequency of GC operations in the former

consisting of multiple SSDs, say N , is at least N times

higher than that in the latter. Consequently, user I/O requests

are that much more likely to be blocked because one of

the SSDs within RAID is currently in the GC state, ad-

versely affecting the response performance accordingly. Kim et
al. [17] conducted detailed experiments and their evaluation

results reveal that the uncoordinated local GC (short for

����
����
����
����

�	
�

��
��

����

��

��

���
����

��������
��	���

��
��

Fig. 1. An example of the impact of GC operations on the performance of
an SSD-based RAID with 4 SSDs.

LGC) process on individual SSDs in an SSD-based RAID

degrades the performance of SSD-based RAIDs and causes

a serious performance variability. Figure 1 shows an example

that depicts how the default LGC scheduling scheme affects

the performance of SSD-based RAIDs. In an extreme case,

such as one illustrated in the figure, the uncoordinated but

interleaved occurrences of the GC processes of the individual

SSDs in an SSD-based RAID can render the SSD-based

RAID in the degraded performance state almost all the time.

The performance variability will no doubt lead to Service

Level Agreement (SLA) and Service Level Objective (SLO)

violations, thus affecting the system availability [9]. Moreover,

the GC-induced performance degradation causes significant

tail latency problem [7], [38]

Based on this observation, Kim et al. [17] proposed a

Globally coordinated GC (short for GGC) strategy to alleviate

the performance variability of an SSD-based RAID. GGC

forces all the SSDs in an SSD-based RAID to start the GC

operations at the same time. However, during the GC period,

the SSD-based RAID is unavailable for the user applications

from the point of view of Quality of Service (QoS) [9].

The reason is that all the SSDs in an SSD-based RAID are

busy with dealing with the GC operations and have no free

resources to service the external user I/O requests. Although

GGC can guarantee a much longer high-performance period, it

introduces many unavailable periods for the end users, which

can lead to SLA and SLO violations for many applications,

particularly those required to be available 24/7. To guarantee

the performance requirement of the end users, it is desirable

for SSD-based RAIDs to be available to service the user

I/O requests all the time. The key approach to reducing

the performance degradation and alleviating the performance

variability is to reduce the interference between the external

user I/O requests and the internal GC-induced requests.

B. Failure-recovery for SSD-based RAIDs

For HDDs, sequential read/write operations are much faster

than their random counterparts. During the RAID failure-

recovery (a.k.a., reconstruction) period, the mechanically op-

erated disk head moves between the reconstruction area and

the user I/O accessed area. Thus, existing failure-recovery

algorithms for HDD-based RAIDs try to make the recon-

struction I/O requests sequential on HDDs. However, unlike

297

HDDs, flash-based SSDs are made of semiconductor chips

and have no moving parts (i.e., mechanical positioning parts).

By exploiting the internal parallelism of flash-based SSDs,

random accesses can be performed much more efficiently

on SSDs than on HDDs [5], [15]. However, the read-write

performance asymmetry of flash-based SSDs, in which the

read performance is much higher (about 10X) than the write

performance, means that the hot-spare SSD for replacement

during RAID reconstruction will likely become a performance

bottleneck when the lost data is regenerated and written to it

from the relevant data read (in parallel) from all the surviving

SSDs.

On the other hand, a recent Samsung report reveals that

failures of flash-based SSDs typically occur in the SSD

controller rather than in the individual silicon chips on an

SSD [27], which renders the whole SSD unusable and triggers

the RAID reconstruction process immediately. Recent studies

on the data collected from a majority of flash-based SSDs

installed in both Facebook data centers and Google data

centers reveal that SSD failures are common events with 4.2%-

34.1% of SSDs reporting uncorrectable errors [23] and 1%-2%

of flash-based SSDs being replaced annually due to suspected

hardware problems [28]. These trends and findings make it

abundantly clear why it is important to speed up the RAID

failure-recovery process in SSD-based RAIDs to achieve high

performance and high reliability.

C. Trace characteristics and motivation

Understanding the workload characteristics is important for

the design of storage systems, particularly for flash-based

storage systems where the unique features of flash memory

and their interactions with workloads accentuate this impor-

tance [21]. For this purpose, we categorize and differentiate

SSD pages into the following three distinctive types based on

how data stored in a page is accessed by the workloads:

(1) Read intensive data (RI): If almost all the accesses

(>90%) to a data page are read requests, this page is

defined as read intensive;

(2) Write intensive data (WI): If almost all the accesses

(>90%) to a data page are write requests, this page is

defined as write intensive;

(3) Mixed data (MIX): If the accesses to a data page are

interleaved with reads and writes, this page is defined

as mixed.

Figure 2 shows the access patterns on these three types of

data pages in MSR traces as that shown in Table I. Figure 2(a)

illustrates the distribution of read requests among the read

intensive data pages and mixed data pages and Figure 2(b)

shows the distribution of write requests among write intensive

data and mixed data pages. An average of 89.8% read requests

access the read intensive data pages and an average of 95.5%

write requests access the write intensive data pages. Only

a small part of the requests access the mixed data pages.

These observations are also consistent with those reported in

the previous studies [19]. More importantly, these workload

 �

 !"

 !#

�

�	
�&

�
��
'

�
�

�

����(������(��(�)(���� ����(������(��(*)+(����

 !�

 !�

,
(
��(�
-.(
�
�,(/��0(�1�

�
��
��
�$
%�
��
��

(a) Read

 �

 !"

 !#

�

�	
��
��
�

�'

�
�

�

�
	��(������(��(�)(���� �
	��(������(��(*)+(����

 !�

 !�

,
(
��(�
-.(
�
�,(/��0(�1�

�
��
��
�$
%�
��
��

(b) Write

Fig. 2. Distribution of read/write requests on the three types of data pages.

characteristics imply that the hot read data blocks are not

frequently updated by write requests.

The above analysis and observations of flash-based SSDs

and SSD-based RAIDs in HPC and enterprise environments

clearly indicate the paramount importance of understanding

and significantly improving performance and reliability of

SSD-based RAIDs that are fundamentally different from that

of HDD-based RAIDs. This, combined with awareness of the

workload characteristics, motivates design of GC-Steering that

proactively migrates the hot data blocks within an SSD-based

RAID to a pre-reserved space (e.g., a staging space such as a

dedicated SSD or the reserved space within individual SSDs

of RAID) to significantly alleviate, if not entirely eliminate,

the contention between the external user I/O requests and

the internal GC-induced requests. This helps simultaneously

improve the user I/O performance and RAID failure-recovery

performance.

III. DESIGN OF GC-STEERING

In this section, we first present a system overview of GC-

Steering, followed by a description of the request processing

workflow and the RAID reconstruction workflow in GC-

Steering. The data consistency issues of GC-Steering are

discussed at the end of this section.

A. System overview

The main idea behind GC-Steering is to temporarily redirect

the popular read requests and all write requests originally

addressed to any SSD in the GC state to a staging space,

thus significantly reducing the contention between the external

user I/O requests and the internal GC-induced I/O requests.

298

*	��������� �
	���2�������
�����

��)������
����
�����/�
�

�������
���	��

��3��

����

������
������
)����	�	�

����	���������
*�����

��4��������	
����
 �����	
�

��
	�	��
��	��
)���
����

'����
5�������6���
�
	�����
7�����

��
������������	��

)���
����)8�

��� ��� ��� ���

����	��������
������������)�)������
�9�	���

Fig. 3. System overview of GC-Steering within the RAID controller software.

Furthermore, by redirecting many requests away from the

degraded SSD-based RAID to the staging space during RAID

reconstruction, both the user performance degradation and

reconstruction performance degradation caused by the failure-

recovery process can be alleviated.

Figure 3 shows a system overview of GC-Steering. In our

design, GC-Steering can be incorporated into any existing

SSD-based RAID schemes, such as hardware RAID and

software RAID. As an example, this figure illustrates how

GC-Steering is augmented to the RAID controller software

with five key functional components: Administration Interface,

Popular Data Identifier, Staging Space Manager, Request Redi-

rector and Reclaimer. Popular Data Identifier is responsible

for monitoring the popularity of read data blocks to help

Staging Space Manager migrate popular read data blocks to

the staging space. Staging Space Manager is responsible for

migrating popular data blocks from the operational SSD-based

RAID to the staging space and managing the data layout of

the redirected data in the staging space. Request Redirector is

responsible for redirecting all write requests and popular read

requests to the staging space during GC and reconstruction

periods, while Reclaimer is responsible for reclaiming the

write data back to the SSD-based RAID after the GC or

reconstruction process completes.

GC-Steering can redirect user I/O requests to different

persistent configurations of SSD-based storage devices, for

example, a dedicated SSD or the reserved space of each SSD

within an SSD-based RAID. In what follows, we will illustrate

the workflow based on these two design configurations. More-

over, GC-Steering is automatically activated when an SSD

starts to process the GC operation or when the reconstruction

thread is initiated, and is deactivated when all write data in the

staging space is reclaimed back to the SSD-based RAID. Thus,

GC-Steering does not significantly affect the normal operations

for SSD-based RAIDs.

����$�

�(������:��(������:�;����,:��(9�����
�(������:��(������:�;����,:��(9�����

&��&<�����

������5��� 6��
.�� 6��
.�� 6��
.��

;����,
;=�������5���

������5���

� ��

6��
.�� 6��
.�

6��
.�� 6��
.��

Fig. 4. Data structures of GC-Steering.

B. Data structures

GC-Steering relies on two important data structures to

record the redirected data blocks and identify popular read

data, namely, D Table and R LRU, as shown in Figure 4.

D Table, a log table to manage the redirected data in the

staging space, contains the logs of all redirected data blocks,

including four important variables. D Offset and R Offset in-

dicate the offsets of the redirected data block in the SSD-based

RAID and the staging space, respectively. Length indicates the

length of the redirected data block and Flag indicates whether

it is redirected read data block from the SSD-based RAID

(Flag is set to be false) or redirected write data block from

the user application(Flag is set to be true).

R LRU, an LRU-style list to identify the popular read data

blocks on each SSD, stores the information (i.e., D offset and

Length of read data) of the most recently read requests for

each SSD within the SSD-based RAID. Based on R LRU, the

popular read data can be identified and proactively migrated

to the staging space. In order to reduce the space overhead of

the staging space, not all popular read data blocks within the

SSD-based RAID are migrated. In our current design, only up

to 10% of popular data blocks are migrated. Moreover, when

the popular data blocks in the SSD-based RAID are read by

user applications, they are concurrently migrated to the staging

space and D Table is accordingly updated with Flag set to

false. Thus, the migration overhead of popular data blocks is

reduced without affecting the system performance of the SSD-

based RAID.

C. Request processing workflow

When an SSD within the SSD-based RAID is dealing with

the GC operation, the incoming user I/O requests addressed

to that SSD are checked to determine whether they should be

issued to that SSD or the staging space. Figure 5 shows the

request processing workflow in GC-Steering for an incoming

read request, assuming that SSD 4 is currently in the GC state.

For a read request, GC-Steering first checks whether there is an

entry associated with the requested data in D Table or not. If

such an entry is found in D Table, the read request is serviced

by the staging space. If not, the read request is processed by

the SSD-based RAID. On the other hand, for a read request

that is not addressed to the SSD in the GC state, it is directly

299

����� ����� ����� ����� ����	��������

�
�
�
�

�
��
�

�

	�
�

��
�����

5	���(�����>

?�@�&
���	���������

��

A��

��
��
�
. �
	��

?�@�����
���������

��
	�.

�(;� �;	��

�(�����

Fig. 5. The I/O processing workflow in GC-Steering.

serviced by the corresponding SSDs within the SSD-based

RAID. R LRU is updated accordingly to record the popular

read data.

For all write requests addressed to the SSD currently in the

GC state, GC-Steering uses the write redirection scheme to

temporarily store the write data in the staging space. As shown

in Figure 5, a write request addressed to the SSD currently in

the GC state is replaced by a write request to the staging space.

In order to maintain the reliability of the redirected write data,

GC-Steering concurrently updates the corresponding parity

to its correct position in the same stripe in the SSD-based

RAID. In this case, if the redirected write data in the staging

space is lost, it can be reconstructed from the surviving SSDs

within RAID. When a write request is redirected to the staging

space, a corresponding entry is created and added to D Table.

Consequently, the incoming read requests must be checked

first in D Table to keep the fetched data always up-to-date.

If the staging space is configured as a dedicated SSD, the

data layout is the same as that shown in Figure 5. If the staging

space is the reserved space in each SSD within the SSD-based

RAID, the data layout is quite different. First, the hot read data

is stored in an interleaved fashion and organized in a RAID0-

style for redundancy purpose. Since the loss of the hot read

data in the staging space does not cause data failure, RAID0,

which does not incur any write amplification, is suitable for

guaranteeing high performance and high reliability. Second,

the write data is also stored in an interleaved way but organized

in a RAID1-style for redundancy. RAID1 can provide high

reliability against an SSD failure. Upon the failure of an SSD

within RAID, the redirected write data in the reserved space of

that SSD can be correctly recovered from its mirroring SSD.

Although RAID1 has lower storage efficiency than RAID5, the

staging space is only used temporally to store the redirected

write data during GC or RAID reconstruction period, thus

incurring low storage overhead.

When an SSD in the GC state completes its GC operations,

the redirected write data in the staging space will be reclaimed

back to its correct location in RAID. Since the corresponding

parity has already been updated in its correct position when the

write data is redirected to the staging space, GC-Steering does

not need to consider the corresponding parity when reclaiming

the redirected write data. To ensure data consistency, the

corresponding log entry of the reclaimed data is deleted from

D Table after the reclaim process completes. Moreover, to

improve the efficiency of the reclaim process, the sequential

data blocks in the staging space are first merged into a large

data block before the reclaim process.

D. Reconstruction workflow

Upon the failure of an SSD within RAID, the RAID re-

construction process is immediately initiated. The replacement

SSD can be a newly added SSD (indicated by 1©) or the

staging space (indicated by 2©), as shown in Figure 6. If

the replacement SSD is a newly added SSD, GC-Steering

focuses on redirecting user I/O requests to the staging space

during RAID reconstruction to improve both the reconstruction

efficiency and user I/O performance. During RAID recon-

struction, all write requests addressed to the degraded RAID

are redirected to the staging space after determining whether

they should overwrite their previous locations or write to new

locations according to D Table. On the other hand, for each

read request, D Table is first checked to determine whether

the read data is in the staging space. If the read request hit

D Table, it is directly serviced by the staging space instead

of the degraded RAID that is busy dealing with the failure-

recovery process. Otherwise, it is serviced by the degraded

SSD-based RAID. After the reconstruction process completes,

the redirected write data is reclaimed back to the SSD-based

RAID. To ensure data consistency, the corresponding entry

of the reclaimed data in D Table is deleted after the reclaim

operation completes.

If the replacement SSD is the staging space, the previously

redirected write data in the staging space must be first re-

claimed back to the SSD-based RAID before initiating the

reconstruction process. After completing the reclaim process,

the data originally stored in the staging space is invalidated

and the RAID reconstruction process is initiated. In the GC-

Steering design, the staging space has two configurations,

i.e., a dedicated SSD or the reserved space of each SSD

within SSD-based RAID. If the staging space is a dedicated

SSD, the degraded RAID performs the traditional RAID

reconstruction workflow. If the staging space is the reserved

space of each SSD within SSD-based RAID, the parallel

reconstruction workflow is performed by the degraded RAID.

In this case, the reconstructed data of the failed SSD is written

in parallel to the staging space. Although the read area and the

write area within each SSD is interleaved, SSDs can process

them concurrently without any disk head seek overhead that

HDDs require. Therefore, the parallel access feature of SSDs

can be fully exploited to improve the RAID reconstruction

performance [5], [15]. Moreover, it must be noted that the

staging space is organized with the same redundancy as the

SSD-based RAID after the previously redirected data stored

in it is reclaimed back. If a second SSD fails, the data in the

staging space of the failed SSD is first reconstructed to the

300

����� ����� ����� ����� ����	��������
�
�
�
�

�
��
�

�

	�
�9�	���

��/����

+�� ��

5	��	���(�����>
A��

��

5�������6���
�
	�����
7�����

��

Fig. 6. The reconstruction workflow in GC-Steering.

newly added SSD, followed by reconstructing the remaining

lost data of the failed SSD.

E. Data consistency

Data consistency in the GC-Steering design includes the

following two aspects: (1) The redirected write data must be

reliably stored in the staging space until the data reclaim pro-

cess completes, and (2) The key data structure (i.e., D Table)

must be safely stored.

First, the redirected write data must be reliably stored in the

staging space. Since the staging space may also fail before

the redirected write data is reclaimed, the redirected write

data being stored in the staging space must be protected by

a redundancy scheme. In GC-Steering, when writing data to

the staging space, the corresponding parity in the same stripe

is concurrently updated to its correct location to prevent data

loss caused by a possible failure of the staging space. If the

staging space is a dedicated SSD, the failure of the dedicated

SSD does not cause data loss because the redirected write data

can be reconstructed by the data and parity on the surviving

SSDs. If the staging space is the reserved space of each SSD

within SSD-based RAID, the write data is protected by the

RAID1-style redundancy. Thus, the failure of a single SSD

does not cause data loss. Moreover, the redirected write data

is sequentially stored in the staging space with the append-only

mode. When the redirected write data in the staging space is

reclaimed, the contiguous blocks can be erased effectively to

free up space for subsequent write data.

Second, to prevent the loss of D Table in the event of a

power supply failure or a system crash, GC-Steering stores

the contents of D Table in a non-volatile RAM (NVRAM).

Since D Table is in general small, it will not incur notable

extra hardware cost to the RAID system. In order to reduce

the write penalty due to D Table updates, GC-Steering stores

the contents of D Table in battery-backed RAM, a de facto
standard form of NVRAM. In this case, a small battery can

delay shutdown until the content of D Table in the RAM

is safely saved to an area of SSDs. On the other hand, in

order to improve the write performance by using the write-

back strategy, NVRAM is commonly deployed in the RAID

controller. Consequently, it is easy and reasonable to use

NVRAM to store the contents of D Table.

IV. PERFORMANCE EVALUATIONS

In this section, we first describe the experimental setup

and methodology. Then we evaluate the effectiveness and

performance of our proposed GC-Steering scheme by compar-

ing it against the relevant state-of-the-art schemes LGC and

GGC through extensive trace-driven evaluations, with HPC-

like workloads and realistic enterprise workloads.

A. Experimental setup and methodology

We implement a lightweight prototype of GC-Steering on

top of the Linux software RAID (i.e., Linux MD). All experi-

ments are conducted on a Dell PowerEdge T320 node with an

Intel Xeon E5-2407 CPU and 16GB memory. In this system,

a SAMSUNG HE253GJ SATA HDD (250GB) is used to host

the operating system (Ubuntu 14.04 with Linux kernel version

3.13), the Linux software RAID module and other software.

An LSI Logic MegaRAID SAS 2208 controller is used to

connect 7 Intel DC S3510 120GB SSDs.

In the evaluation, we compare the performance of

GC-Steering with two state-of-the-art schemes, LGC and

GGC [17], in terms of average response time and tail latency.

The GC activities within SSDs can be detected by the RB-

Explorer [32]. Moreover, all the RAID schemes use the same

number of SSDs to provide a fair comparison. To ensure that

SSDs reach the steady state (i.e., with regular GCs) when

new write requests arrive during the experimental running

period, we fill the entire space on each SSD with valid data

prior to measuring the performance, a common practice called

simulation “warm-up” [17]. In the GGC scheme, when any one

SSD within a RAID initiates its GC process, all the other SSDs

of the RAID also initiate their GC processes. By default, the

staging space in the GC-Steering prototype is the pre-reserved

space of each SSD within the SSD-based RAID.

We use a mixture of HPC-like workloads and realistic

enterprise-scale workloads to study the performance of our

proposed GC-Steering scheme. For HPC-like workloads, we

choose the read/write and bursty workloads, i.e., the HPC W

and HPC R traces, whose main characteristics are described

in Table I. For realistic enterprise-scale workloads, the Fin1

trace is collected from the OLTP applications running at a

large financial institution [3]. The other traces are collected

from storage volumes in an enterprise data center by Microsoft

Research Cambridge (MSR traces for short) [3]. Since most

MSR traces are one-day workloads with bursty and idle

periods, we only choose one-hour traces with bursty periods to

replay. These traces represent different access patterns in terms

of read/write ratio, number of requests and average request

size, as summarized in Table I.

B. Performance in the normal state

(1) Results and analysis. We first conduct experiments

on a RAID5 system consisting of 5 SSDs with a stripe

unit size of 64KB, driven by the different workloads in the

normal operational state. Figure 7(a) and Figure 7(b) show

the comparisons of average response times and GC counts,

301

 !�

 !�

 !"

 !#

�

�!�

�!�

5��(� 5��(� 9	����	�� ,
(
��(�
-.(
�
�,(/��0(�0�
���

!
��
�
��
�B

�

�'
"

��
�

�&

�
#�
��

�
��

;�� ��� �������
	��

(a) The normalized average user response times

 !�

 !�

 !"

 !#

�

�!�

�!�

5��(� 5��(� 9	����	�� ,
(
��(�
-.(
�
�,(/��0(�0�
���

!
��
�
��
�B

�

��
�
��
�%
��

;�� ��� �������
	��

(b) The normalized GC counts

Fig. 7. Comparisons of normalized average response time and GC counts for LGC, GGC and GC-Steering.

TABLE I
THE TRACE CHARACTERISTICS.

Type Traces Trace Characteristics
Read Ratio Num. of Req. Avg. Req. Size

HPC HPC W 20.1% 500,000 510.5 KB
HPC R 79.9% 500,000 510.5 KB

MSR

Fin1 32.8% 5,334,987 11.9 KB
hm 0 35.5% 3,993,316 8.3 KB
mds 0 11.9% 1,211,034 7.2 KB
prxy 0 2.7% 12,518,968 2.5 KB
rsrch 0 9.3% 14,333,655 8.7 KB
wdev 0 20.1% 1,143,261 9.4 KB

both normalized to those of LGC, among the LGC, GGC and

GC-Steering schemes, respectively.

First, GC-Steering outperforms LGC and GGC in terms

of average response time by 63.3% and 65.8% on average,

respectively. The significant performance improvement comes

from the fact that an average of 85.5% user I/O requests

during the GC period are redirected to the staging space.

Therefore, the contention between user I/O requests and GC-

induced requests is significantly alleviated. From the point

of view of user applications, the long latency caused by

GC operations is significantly reduced [38], thus significantly

reducing the average response time. On the other hand, GC-

Steering performs better under write-intensive workloads (e.g.,
HPC W) than under read-intensive workloads (e.g., HPC R),

because GC operations in SSD-based RAID are much more

frequent under the former than that under the latter. Since GC-

Steering works to steer user I/O requests away from SSDs

in the GC state to reduce the GC impact, the more frequent

the GC operations are, the more positive performance impact

GC-Steering will have. Furthermore, GC-Steering does not

reduce nor increase the GC count, as shown in Figure 7(b),

because GC-Steering merely steers away user I/O requests

during GC period without changing when, how and whether

GC happens. This feature of GC-Steering makes it orthogonal

to and ready to be integrated with existing GC optimizing

schemes to further improve the overall system performance.

Second, GGC outperforms LGC for the realistic enterprise-

scale workloads, but the reverse is true for the HPC-like work-

loads. More specifically, LGC outperforms GGC in average re-

sponse time by 24.9% and 36.1% for the HPC W and HPC R

workloads, respectively. The reason is that the two HPC-like

workloads have larger average request size and higher I/O

intensity than the realistic enterprise-scale workloads, resulting

in much higher GC frequency in the experiments driven by

the former than in the latter. In GGC, once an SSD within a

RAID initiates its GC process, all the other SSDs of the RAID

must start their GC processes no matter how much free space

is available in them. Therefore, the total GC count of GGC

is much larger than that of LGC, as shown in Figure 7(b).

Moreover, under the two HPC-like workloads the tail latency

in the GGC scheme is much more serious than that in LGC

scheme. The results are different from those in the original

GGC study because we are using different platforms. We use

RAID-5 as the baseline and use a real RAID-5 system with

Intel SSDs in the experiments, instead of a RAID-0 with an

SSD-extended DiskSim simulator used in the GGC study [17].

On the other hand, GGC outperforms LGC in terms of average

response time in the experiments driven by the enterprise-scale

workloads, albeit by only 6.7% on average. The reason is that

even though GGC forces all SSDs to conduct GC operations

simultaneously to alleviate the contention between user I/O

requests and GC-induced I/O requests, the user access latency

in GGC during the coordinated GC period, in which GCs in all

SSDs are simultaneously activated, is much higher than that

in LGC, which offsets some, but not all performance gains of

GGC.

(2) Sensitivity study. The GC-Steering performance is

likely influenced by several important factors, including the

number of SSDs in a RAID, the stripe unit size and the design

choice.

Number of SSDs. To examine the sensitivity of GC-Steering

to the number of SSDs in a RAID, we conduct experiments

on RAID5 systems consisting of different numbers of SSDs

(5 and 7) with a stripe unit size of 64KB. Figure 8 shows

the experimental results for GC-Steering, indicating that the

average response time decreases with the number of SSDs in a

RAID. The reason is that more SSDs in a RAID system imply

higher parallelism for the I/O process, concurrently reducing

the number of I/O requests and the total write data addressed

to individual SSDs. Consequently, the GC count of each SSD

is reduced accordingly, resulting in reduced average response

time. More SSDs in a RAID imply not only a lower GC count,

but also reductions of the I/O latency and queueing in each

SSD, further reducing the average response time. On the other

302

 !�

 !�

 !"

 !#

�

5��(� 5��(� 9	����	��
��(�
-.(

!
��
�
��
�B

�

�&

�
#�
��

�
��
�

C����� D�����

Fig. 8. Impact of the number of SSDs on the response time in GC-Steering.

hand, the performance improvement of GC-Steering under the

HPC-like workloads is much more significant than that under

the realistic enterprise workloads, because the former are much

more intensive than the latter.

Stripe unit size. To examine the impact of the stripe

unit size of the RAID system in GC-Steering, we conduct

experiments on a RAID5 system consisting of 5 SSDs with

stripe unit sizes of 4KB, 64KB and 128KB, respectively.

Figure 9 shows that no clear and consistent patterns seem to

emerge about the relationship between the average response

time and the stripe unit size in GC-Steering. Previous studies

have revealed that optimal stripe unit size is highly depended

on workload characteristics, i.e., the access types (read or

write) and request sizes, which is consistent with the results

illustrated in Figure 9.

 !�
 !�
 !"
 !#
�

�!�
�!�
�!"

5��(� 5��(� 9	����	��
��(�
-.(

!
��
�
��
�B

�

�&

�
#�
��

�
��
�

�E= "�E= ��#E=

Fig. 9. Impact of the stripe unit size on the response time in GC-Steering.

Design choice of staging space. By default, we configure

the pre-reserved space (short for Reserved) of each SSD within

the SSD-based RAID as the staging space in GC-Steering.

In our design, the staging space in GC-Steering can also be

configured with a dedicated SSD (short for Dedicated). To

examine the impact of the different types of staging space on

the GC-Steering performance, we conduct experiments on a

RAID5 system consisting of 5 SSDs with a stripe unit size

of 64KB and configure the two mentioned types of staging

space. Figure 10 shows that the average response time with

the staging space configured by a dedicated SSD is longer than

that with the staging space configured with the pre-reserved

space of each SSD within RAID. The reasons are twofold.

First, flash-based SSDs, consisting of concurrently accessible

chips (e.g., parallel channels) and without any mechanically

moving parts like those in HDDs, offer much more parallelism

 !C

�

�!C

�

5��(� 5��(� 9	����	��
��(�
-.(

!
��
�
��
�B

�
�&

�
#�
��

�
��
�

����
0�� ���	�����

Fig. 10. Impact of the staging space on the response time in GC-Steering.

than that with a dedicated SSD to service both the normal user

I/O requests and the redirected user I/O requests, thus reducing

the average response time. Second, a staging space configured

with the pre-reserved space of each SSD has much more SSDs

to service the normal user I/O requests during non-GC periods

than that configured with a dedicated SSD. The dedicated SSD

is idle when there are no GC operations in all SSDs within a

RAID, but the pre-reserved space of each SSD is not.

C. Reconstruction performance

The other design goal of GC-Steering is to improve the

RAID reconstruction efficiency. We conduct experiments on

a RAID5 system consisting of 6 SSDs with a stripe unit size

of 64KB driven by the different workloads. For LGC, GGC

and GC-Steering (Dedicated), 5 SSDs service the user I/O

requests and the remaining SSD acts as the replacement SSD

for all three schemes and jointly used as the staging space

for GC-Steering. Figure 11 compares the three schemes in

terms of average response time during RAID reconstruction,

normalized to the response time when no reconstruction is

underway. The RAID reconstruction bandwidth is set to range

between 1MB/s and 10MB/s. In the experiments, we find that

the Linux MD software favors the reconstruction process but

not user I/O requests, thus the reconstruction speed is always

at the maximum of 10MB/s. Consequently, the reconstruction

times for the three schemes are almost the same. However,

Figure 11 shows that for the LGC and GGC schemes, the

average response time during RAID reconstruction is increased

by an average of 45.6% and 47.3% more than that in the

normal state, respectively.

�

�!C

�

�!C

�
�&

�
#�
��

�
��
�

��

�� ;�� ��� �������
	���$����
0��% �������
	���$���	�����%

 !C

�

5��(� 5��(� 9	����	��
��(�
-.(

!
��
�
��
�B

Fig. 11. Average response time during RAID reconstruction, normalized to
the average response time when there is no reconstruction.

303

On the other hand, for GC-Steering with pre-reserved space

of each SSD within a RAID (Reserved) and a dedicated

SSD (Dedicated), the average response times are 55.7% and

10.1% less than that in the normal state, respectively. The

large discrepancy in improvement between the two GC-

Steering configurations comes from two factors. First, there

are more SSDs to service user I/O requests during RAID

reconstruction for Reserved GC-Steering than for Dedicated

GC-Steering, thus reducing the number of user I/O requests

addressed to each SSD within a RAID accordingly. Second,

the reconstruction-induced write operations can be performed

in parallel on surviving SSDs, thus alleviating the write

bottleneck on the replacement SSD. Consequently, Reserved

GC-Steering reduces the average response time significantly

more than Dedicated GC-String during RAID reconstruction.

V. RELATED WORK

Most of the existing studies on SSD-based RAIDs focus

on the following two issues: (1) parity update problem and

(2) GC-incurred performance degradation problem. Our work

belongs to the latter category and focuses on improving the

performance and reliability of SSD-based RAIDs.

Balakrishnan et al. [2] propose Diff-RAID to distribute the

parity unevenly across the disk array and proactively replace

the SSD degraded the fastest to improve the reliability of

SSD-based RAID5. However, Diff-RAID does not reduce the

number of parity updates on the SSDs and the performance

degrades further due to the skewed parity updates. Flash-

aware RAID [11] uses a delayed parity update strategy and

a partial parity technique to reduce the number of internal

write operations. The elastic striping and anywhere parity

scheme [16] reconstructs new stripes with updated data chunks

without updating the old parity chunks to reduce the parity

update operations. Based on the elastic striping scheme, Pan

et al. [25] propose a grouping-based elastic striping scheme

to separately write data chunks in different groups into SSDs

by exploiting the workload characteristics. Logging is an

effective technique to transform small random writes into large

writes and widely studied for SSD-based disk arrays, such as

HPDA [22], LDM [37], and EPLog [20]. However, all the

these studies do not consider the GC activities of SSDs in

SSD-based RAIDs.

GCaR [36] scheme changes the cache replacement policy

in FTL to be aware of the underline GC activities. Tiny-

Tail Flash [8] uses GC-tolerant read and GC-tolerant flush

in FTL to alleviate the GC-induced performance degradation.

However, the GC-tolerant read introduces many more read

requests which increase the read/write interactions and queue

length within an SSD [30], [33]. Kim et al. [17] find that the

uncoordinated GC operations on individual SSDs amplify the

performance degradation of SSD-based RAIDs and propose

a RAID-level Global Garbage Collection (GGC) mechanism

to reduce the performance variability for SSD-based RAIDs.

However, GGC forces all SSDs in an SSD-based RAID

to process the GC operations at the same time, rendering

the SSD-based RAID unavailable to service the applications

TABLE II
A COMPARISON OF THE RELATED STUDIES TO GC-STEERING.

Schemes Environment Rebuild Control GC?
GCaR [36]

FTL within an SSD
No

No
TTFlash [8] Rotated one by one
GGC [17] SSD-based RAID0 Concurrently

GC-Steering SSD-based RAID5/6 Yes No

during the coordinated GC period. Inspired by the study of I/O

Workload Outsourcing [34] that optimizes the reconstruction

performance for HDD-based RAIDs, GC-Steering effectively

exploits the workload characteristics and the reserved space of

each SSD within SSD-based RAIDs, to alleviate the negative

performance and reliability impact of GC operations on SSD-

based RAIDs. Importantly, GC-Steering dose not block the

applications at any time, which is much more acceptable to

end users than GGC. Moreover, our evaluation platform and

configurations, with real SSDs and RAID-5, are quite different

from those of the GGC paper (SSD-extended DiskSim and

RAID-0). Table II summarizes studies most closely related to

GC-Steering. Different from the existing studies, GC-Steering

does not control the GC workflow within SSDs and considers

the RAID reconstruction to improve both performance and

reliability of SSD-based RAID5/6.

On the other hand, to the best of our knowledge, GC-

Steering is the first study to consider the failure-recovery

for SSD-based RAIDs in the literatures. HDD-based RAID

reconstruction has been studied extensively in the litera-

ture [34], [35]. However, the previous studies on HDD-based

RAID reconstruction try to either make the reconstruction

I/O requests sequential on HDDs [10] or alleviate the in-

terference between user I/O requests and reconstruction I/O

requests [34]. The evaluations of GC-Steering demonstrate

that alleviating the interference between user I/O requests

and reconstruction I/O requests can also improve the RAID

reconstruction efficiency for SSD-based RAIDs. Moreover, our

study reveals that the parallel reconstruction by exploiting

the high-random-performance of SSDs is highly beneficial

for SSD-based RAIDs. GC-Steering is consistent with the

existing performance optimizations on SSD-based storage sys-

tems by randomizing the I/O requests [15]. Our current study

represents but a first phase of substantial work required to

investigate efficient reconstruction algorithms for SSD-based

RAIDs.

VI. CONCLUSION

With the rapid development and wide deployment of flash-

based SSDs, SSD-based RAIDs have become one of the

most effective ways to provide high-performance and highly-

reliable storage systems. Unlike HDDs with mechanical mov-

ing parts, the inherent GC operations in SSDs can seriously

affect the performance and reliability of SSD-based RAIDs.

Consequently, Straightforwardly applying the RAID algorithm

to SSDs, without fully considering the unique characteristics

of flash-based SSDs, can lead SSD-based RAIDs to fall

significantly short of the performance and reliability promised

304

by the SSD technology. The GC operations being performed

on individual SSDs can cause severe performance variability

and tail latency in SSD-based RAIDs. Moreover, the traditional

RAID reconstruction algorithms are not suitable for SSD-

based RAIDs. To address both the performance and reliability

problems, in this paper, we propose the GC-Steering scheme to

alleviate the GC impact on the performance and reliability of

SSD-based RAIDs by exploiting the flash device and workload

characteristics to alleviate the contention between user I/O

requests and GC-induced internal requests. The extensive eval-

uation on a lightweight prototype of GC-Steering shows that

GC-Steering outperforms the state-of-the-art schemes LGC

and GGC by 63.3% and 65.8% on average in terms of

average response time, respectively. Moreover, GC-Steering

also significantly reduces the user response time during RAID

reconstruction by an average of 55.7% when driven by HPC-

like workloads and realistic enterprise workloads.

GC-Steering is an ongoing research project and we are

currently exploring several directions for the future work. First,

we will investigate how to utilize GC-Steering to alleviate

the parity update problem of SSD-based RAIDs by using

more applications to evaluate the effectiveness of GC-Steering.

Second, we will investigate how GC-Steering affects the

performance and reliability simultaneously for other RAID

levels, such as RAID1 and RAID6.

ACKNOWLEDGEMENT

This work is supported by the National Natural Sci-

ence Foundation of China under Grant No. 61772439, No.

U1705261, No. 61472336, and No. 61402385, the US NSF

under Grant No. CCF-1704504 and CCF-1629625.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse, and
R. Panigrahy. Design Tradeoffs for SSD Performance. In USENIX’08,
Jun. 2008.

[2] M. Balakrishnan, A. Kadav, V. Prabhakaran, and Dahlia Malkhi. Dif-
ferential RAID: Rethinking RAID for SSD Reliability. In EuroSys’10,
Apr. 2010.

[3] Block Traces in SNIA. http://iotta.snia.org/tracetypes/3.
[4] H. Breih. How Flash Memory Will Affect Tomorrow’s Automobiles. In

Flash Memory Submit, Aug. 2017.
[5] F. Chen, D. Koufaty, and X. Zhang. Understanding Intrinsic Charac-

teristics and System Implications of Flash Memory based Solid State
Drives. In SIGMETRICS/Performance’09, Jun. 2009.

[6] J. Colgrove, J. Davis, J. Hayes, E. Miller, C. Sandvig, R. Sears, A. Tam-
ches, N. Vachharajani, and F. Wang. Purity: Building Fast, Highly-
Available Enterprise Flash Storage from Commodity Components. In
SIGMOD’15, Jun. 2015.

[7] J. Dean and L. Barroso. The Tail at Scale. Communications of the ACM,
56(2):74–80, 2013.

[8] M. Hao, G. Soundararajan, D. Kenchammana-Hosekote, A. Chien, and
H. Gunawi. The Tail at Store: A Revelation from Millions of Hours of
Disk and SSD Deployments. In FAST’16, Feb. 2016.

[9] J. Hennessy and D. Patterson. Towards Availability Benchmarks: A
Case Study of Software RAID Systems. Computer Architecture: A
Quantitative Approach, Fourth edition, 2006.

[10] M. Holland. On-Line Data Reconstruction in Redundant Disk Arrays.
Carnegie Mellon Ph.D. Dissertation CMU-CS-94-164, Apr. 1994.

[11] S. Im and D. Shin. Flash-Aware RAID Techniques for Dependable
and High-Performance Flash Memory SSD. IEEE Transcations on
Computers, 60(61):80–92, 2011.

[12] N. Jeremic, G. Mühl, A. Busse, and J. Richling. The pitfalls of deploying
solid-state drive RAIDs. In SYSTOR’11, May. 2011.

[13] M. Jung, W. Choi, J. Shalf, and M. Kandemir. Triple-A: A Non-
SSD Based Autonomic All-Flash Array for Scalable High Performance
Computing Storage Systems. In ASPLOS’14, Apr. 2014.

[14] M. Jung, R. Prabhakar, and M. Kandemir. Taking Garbage Collection
Overheads Off the Critical Path in SSDs. In Middleware’12, Dec. 2012.

[15] H. Kim, D. Shin, Y. Jeong, and K. Kim. SHRD: Improving Spatial
Locality in Flash Storage Accesses by Sequentializing in Host and
Randomizing in Device. In FAST’17, Feb. 2017.

[16] J. Kim, J. Lee, J. Choi, D. Lee, and S. Noh. Improving SSD Reliability
with RAID via Elastic Striping and Anywhere Parity. In DSN’13, Jun.
2013.

[17] Y. Kim, S. Oral, G. Shipman, J. Lee, D. Dillow, and F. Wang. Harmonia:
A Globally Coordinated Garbage Collector for Arrays of Solid-state
Drives. In MSST’11, May 2011.

[18] J. Lee, Y. Kim, G. Shipman, S. Oral, F. Wang, and J. Kim. A Semi-
Preemptive Garbage Collector for Solid State Drives. In ISPASS’11,
Apr. 2011.

[19] Q. Li, L. Shi, C. Xue, K. Wu, C. Ji, Q. Zhuge, and E. Sha. Access
Characteristic Guided Read and Write Cost Regulation for Performance
Improvement on Flash Memory. In FAST’16, Feb. 2016.

[20] Y. Li, H. Chan, P. Lee, and Y. Xu. Elastic Parity Logging for SSD
RAID Arrays. In DSN’16, Jun. 2016.

[21] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu. WARM: Improving
NAND Flash Memory Lifetime with Write-hotness Aware Retention
Management. In MSST’15, Santa Clara, CA, Jun. 2015.

[22] B. Mao, H. Jiang, S. Wu, L. Tian, D. Feng, J. Chen, and L. Zeng.
HPDA: A Hybrid Parity-based Disk Array for Enhanced Perfromance
and Reliability. ACM Transactions on Storage, 8(1):Artical 4, 2012.

[23] J. Meza, Q. Wu, S. Kumar, and O. Mutlu. A Large-Scale Study of Flash
Memory Failures in the Field. In SIGMETRICS’15, Jun. 2015.

[24] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron.
Migrating Server Storage to SSDs: Analysis of Tradeoffs. In EuroSys’09,
Mar. 2009.

[25] Y. Pan, Y. Li, Y. Xu, and Z. Li. Grouping-based Elastic Striping with
Hotness Awareness for Improving SSD RAID Performance. In DSN’15,
Jun. 2015.

[26] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of
Inexpensive Disks (RAID). In SIGMOD’88, Jun. 1988.

[27] Samsung defends flash drive reliability.
http://news.cnet.com/8301-13924 3-9876557-64.html.

[28] B. Schroeder, R. Lagisetty, and A. Merchant. Flash Reliability in
Production: The Expected and the Unexpected. In FAST’16, Feb. 2016.

[29] N. Shahidi, M. Arjomand, M. Jung, M. Kandemir, C. Das, and A. Siva-
subramaniam. Exploring the Potentials of Parallel Garbage Collection
in SSDs for Enterprise Storage Systems. In SC’16, Nov. 2016.

[30] D. Skourtis, D. Achlioptas, N. Watkins, C. Maltzahn, and S. Brandt.
Flash on Rails: Consistent Flash Performance through Redundancy. In
USENIX ATC’14, Jun. 2014.

[31] SNIA SSS PTS. http://www.snia.org/forums/sssi/ptstest.
[32] H. Sun, X. Qin, H. Jiang, J. Huang, and C. Xie. RB-Explorer: An

Accurate and Practical Approach to Write Amplification Measurement
for SSDs. IEEE Transactions on Computers, 64(4):1133–1148, 2015.

[33] S. Wells. Avoiding Costly Read Latency Variations in SSDs Through
I/O Determinism. In Flash Memory Submit, Aug. 2017.

[34] S. Wu, H. Jiang, D. Feng, L. Tian, and B. Mao. WorkOut: I/O Workload
Outsourcing for Boosting the RAID Reconstruction Performance. In
FAST’09, Feb. 2009.

[35] S. Wu, H. Jiang, and B. Mao. Proactive Data Migration for Improved
Storage Availability in Large-Scale Data Centers. IEEE Transactions on
Computers, 64(9):2637–2651, 2015.

[36] S. Wu, Y. Lin, B. Mao, and H. Jiang. GCaR: Garbage Collection aware
Cache Management with Improved Performance for Flash-based SSDs.
In ICS’16, Jun. 2016.

[37] S. Wu, B. Mao, X. Chen, and H. Jiang. LDM: Log Disk Mirroring
with Improved Performance and Reliability for SSD-based Disk Arrays.
ACM Transactions on Storage, 12(4):1–22, 2016.

[38] S. Yan, H. Li, M. Hao, H. Tong, S. Sundararaman, A. Chien, and
H. Gunawi. Tiny-Tail Flash: Near-Perfect Elimination of Garbage
Collection Tail Latencies in NAND SSDs. In FAST’17, Feb. 2017.

305

