
SifrDB: A Unified Solution for Write-Optimized Key-Value
Stores in Large Datacenter

Fei Mei
Huazhong University of Science and Technology

Wuhan, China
meifei@hust.edu.cn

Qiang Cao∗

Huazhong University of Science and Technology
Wuhan, China

caoqiang@hust.edu.cn

Hong Jiang
University of Texas at Arlington

Arlington, USA
hong.jiang@uta.edu

Jingjun Li
Huazhong University of Science and Technology

Wuhan, China
jingjunli@hust.edu.cn

ABSTRACT
Key-value (KV) stores based on multi-stage structures are
widely deployed in the cloud to ingest massive amounts of
easily searchable user data. However, current KV storage
systems inevitably sacrifice at least one of the performance
objectives, such as write, read, space efficiency etc., for the
optimization of others. To understand the root cause of and
ultimately remove such performance disparities among the
representative existing KV stores, we analyze their enabling
mechanisms and classify them into two models of data struc-
tures facilitating KV operations, namely, the multi-stage tree
(MS-tree) as represented by LevelDB, and the multi-stage
forest (MS-forest) as typified by the size-tiered compaction
in Cassandra. We then build a KV store on a novel split MS-
forest structure, called SifrDB, that achieves the lowest write
amplification across all workload patterns and minimizes
space reservation for the compaction. In addition, we design
a highly efficient parallel search algorithm that fully exploits
the access parallelism of modern flash-based storage devices
to substantially boost the read performance. Evaluation re-
sults show that under both micro and YCSB benchmarks,
SifrDB outperforms its closest competitors, i.e., the popu-
lar MS-forest implementations, making it a highly desirable
choice for the modern large-dataset-driven KV stores.

CCS CONCEPTS
• Information systems → Record and block layout; Query
reformulation; Physical data models; Point lookups;

∗Corresponding author: caoqiang@hust.edu.cn.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SoCC ’18, October 11–13, 2018, Carlsbad, PA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00
https://doi.org/10.1145/3267809.3267829

KEYWORDS
Key-Value, Multi-Stage, LSM-tree, Parallel Search

ACM Reference Format:
Fei Mei, Qiang Cao, Hong Jiang, and Jingjun Li. 2018. SifrDB: A
Unified Solution for Write-Optimized Key-Value Stores in Large
Datacenter. In SoCC ’18: ACM Symposium on Cloud Computing
(SoCC ’18), October 11–13, 2018, Carlsbad, PA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3267809.3267829

1 INTRODUCTION
Multi-stage structures maintain a set of B-trees in several
stages with increasing capacities, which are efficient for block
devices including both HDDs and SDDs [26, 30, 34] by aggre-
gating small random writes in large writes. Various key-value
(KV) stores are implemented based on multi-stage struc-
tures, such as LevelDB [12], RocksDB [4], Cassandra [29],
BigTable [19], HBase [25], LSM-trie[43], PebblesDB [38] etc.
However, our in-depth empirical study reveals that these
implementations trade off at least one performance objective
in favor of the optimization of others, resulting in large dis-
parities in performances of writes, reads, and space efficiency.

To understand the root cause of and ultimately remove
such performance disparities among the representative exist-
ing KV stores, we analyze their enabling mechanisms and
identify two main structure models, namely, the multi-stage
tree (MS-tree) structure that maintains one sorted tree in
each stage, as represented by LevelDB, and the multi-stage
forest (MS-forest) structure that allows multiple trees in each
stage, as typified by the size-tiered compaction in Cassan-
dra (or Size-Tiered for brevity). In general, Size-Tiered has
the advantage of high data ingest ratio but requires extra-
large preserved space for compaction, while LevelDB is more
efficient for reads and space requirement.

With the knowledge and insight acquired from the the-
oretical and experimental analysis based on our proposed
tree/forest classification in §2, we build a KV store, called
SifrDB, on top of a novel split MS-forest structure1 to ad-
dress the existing problems from the perspectives of three
important performance objectives, i.e., write, read, and space

1The name Sifr comes from letters in the words ‘Split’ and ‘forest‘.

https://doi.org/10.1145/3267809.3267829
https://doi.org/10.1145/3267809.3267829

SoCC ’18, October 11–13, 2018, Carlsbad, PA, USA Fei Mei et al.

Tree Model

0~9

0~9

0~9

0~9

Partitioned Forest

Forest Model

Multi-Stage Structure

0~9

S1

S2

S3
0~9

S1

S2

S3

LSM-trie, PebblesDB LevelDB, RocksDBSifrDB

0~4 5~9

LSM-tree

0~9 0~9

Split Forest Split Tree

S1

S2

S3

S1

S2

S3

S1

S2

S3

Stepped-Merge, Size-Tiered,

VT-tree

w1 w1

w1

w1
w1

w2 w2

0~9

0~9

0~9

0~9

w1

w1
w1

w2
Compaction

Compaction

0~2 3~4

Compaction Compaction Compaction

Figure 1: A taxonomy of the popular multi-stage implementations under the tree or forest model. While rewriting in the MS-forest implemen-
tations only takes place across stages, it happens both across stages and within each stage in the MS-tree implementations (w1 indicates data is
written across the stages, and w2 indicates data is written within a stage).

efficiency. Specifically, in its top layer of the multi-stage struc-
ture SifrDB performs compaction by a method similar to
that used in the stepped-merge [27] or the Size-Tiered [10]
implementations that are popular in modern large-scale KV
stores [19, 25, 29], to leverage the advantages of MS-forest
for random writes. For the layers below, SifrDB splits each
tree to fix-sized sub-trees that are stored independently, re-
ferred to as the split storing in this paper, so as to easily and
efficiently detect key-range overlapping to enable sequential
write optimization. Meanwhile, based on the split storing
of the trees, an early-cleaning technique is proposed to en-
sure that the space requirement for compaction is kept at
a minimal level, which solves a serious problem suffered by
the Size-Tiered [3]. Although the MS-tree implementations
have adopted the split storing approach, to the best of our
knowledge, SifrDB is the first that applies this approach to
the MS-forest model to harness the advantages of the MS-
forest while avoiding its disadvantages. Moreover, we design
a novel parallel-search algorithm for SifrDB to fully exploit
the access parallelism of SSDs.

Evaluation results show that SifrDB outperforms the MS-
forest implementations (i.e., Size-Tiered and PebblesDB) con-
sistently in both microbenchmarks and YCSB, while achiev-
ing 11× higher throughput than the MS-tree implementations
(i.e., LevelDB and RocksDB) in random writes. In a data store
with low memory provision, which has become a trend in the
cloud store [7, 24], SifrDB exhibits the best read performance
among all the implementations.

2 TREE/FOREST CLASSIFICATION
Before presenting the background and motivation of this
paper, it is necessary to introduce the tree/forest classification
that reveals the essential properties of the existing popular
KV store implementations. It is these properties that help
anchor our proposed research. We illustrate in Figure 1 a

taxonomy of popular multi-stage implementation models
under the tree/forest classification. The defining principles for
this classification are (1) whether overlapped trees are allowed
within each stage and (2) how compaction is performed.

For the tree model, in each stage only one sorted tree is
allowed and a compaction on a stage Si merge-sorts the tree
in Si with the tree in Si+1, and writes the resulted new tree
to Si+1. In other words, data in the tree model is re-written
not only across the stages (w1 in Figure 1), but also within
a stage (w2 in Figure 1). For example, in the tree model
demonstrated in Figure 1, when S1 is full, the compaction
process merge-sorts the tree in S1 and the tree in S2 to
produced a new tree that is written to S2, and the two trees
that participate the merge are deleted. After the compaction,
S1 is emptied and S2 becomes larger. On the other hand, for
the forest model, multiple trees are allowed in each stage (in
Figure 1 each stage allows two trees), and a compaction on a
stage Si merge-sorts the multiple trees in Si to a new tree
that is directly written to Si+1. Therefore, data in the forest
model is re-written only across the stages (w1 in Figure 1).

The fundamental virtue of the forest model is that it incurs
much lower write amplification than the tree model. However,
the latter is more efficient for reads, as will be detailed in
the next section (§3) together with the popular multi-stage
tree/forest variants (i.e., the split tree and the partitioned
forest). We then introduce SifrDB in §4, which is based a
new forest variant (i.e., the slit forest).

The tree/forest classification not only indicates a high-
level design preference, but also helps pinpoint in benchmark
results the individual impacts of the implementations. For
example, while the VT-tree [41] builds on top of a forest model
and uses a stitching technique to reduce write amplification,
we can figure out which part of the performance improvement
in the benchmark result is from the structure effect and which
part is from the stitching technique.

A Unified Solution for Write-Optimized Key-Value Stores SoCC ’18, October 11–13, 2018, Carlsbad, PA, USA

3 BACKGROUND AND MOTIVATION
In this section we analyze the key properties of the multi-
stage structures to understand their intrinsic advantages and
disadvantages that are revealed in the tree/forest classifica-
tion above, followed by a review and analysis of the pertinent
implementation features of the most representative multi-
stage based KV stores to motivate and help simplify the
SifrDB design.

3.1 Write Amplification
Reducing write amplification is the most important research
objective for the multi-stage structures. In a typical write
process, a user sends data (i.e., user data) to the KV store
application that then persists a version of that data (i.e.,
app data) to the underlying storage system. However, the
application may purposefully rearrange the data on the stor-
age periodically (e.g., compaction operation) and generates
another kind of app data, hence amplifying the write traffic
relative to the user data. The ratio of the size of the app data
to that of the user data is called write amplification, which
not only adversely affects the write performance, but also
impacts the lifetime of the flash-based storage devices.

The Tree Model. The MS-tree model, originally introduced
as the log-structured merge-tree [36], maintains multiple
stages of B-trees with increasing capacities. In MS-tree, when
a stage Si is full, a compaction process is triggered to merge
its tree to that on the next stage Si+1, which entails rewriting
the content of the tree from stage Si to stage Si+1 as well
as rewriting the content of stage Si+1’s existing tree. After
a number of compactions that move data from Si to Si+1,
Si+1 becomes full, which triggers a compaction process to
merge Si+1 to Si+2. This process repeats itself iteratively
from the top stage all the way to the bottom one. As a result,
while the user data is sent by the user only once, this data is
written multiple times in each stage by the MS-tree based
application, causing significant write amplification.

The Forest Model. The MS-forest model, which has its
roots in the stepped-merge approach [27] that serves as an
alternative structure to MS-tree, allows multiple trees to
coexist within each stage. A compaction on a full stage Si
merges the multiple trees in this stage to produce a new
tree that is directly written to the next stage Si+1 as an
additional tree, without interfering with the existing trees of
Si+1. That is, in MS-forest, the same data is written only
once in each stage, hence incurring lower amplification than
the MS-tree model.

Generally, for both the MS-tree and MS-forest models,
the first stage’s capacity c1 is predefined and other stages’
capacities increase geometrically by a constant growth factor
f. Assuming there are N stages and the last stage is full, if
we denote the size of dataset as D, since D= c1 · f

N−1
f−1 , we

get N≈ logf D
c1

+ logf (f−1), i.e., N=O(logfD). Because of
the geometric increase of the stage capacities, the number of
rewritten times of the data in the last stage can approximately
represent the overall write amplification. For MS-forest, the
data in the last stage has been written once in each stage,

f=2
f=4
f=8

f=16

f=32

f=2

f=4
f=8
f=16
f=32

0
10

20
30

40

0 200 400 600 800 1000
Insertions (Million)

W
rit

e
Am

pl
ifi

ca
tio

n

 LevelDB (rand)
Size-Tiered (seq&rand)

LevelDB-default

Cassandra(Size-Tiered)

(a) Write Amplification

0
5

0
90

0 200 400 600 800 1000

Insertions (Million)

S
p
a
c
e
 U

s
e
d
 (

G
B

)

LevelDB (f=2)

LevelDB (f=32)

Size-Tiered (f=2)

Size-Tiered (f=32)

‘Fail’ ‘Fail’

(b) Operational Space Requirement
Figure 2: Randomly writing to stores configured to different growth
factors. (The size of the KV pair is 116 bytes. In (b), for a 90GB
storage provision, Size-Tiered will fail at the arrows where the user
data is much less than 90GB.)

leading to a write amplification of N, or logf D. For MS-
tree, the data has been written f

2 times on average in each
stage2, incurring a write amplification of f

2 ·N, or f
2 · logf D.

The partial merge mechanism used in LevelDB (i.e., only
selecting a sub-tree instead of the whole tree to merge) based
on the split tree does not influence the write amplification
because the ratio of the re-written data to the merged data
(re-written ratio) does not change. For example, assuming
the existing data in Si+1 is k times larger than that in Si, a
full merge will cause a re-written ratio of k+1. If both Si and
Si+1 are split to sub-trees, for each sub-tree of Si there will
be k overlapped sub-trees in Si+1, and merging a sub-tree
causes a re-written ratio of k+1, the same as the full merge.

Our experiment result in Figure 2a, which demonstrates
the write amplifications of LevelDB (representing the MS-tree
model) and Size-Tiered (representing the MS-forest model)
as a function of number of insertions with configuration of
different growth factors, traces the above theoretical analysis
well: larger growth factor leads to higher write amplification
in LevelDB while that has the opposite effect on Size-Tiered.

3.2 Space Requirement for Compaction
Unlike the traditional B-trees that usually operate on a single
block (e.g., 4KB), the compaction processes in multi-stage
structures often operate on several large trees that are stored
as Sorted String Table (SST) files, a standard approach in
the modern multi-stage-based KV stores. SST is a B-tree-like
storing structure introduced by BigTable [19], which is a
2For a stage Si+1, it becomes full after receiving f components from
Si. Each of the components is written once when it is first merged to
Si+1, and the x th (16 x6 f) component is written f−x times in
the subsequent merge of the remaining components until Si+1 is full.

SoCC ’18, October 11–13, 2018, Carlsbad, PA, USA Fei Mei et al.

simple but efficient mechanism for block storage devices. An
SST file is immutable and usually consists of two parts: the
body composed of sorted KV strings and the tail containing
the index data. The index data is built on top of the sorted
key-value strings when an SST is produced.

A compaction operates on a set of SSTs by merge-sorting
their key-values to new SST file/files. The operated SSTs can
not be deleted before the compaction is finished [2, 12]. Be-
cause the operated SST files and the new SST files both hold
the storage space, more storage space than the actual user
data, up to twice as much, must be reserved in order to guar-
antee the successful processing of the compaction. Although
the space held by the operated SST files can be reclaimed
eventually, the reservation is a necessity to prevent the system
from failures caused by “insufficient space”, hence leading to
a low space efficiency. For example, with the size-tiered com-
paction in Cassandra, in the worst case exactly twice as much
free space as is used by the SSTs being compacted would
be needed, which results in only 50% space efficiency [3]. A
problem that can arise from this space inefficiency is that
a server could fail when the user writes only a dataset half
the size of the provisioned storage space, which is becoming
severe in Cassandra [3]. Figure 2b shows the storage space
requirement in the insertion process, which indicates that
Size-Tiered will fail when the user data set is only half of
the storage capacity. The partial merge based on the split
tree used in LevelDB enables low space requirement for a
compaction, which is detailed in §3.4.

3.3 Read Degradation
In multi-stage structures, a write request (i.e., insertion,
update, or deletion) is converted to a new insertion operation,
and the data from the topmost stage is moved to lower
stages gradually in batch to avoid random writes on the
underlying storage device. The trees in different stages have
their respective priorities, and all of them are candidates for
a query request. A point query processing is implemented by
searching all the candidate trees serially according to their
relative priorities until the query key is found or all the trees
have been searched without finding one. A high-priority tree
(i.e., containing the latest insertions) must be searched first
to guarantee the validity of the search result. In general,
the multi-stage structures trade off the read performance for
write performance.

The latency of searching the trees in different stages in-
creases slowly due to the logN complexity of the B-tree
structure [15]. For example, searching a 2MB tree needs 3
random IOs, while searching a tree that is a hundred times
larger only increases one more I/O. Hence, the number of
trees a read request needs to search is critical to the query
latency. In §3.1 we have known that with larger growth factor
less stages are maintained. Since in MS-tree each stage only
allows one tree, less stages means less candidates trees to
search for a query. However, for the MS-forest model, while
the number of stages decreases logarithmically, the number
of trees that are allowed in each stage increases linearly. As a

●
● ● ● ●

10

20

2 4 8 16 32

Q
u
e
ry

 L
a
te

n
c
y

(m
s
)

●●

Size−Tiered (MS−forest)
LevelDB (MS−tree)

f

Figure 3: Read latency in the datasets generated previously.
result, the total number of candidate trees in the MS-forest
usually shows a positive correlation with the growth factor.
In this respect, the MS-tree model is more advantageous for
read than the MS-forest model because the former needs to
search only one tree in each stage, while the latter maintains
and requires searching multiple trees in each stage, which
is validated in Figure 3 that plots the experimental read
latency of LevelDB and Size-Tiered in the datasets generated
previously with different growth factor configurations.

Range query is an important feature of KV stores. A range
query is processed by first serially seeking each candidate
tree to find the start key of the range, and then advancing
across the trees with an election mechanism that selects the
smallest key among all the trees in each step. Performance of
range query in MS-forest also degrades more seriously than
that of MS-tree because more candidate trees require more
time to seek and select. For the common range queries that
scan tens to hundreds of keys, the seek process dominates the
range query overheads because it usually involves I/Os that
load blocks of KVs to memory for the subsequent selection
process.

Bloom filters have been used in the multi-stage structure to
improve performance of point queries by consuming a chunk
of memory space, a strategy of trading space for time. Even
though the Bloom filter is designed for memory efficiency,
it consumes significant memory space in a large data store.
For example, in the workloads with 100-byte KV pairs, the
Bloom filter requires a memory space more than 1% of the
dataset in a general setting (i.e., 10 bits for each key). As a
result, a Bloom filter could easily take up all the memory in
a high dataset/memory ratio that is becoming popular on
SSD-based storage systems [7, 24] and cause frequent I/Os for
swapping. Considering that the KV pairs in real workloads
tend to be even smaller than 100 bytes [43] and Facebook has
begun to reduce memory provision for its cloud store [24] for
economic reasons, third-party indexes such as Bloom filter
can only be used to limited extent.

3.4 State of the Art
Split Tree. LevelDB [12] is an MS-tree based implementation
that employs a split approach to store the trees, where each
tree is stored as independent SST files with a global index
used to position a query key to a candidate SST. For the sake
of consistency, we call the split stored SST files as sub-trees
that, when combined with the aforementioned global index,
form a logical tree. A logical tree is still referred to as a tree
in the rest of the paper unless specially noted otherwise.

Although LevelDB induces much higher write amplification
than MS-forest-based implementations such as Size-Tiered,

A Unified Solution for Write-Optimized Key-Value Stores SoCC ’18, October 11–13, 2018, Carlsbad, PA, USA

it has two salient advantages over the latter by adopting the
partial merge.
(1) After selecting a victim sub-tree in a stage for compaction,
LevelDB first determines whether there are overlapped sub-
trees in the next stage. If not, the victim sub-tree is pushed to
the next stage without rewriting its data by only updating the
global index. As a result, LevelDB is optimized for sequential
workloads. This is useful for some special workloads, such as
the time-series data [40] collected by a sensor.
(2) Because a partial merge involves only a small part of
the trees in the next stage regardless of the tree’s size, the
aforementioned high space reservation problem is significantly
mitigated in LevelDB, and its sibling implementation of
RocksDB. For example, with sub-trees size of 2MB and a
growth factor of 10 (default in LevelDB), about 11 sub-trees
are involved in a compaction (one victim sub-tree and 10
estimated overlapped sub-trees). Therefore, an extra reserved
space of about 22MB is sufficient for a compaction on any
stage, a negligible size compared to the space required by
Size-Tiered for a KV store of hundreds of GBs, as can be
seen in Figure 2b.

Partitioned Forest. LSM-trie [43] is based on a variant of
the forest model and is the first of its kind that partitions the
trees in each stage to non-overlapped ranges, and compaction
on a stage only merges the data within a victim range. As a
result, space requirement in LSM-trie is not high as in the Size-
Tiered. However, since LSM-trie uses hash to partition the
keys, it loses the range query feature. Instead, PebblesDB [38]
proposes to use the real keys as the partition boundaries.
PebblesDB inherits the low write amplification property of the
forest model. However, since the compaction in PebblesDB
generates SST files with strict respect to the boundaries, an
SST file is created even only one key falls into a partition.
As a result, PebblesDB produces SST files with variable and
unpredictable sizes that can be quite small, hence introducing
I/O overheads on the block storage [33, 35].

Summary — In this section we have analyzed the two
models of MS-structures, the MS-tree and MS-forest models,
and introduced their popular implementations. This analysis
clearly suggests that there is not a one-size-fits-all solution. In
addition to the different levels of severity of read performance
degradation, the difference between representative MS-tree
implementation LevelDB and MS-forest implementation Size-
Tiered, discussed above, implies very divergent performance
between them in write performance and space efficiency. In
what follows we now present SifrDB, a KV store that is based
on the MS-forest structure (Figure 1) but attempts to remedy
all its deficiencies.

4 SIFRDB
The compaction strategy of SifrDB is based on the MS-forest
model which by design incurs much lower write amplifica-
tion under random writes than the MS-tree model. However,
the need for MS-forest-based stores to merge small tree files
to larger ones (to reduce the number of candidate trees for

1~3 4~6 7~9 10~11

1~11

5~7 12~13 14~15

5~17

1~17

1~3 4~5 6~7 10~118~9 12~13 14~15 16~17

Global Index

Non-overlapped

Overlapped

New Sub-tree

Compaction

16~17

Figure 4: Compaction is performed on logical trees, while the merge
is performed on the physical sub-trees.

reads) not only causes unnecessary rewriting of data of non-
overlapped key ranges, but also requires high operational
space reservation when compacting large files [3]. Our design
goals are to provide the sequential-workload advantage and
operational space efficiency the common MS-forest imple-
mentations lack, without sacrificing the random-workload
advantage of the MS-forest model. We achieve these goals
by leveraging the split storing mechanism while overcoming
the challenges imposed by the fact compactions are still per-
formed by full merge on the logical trees, as presented in §4.1
and §4.2. To optimize query performance, we introduce our
parallel-search algorithm in §4.3.

4.1 Compaction Strategy
With the proposed split MS-forest storing, each tree in SifrDB
is composed of a group of non-overlapped and fix-sized sub-
trees whose metadata are recorded in a separate global index,
which in essence constructs a logical tree. While a compaction
is performed on several logical trees, the actual merge is
performed at the granularity of sub-trees and only involves
sub-trees with overlapped key ranges to eliminate the unneces-
sary data re-writing under sequential (or sequential-intensive)
workloads.

More specifically, take Figure 4 as an example, where a
compaction is performed on the two logical trees with key
ranges of 1∼11 and 5∼17. In this example, only the three
shaded sub-trees with overlapped key ranges are merged
and re-written, while metadata of the non-overlapped sub-
trees (unshaded) and the newly generated sub-trees (solidly
shaded) are added to the global index of the new logical tree.
The compaction is finished by committing the information
about the deletion of the two compacted logical trees (with
key ranges of 1∼11 and 5∼17) and the generation of the new
logical tree (with key range of 1∼17).

Because SifrDB performs compaction based on the forest
model (as illustrated in Figure 1), it naively inherits the
forest’s advantage, i.e., low write amplification for random
writes. On the other hand, with the split storing mecha-
nism, SifrDB simultaneously obtains LevelDB’s advantage
for sequential writes, which is lost in other popular forest im-
plementations [29, 38, 43]. In addition, the design of SifrDB
is also able to achieve the effect of the stitching technique
introduced by VT-Tree [41] that builds a second index on
top of each tree of an MS-forest model3, seeing §6 for an

3VT-tree is implemented based on an MS-forest model with a growth
factor of 2.

SoCC ’18, October 11–13, 2018, Carlsbad, PA, USA Fei Mei et al.

Tree 1

Tree 2

Tree 3

Input Set

New Tree

Fnished

Active Output

Active Input

Output
Merge

Persisted

Figure 5: Merge Operation in SifrDB. Early-cleaning can be executed
after a new sub-tree is persisted.

Serial Search
Parallel Search

Query

SSD SSD

(a) SifrDB (b) Traditional

Queue

Query

Tree
1

Tree
2

Tree
3

Tree
4

Tree
5

Tree
1

Tree
2

Tree
3

Tree
4

Tree
5

Return
polling Return

Figure 6: (a) The trees are searched concurrently. (b) The trees are
searched serially in order of their priorities.

extensive discussion. Nevertheless, VT-Tree must deal with
the garbage on the tree files that are eventually collected by
rewriting the valid data (i.e., the data that is not rewritten in
the compaction) in new places. On the contrary, SifrDB does
not introduce garbage by splitting each tree to independently
stored sub-trees. Moreover, SifrDB enables early cleaning to
keep the reserved space at a minimum, as detailed next. In
other words, SifrDB avoids not only the additional space that
VT-tree must reserve for its compaction, but also a space
that is not reclaimed timely after the compaction.

4.2 Optimize Space Efficiency
In this sub-section, we present the early-cleaning technique in
SifrDB designed to reclaim the operational space held by the
merged trees as early as possible, even when the compaction
is still under way, so that the data store service would not
fail because of ‘space full’.

The idea behind early-cleaning is to safely delete the sub-
trees as soon as they have been successively merged to the new
sub-trees, i.e., their data have been persisted as new copies
elsewhere. Nevertheless, to safely enforce early-cleaning to
ensure data integrity and consistency, we must answer the
following two questions.

1) When an unexpected crash happens, how to recover
the data and guarantee data consistency?

2) How to process the read requests coming to the sub-
trees that have been deleted by early-cleaning?

The answers are compaction journal and search request redi-
rection respectively, as explained below.

Compaction Journal. In the merge process, early-cleaning
is called periodically to delete the input sub-trees to reclaim
the storage space. As shown in Figure 5, early-cleaning can
be scheduled after a new sub-tree is sealed and persisted to
delete the finished sub-trees. Since the data in the deleted
sub-trees have been written to the new sub-trees, if a crash
happens halfway through the merge process, data consistency
can be achieved by keeping the state information of the merge
process, which is continued after the recovery. We use a small
journal to record the merge state information before executing
the early-cleaning, called compaction journal, which contains
the metadata of the persisted sub-trees in the output and
the active sub-trees in the input. In fact, the metadata of
the persisted sub-trees are the abuilding and uncommitted
global index of the new tree. Note that if an input sub-tree
does not overlap with other sub-trees, it is directly moved to
the output and is not affected by the cleaning process.

Although each time when a new sub-tree is persisted pro-
vides an opportunity for early cleaning, it can be ineffective
and wasteful to clean too frequently. As a default, SifrDB sets
the cleaning threshold to 10. That is, every time when 10 sub-
tree files are persisted an early-cleaning process is scheduled,
which results in an operational space requirement equivalent
to that of LevelDB. Users can configure a larger cleaning
threshold value, and SifrDB is able to dynamically adjust the
setting according to the amount of available storage space.

In the recovery process, SifrDB reads the latest merge state
information from the compaction journal and continues the
compaction merge by seeking to the correct positions of the
active input sub-trees, instead of the conventional approaches
that simply discard the work that had been done before the
crash. The correct positions are determined by the biggest key
of the last newly persisted sub-tree. Continuing-compaction
brings extra benefit for a full-merge compaction crashed in
operating on very large trees, since it can save a significant
amount of time from a restarting-compaction approach that
does the work from the beginning.

Search Request Redirection. With the early-cleaning tech-
nique, it is a challenge to serve the search requests that come
to the logical trees for which compaction is currently ongo-
ing because some of the sub-trees may have been deleted.
To correctly serve the search requests, SifrDB redirects the
requests to the new sub-trees by exploiting the abuilding
global index introduced above, referred to as redirection map.
Each time a compaction journal is committed, the redirection
map is updated to cover the newly produced sub-trees. The
search for a logical tree first checks the redirection map, to
determine if the query key falls into one of the new sub-trees.
If yes, the request is redirected to access that new sub-tree.
Otherwise, the search process will access the original sub-tree
that possibly contain the query key as in the usual way.

In a case that after the search process has checked the
redirection map and decides to access the original sub-tree, a
problem could arise if the redirection map is updated promptly
and then the early-cleaning is scheduled to delete that sub-
tree. To prevent such a problem from happening, we design
a “twice check” mechanism. After the search process firstly
checks the redirection map and decides to access the original
sub-tree, it tags the sub-tree and then checks the redirection
map secondly (the early-cleaning will not delete a tagged
sub-tree until it is un-tagged). After the second check, if the
search process is instead redirected by the promptly updated
map to access the new sub-tree, the original sub-tree can
be un-tagged and deleted without trouble. Otherwise, since

A Unified Solution for Write-Optimized Key-Value Stores SoCC ’18, October 11–13, 2018, Carlsbad, PA, USA

●

●

●
● ●

0.5

1.0

1.5

2 (threads) 4 8 16 32

L
a
te

n
c
y
 (

m
s
)

●●●● 256MB
1GB
4GB
16GB

Figure 7: Query latency as a function of the number of the back-
ground search threads with different memory provisions (100GB
dataset).

0

1

2

3

4

5

256MB 1GB 4GB 16GB All−Cached

L
a
te

n
c
y
 (

m
s
) Traditional

Sifr−Parallel (16 search threads)
4.97

1.15

2.27

0.74
1.44

0.50
0.86

0.39 0.33 0.19

Figure 8: A comparison in query latency between the traditional
approach and SifrDB’s parallel-search under different memory
provisions (100GB dataset).

Average Core Time (ms) 95 percentile latency (ms) 99 percentile latency (ms)
Mem 256MB 1GB 4GB 16GB Cached 256MB 1GB 4GB 16GB Cached 256MB 1GB 4GB 16GB Cached
Tra 0.052 0.030 0.023 0.014 0.012 12.3 5.46 3.12 1.85 0.376 18.7 6.22 3.75 2.17 0.398

Sifr-16 0.047 0.024 0.027 0.030 0.034 2.7 1.65 1.07 0.78 0.232 3.75 1.91 1.34 0.87 0.243
Table 1: CPU core time and 95/99 percentile latency for queries (“Tra” is the traditional way, and “Sifr-16” is SifrBD with 16 search threads).

the search process still decides to access the original sub-tree
according to the redirection map, it is guaranteed that the
key range of the sub-tree is not in the map and the sub-tree
is not in the cleaning list before the second check, thus the
search process can safely work on the sub-tree and un-tag it
after the search finishes.

4.3 Parallel Search for Read
We design a parallel-search algorithm for SifrDB to mitigate
the read performance degradation of the MS-forest model.
Figure 6 illustrates the parallel-search scheme in SifrDB in
contrast to the traditional approach. The search operation is
detached from the server thread and is carried out in parallel
by a bundle of background threads (referred to as search
threads) on the candidate trees.

Algorithm In the traditional approach, the server thread
serially searches the trees in order of their priorities. If the
query key is found in a tree, there is no need to further
search the trees with lower priorities. In SifrDB, when a
query request arrives, the server thread constructs a query
object that is appended to the left end (back) of the query
queue and signals the search threads, after which the server
thread simply polls on the right end (front) of the query
queue. A query object contains three types of state variables
to keep track of the search progress: (1) COUNTer, indicating
how many candidate trees have been selected or searched; (2)
LocalR, an array of state variables each indicating the search
result of its corresponding tree (‘Found’ or ‘NotFound’); (3)
GlobalR, a signal of whether the final result of the query is
determined (‘Found’ or ‘NotFound’). A fingerprint generated
by the server thread is also included in an object to help
the server thread recognize its object in the polling4. The
polling operation repeatedly checks the GlobalR and the
fingerprint of the front object. Once the GlobalR is set (no
matter ‘Found’ or ‘NotFound’) and the fingerprint matches,
the server thread removes the object from the queue and
returns the result according to the GlobalR value. We use
polling (a spin lock is also optional) for the server thread
4When multiple server threads run simultaneously, fingerprint is unique
for each server thread.

because the query will be finished shortly in the near future,
and polling can detect the result without context switches.

Each search thread usually performs three sequential steps
in the query process (a search job):

i Selection. Lock the queue to select an unfinished object
and a candidate tree based on the object’s COUNTer,
then unlock.

ii Search. Search the selected tree in parallel with other
search threads.

iii Update. Lock the queue to update the LocalR, and if
necessary, the GlobalR, then unlock.

In Step (i), the COUNTer of an object is increased by 1 after
the selection and it indicates the number of trees that have
been selected or searched for this object. An unfinished object
is defined as that its GlobalR is not set and its COUNTer is
smaller than the number of candidate trees. The selection
always chooses a tree from the remaining ones with the
highest priority to enable the GlobleR to be set as early as
possible. Step (ii) is the costly portion that the parallel search
attacks. When a search thread gets a result after step (ii) and
comes to step (iii), it first sets the LocalR, and then decides
whether the GlobalR should be set by predefined rules based
on the LocalR values. For example, if a search thread finds
that the current LocalR is ‘Found’ and all the LocalRs of
trees with higher priorities have been set to ‘NotFound’, it
will set the GlobalR to ‘Found’; if any other thread enters
Step (iii) and finds that the GlobalR has been set, it simply
discards its search result and continues the next job.

Configuration The number of search threads can be con-
figured to any positive integers (default to 16). Configuring
1 search thread reduces SifrDB to the traditional approach.
We recommend that this number be configured based on the
hardware resources, such as the number of CPU cores and
SSD internal access parallelism. Figure 7 shows the query
latency on a 100GB dataset as a function of the number of
search threads in the environments introduced in §5, in which
16 is an optimized value.

In the parallel-search algorithm, if a query key is found in
a high-priority tree quickly, SifrDB can detect and return the
result immediately, even though some search threads working

SoCC ’18, October 11–13, 2018, Carlsbad, PA, USA Fei Mei et al.

Source file Functionality
version_edit.h Define the structure of the logical tree
version_edit.cc Encode and decode the logical tree
version_set.h Define the structure of query object
version_set.cc Implement the parallel search
db_impl.cc Implement the compaction and early-cleaning
merge.cc Detect whether two sub-trees are overlapping

Table 2: Key source files of LevelDB touched to implement SifrDB.

on the trees with lower priorities have not completed, in
which case the latter simply discard their results afterwards.
It should be noted that the efficiency of the parallel search
is impacted by the cached data, since the benefit of our
parallel-search algorithm stems from exploiting the internal
access parallelism of SSD flash. The more candidate trees are
cached in memory, the less time will be spent on the parallel-
search portion (i.e., parallel search in memory instead of
in SSD flash), thus weakening the benefit. Nevertheless, we
find that the parallel algorithm still performs better than
the traditional approach even though when all the dataset
has been cached in memory. Figure 8 illustrates how the
efficiency of the parallel-search algorithm degrades when the
provisioned memory increases as expected. We can see that
when all the data is cached the parallel-search scheme is
shown to still improve the performance by 1.7×. Tail latency
is also an important metric users care about. Long tail latency
in a multi-stage structure is mainly caused by queries that
need to search multiple candidate trees and the queried data
is not in cache, which is what the parallel search attacks.
Therefore, the tail latency is likewise improved notably, as
shown by the 95 and 99 percentile latency in Table 1.

The achievement from the parallel search is not always
come free. There are two kinds of costs introduced by the
parallel search. One is the unnecessary I/Os on the low-
priority trees when reading the keys that reside in high-
priority trees, which is evaluated in §5.3. The other is the CPU
cost in a low dataset/memory configuration environment,
as shown by the average CPU core time in Table 1. We
can see that when the memory provision is larger than 4GB
(equivalent to a 25:1 dataset/memory configuration), the CPU
cost in SifrDB becomes higher than that in the traditional way.
This suggests that one should carefully use the parallel search
when the CPU is stressful. We plan to enable dynamically
adjusting the background search threads to best adapt the
hardware resources and satisfy the user requirement.

Range Query Range query can benefit from the parallel
search in a straightforward way. For example, the process
can start with executing a point-query for the start key of
the range to load the blocks containing the to-be-scanned
keys of the candidate trees to memory concurrently, which
can significantly speed up the scan performance. In other
words, the range query in SifrDB is composed of a parallel
point-query and a traditional range query.

4.4 Implementation
SifrDB is implemented by reusing the LevelDB outer code
and replacing the core data structures and functions with the
SifrDB design. Any applications that use a store compatible
with LevelDB can replace the existing storage engine with

SifrDB seamlessly, as the exported operation interfaces are
not changed. The key source files that are touched for the
implementation of SifrDB are listed in Table 2.

5 EVALUATION
In this section we present the evaluation results of SifrDB,
with comparisons to a broad range of multi-stage based KV
stores, including popular MS-tree implementations LevelDB
and RocksDB, and representative MS-forest implementations
Size-Tiered (used in Cassandra) and PebblesDB (the latest
research based on the partitioned MS-forest).

5.1 Experiment Setup
The evaluation experiments are conducted on a Linux 4.4 ma-
chine equipped with two Intel E5 14-core CPUs and 128GB
DDR4 memory. The storage subsystem used in the experi-
ments, Intel SSD DC S3520 Series, has a capacity of 480GB
with a 400MB/s sequential read and a 350MB/s sequential
write speed in raw performance, and 41K IOPS for read.

All the microbenchmark and YCSB workloads are replayed
by the db_bench toolset [11, 13]. Since Cassandra does not
support the db_bench and running it in the normal mode
involves network latency, we re-implement the Size-Tiered
by reusing the LevelDB code to provide a fair comparison.
We still run Cassandra for latency irrelevant metrics such
as write amplification and space requirement, and verified
that the results are consistent with our re-implementation.
The dataset is 118GB in the experiments, and the available
memory is varied in the read experiments to simulate different
memory provisions for the same dataset, as a large storage
system can be configured to have very high storage/memory
ratios [7, 43].

5.2 Write Performance
In this sub-section we evaluate the write performance by
inserting 1 billion KV pairs to an empty store, with an
average KV size of 123 bytes (23 bytes key, and remaining
portion containing a number of bytes uniformly distributed in
the 1∼200), leading to a 118-GB dataset being built at the end.
The write buffer size is set to the default value of LevelDB for
all stores. It should be noted that, while using a larger write
buffer can lower the write amplification to some extent, this
effect is uniform to all stores and does not alter the overall
performance trend. The growth factor has different impacts
in the tree model and the forest model as analyzed in §3,
so it is not set to the same value for implementations based
on different models. In the experiments, we set the growth
factor to 10 for the MS-tree-based stores (an optimized value
in the practical MS-tree implementations), and to 4 for the
MS-forest-based stores5 (an optimized value in the practical
MS-forest implementations).

Figure 9a shows the write amplification of different stores
under random and sequential writes respectively. A more
extensive set of results can be seen in Figure 2a. First, for the
5The growth factor in PebblesDB is the number of SSTs in a guard
that triggers the compaction.

A Unified Solution for Write-Optimized Key-Value Stores SoCC ’18, October 11–13, 2018, Carlsbad, PA, USA

seq rand0

10

20

30

W
rit

e
Am

pl
ifi

ca
tio

n

LevelDB
RocksDB
Size-Tiered
PebblesDB
SifrDB

(a) Write Amplification (lower is better)
seq rand0

100

200

300

400

Th
ro

ug
hp

ut
(x

10
00

 In
se

rts
/s

) LevelDB
RocksDB
Size-Tiered
PebblesDB
SifrDB
+LDS

(b) Write Througput (higher is better)

0
5

0
1

0
0

1
5

0

0 250 500 750 1000
Insertions (millions)

S
to

ra
g

e
 (

G
B

) LevelDB
Size−Tiered
SifrDB

(c) Storage Requirement

0
.1

1
1
0

0 250 500 750 1000
Insertions (millions)

M
e

m
o

ry
 (

G
B

)

LevelDB
RocksDB
Size−Tiered
PebblesDB
SifrDB

(d) Memory Requirement
Figure 9: Figure (a) shows the overall write amplification of inserting 1 billion KV pairs (the circled are MS-forest based implementations), and
Figure (b) shows the overall throughput. Figure (c) and Figure (d) show the actual storage requirement and memory requirement respectively
in the process of inserting (In Figure (c) we omit the results of RocksDB and PebblesDB for clarity as their lines are overlapped in large with
LevelDB and SifrDB. System failure would happen if the storage or memory provision cannot meet the requirement).

Figure 10: A snapshot of the physical files’ size of the three MS-forest
implementations under random writes.

sequential workload, SifrDB induces no write amplification,
just like LevelDB and RocksDB do, which is in sharp contrast
to the other two MS-forest implementations, Size-Tiered
and PebblesDB, that causes 8× and 6× write amplification
respectively. This is useful in some cloud environments such as
sensor-collected data [40]. Second, for the random workload,
SifrDB, having inherited the main advantage of the MS-forest
model in random writes, exhibits that same level of write
amplification as the other two MS-forest implementations
Size-Tiered and PebblesDB and substantially better than the
MS-tree implementations.

Intuitively, write throughput of a system is inversely pro-
portional to its write amplification. However, there are two
other factors that can lower the write throughput, which
causes the write throughput less proportionally tied to write
amplification, as indicated in Figure 9b. One is the overhead
on the write-ahead log, which is prominent in a sequential
write pattern [33]. The other is the file-system overhead,
which is more pronounced for small files. Figure 10 illustrates
a snapshot of the file size distribution of the three MS-forest
implementations under random writes. Clearly, Size-Tiered
writes extra-large files to the underlying storage, which is file-
system friendly and leads to a higher throughput than SifrDB
and PebblesDB despite of the same write amplification they
induce. Nonetheless, with the unified file size, SifrDB can
take advantage of the aligned write to eliminate the file-
system overhead, a technique proposed in LDS [33]. With the
aligned storing, SifrDB achieves the highest throughput for
the random workload, as shown by the SifrDB+LDS result in
Figure 9b. As LDS naturally support LevelDB, we also show
the LevelDB+LDS result (RocksDB is similar to LevelDB).
We can see that under the random workload, the write per-
formance of LevelDB+LDS is still much lower than that of
the forest implementations, even through LDS improves the
performance a great deal. Note that PebblesDB is not able
to take advantage of the technique LDS provides because of
its variable and unpredictable file size.

Figure 9c shows the storage requirement of SifrDB, Size-
Tiered and LevelDB. With the early-cleaning mechanism,

SoCC ’18, October 11–13, 2018, Carlsbad, PA, USA Fei Mei et al.

256MB 1GB 4GB 16GB
0

5

10

15

La
te

nc
y

(N
or

m
al

ize
d

to
 S

ifr
DB

)

1.
2m

s

0.
7m

s

0.
4m

s

0.
2m

s

LevelDB
RocksDB
Size-Tiered
PebblesDB
SifrDB

(a) Read Latency (Lower is better)
256MB 1GB 4GB 16GB

0.0

0.5

1.0

1.5

2.0

2.5

Re
ad

 A
m

pl
ifi

ca
tio

n
(N

or
m

al
ize

d
to

 S
ifr

DB
)

46
9

25
0

10
5

53

LevelDB
RocksDB
Size-Tiered
PebblesDB
SifrDB

(b) Read amplification
Figure 11: Figure (a) shows the query latency of different stores as a function of memory provisions (MS-forest based stores are circled, i.e., the
rightmost 3 bars of each bar group), and Figure (b) shows the read amplification (read_IO_size/queried_data_size).

LevelDB RocksDB Size-Tiered PebblesDB SifrDB

#Trees 7 9 17 11∼19 17
Table 3: Number of candidate trees in different stores (in PebblesDB
the number of trees are various in different guards).

SifrDB resolves the problem the Size-Tiered is facing, and
achieves the same space efficiency as LevelDB. Note that the
implementations based on the partitioned MS-forest such
as PebblesDB also does not suffer from the high space re-
quirement problem. Additionally, we measure the memory
requirement in the process of writing (inserting) and present
the results in Figure 9d. RocksDB and Size-Tiered consume
much more memory than SifrDB and LevelDB, by an or-
der of magnitude, while PebblesDB consumes two orders of
magnitude more memory than SifrDB. In fact, we set the
top_level_bits to 31 and bit_decrement to 2 in PebblesDB,
a setting designed to optimize writes; otherwise PebblesDB
will fail to complete the 1-Billion insertions in the default
setting (process killed by the system for exhausting all the
system memory as well as the swapping space).

5.3 Read Performance
5.3.1 Point Query. In this subsection, we evaluate the read
performance, i.e., point-query of random keys. The dataset
used is the one generated in the write performance evaluation
under random workload. The numbers of the candidate trees
are listed in Table 3, which are obtained after the write
process is finished. As MS-forest implementation are required
to search more trees for a query than MS-tree ones, the
former generally have longer query latency than the latter.
However, the actual result varies depending on the specific
stores and available memory provisions.

The evaluation results are presented in Figure 11a in the
metric of query latency, along with read amplification pre-
sented in Figure 11b. We disable the seek-triggered com-
paction (referring to §6 for a discussion) and conduct the
experiments on each store with sufficiently long time to
make sure the performance has become stable. From the
results shown in the figures we can draw two conclusions:
(1) SifrDB is more efficient under configurations with higher
dataset/memory ratios, and among the best performers cross
the board at 256MB and 1GB memory provisions; (2) SifrDB

consistently performs the best among the three MS-forest im-
plementations, outperforming Size-Tiered and PebblesDB sig-
nificantly. For example, if the provisioned memory is 256MB,
which simulates a configuration of 400:1 dataset/memory ra-
tio [7], SifrDB achieves better performance than Size-Tiered
by 4×, and PebblesDB by 5× respectively. This is because at
a high dataset/memory ratio, I/O is frequent and the parallel
search efficiency of SifrDB is fully utilized. RocksDB performs
poorly under low memory provision because it consumes more
memory than the provisioned and frequently accesses the
swapping space. Note that the I/Os from the swapping space
is not accounted in the read amplification. With higher mem-
ory provision, the parallel efficiency of SifrDB is weakened
because a significant portion of the search operations are
serviced by the cache without I/O. However, SifrDB still
consistently outperforms other MS-forest implementations.

With the parallel-search algorithm, SifrDB achieves com-
parable performance to LevelDB even though it needs to
search 2.4× more trees than the latter. It should be noted
the bandwidth of the underlying media could limit the query
throughput. Nonetheless, we find that the parallel-search
algorithm consistently improves the read throughput when
the candidate trees are the same, and is able to fully exploit
the access parallelism of SSDs to provide speedy responses
to requests. This is particularly suitable for cases when ei-
ther request arrivals are sparse or serving high-priority and
time-critical requests, in which the requests are served expe-
ditiously as the bandwidth potential of SSDs can be utilized
to the fullest.

Since the MS-forest implementations need to search more
trees than the MS-tree implementations, the former incur
higher read amplification than the latter in general. Peb-
blesDB incurs extremely high read amplification in low mem-
ory provisions, which cools off when the provision is larger
than 1GB. Comparing SifrDB’s read amplification to that of
Size-Tiered, we can see that 15% more unnecessary I/Os are
incurred by the former (with 16GB memory), which is caused
by fact that some search threads of the parallel-search in
SifrDB may access the low-priority trees for a small portion
of keys that exist in a high-priority tree. Such unnecessary ac-
cesses are expected from SifrDB’s design principle, and does
not impact the effectiveness of the parallel-search algorithm.

A Unified Solution for Write-Optimized Key-Value Stores SoCC ’18, October 11–13, 2018, Carlsbad, PA, USA

A B C D E F
0

2

4

6

8

10

Th
ro

ug
hp

ut
(x

10
00

 R
eq

ue
st

s/
s)

LevelDB
RocksDB
Size-Tiered
PebblesDB
SifrDB

Figure 12: Throughput under YCSB workloads (higher is better). The MS-forest based stores are circled, i.e., the rightmost 3 bars in each bar
group.

It should be noted that if enough memory is available
and a Bloom filter is used on top of the stores, searches
for most candidate trees can be avoided and all the stores
will exhibit better read performance. We have performed
experiments using an SST-Level Bloom filter with 10bits/key
on each store, and found that, for almost all queries, only one
candidate tree was actually searched. In such cases, SifrDB
has comparable read performance to all other stores. We have
an extensive discussion of the Bloom filter in §6.

5.3.2 Range Query. Range query in the common multi-stage
structures is processed by (1) seeking all candidate trees one
by one to find the start key of the query; (2) comparing
the keys and advancing the search across all the candidate
trees step by step until the given number of keys are ob-
tained. The forest model needs to seek more trees than the
tree model for the start key, in addition to performing more
comparing operations in each step. As a result, the forest-
based implementations have worse performance than the
tree-based implementations in general. In our experiments,
the forest-based implementations (Size-Tiered, PebblesDB)
exhibit about half the performance of the tree-based im-
plementations. Because SifrDB leverages the parallel-search
algorithm to speed up the tree-seeking process, it is able to
improve the range query performance by 42% over the other
two forest-based implementations.

Another approach to improving the read performance
(both point query and range query) is to enable seek-triggered
compaction. However, that is only efficient for read-intensive
workloads. While multi-stage structures are often used to
ingest the massive user data in write-intensive environments,
seek-triggered compaction has limited usage. We have a dis-
cussion for the seek-triggered compaction in §6.

5.4 Synthetic Workloads
YCSB [21] provides a common set of workloads [1] for eval-
uating the performance of cloud systems.For a workload, 4
threads run concurrently and each of them sends 10K re-
quests, with the overall throughput being measured as the
performance metric. The memory provision is sufficiently
high to ensure that the hot accessed keys (in the Zipfian and
Latest distribution) are cached. In range queries of the work-
load E, the scanned number of keys is uniformly distributed
between 1 and 100.

The results of the YCSB benchmarks are shown in Fig-
ure 12. While most of the workloads are mixtures of reads
and writes, the main performance cost comes from the read
requests, as the read-intensive workloads exhibits a lower
throughput. SifrDB consistently outperforms the other two
MS-forest implementations (Size-Tiered and PebbleDB). Specif-
ically, workload E helps demonstrate the range query per-
formance. For each range query, SifrDB simply executes a
point-query to boost the following seek operations, which
proves to be quite efficient. Note that PebblesDB also im-
plements a different parallel-seek algorithm specially for the
range query, which is shown to be less efficient than SifrDB’s.

6 DISCUSSIONS
Split Unit. The unit size for the split storing of SifrDB, re-
ferred to as the split unit, is set to 2MB by default. To fully
benefit from the special sequential-intensive workloads as
demonstrated in VT-tree [41], a smaller split unit would
be preferred. The downside of using a smaller split unit is
the increased file-system metadata overhead, which can be
eliminated with aligned and direct storing [33]. However, the
overhead for maintaining smaller key ranges, such as larger
index data and scattered key ranges on the underlying stor-
age, is a necessary price to pay for both VT-tree and SifrDB,
while the advantage of SifrDB is that there is no need to
concern about garbage collection.

Scalability of the Parallel Search. In the parallel-search
algorithm, a search thread simply moves on to the next
object in the queue if it finds that the current one is not
necessary to work on (an FIFO processing policy). Although
our current design works well and consistently improves the
query performance, the proposed queuing mechanism can be
further exploited with a more efficient and economic scheduler.
For example, if two query keys exist in the same tree or
block, they can be searched in batch by one thread. For
another example, if users want a short response time for a
special query (such as VIP service), the query object can
be scheduled to the front so that all the resources are used
for it. A limitation of the parallel-search algorithm is that it
is not suitable for KV stores hosted on singular HDD that
lacks access parallelism. However, the algorithm provides a
foundation to be extended for a RAID storage, be it HDD-
based or SSD-based. For example, if the candidate trees are

SoCC ’18, October 11–13, 2018, Carlsbad, PA, USA Fei Mei et al.

placed in different HDD devices, the parallel search would
still take effect.

Seek-Triggered Compaction. LevelDB, as well as other
multi-stage based stores, supports the seek-triggered com-
paction, which compacts the tree/sub-trees that are accessed
more than a threshold number of times (e.g., 10), even though
the data in the relevant stage has not yet reached its legal
capacity. Seek-triggered compaction optimizes the subsequent
read requests, with a price of extra compaction operations.
This is profitable for a read-intensive workload in the long
run. With enough read requests, the data in the store can be
merged to a single tree, which is most efficient for read. For
this consideration, SifrDB and the other common MS-forest
implementations can converge to a single large tree faster,
because data is written in each stage only once.

Bloom Filter. Bloom filter is a third-party index that can
be applied to the KV stores to improve read performance
(not applicable to range query). There are two main types
of Bloom-filter based implementations: the block-level filter
and the file-level filter. The difference is that using the block-
level filter the block index is accessed first, while using the
file-level filter the filter is tested first. The total bits needed
are the same no matter the filter types. Monkey [22] studies
how to efficiently configure the filter bits with respect to
the access frequency of different stages. Although SifrDB
supports both types of filters, in the evaluation we focus on
the query performance without the Bloom filter, in order to
have a clear understanding of the raw performance of the
stores. Nevertheless, using the Bloom filter would give SifrDB
flexible trade-offs, e.g., allowing more overlapped trees in a
stage so as to boost write throughput without sacrificing the
query QoS.

7 RELATED WORK
Write optimized structures have become popular in large-
scale data stores [5, 8, 14, 20, 23, 28, 39, 44]. In general, there
are two families of write optimized structures. One is the
fractal-trees [16–18] that buffer the data in each intermediate
node of a B-tree. The other is the multi-stage structures that
maintains a set a B-trees in different stages, which are widely
used in key-value stores [4, 12, 19, 25, 29].

In this paper we have analyzed and classified the practi-
cal implementation models for multi-stage structures, and
presented their advantages and disadvantages for different
performance considerations. In fact, a large body of existing
studies have contributed to the popularity of multi-stage-
based KV stores [22, 31, 33, 38, 41, 43] and most of them
focus on the write amplification of the tree model under
random writes. The essential reason for the MS-tree’s high
write amplification is that data must be rewritten within each
stage repeatedly in order to keep the data sorted, which is
good for reads. On the contrary, the MS-forest model allows
overlapped trees (i.e., forest) to avoid rewriting data within
a stage. Researches that optimize the random-write problem
faced by the MS-tree model often make use of this prop-
erty of MS-forest and allow overlapped key ranges within a
stage [9, 38, 43], hence turning into a variant of MS-forest and

suffering from the disadvantages such as a less-compact struc-
ture with degraded read performance. VT-tree [41] proposes
a stitching technique based on the MS-forest model to reduce
the write amplification under sequential/sequential-intensive
workloads by applying a secondary index, which introduces
garbage on the storage and faces high space requirement for
compaction. In addition, it does not distinguish the effect of
the stitching technique from the effect of the forest model,
since it uses a tree-based implementation (LevelDB) as the
baseline for evaluation.

As the overheads introduced by the storage stacks be-
coming outstanding in high performance storage environ-
ments [35, 37], aligned storing is used to optimize the file-
system overheads [33] for the implementations based on the
split-forest. Many work also exploit the new storage medias
to improve the performance of key-value stores based on
the multi-stage structures. LOCS [42] propose to expose the
internal channels of the SSDs and schedule requests on the
channels to fully exploit the SSD bandwidth. Wisckey [32]
and PebblesDB design specific algorithms to exploit the SSD
parallelism for range queries.

Other related researches have in-depth studies on the eval-
uation and configuration of existing multi-stage-based KV
stores to find a better performance trade-off [22, 24, 31]. In
addition, practical systems have tried to provide customized
interfaces to reduce write amplification for special use cases.
For example, RocksDB provides the bulkloading scheme [6]
to ingest the large data generated in offline or migrated from
other data stores.

These work substantially advance the knowledge of multi-
stage structures, and motivate the work in this paper, i.e.,
the taxonomy of current MS-structure based KV stores and
the SifrDB design.

8 CONCLUSION
We identified two multi-stage structures, MS-tree and MS-
forest, that have opposing trade-offs for important perfor-
mance metrics. The SifrDB store we have proposed is based
on and inherits the advantage of the MS-forest model, and
avoids its disadvantages by imposing a split storing mecha-
nism. Additionally, we designed a parallel-search algorithm
that fully exploits the SSD access parallelism to boost the
read performance. Evaluation results show that SifrDB is
exceedingly competitive in large data stores.

ACKNOWLEDGMENTS
We thank our shepherd Peter Alvaro for advising to im-
prove the final version of this paper, and thank all the
anonymous reviewers for their constructive comments. This
work is supported in part by Nature Science Foundation
of China under Grant No. 61872156 and No.61821003, the
Fundamental Research Funds for the Central Universities
No. 2018KFYXKJC037, the US NSF under Grant No.CCF-
1704504 and No.CCF-1629625, and Alibaba Group through
Alibaba Innovative Research (AIR) Program.

A Unified Solution for Write-Optimized Key-Value Stores SoCC ’18, October 11–13, 2018, Carlsbad, PA, USA

REFERENCES
[1] 2010. Core Workloads. https://github.com/brianfrankcooper/

YCSB/wiki/Core-Workloads/.
[2] 2011. Improved Memory and Disk Space Management.

https://www.datastax.com/dev/blog/whats-new-in-cassandra-
1-0-improved-memory-and-disk-space-management.

[3] 2011. Introduction to Compaction. https://www.datastax.com/
dev/blog/leveled-compaction-in-apache-cassandra.

[4] 2013. RocksDB. http://rocksdb.org/.
[5] 2016. LSM Design Overview. https://www.sqlite.org/src4/doc/

trunk/www/lsm.wiki.
[6] 2017. Bulkloading by ingesting external SST files. http://

rocksdb.org/blog/2017/02/17/bulkoad-ingest-sst-file.html.
[7] 2017. From Big Data to Big Intelligence. https://

www.purestorage.com/products/flashblade.html.
[8] 2017. The Modern Engine for Metrics and Events. https://

www.influxdata.com/.
[9] 2018. Compaction subproperties. http://docs.datastax.com/en/

cql/3.1/cql/cql_reference/compactSubprop.html.
[10] 2018. Configuring compaction. https://docs.datastax.com/

en/cassandra/2.1/cassandra/operations/ops_configure_
compaction_t.html.

[11] 2018. LevelDB benchmark. https://github.com/google/leveldb/
blob/master/db/db_bench.cc.

[12] 2018. LevelDB project home page. https://code.google.com/p/
leveldb/.

[13] 2018. RocksDB benchmark tools. https://github.com/facebook/
rocksdb/blob/master/tools/db_bench_tool.cc.

[14] Daniel Bartholomew. 2014. MariaDB cookbook. Packt Publishing
Ltd.

[15] Rudolf Bayer and Edward McCreight. 2002. Organization and
maintenance of large ordered indexes. In Software pioneers.
Springer, 245–262.

[16] Michael A Bender, Martin Farach-Colton, Jeremy T Fineman,
Yonatan R Fogel, Bradley C Kuszmaul, and Jelani Nelson. 2007.
Cache-Oblivious Streaming B-trees. In Proceedings of the nine-
teenth annual ACM symposium on Parallel algorithms and ar-
chitectures. ACM, 81–92.

[17] Gerth Stolting Brodal and Rolf Fagerberg. 2003. Lower Bounds for
External Memory Dictionaries. In Proceedings of the fourteenth
annual ACM-SIAM symposium on Discrete algorithms. Society
for Industrial and Applied Mathematics, 546–554.

[18] Adam L Buchsbaum, Michael H Goldwasser, Suresh Venkatasub-
ramanian, and Jeffery Westbrook. 2000. On External Memory
Graph Traversal. In ACM-SIAM Symposium on Discrete Algo-
rithms. 859–860.

[19] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh,
Deborah A Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E Gruber. 2008. Bigtable: A distributed storage
system for structured data. ACM Transactions on Computer
Systems (TOCS) 26, 2 (2008), 4.

[20] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam
Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz,
Daniel Weaver, and Ramana Yerneni. 2008. PNUTS: Yahoo!’s
Hosted Data Serving Platform. Proceedings of the VLDB En-
dowment 1, 2 (Aug. 2008), 1277–1288.

[21] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakr-
ishnan, and Russell Sears. 2010. Benchmarking cloud serving
systems with YCSB. In Proceedings of the 1st ACM symposium
on Cloud computing. ACM, 143–154.

[22] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Mon-
key: Optimal navigable key-value store. In Proceedings of the
2017 ACM International Conference on Management of Data.
ACM, 79–94.

[23] Shakuntala Gupta Edward and Navin Sabharwal. 2015. MongoDB
Explained. In Practical MongoDB. Springer, 159–190.

[24] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens
Axboe, Siying Dong, Kim Hazelwood, Chris Petersen, Asaf Cidon,
and Sachin Katti. 2018. Reducing DRAM Footprint with NVM in
Facebook. In Proceedings of the Thirteenth EuroSys Conference
(EuroSys ’18). ACM, New York, NY, USA, Article 42, 13 pages.
https://doi.org/10.1145/3190508.3190524

[25] Lars George. 2011. HBase: the definitive guide. "O’Reilly Media,
Inc.".

[26] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and
Roman Pletka. 2009. Write Amplification Analysis in Flash-Based
Solid State Drives. In Proceedings of SYSTOR 2009: The Israeli

Experimental Systems Conference. ACM.
[27] HV Jagadish, PPS Narayan, Sridhar Seshadri, S Sudarshan, and

Rama Kanneganti. 1997. Incremental organization for data record-
ing and warehousing. In International Conference on Very Large
Databases, Vol. 97. 16–25.

[28] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John
Esmet, Yizheng Jiao, Ankur Mittal, Prashant Pandey, Phaneendra
Reddy, Leif Walsh, et al. 2015. BetrFS: A Right-Optimized Write-
Optimized File System. In 13th USENIX Conference on File
and Storage Technologies (FAST ’15). 301–315.

[29] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a de-
centralized structured storage system. ACM SIGOPS Operating
Systems Review 44, 2 (2010), 35–40.

[30] Cheng Li, Philip Shilane, Fred Douglis, Darren Sawyer, and Hy-
ong Shim. 2014. Assert (! Defined (Sequential I/O)). In 6th
USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage ’14).

[31] Hyeontaek Lim, David G Andersen, and Michael Kaminsky.
2016. Towards Accurate and Fast Evaluation of Multi-Stage
Log-structured Designs. In Proceedings of the 14th USENIX
Conference on File and Storage Technologies (FAST ’16). 149–
166.

[32] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2016. WiscKey:
separating keys from values in SSD-conscious storage. In 14th
USENIX Conference on File and Storage Technologies (FAST
’16). USENIX Association, 133–148.

[33] F. Mei, Q. Cao, H. Jiang, and L. Tian. 2018. LSM-tree Managed
Storage for Large-Scale Key-Value Store. IEEE Transactions
on Parallel and Distributed Systems (2018). https://doi.org/
10.1109/TPDS.2018.2864209

[34] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee,
and Young Ik Eom. 2012. SFS: Random Write Considered Harmful
in Solid State Drives. In 10th USENIX Conference on File and
Storage Technologies (FAST ’12).

[35] J. Mohan, R. Kadekodi, and V Chidambaram. 2017. Analyzing
IO Amplification in Linux File Systems. ArXiv e-prints (July
2017). arXiv:cs.OS/1707.08514

[36] Patrick Oneil, Edward Cheng, Dieter Gawlick, and Elizabeth
Oneil. 1996. The log-structured merge-tree (LSM-tree). Acta
Informatica (1996).

[37] Anastasios Papagiannis, Giorgos Saloustros, Manolis Marazakis,
and Angelos Bilas. 2017. Iris: An Optimized I/O Stack for Low-
latency Storage Devices. ACM SIGOPS Operating Systems
Review 50, 1 (2017), 3–11.

[38] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai
Abraham. 2017. PebblesDB: Building Key-Value Stores using
Fragmented Log-Structured Merge Trees. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP ’17).
ACM, 497–514.

[39] Kai Ren and Garth Gibson. 2013. TABLEFS: Enhancing Metadata
Efficiency in the Local File System. In 2013 USENIX Annual
Technical Conference (USENIX ATC ’13). 145–156.

[40] Sean Rhea, Eric Wang, Edmund Wong, Ethan Atkins, and Nat
Storer. 2017. LittleTable: A Time-Series Database and Its Uses.
In Proceedings of the 2017 ACM International Conference on
Management of Data. ACM, 125–138.

[41] Pradeep J Shetty, Richard P Spillane, Ravikant R Malpani, Binesh
Andrews, Justin Seyster, and Erez Zadok. 2013. Building workload-
independent storage with VT-trees. In 11th USENIX Conference
on File and Storage Technologies (FAST ’13). 17–30.

[42] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding
Lin, Chen Zhang, and Jason Cong. 2014. An Efficient Design and
Implementation of LSM-Tree based Key-Value Store on Open-
Channel SSD. In Proceedings of the Ninth European Conference
on Computer Systems (EuroSys ’14). ACM.

[43] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. LSM-trie:
An LSM-tree-based Ultra-Large Key-Value Store for Small Data.
In 2015 USENIX Annual Technical Conference (USENIX ATC

’15).
[44] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh

Akshintala, Kanchan Chandnani, Pooja Deo, Zardosht Kasheff,
Leif Walsh, Michael A Bender, et al. 2016. Optimizing Every
Operation in a Write-optimized File System. In 14th USENIX
Conference on File and Storage Technologies (FAST ’16). 1–14.

https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads/
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads/
https://www.datastax.com/dev/blog/whats-new-in-cassandra-1-0-improved-memory-and-disk-space-management
https://www.datastax.com/dev/blog/whats-new-in-cassandra-1-0-improved-memory-and-disk-space-management
https://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
https://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
http://rocksdb.org/
https://www.sqlite.org/src4/doc/trunk/www/lsm.wiki
https://www.sqlite.org/src4/doc/trunk/www/lsm.wiki
http://rocksdb.org/blog/2017/02/17/bulkoad-ingest-sst-file.html
http://rocksdb.org/blog/2017/02/17/bulkoad-ingest-sst-file.html
https://www.purestorage.com/products/flashblade.html
https://www.purestorage.com/products/flashblade.html
https://www.influxdata.com/
https://www.influxdata.com/
http://docs.datastax.com/en/cql/3.1/cql/cql_reference/compactSubprop.html
http://docs.datastax.com/en/cql/3.1/cql/cql_reference/compactSubprop.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_configure_compaction_t.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_configure_compaction_t.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_configure_compaction_t.html
https://github.com/google/leveldb/blob/master/db/db_bench.cc
https://github.com/google/leveldb/blob/master/db/db_bench.cc
https://code.google.com/p/leveldb/
https://code.google.com/p/leveldb/
https://github.com/facebook/rocksdb/blob/master/tools/db_bench_tool.cc
https://github.com/facebook/rocksdb/blob/master/tools/db_bench_tool.cc
https://doi.org/10.1145/3190508.3190524
https://doi.org/10.1109/TPDS.2018.2864209
https://doi.org/10.1109/TPDS.2018.2864209
http://arxiv.org/abs/cs.OS/1707.08514

	Abstract
	1
	2
	3
	3.1
	3.2
	3.3
	3.4

	4
	4.1
	4.2
	4.3
	4.4

	5
	5.1
	5.2
	5.3
	5.4

	6
	7
	8
	Acknowledgments
	References

