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Abstract—The reliability issue in deduplication-based storage
systems has not received adequate attention. Existing approaches
introduce data redundancy after files have been deduplicated,
either by replication on critical data chunks, i.e., chunks with
high reference count, or RAID schemes on unique data chunks,
which means that these schemes are based on individual unique
data chunks rather than individual files. This can leave individual
files vulnerable to losses, particularly in the presence of transient
and unrecoverable data chunk errors such as latent sector errors.
To address this file reliability issue, this paper proposes a Per-
File Parity (short for PFP) scheme to improve the reliability
of deduplication-based storage systems. PFP computes the XOR
parity within parity groups of data chunks of each file after the
chunking process but before the data chunks are deduplicated.
Therefore, PFP can provide parity redundancy protection for all
files by intra-file recovery and a higher-level protection for data
chunks with high reference counts by inter-file recovery. Our
reliability analysis and extensive data-driven, failure-injection
based experiments conducted on a prototype implementation
of PFP show that PFP significantly outperforms the existing
redundancy solutions, DTR and RCR, in system reliability,
tolerating multiple data chunk failures and guaranteeing file
availability upon multiple data chunk failures. Moreover, a
performance evaluation shows that PFP only incurs an average
of 5.7% performance degradation to the deduplication-based
storage system.

Index Terms—Data Deduplication; Reliability; Per-File Parity;
Intra-File Recovery; Inter-File Recovery

I. INTRODUCTION

The explosive growth in data volume has posed one of
the most critical challenges for the design and management
of large-scale storage systems. Consequently, data reduction
technologies have been propelled to the forefront of research
and development in addressing this challenge in the big data
era [24]. Data deduplication, a space efficient data reduction
technology, has spurred a great deal of research interest from
both industry and academia [21], [27]. It has been deployed
in a wide range of storage systems, including backup and
archiving systems [29] and primary storage systems such as
VM (Virtual Machine) servers [12].

Most existing studies on data deduplication focus on im-
proving its efficiency by developing or optimizing chunking
schemes to find as much redundant data as possible, solving
the index-lookup disk-bottleneck problem, and addressing the
hash computing overhead issue and the data restore prob-
lem [9], [27]. However, the impact of data deduplication on
the reliability of the stored data has not been well understood

nor studied for large-scale storage systems [4], [21]. This
is because reliability is often synonymous with redundancy
and, with data deduplication, data redundancy is completely
eliminated by its very design. In other words, since only a
single copy of duplicate data common to and referenced by
different files, also referred to as a critical data chunk, is stored
in the persistent storage after deduplication, the loss of one
or a few critical data chunks can lead to many referencing
files to be lost, thus significantly reducing the reliability of
the storage system. Moreover, in a large-scale storage system,
a post-deduplication file may have its constituent data chunks
stored on multiple different storage devices. If any one of these
constituent data chunks or storage devices fails, the file is lost.
Therefore, data deduplication magnifies the negative impact of
data loss in large-scale storage systems.

The existing approaches to the reliability problem in
deduplication-based storage systems can be classified into
two categories [27], namely, deduplication-then-RAID (DTR),
where the stored unique data chunks are organized and thus
protected by a RAID scheme, and reference-count based repli-
cation (RCR), where data chunks with sufficiently high refer-
ence counts (i.e., number of different files sharing/referencing
the same data chunk) are replicated on different storage
devices. While approaches in both categories introduce data
redundancy for reliability of deduplication-based storage sys-
tems, they do so after files have been deduplicated and
generate data redundancy based on the stored unique data
chunks to prevent loss of individual data chunks rather than
individual files. In other words, files can still be vulnerable to
data loss because of the specific ways in which a data chunk
is protected and a storage device fails. There are generally
two types of storage device failures, namely, disk failures
necessitating a disk replacement where all stored data on the
failed disk are considered lost, and errors in individual data
blocks that cannot be recovered with a re-read or the sector-
based error-correction code (ECC), errors often referred to as
latent sector errors [6]. While the DTR approaches provide
RAID protection against one (RAID5) or two (RAID6) disk
failures, they can suffer from data loss in face of multiple
concurrent latent sector errors or unrecoverable read errors
within a stripe [6]. On the other hand, the RCR approaches,
while providing good protection for data chunks with high
reference count, can suffer from file unavailability if any of
a file’s constituent data chunks with low reference count (i.e.,
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not replicated) are lost due to device failures, latent sector
errors or unrecoverable read errors.

Existing studies on disk failure characteristics in data cen-
ters find that a significant fraction of drives (3.45%) develops
latent sector errors at some point in their life [1]. Recent stud-
ies on many millions of different flash models over 6 years of
production use in Google’s data centers reveal that between 26-
60% of flash drives encounter uncorrectable errors, between 2-
6 out of 1,000 drive days experience uncorrectable errors [18].
These data block failures, rather than drive failures, suggest
that providing protection against only disk failures (e.g., DTR)
is not sufficient to prevent file losses. This is because upon a
disk failure, an unrecoverable block read error on any of the
active disks during RAID5 reconstruction would lead to data
loss. The same problem occurs when two disks fail under a
RAID6 scheme. Similarly, only protecting data chunks with
high reference counts is insufficient to prevent individual files
from becoming unavailable, as discussed above. In contrast,
protecting a file in its entirety before it is deduplicated is
arguably much more effective in avoiding both file and data
chunk failures. The reason is that by applying redundancy
protection within a file, a certain number of data chunk failures
can be recovered within a file depending on the redundancy
scheme and a critical data chunk with a high reference count
can be covered by any of the multiple parity groups belonging
to as many files as the chunk’s reference count.

Based on the above observations, this paper proposes Per-
File Parity (PFP) to improve the reliability of deduplication-
based storage systems. PFP computes the parity for every N
chunks, where N is a configurable parameter, or for a whole
file. When a disk failure or block failure is detected, the gener-
ated parity chunks can be used to recover from the read errors
and failed data chunks by intra-file recovery. On the other
hand, when several errors occur in a parity group of parity and
these failed data chunks each have reference counts of greater
than 1, PFP can recover these failed data chunks by inter-
file recovery by leveraging the parity groups of the unaffected
referencing files. As demonstrated in Section V, PFP is able
to significantly improve the reliability of deduplication-based
storage systems per unit of storage.

We have implemented a lightweight prototype of the PFP
scheme and conducted extensive experiments to assess the
system reliability and performance of PFP. The reliability
results show that PFP can tolerate much more data chunk fail-
ures and guarantee file availability upon multiple data chunk
failures. For example, the mean-time-to-data-loss (MTTDL)
based reliability analysis shows that PFP outperforms the RCR
and DTR schemes in terms of MTTDL by an average of 685.9
times and 2029.2 times respectively. Moreover, the failure-
injection based evaluations show that the PFP scheme can
tolerate hundreds of concurrent chunk errors without file loss
for data sets with high deduplication ratios. The evaluations
also show that PFP is highly cost effective in terms of file-
loss-tolerance/redundancy measure by an average of 52.2%
and 197.5% over the DTR and RCR schemes respectively. On
the other hand, the performance assessment shows that PFP’s
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Fig. 1. Illustration of the reliability problem in deduplication-based storage.

significant reliability gain comes at an acceptable performance
cost of an average of 5.7% performance degradation to the
deduplication-based storage system.

The rest of the paper is organized as follows. Section II
presents the background and motivation for the PFP research.
The design and implementation of the PFP scheme are detailed
in Section III. Section IV analyzes the reliability of PFP and
Section V discusses performance results of the PFP scheme.
We review the related work in Section VI and conclude this
paper in Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we first present an illustration of the reli-
ability problem in deduplication-based storage systems. Then
we present the failure characteristics on disks to motivate our
Per-File Parity study.

A. Reliability in deduplication-based storage systems

Writing the incoming files to the underlying deduplication-
based storage begins with breaking the files into data chunks.
Data deduplication only stores the unique data chunks, also
referred to as deduplicated data chunks, in the underlying
storage and eliminates the duplicate data chunks, also referred
to as shared data chunks. The removed duplicate data chunks
are replaced by references (pointers) to the unique data chunks,
as depicted in Figure 1. Thus, some data chunks are referenced
by multiple files, which implies that data deduplication will
amplify the corruptive impact on files of the loss of data
chunks. The existing studies generally protect the unique data
chunks by replication or erasure codes after deduplication,
without explicitly considering the protection of individual files.

However, from the viewpoint of an individual file, data
deduplication raises the following two reliability concerns,
relative to a storage system without data deduplication:

• File reliability: A file is split into multiple data chunks
that are often spread across multiple storage devices,
which can potentially decrease the file’s reliability be-
cause the failure of any one of these devices or a latent
sector error on any of its constituent data chunks will
render the file unavailable. For example, any disk failures
among Disk 1, Disk 2 and Disk n can cause File 1 to
become unavailable, as shown in Figure 1.
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Fig. 2. Preliminary analysis comparing file losses caused by data block fail-
ures in storage systems without deduplication (No-dedupe), with deduplication
but without protection (Dedupe) and with protections (DTR and RCR).

• Chunk criticality: The loss of a critical data chunk
with a high reference count due to latent sector errors
or unrecoverable errors can render all files referencing
this data chunk unavailable. For example, the loss of data
chunk A will cause all the three files, Files 1-3, to become
unavailable, as shown in Figure 1.

Figure 2 shows our preliminary experimental analysis
comparing file losses caused by data block failures in
non-deduplication-based storage system, labeled No-dedupe,
deduplication-based storage system, labeled Dedupe, and
Dedupe systems with deduplication-then-RAID and reference-
count based replication protections, labeled DTR and RCR
respectively. We use the four data sets that are described
in Section V, Kernel, Email, Firefox and VMDK, for this
analysis. The figure shows the number of file failures for
each system under each workload after injecting 20 random
data block failures, indicating that the storage system with
deduplication has many more file losses than the one without
deduplication. The reason is simple: with the same failure
count of data blocks, more files in a deduplication-based
storage system than in a non-deduplication-based one will
be affected because of the chunk criticality in the former.
Moreover, existing data protection schemes for deduplication-
based systems, DTR and RCR, failed to protect all files,
resulting in a significant number of files being lost. It is clear
that only protecting the unique data chunks or data chunks
with high reference count fails to effectively and sufficiently
protect all files from being lost.

B. Motivation

While data deduplication improves the system reliability by
reducing the backup time and storage footprints, it amplifies
the corruptive impact on files of data loss at the chunk level,
meaning that the probability of multiple files being corrupted
or lost due to individual chunk losses will increase. The ex-
isting approaches to this reliability problem of deduplication-
based storage systems introduce data redundancy after files
have been deduplicated, which means that these schemes are
designed to protect individual unique data chunks rather than
individual files.

On the other hand, extensive prior studies of disk drive
failures show that data losses at the chunk level (i.e., data block
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Fig. 3. System architecture of PFP.

failures) are much more than disk replacements (i.e., disk fail-
ures) for both HDDs and flash-based SSDs in large-scale data
centers [1], [11], [18], [26]. Thus, only providing protection
against disk failures (e.g., deduplication-then-RAID) is not
sufficient to prevent file losses in deduplication-based storage
systems. Moreover, only protecting data chunks with high
reference counts is insufficient to guard against unavailability
of individual files. In contrast, protecting the files in their pre-
deduplication forms is arguably much more effective from the
point of view of individual files, which motivates our design
and implementation PFP scheme, which will be elaborated in
the next section.

III. THE DESIGN OF PFP

In this section, we first present an architectural overview of
our proposed PFP scheme, which is followed by a detailed
description of the PFP data structures and workflow. Then we
describe the failure recovery method in PFP.

A. PFP architectural overview

Figure 3 shows a system architecture overview of our
proposed PFP scheme in the context of a datacenter system.
As shown in the figure, PFP is an augmented module to
the File Systems in the storage node. PFP interacts with the
deduplication module, but is implemented independently of
the lower block-level storage systems. Thus, PFP is flexible
and portable for deployment in a variety of environments
that can benefit from data deduplication, such as redundancy-
rich virtual machine environments where the virtual machine
images are mostly identical but differ in a few data blocks [12].

PFP consists of four key functional components. Per-File
Parity Generation is responsible for splitting the incoming
write data into data chunks and calculating the XOR parity
chunks within each file based on a preset group size threshold.
Based on the chunk size, Data Deduplicator applies the data
deduplication functionality on the data chunks. Note that the
chunking functionality of the data deduplication of Figure 1 is
implemented in Per-File Parity Generation, while the last three
functionalities of Figure 1, fingerprinting, index querying, and
index/metadata updating, are implemented in Data Dedupli-
cator. Parity Store is responsible for storing the parity chunks
on the back-end storage devices. File Recovery is responsible
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for recovering the lost data upon unrecoverable chunk errors
or disk failures via the intra-file recovery process or inter-file
recovery process. It must be noticed that, in our PFP design,
the parity redundancy protection scheme is used to protect the
data chunks of files before these files are deduplicated. In the
following subsections, we will describe the workflows of the
normal operations and the failure recovery operations in detail.

B. Workflow of normal operations

PFP does not modify the internal workflow of data dedu-
plication. That is, it does not change how fingerprints are
calculated and how redundant data chunks are detected and
removed. It applies the parity generation procedure for each
file to protect the data before deduplication and stores the
parity metadata as part of the file’s metadata.

Figure 4 illustrates the workflow of processing a write
request in PFP. PFP relies on two key data structures to dedu-
plicate and recover the files, namely, Global Index Table and
Protection Table, as shown in Figure 4. Global Index Table
keeps all the information about fingerprints, addresses and
reference counts of the corresponding unique data chunks
that are already stored on disks. Protection Table maintains
the mapping information between the fingerprint (FP in the
figure) of each unique data chunk and a list of files that ref-
erence this data chunk. When the reference count of a unique
data chunk is increased or decreased in Global Index Table,
Protection Table is updated accordingly. A small temporary
buffer is maintained in memory to store the latest updates to
Protection Table. It is flushed and merged with the complete
Protection Table on the storage device periodically. During
the intra-file recovery and garbage collection periods, Pro-
tection Table is checked for data chunk recovery and secure
deletion [5].

Upon receiving a file, the file is first chunked and the
fingerprints of its data chunks are computed, by the underlying
data deduplication module. PFP then divides these data chunks
into different groups according to a preset group-size threshold
N (e. g., N = 3 as shown in Figure 4). If the last group
is smaller than N, all-0 chunks are added to form a group.

Note that the current design of PFP assumes that fixed size
chunking is used for simplicity. Small files (e.g., files smaller
than 8kB in current PFP) are usually filtered out or packed into
a large file by the data deduplication module [27]. For each
such N-data-chunk group, a single parity chunk is computed
by using the XOR operation on the N data chunks to form
an N + 1 parity group of N data chunks and 1 parity chunk
(e. g., N+1 = 4 as shown in Figure 4). Such a scheme can
tolerate a single chunk failure anywhere in the group. The
parity in a RAID5 scheme is also based on such a single
parity-check (SPC) scheme [19]. However, other XOR codes
or erasure codes are also applicable to PFP to provide much
higher reliability. Since the XOR parity is calculated on the
write path and within a file, there is no need to fetch the data
chunks that are stored on the back-end storage devices. Next,
the data chunks are deduplicated to eliminate the redundant
data chunks. For example, chunk A in File x is eliminated by
placing a pointer in the file metadata. After deduplication, the
unique data chunks and the parity chunks are written to the
storage devices. And the file metadata, Global Index Table
and Protection Table are updated accordingly.

The workflow of processing a read request is the same
as that in the standard deduplication-based storage systems,
including fetching the location information from the file meta-
data and Global Index Table, then reading the corresponding
data from the storage devices if there are no errors. Upon any
errors during read, PFP initiates its data recovery procedure
to reconstruct the lost data, which will be described in detail
in Section III-C.

C. Failure recovery

From the viewpoint of an individual file, failure recovery
incurred by data chunk failures can be classified into two
categories in PFP, namely, intra-file recovery and inter-file
recovery. Upon encountering a data chunk failure, PFP first
checks whether the corrupted data chunk is recoverable by
intra-file recovery. If the corrupted data chunk can be recov-
ered by the intra-file recovery procedure, PFP immediately
reads the other data chunks within the file and the correspond-
ing parity chunks, calculates the lost data chunks and returns
the file to the upper system. If the corrupted data chunk cannot
be recovered by the intra-file recovery procedure and the
reference count of the lost data chunk is greater than “1”, the
inter-file recovery procedure will be initiated. However, if the
reference count is “1”, meaning that the lost data chunk in one
file is not referenced by any other file, a failure will be reported
to the upper system. Obviously, the recovery of the corrupted
data chunks may be iterated across multiple files. It must be
noted that parity blocks can also be corrupted, which can only
be detected during file recovery because they are only accessed
for file recovery. During file recovery, whenever a parity block
failure is detected, the recovery process is considered failed
and turned to the next step, e.g., transitioning from intra-file
recovery to inter-file recovery or moving inter-file recovery
from the current inter-file parity group to a different one to
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reconstruct the failed data chunks. After the completion of the
file recovery, the corrupted parity block is also updated.

Intra-file recovery is a process in which the data recovery
can be executed within a file upon data chunk failures. Since
PFP generates parity chunks within each file, a certain number
of data chunk failures, depending on the parity scheme used
(e.g., RAID5 and RAID6), within each file can be recovered. If
a read failure is encountered on data chunk A during reading a
file, the other data chunks of the parity group containing chunk
A in File 1 (i.e., data chunks B and C) and the corresponding
parity chunk (i.e., P1) are fetched to reconstruct data chunk
A [20]. However, if PFP detects data chunk failures in multiple
data chunks within any given parity group in File 1 that are
beyond the recovery capability of the parity scheme used, e.g.,
data chunk B and data chunk C are corrupted while under
the RAID5 protection, the intra-file recovery process will be
unable to recover the lost data chunks.

Clearly, if data chunk B or data block C is a critical
data chunk referenced by other files, it can potentially be
reconstructed within those files through inter-file recovery.
Figure 5 shows an example of the inter-file recovery workflow
in PFP upon multiple data chunk failures. First, when PFP
finds that the data chunk failures cannot be reconstructed
by intra-file recovery, the reference counts of the failed data
chunks are checked in Global Index Table. If the reference
count is “1”, the corresponding data chunk is only referenced
by the current file being read and cannot be reconstructed from
any other file by inter-file recovery. Otherwise, the data chunk
is referenced by at least one other file and can potentially
be reconstructed from other files by inter-file recovery, such
as data chunk B in Figure 5. The information of the other
file (e.g., File n) is inquired from Protection Table. Then
data chunk B can be first reconstructed by intra-file recovery
within the parity group containing data chunk B in File n.
By successfully recovering data chunk B, data chunk C can
also be reconstructed from the parity group containing both
B and C in File 1 that is being read. Therefore, the file is
recovered by both inter-file recovery and intra-file recovery. It
must be noted that not all data chunk failures are recoverable.
For example, if data chunks B and C in File 1 fail and their
reference counts are both “1” under RAID5 protection, they
cannot be recovered, thus leading to data loss.

From the procedure of inter-file recovery, we can see that
data chunks with high reference counts are protected by
multiple parity groups within many files. Thus, read failures
on these critical data chunks do not render multiple files
unavailable. The protection of the critical data chunks is
similar to that of reference-count based replication schemes.
Since data chunk failures can be detected by the background
disk scrubbing, PFP can be incorporated into it to further
improve the system reliability [6], [16].

IV. RELIABILITY ANALYSIS

In this section, we adopt the widely used Mean Time To
Data Loss (MTTDL) metric to assess the reliability of DTR,
RCR and PFP [28]. We assume that the latent sector errors
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Fig. 5. The inter-file recovery workflow in PFP upon multiple chunk failures.

follow an exponential distribution of rate λ and repairs follow
an exponential distribution of rate µ . For RCR and PFP, since
the deduplication ratio is also an important factor for the
reliability analysis, we assume that the deduplication ratio is
α . For RCR, only the deduplicated data chunks are replicated.
For simplicity and without the loss of generality, we consider
the analytic model from the viewpoint of an individual file
consisting of 3 data blocks and 1 parity block because of the
per-file reliability emphasis and nature of this paper. This is
similar to and consistent with existing models of MTTDL that,
for example, consider a disk array consisting of 4 disks to keep
the models tractable yet meaningful [28].

Figure 6 shows the state transition diagrams of RCR, DTR
and PFP. We consider a data chunk lost if it is rendered
unreadable by latent sector errors or any other forms of failure.
For PFP, State <0> represents the normal state of a file when
its 4 chunks are all readable. State <1> represents the case
when one or more deduplicated data chunks (i.e., data chunks
with a reference count of greater than 1) of a file are lost and
State <2> represents the scenario where a unique data chunk
(i.e., chunk whose reference count is 1) is lost within the file.
The State of Data Loss means that the file is unavailable due
the unrecoverable loss of one or more of its chunks. The loss
of any single deduplicated data chunk would bring the file to
State <1>. The loss of any unique data chunk in State <0>
or State <1> would bring the file to State <2>. The loss
of any deduplicated data chunk in State <1> or State <2>
will not cause file to become unavailable because these lost
deduplicated data chunks can be recovered from the inter-file
recovery. However, the loss of any unique data chunk in State
<2> would move the file to the <Data Loss> state resulting
in the file’s becoming unavailable.

The Kolmogorov system of differential equations describing
the behavior of PFP is given in Equation (1):



d p0(t)
dt

=−4λ p0(t)+µ p1(t)+µ p2(t)

d p1(t)
dt

=−[3(1−α)λ +µ ]p1(t)+4αλ p0(t)

d p2(t)
dt

=−[3(1−α)λ +µ ]p2(t)+4(1−α)λ p0(t)+3(1−α)λ p1(t)

(1)

where pi(t) is the probability that the file is in state <i>
with the initial conditions of p0(0) = 1 and pi(0) = 0 for i ̸= 0.
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The Laplace transform of Equation (1) is:


sp∗0(s)−1 =−4λ p∗0(s)+µ p∗1(s)+µ p∗2(s)

sp∗1(s) =−[3(1−α)λ +µ]p∗1(s)+4αλ p∗0(s)

sp∗2(s) =−[3(1−α)λ +µ]p∗2(s)+4(1−α)λ p∗0(s)+3(1−α)λ p∗1(s)

(2)

Observing that the MTTDL of the storage system is given
by [28]:

MT T DL = ∑
i

p∗i (0) (3)

Using Equation (3) we solve the Laplace transform for the
file being considered for s= 0 and use Equation (2) to compute
the MTTDL of PFP:

MT T DLPFP =
[3(1−α)λ +µ ]2 +4αλ [3(1−α)+µ]+4λ (1−α)(3λ +µ)

12λ 2(1−α)2(3λ +µ)
(4)

For RCR, the loss of any unique data chunk with a reference
count of 1 would result in data loss. For DTR, the occurrence
of any two concurrent latent sector errors within a file would
result in data loss. It must be noted that the reliability for
DTR is overestimated here since we do not consider the failure
amplification from the viewpoint of an individual file. That is,
in practice, the loss of a single data chunk in DTR may cause
multiple files to become unavailable, amplifying/multiplying
the failure impact, as described in Section V-B.

Based on the state transition diagrams, the MTTDL of DTR
is:

MT T DLDT R =
7λ +µ
12λ 2 (5)
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The MTTDL of RCR is:

MT T DLRCR =
(3+α)λ +µ

4λ (1−α)(3λ +µ)
(6)

Figure 7 plots comparisons of file’s MTTDLs achieved by
DTR, RCR and PFP. The latent sector error rate λ is assumed
to be one error occurrence every ten thousand hours, which is
adopted from the failure analysis in real data sets [1], [16]. The
repair of a latent sector error could be fast if it is recoverable.
However, the detection of a latent sector error could take days
or even up to weeks. Based on the disk scrubbing studies, the
detection delay is set to be one week [16]. From Figure 7,
we can see that FPF improves the storage reliability in terms
of MTTDL by an average of 685.9 times and 2029.2 times
over the RCR and DTR schemes respectively. Moreover, FPF
increases MTTDL of files with increasing deduplication ratios.
When the deduplication ratio is 0, meaning that all data chunks
are unique data chunks, the MTTDLs of PFP and DTR are
the same. The gap in MTTDL between PFP and DTR widens
as the deduplication ratio increases, because PFP can provide
better protection for the data chunks with higher reference
counts.

V. PERFORMANCE EVALUATIONS

In this section, we first describe the experimental setup
and methodology. Then we evaluate the reliability of PFP-
optimized deduplication-based storage systems through ex-
tensive data-driven and fault injection experiments. Finally,
we present the performance results and analyze the storage
efficiency of PFP.

A. Experimental setup and methodology

We implement a prototype of PFP in a deduplication-based
storage system and use data-driven, failure-injection based
experiments to evaluate its reliability, performance and storage
efficiency. Chunk failures are injected on storage devices based
on the failure characteristics in real data centers [1], [13], [17].
In order to obtain a fair comparison among different schemes,
the exact pattern of chunk failure injections conducted on
any first comparative scheme’s experiments is recorded so
that the exact same failure-injection pattern is applied to all
other comparative schemes’ experiments. Moreover, the chunk
failures are injected within a fixed storage space for all the
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Fig. 8. Comparisons of numbers of file losses for different systems as a function of the number of chunk failures driven by the four data sets.

TABLE I
THE CHARACTERISTICS OF THE FOUR DATA SETS

Data sets Dedup. ratio Size (GB) Number of Files
Kernel 81.0% 330.3 29010461
Email 21.1% 424.1 5175912
FireFox 73.2% 547.9 316341
VMDK 39.5% 1621.2 12768

schemes. In other words, the experimental platform and the
failure injection method are the same for all the schemes.

All the experiments were conducted on a Dell PowerEdge
T320 node with an Intel Xeon E5-2407 CPU and 32GB
memory. In this system, a SAMSUNG HE253GJ SATA HDD
(250GB) is used to host the operating system (Ubuntu Linux
kernel version 4.2.0), the Linux software RAID module (i.e.,
MD) and other software. The LSI Logic MegaRAID SAS
2208 controller is used to connect eight SATA HDDs (Seagate
ST9750420AS 7200RPM 750GB). In the experiments, four
different data sets are used for the data-driven evaluation. The
four data sets are downloaded from four different systems,
including source codes of different Linux kernel versions
(Kernel) [23], email inbox and outbox files (Email), different
Firefox installation images (Firefox) [22] and Virtual Machine
images (VMDK) [25]. The four data sets represent different
data redundancy characteristics with a data chunk size of 4kB,
as summarized in Table I.

In this paper, we compare the reliability and performance
of PFP with those of the deduplication-then-RAID scheme
(DTR) [8], reference-count based replication scheme (RCR) [2]
and a deduplication-based storage system without any redun-
dancy protection (Dedupe). In the DTR scheme, a RAID5
set with a strip size of 256kB is used to protect the unique
data chunks and its parity group (stripe) size is the same as
that of the PFP scheme. For the RCR scheme, a function of
type k = f (w) = min(max(1, a + b log(w)), kmax) is used to
calculate the number of replicas k depending on weight w of
a data chunk. If a chunk only belongs to a single file, it is not
protected in the RCR scheme. In the function used in the RCR
scheme, a and b are constants that will yield different storage
space utilization and robustness levels. a and b are determined
experimentally and depend on the characteristics of the data
set. In our experiments, we set a to “0” and b to “1”. The
maximum number of replicas of a data chunk is capped at
kmax which is set to “4”. These parameters are set following
the example of and consistent with the original RCR study
published in [2].

B. Failure injection and analysis

In the chunk failure injection model, chunk failures include
data chunks, parity and replica chunks introduced by the DTR,
RCR and PFP schemes. Although file metadata is also stored
on storage devices, its size is much smaller than that of data
chunks. Since our main focus is on the reliability impact on
individual files by data chunk failures and the reliability impact
of metadata loss is the same for the different schemes, we
consider the reliability of metadata to be out of scope of this
paper. In the reliability evaluation, we measure the numbers of
files rendered unavailable by the injection of different numbers
of chunk failures on the storage devices. In the DTR and PFP
experiments, the parity group size is set to 4.

Figure 8 plots the number of file losses for different systems
as a function of the number of chunk failures driven by
the four data sets respectively. We draw several interesting
observations from this evaluation. First, for a given number of
chunk failures, the Dedupe scheme incurs the largest number
of file losses. It is noteworthy that, in the experiments driven
by the Kernel, Email and FireFox data sets, the number of
file losses is even larger than the number of chunk failures.
The reason is that the unavailable chunks may be referenced
by multiple files in these three data sets, leading to a typical
scenario in which a single chunk failure causes multiple files
to become unavailable. However, for the VMDK data set, an
individual file is usually very large, i.e., hundreds of MB.
Multiple chunk failures may cause only a single file to be
unavailable. Therefore, the number of file losses is smaller
than the number of chunk failures in this case.

Second, only protecting the data chunks with high reference
counts (RCR) or protecting the unique data chunks (DTR) is
not sufficient in protecting individual files from losses. For
the RCR scheme, failures of data chunks with a reference
count of 1 will cause file loss. Unlike the data sets with
high deduplication ratio where there are many chunks with
relatively high reference count, relatively few data chunks are
of reference count of more than 1 for data sets with low
deduplication ratio, such as Email and VMDK data sets. In the
experiments on these two data sets, the number of file losses
for the RCR scheme is larger than that for the DTR scheme.
In contrast, the number of file losses for the DTR scheme is
larger than that for the RCR scheme in the experiments driven
by the data sets with high deduplication ratio, such as Kernel
and FireFox data sets. The reason is that two or more chunk
failures occurring within an individual stripe of RAID5 in the
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Fig. 9. The percentage of recoverable data chunks by the PFP scheme as a
function of the group size, driven by the four data sets.

DTR scheme will render the stripe unavailable, causing a large
number of file losses. Besides, the loss of data chunks with
high reference counts will cause further file losses. Therefore,
for data sets with high deduplication ratios, protecting data
chunks with high reference counts plays a critically important
role in improving reliability of deduplication-based storage
systems [4]. As a result, for the high-deduplication-ratio date
sets Kernel and FireFox, the RCR scheme is shown to have
fewer file losses than the DTR scheme in Figure 8(a) and
Figure 8(c) respectively.

Third, the PFP scheme has the least number of file losses
among the four schemes. The reasons are twofold. On the
one hand, PFP calculates the parity redundancy with a small
parity group size (e.g. 4 in the experiments) within a file. Thus,
multiple parity chunks are generated for a large file. When
there are multiple chunk failures within a single file, these
lost chunks can be recovered by intra-file recovery if the lost
chunks are relatively evenly distributed in the file. If the lost
chunks are not evenly distributed, e.g., with an extreme case
where there are multiple chunk failures occurring in a single
parity group within a file, the lost data chunks with a high
reference count (larger than 1) can still be recovered by inter-
file recovery. Therefore, for data sets with high deduplication
ratio, the PFP scheme can tolerate a much larger number of
chunk failures without any file losses than the other schemes.
The only condition under which PFP fails to prevent file
losses is when at least two concurrent data chunk failures
occur within a single parity group and both of the two data
chunks are only referenced by a single file. The probability
of this happening is somewhat low, which is demonstrated
by the evaluation results driven by the four data sets. On the
other hand, data chunks with a high reference count have been
more securely protected by the fact that each of these critical
chunks is covered by the multiple XOR parity groups of their
corresponding referencing files in the PFP scheme. This makes
files containing critical data chunks much less vulnerable to
file losses in the PFP scheme than in the DTR scheme.

In the PFP scheme, the parity group size is an important
design parameter for system reliability, cost and performance.
To better understand the sensitivity of this parameter, we
conduct experiments on different parity group sizes: 4, 8, 12,
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Fig. 10. The normalized (to No-Dedupe) system throughput of the different
schemes driven by the four data sets.

16 and 20 in the PFP scheme. In the experiments, we randomly
inject 100,000 data chunk failures to measure how many data
chunks can be recovered. Figure 9 shows the percentage of
recoverable data chunks by the PFP scheme as a function of
the parity group size driven by the four data sets. The results
show that the percentage of recoverable data chunks decreases
as the group size increases. The reason is that the probability
of two concurrent data chunk failures within a larger parity
group is higher than that in a smaller group. If both failed data
chunks are each referenced by a single file, the corresponding
file will be lost.

C. Performance results

Figure 10 shows the normalized system throughput of the
different schemes driven by the four data sets. Compared with
the non-deduplication-based storage system (No-Dedupe), PFP
improves the system throughput by 28.4%, -4.2%, 25.4% and
14.2% for the Kernel, Email, FireFox and VMDK data sets,
respectively. The average throughput improvement is 16.0%.
The DTR and RCR schemes also improve the throughput the
No-Dedupe storage system by 20.8% and 22.6% on average
respectively. The reason is that deduplication-based storage
systems reduce the total written data significantly, compared
with the non-deduplication-based storage system. Reducing
write requests can reduce the queue length, thus directly
improving system performance [10].

However, compared with the DTR and RCR schemes, PFP
degrades the throughput by 5.7% on average. This perfor-
mance overhead of PFP stems from two factors. First, the
parity generation process is executed on the critical I/O path,
thus affecting system performance. However, from the eval-
uation results, the parity generation consumes much less I/O
bandwidth than the normal I/Os, which makes its impact rel-
atively small. Second, the 0-padding within small files affects
system performance. The number of small files in the Kernel
and Email data sets is much larger than that in the FireFox
and VMDK data sets, thus the performance degradation for
the former two data sets is much higher than that for the latter
two data sets. Note that PFP’s inferior performance to No-
Dedupe stems from the fact that the deduplication ratio of
the Email data set is only about 21.1%, which causes PFP to
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Fig. 11. The normalized (to No-Dedupe) storage efficiency of different
schemes driven by the four data sets.

incur much more storage overhead relative to No-Dedupe and
underperform No-Dedupe in system throughput.

D. Storage efficiency

The primary objective of data deduplication is to reduce
storage space requirement thus improving storage efficiency.
However, applying redundancy-based protection schemes in
deduplication-based storage systems re-introduce data redun-
dancy, which may negatively affect the storage efficiency. Fig-
ure 11 shows the normalized storage efficiency of the different
schemes driven by the four data sets. Storage efficiency in this
context is defined to be the total data volume written to storage
devices divided by the total data volume arrived at the file
system, thus the lower the better. We assume that the storage
efficiency is 1 for the No-Dedupe system. In this evaluation,
due to the small size of metadata and index, relative to data
chunks, we do not consider the storage overhead introduced
by metadata and fingerprint index. As before, the parity group
size in the DTR and PFP experiments is set to 4.

A few key conclusions are drawn from the evaluation.
First, deduplication-based storage systems outperform the non-
deduplication-based storage systems in terms of storage ef-
ficiency, which demonstrates the advantage of data dedupli-
cation. Second, DTR, RCR and PFP introduce much more
storage overhead than the Dedupe system. For data sets with
high deduplication ratios, such as Kernel and FireFox, the
RCR scheme introduces much more redundancy than the DTR
scheme. Third, the PFP scheme introduces less storage over-
head than the RCR scheme for the Kernel and FireFox data
sets. However, PFP introduces the largest storage overhead
for the Email and VMDK data sets. The reason is that PFP
applies the data redundancy protection on the original data set
that is larger than the deduplicated data set. Nevertheless, PFP
significantly improves the storage efficiency of the No-dedupe
system, by 46.1%, 48.2% and 14.5% for the Kernel, FireFox
and VMDK data sets, respectively. Although PFP degrades
the storage efficiency by 3.9% for the Email data sets, it
significantly outperforms the other schemes in terms of system
reliability. In conclusion, we argue that PFP’s significant ad-
vantage in system and file reliability over other deduplication-
based redundancy schemes DTR and RCR strongly justifies
its relatively small additional space overhead.

VI. RELATED WORK

Data deduplication as a space-efficient technique has re-
ceived a great deal of attention from both industry and
academia [27]. However, recent studies have suggested that
other important deduplication-specific problems such as relia-
bility have not been adequately addressed in the literature and
should be seriously considered [21].

The existing schemes addressing the reliability problem
in deduplication-based storage systems can be classified into
two categories, reference-count based replication (RCR) and
deduplication-then-RAID (DTR) [27]. To the best of our
knowledge, Bhagwat et al. [2] are the first to address the
reliability concern in deduplicated storage systems. They ob-
serve that deduplication alters the reliability of the stored data
due to the sharing of common data chunks. Thus, they use
replication-based storage to store the data chunks with high
reference counts and argue that the number of copies of a
data chunk should be logarithmic to the reference count of
the data chunk. HYDRAstor [3] is a deduplicated secondary
storage system that allows data chunks to be placed in different
resilience classes, each of which has a different level of
reliability. However, which resilience class to store each data
chunk is the responsibility of the user and has no relationship
to the sharing degree of the data chunks. Recently, Fu et al. [4]
propose a deliberate copy technique that allocates a small
dedicated physical area to store the data chunks with high
reference counts and first repairs the dedicated physical area
during RAID reconstruction upon failure. The reference-count
based replication methods only consider the importance of the
data chunks with high reference counts to alleviate the impact
of corrupted files caused by the loss of these data chunks.
However, from the point of view of a file, any loss of a file’s
constituent data chunks that are spread across multiple disks
will render the file unavailable. Thus, only protecting the data
chunks with high reference counts is not sufficient.

On the other hand, the DTR schemes directly apply a certain
erasure code on the unique data chunks after data dedupli-
cation. DDFS [29] improves the reliability of deduplication
storage by applying the software RAID-6 protection method
to the unique data chunks. Liu et al. [8] suggest that variable-
size chunking, i.e., CDC, should be preferred over fixed-size
chunking because the former has proven to yield more space
savings. The variable-size data chunks are first packed into
bigger fixed-size objects for erasure-code protection and then
stored on multiple storage nodes. HP-KVS [7] allows each
object to specify its own reliability level and uses the software
erasure coding to improve the data reliability. However, the
importance of all the unique data chunks is considered equally
in the DTR schemes. Since the same erasure code is used on
all unique data chunks after deduplication, the criticality of
the data chunks with high reference counts is not considered.

In summary, the existing solutions focus on only one of the
reliability-related parameters: either the criticality of losing a
chunk (RCR) or the probability of losing any chunk (DTR).
Different from these schemes, our proposed PFP scheme
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improves the reliability of deduplication-based storage systems
from the point of view of an individual file by coding the data
chunks of a file before they are deduplicated. Thus, the loss
of up to a certain number of the constituent data chunks of
a file does not cause file loss, depending on the erasure code
used and the deduplication ratio. Moreover, since the parity is
generated before deduplication and each file has its own parity
redundancy, the data chunks with high reference counts have
multiple parity protections. Thus, both the criticality of the
data chunks with high reference counts and the probability
of losing any given data chunk to cause a file failure are
considered in the PFP design.

Some studies also analyze the reliability of deduplication-
based storage systems theoretically. Li et al. [7] propose
combinatorial analysis of deduplication and erasure coding
to evaluate the system reliability. Rozier et al. [14], [15]
design and implement a modeling framework to evaluate
the reliability of a deduplication-based storage system with
different hardware and software configurations. Inspired by
and based on these theoretical analyses, we build an MTTDL-
based model to evaluate the reliability of different protection
schemes. Further, different from these theoretical analyses,
we build a system for deduplication-based storage systems,
populated with real data sets, to analyze the system reliability
under different situations of data corruption. We also conduct
experiments to examine the system throughput and storage
efficiency.

VII. CONCLUSION

Data deduplication has been widely used to improve the
storage efficiency in modern primary and secondary storage
systems. While increasingly important, the reliability issue of
deduplication-based storage systems has not received sufficient
attention. In this paper, we propose a per-file parity (PFP)
scheme to improve the reliability of deduplication-based stor-
age systems. PFP computes the parity for each parity group of
N chunks (N −1 data chunks and 1 parity chunk, where N is
configurable) within each file before the file is deduplicated.
Therefore, PFP can provide redundancy protection for all files
by intra-file recovery as well as a higher level of protection for
data chunks with high reference counts, critical data chunks,
by inter-file recovery. The reliability analysis and evaluations
show that PFP can provide better reliability than the state-of-
the-art DTR and RCR schemes.
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