HotR: Alleviating Read/Write Interference with Hot
Read Data Replication for Flash Storage

Suzhen Wuf, Weiwei Zhang?, Bo Mao'™, Hong Jiang*
fComputer Science Department of Xiamen University, Xiamen, Fujian, China
Software School of Xiamen University, Xiamen, Fujian, China
“Department of Computer Science & Engineering at the University of Texas-Arlington, USA

™Corresponding author: maobo@xmu.edu.cn

Abstract—The read/write interference problem of flash storage
remains a critical concern under workloads with a mixture of
read and write requests. To significantly improve the read perfor-
mance in face of read/write interference, we propose a Hot Data
Replication scheme for flash storage, called HotR. HotR utilizes
the asymmetric read and write performance characteristics of
flash-based SSDs and outsources the popular read data to a
surrogate space such as a dedicated spare flash chip or an over-
provisioned space within an SSD. By servicing some conflicted
read requests on the surrogate flash space, HotR can alleviate, if
not entirely eliminate, the contention between the read requests
and the on-going write requests. The evaluation results show
that HotR improves the state-of-the-art scheme in the system
performance and cost efficiency significantly. Consequently, the
tail-latency of the flash-based storage systems is also reduced.

Index Terms—Flash Storage, Read/Write Interference, Hot
Read Data Replication, Performance Evaluation

I. INTRODUCTION
Currently there are different types of NAND flash chips in

the storage market [5]. Earlier Single-Level Cell (SLC) NAND
flash chips and Multi-Level Cell (MLC) NAND flash chips
have been widely commercialized. Recently, Triple-Level Cell
(TLC) flash chips have been commercialized, which divide
the voltage range into eight windows, representing a 3-bit
value. Quadruple-Level Cell (QLC) flash chips, storing a 4-bit
value per cell, are recently released by Micron [13]. Encoding
more bits per cell increases the capacity of the SSD without
increasing the chip size, yet it also decreases reliability by
making it more difficult to correctly store and read the bits.
As it moves from SLC through MLC to TLC and on to QLC,
NAND flash chips are offering higher density and lower cost
but at the expense of lower performance and endurance. The
asymmetric read and write performance characteristics also
induce the read/write interference problem [1], [9], [14], [16].

Figure 1(a) shows the read and write latency for different
types of NAND flash chips. The performance gap between
read and write accesses are widened significantly along the
evolution path of flash chips from SLC to QLC, with in-
creasing read and write interference problem [9], [14]. This
interference refers to the phenomenon when on-going write
requests preempt available flash memory resource to block
read requests, which can cause significant read delays. Such
read and write interference results in unpredictable perfor-
mance and creates significant challenges in consolidated and

enterprise environments where read and write requests are
mixed. Unfortunately, this read/write interference problem has
not received adequate attention. Many existing studies focus on
the garbage-collection (GC) induced performance degradation
problem because GC operations are much more expensive for
flash storage than for other types of storage [6], [7], [20], [18].
However, our evaluations and analysis reveal that the read and
write interference is also very harmful for read performance
because the write requests are much more frequent than the
GC operations.

On the other hand, previous studies [10] and our workload
analysis suggest that application accesses are performed on
either read-only or write-only pages. Here we define three
page-access patterns. First, if the vast majority (e.g., 90% or
more) of the accesses to a data page are read (write) requests,
the page is characterized as read-only (write-only). Second, if
the accesses to a data page are interleaved with reads and
writes, the page is characterized as mixed-page. Moreover,
mixed-pages account for only a small portion of the total
pages. Based on the above observations, we propose a Hot
Data Replication scheme for flash storage, called HotR, to
alleviate the read/write interference problem. HotR utilizes the
asymmetry in read and write performance of flash storage
and outsources the popular read data pages to a surrogate
space such as a dedicated spare flash chip within an SSD.
By servicing some conflicted read requests on the surrogate
flash space, HotR can alleviate, if not entirely eliminate, the
contention between the read requests and the on-going write
requests. The evaluation results show that, compared with
the state-of-the-art approaches, HotR improves the system
performance and cost efficiency significantly. Consequently,
the tail-latency of the flash-based storage systems is also
reduced.

The rest of this paper is organized as follows. Background
and motivation are presented in Section II. We describe the
design of hot data replication in Section III. The performance
evaluation is presented in Section IV. We conclude this paper
in Section V.

II. BACKGROUND AND MOTIVATION
A. Read/Write interference problem
Besides erase operations, write operations are the perfor-

mance bottleneck of flash storage, not only because they

1500

B Page Read

B Page Write
1200

0.6

0.2 I
0

Fin2

o
=3
S

600

Latency (us)
Normalized Response Time

300

MSR_hm

SLC MLC TLC QLC

(a) Latency of different types of flash chips

HPC 46

BN Baseline ®8M Optimal

(b) The read/write interference problem

60%

®WI_Pages MRI_Pages ®Mix_Pages

40%
0% 20% .
0%

Fin2

40% 100% -
20% 60%

Ratio of Conflicted Reads
Percentage

HPC 28

MSR hm HPC 46 HPC 28

(c) Workload characteristics

Fig. 1. The preliminary performance observations and workload characteristics for the motivation of the study.

require more time than read operations, but also because they
block the subsequent read operations in the waiting queue [3],
[10], [11]. Under a concurrent workload with a mixture of read
and write requests, the on-going write requests preempt avail-
able flash storage resource so as to block read requests, which
we call the read/write interference problem. Such read/write
interference results in unpredictable performance and creates
significant challenges for flash storage design.

Figure 1(b) shows what percentage of read requests are
blocked by the on-going write requests and how the system
performance is degraded by the read/write interference, under
the four different workloads summarized in Table III. The
baseline system is the default configuration with no opti-
mizations and the optimal system refers to one where all the
interfered read requests are serviced without being blocked by
any of the interfering write requests. An average of 33.0%,
with a maximum of 55.9% read requests are blocked by the
on-going write requests, resulting of an average of 42.8%
performance degradation, and as much as 74.6% for the Fin2
workload. These results indicate that the read/write interfer-
ence problem significantly degrades system performance and
should be carefully addressed when designing flash-based
storage systems.

B. Related work
Solutions proposed to address the read/write interference

problem fall into two broad categories, I/O scheduler based
and redundancy based schemes. Among the most representa-
tive in the I/O scheduler based solutions, FIOS [12] schedules
requests with the awareness of read/write interference of
SSDs. Congming Gao et al. proposed PIQ [8] to minimize
the access interferences among I/O requests in one batch by
exploiting the rich parallelism of SSD. However, all these I/O
schedulers only separate read and write requests in batches
and the read/write interference problem still exists between
read and write request batches. To avoid these drawbacks, Wu
et al. [17] proposed a P/E (program/erase) suspension scheme,
a device-level scheduler, to reduce the write-induced interfer-
ence. However, frequently suspending/resuming the on-going
P/E operation introduces system overhead and suppresses
the write performance. Moreover, P/E suspension requires
hardware modification.

As an alternative to scheduler-based solutions, redundancy-
based solutions add space redundancy to separate interfered
reads from writes to minimize the impact of interference.

Recently, Skourtis et al. proposed Rails [14] that utilizes the
mirrored redundancy to provide predictable read performance
under read/write mixed workloads by physically separating
reads from writes. However, the space overhead of Rails is
quite high due to the replication redundancy. In contrast,
TTFlash [20] explores the parity redundancy among flash chips
within SSDs to alleviate the GC-induced read performance
variability by read reconstruction. The idea of TTFlash may
be applicable to alleviating write-induced read performance
degradation. However, our experimental results indicate that
TTFlash is harmful due to the increased number of internal
read requests on flash chips incurred by the read reconstruc-
tion, which worsens the read/write interference problem, as
revealed in the performance evaluation section IV. Moreover,
both Rails [14] and TTFlash [20] address the read/write
interference problem by adding and reorganizing the low-level
flash device resources, but without exploiting the high-level
workload characteristics.

C. Workload characteristics and motivation
Understanding the workload characteristics is important for

the design of storage systems. For this purpose, we categorize
and differentiate flash pages into the following three distinctive
types based on how data stored in a page is accessed by the
workloads:

(1) Read-intensive data page (RI): If the vast majority of
the accesses (>90%) to a data page are read requests,
this page is considered read intensive;

(2) Write-intensive data page (WI): If the vast majority of
the accesses (>90%) to a data page are write requests,
this page is considered write intensive;

(3) Mixed data (MIX): If the accesses to a data page are
neither RI nor WI, i.e., interleaved with reads and writes,
this page is considered mixed.

Figure 1(c) shows the distribution of the three types of
data pages for the four different workloads listed in Table III
in Section IV. Most read requests access the read-intensive
data pages and most write requests access the write-intensive
data pages. Only an average of 9.6% of the pages are mixed
data pages. These observations are also consistent with those
reported in the previous studies [10], [19]. More importantly,
these workload characteristics imply that the hot read-intensive
data pages are not frequently updated by write requests.

With the evolution of flash chips from SLC to MLC, TLC,
and QLC, the performance gap between the read and write

TABLE I
COMPARISON BETWEEN HOTR AND THE STATE-OF-THE-ART SCHEMES.

Scheme Main Idea Implementation Space overhead
FII)(I)% %?]2] Separates reads and writes in batches and exploits parallelism Host No
P/E suspension [17] Suspends the on-going P/E operations Hardware modification
Rails [14] Separates reads from writes by replication Host High
TTFlash [20] Read reconstruction under parity redundancy Controller Moderate
HotR Hot read data replication on surrogate flash chips Controller Moderate

accesses are widened substantially. Thus, the read performance
will not only be significantly degraded but also become
unpredictable by the on-going write requests. This, combined
with awareness of the workload characteristics, motivates the
design of HotR that proactively migrates the hot read-intensive
data pages to a pre-reserved space (e.g., a staging space such
as a dedicated flash chip or an over-provisioned space within
an SSD) to significantly alleviate, if not entirely eliminate,
the contention between the on-going write requests and the
incoming read requests. This helps simultaneously improve the
user I/O performance and reduce tail latency of flash-based
storage systems. Table I provides a high-level comparison
between HotR and the state-of-the-art schemes. Our proposed
HotR scheme is orthogonal to and can be easily incorporated
into the existing system level I/O schedulers to further alleviate
the read/write interference problem for flash-based SSDs.

III. HOTR
A. System overview of HotR

Figure 2 shows a system overview of our proposed HotR
within a flash-based SSD. In our current design, HotR is
incorporated into the Flash Translation Layer of the SSD.
However, HotR can also be implemented in other system
software layers, such as the I/O scheduler and RAID controller
layers for flash-based storage systems [12], [19].

As shown in Figure 2, HotR consists of five key functional
modules: Hot Data Identification, On-Demand Data Migrator,
Conflict Detection, Request Distributor, and Administration
Interface. Hot Data Identification is responsible for monitoring
the popularity of read data pages to help On-Demand Data
Migrator that migrates popular read data pages to and manages
the data layout of the redirected data in the staging space.
The staging space can be a dedicated flash chip or the over-
provisioned space within an SSD and we call both staging
space in the rest of the paper, as indicated in red in Figure 2.
Conflict Detection is responsible for detecting the conflicted
read requests blocked by the on-going write requests being
processed in flash chips. Request Distributor is responsible for
redirecting the user I/O requests to the proper places, either
the original addresses or ones in the staging space, according
to the Conflict Detection module. The original addresses in
SSDs are referred to as flash chips in the rest of the paper, as
indicated in blue in Figure 2.

B. Hot data identification and migration

Identifying the hot read data pages is very important for
HotR to migrate the popular read data pages in advance
to alleviate the read/write interference. To capture both the

HPC & Enterprise Workloads & .

“““““ e R
HotR Hot Data Administration
Identification Interface
Conflict Request On-demand
Detection Distributor Data Migrator

Flash

Flash Flash

Flash Chips

|

|

|

|

|

|

|

|

onflicted Read :
|

|

|

|

Staging Space |
|

|
|
[
|
|
|
|
|
| Read/Write
|
|
|
[
|
|
|

Flash-based SSD

Fig. 2. System overview of HotR.

recency and frequency access patterns of the user applications,
we designed and implemented the R-LRU data structure, an
LRU-style list in Hot data Identification module, as shown in
Figure 3. R-LRU identifies the popular read data pages on
each flash chips of SSD and stores the metadata information
of the most recently read data pages, including the D-offset,
R-offset and Count values defined below.

o D-offset indicates the read data page’s offset on the flash
chips. It is initialized when the read data page is identified
as a hot read data page and inserted into the R-LRU list.

o R-offset indicates the read data page’s offset in the staging
space. It is filled as NULL when the entry is initialized
and inserted into the R-LRU list. It is updated when the
read data page is requested and migrated to the staging
space. Thus it also indicates whether the read data page
is migrated to the staging space or not.

o Count indicates how many times the read data page has
been accessed to capture the access frequency pattern.

R_LRU list

Chip 1 Head —]{ Entry11 |{ Entry12 }--»{ Entryln %
Chip? Head | Eniyi]]
Chip 3 Hend | B3} o)

D-offset
R-offset
Count

Fig. 3. The R-LRU data structure.

Based on R-LRU, the most recently and frequently accessed
read data pages can be identified and proactively migrated
to the staging space. Moreover, the popular read data pages
are classified by their locations within each flash chip of the
SSD. It is easy to query and determine whether a conflicted
read request should be serviced in the staging space if an
on-going write request is located in the same flash chip.

Update R-LRU
|—On-Demand Migration

Flash Flash Flash

Flash Chips

Staging Space

Fig. 4. The workflows of processing write and read requests in HotR.

Since the capacity of the staging space is limited, not all
popular read data pages are migrated. In our current design,
the percentage of the popular data pages that can be migrated
is configured through the Administration Interface. Moreover,
when the popular read data pages of an SSD are requested by
user applications, they are concurrently migrated to the staging
space and R-LRU is accordingly updated with R-offset filled
as the read data page’s offset in the staging space by the On-
Demand Data Migrator module. Thus, the migration overhead
of popular data pages is reduced without affecting the system
performance of the flash storage.

C. Request processing workflow
Figure 4 shows the processing workflows for write and

read requests. In HotR, all write requests are serviced by
the flash chips. In order to ensure data consistency, the R-
LRU list is also checked and queried. If the write request hits
an entry in the R-LRU list and the R-offset is not NULL,
that entry is deleted from the R-LRU list to make sure that
the subsequent read requests fetch the up-to-date data pages.
The corresponding read data pages in the staging space are
marked as invalid simultaneously. If the R-offset is NULL, it
indicates that the read data page is not migrated to the staging
space. No matter the write requests hit R-LRU or not, the data
consistency of the subsequent read requests are not affected
because the migrated read data pages in the staging space are
always up-to-date and identical to the data pages stored on the
flash chips.

Due to the buffer and I/O scheduler optimizations, the write
requests arriving at the device level are usually bursty [12].
The large number of write requests and long program latency
make most flash chips busy and block the incoming read
requests. The Conflict Detection module monitors the program
status of the flash chips and returns the results indicating if
the incoming read requests are blocked. If a read request
is blocked, the Request Distributor module queries the R-
LRU list to check whether the read request hits in the R-
LRU list. If it hits and the corresponding R-offset is not
NULL, the read request is serviced by the staging space and
the corresponding count value is incremented by 1. If it hits
and the corresponding R-offset is NULL, the read request is
serviced by the flash chips. After the read data pages are
fetched from the flash chips and returned to the upper layer,
HotR writes them to the staging space simultaneously and
updates the R-offset and Count values of the entry in the R-
LRU list. For the non-hit read requests, entries are initialized

TABLE II
THE DEFAULT SSD MODEL PARAMETERS.
Parameter Value Parameter Value
Total Capacity 80GB Planes Per Package 8
Reserved Free Blocks 15% Blocks Per Plane 2048
Minimum Free Blocks 5% Pages Per Block 64
Cleaning Policy Greedy Page Size 4KB
TABLE III
THE ENTERPRISE AND HPC-LIKE WORKLOAD CHARACTERISTICS.
Traces Write Ratio | Total I/Os | Average Request Size
Fin2 17.6% 450,068 4.6KB
MSR_hm 72.9% 999,997 8.3KB
HPC_46 60.0% 499,999 6.3KB
HPC_28 80.0% 999,997 6.3KB

and inserted to the R-LRU list for the purpose of identification
of hot read data pages.

IV. PERFORMANCE EVALUATION

A. Evaluation setup and methodology

To evaluate the efficacy of our proposed HotR scheme,
we have implemented a prototype of the HotR scheme by
integrating it into an open-source SSD simulator developed
by Microsoft Research (MSR) [1]. The values of the SSD-
specific parameters used in the simulator and performance
characteristics of different NAND flash types are summarized
in Table II and Figure 1(a) respectively. By default, the TLC-
based NAND flash chip is used in the experimental evaluation.

We use both the realistic enterprise-scale workloads and
the synthetic HPC-like workloads. The Financial2 workload is
collected from OLTP applications running at a large financial
institution [15] and the other enterprise-scale workloads were
collected from the Microsoft Cambridge Research [4]. The
main characteristics of these workloads are summarized in
Table III. The synthetic HPC-like workloads allow us to
flexibly vary parameters such as read/write ratios, inter-arrival
time of requests, read access probability, and sequentiality. We
compare the HotR scheme with the original system without
any optimizations (Baseline), the Rails [14] and TTFlash [20]
schemes in terms of average response time and cost-latency
product that provides a measure of cost-effectiveness.

B. Performance results and analysis

Figure 5 shows the average response times, normalized
to that of the baseline system with no optimizations, driven
by the four workloads. By default, Rails uses 4+4 RAIDI
configuration and TTFlash uses 4+1 RAIDS5 configurations.
10% hot read data pages are migrated in HotR. First, the
HotR scheme reduces the average response time of the baseline
scheme by up to 54.0% with an average of 21.8%. The
significant performance improvement comes from the fact that
an average of 17.8% user read requests are redirected to the
staging space, as indicated in Figure 6. Most of these migrated
user read requests would have been blocked by the on-going
write requests without migration, resulting in the contention
between read requests and writes requests being significantly
alleviated. From the point of view of read requests, the average

H Baseline Rails TTFlash HotR

0.5_ I I I I
0

Fin2 MSR_hm HPC_46 HPC_28

Normalized Response Time

Fig. 5. The normalized average response times driven by the four workloads,
normalized to that of the baseline system with no optimizations.

response time is notably reduced by avoiding much of the long
latency caused by programming operations (writes).

Second, HotR performs much better than TTFlash but worse
than Rails. This is because, while avoiding the interference be-
tween user read requests and write requests by read reconstruc-
tion in parity-based redundancy, TTFlash’s read reconstruction
generates a large number of internal read requests that worsen
the read/write interference problem. As a result, TTFlash is
not extendable to nor suitable for addressing the read/write
interference problem for flash storage. By contrast, Rails can
not only eliminate the read/write interference problem, but
also take advantage of read balance offered by replication
redundancy. The percentages of redirected read requests by
the Rails and HotR schemes shown Figure 6 suggest that
not only all the interfered read requests but also some other
read requests are redirected by Rails. However, the significant
performance improvement achieved by Rails by leveraging
replication redundancy comes with a high space overhead.
Previous studies [2] have shown that replication is not cost
effective for flash-based storage, which is consistent with our
cost-effectiveness results.

60%

,::J m Blocked
7 Rails
0/ |-
g 4% HotR
«
5
=30%
e
(9]
)
S15%
[
j5]
&
0%
Fin2 MSR hm HPC 46 HPC 28

Fig. 6. The percentages of redirected read requests by the Rails and HotR
schemes. The Blocked indicates the percentage of read requests that are
blocked in the baseline system with no optimizations.

To investigate the impact of the HotR scheme on tail latency
under the different workloads, we plot the I/O latencies at the
95t 97th 98th 99" and 99.5!" percentiles in Figure 8. We
can see that HotR consistently and significantly outperforms
the baseline system in the tail latency performance. While tail
latency is mainly caused by the programming operations of
flash chips, the write-induced read performance degradations
are alleviated by the read request redirections in the HotR
scheme. As a result, the percentage of requests with long
latency is reduced accordingly. Figure 8 also shows that Rails
is the best and TTFlash is the worst in terms of tail latency

25 1

® Baseline Rails TTFlash HotR

Cost Effectiveness

Fin2 MSR_hm HPC 46 HPC 28

Fig. 7. The cost-effectiveness results of the difference schemes under the four
workloads, normalized to the baseline system with no optimizations and space
redundancy. Note that the lower the value, the better for the cost effectiveness.

among all the schemes. The reason is that Rails can eliminate
almost all read/write interferences by data replication. How-
ever, TTFlash’s read reconstruction generates a large number
of internal read requests that worsen the read/write interference
problem. For example, the response time of TTFlash is more
than 500ms, which is too large to be shown in the Figure 8
under the Fin2 and HPC_46 workloads.

To meaningfully estimate and quantify the cost-effectiveness
of HotR in comparison with the state-of-the-art redundancy-
based schemes, we use the cost-latency product as a measure
for cost-effectiveness, taking inspiration from the energy-
latency product that is commonly used in the computer ar-
chitecture literature to quantify energy efficiency. The cost is
mainly on the extra storage space that each scheme consumes,
normalized to the baseline system without any extra space
overhead. The lower the cost-latency product value of a
scheme, the more cost-effective the scheme is. Figure 7 shows
cost-effectiveness, in terms of the cost-latency product, of
the different schemes based on the latency and cost results
obtained from the trace-driven experiments presented earlier
in this section.

HotR is clearly the most cost effective, outperforming Rails
and TTFlash by 31.6% and 65.7% respectively, and achieving
even better cost-effectiveness than that of the baseline system
by 13.9%. The reasons behind HotR’s superiority in the
cost-effectiveness measure are two-fold. First, by exploiting
workload characteristics, only hot read data pages are migrated
to the staging space that cost much smaller space overhead
than the Rails and TTFlash schemes. Although not all the
conflicted read requests are migrated, an average of 63.0%
conflicted read requests are avoided by HotR. Second, by
placing hot read data pages in the staging space, the access
latency of the conflicted read requests is reduced signifi-
cantly. These conflicted read requests are serviced without
further interference from write requests, thus reducing their
access latency and improving system performance. TTFlash
avoids the interference between user read requests and user
write requests by read reconstruction that generates a large
number of internal read requests. These increased internal
read requests can conflict with the user write requests, thus
offsetting the advantage of read reconstruction and worsen-
ing the read/write interference problem. While TTFlash has
smaller space overhead than Rails, its performance is poorer

&
S
S
2

—&-Baseline Rails TTFlash HotR

250 /

200

150 /
100

50 =

=6-Baseline Rails HotR

S
=;

300

200

100

Response Time (ms)
Response Time (ms)

95.0% 97.0%

(a) Fin2

98.0% 99.0% 99.5% 95.0% 97.0%

(b) MSR_hm

98.0% 99.0% 99.5%

40 50

—&—-Baseline Rails HotR

—&—Baseline Rails TTFlash HotR

3

<

o

Response Time (ms)

I
2
5
3

~

=3

95.0% 97.0%

(c) HPC_46

98.0% 99.0% 99.5% 95.0% 97.0%

(d) HPC_28

98.0% 99.0%

99.5%

Fig. 8. Tail latencies for different schemes under the four workloads, where the X-axis shows the percentile and the Y-axis indicates the percentile tail latency.
Note that for Fin2 and HPC_46 workloads, the response times of TTFlash are more than 500 ms, too large to be shown in the Figure.

=@-Fin2 =¢=MSR_hm =#=HPC_46 =>HPC_28
80%
=
3
3 60%
o
w0
S 40%
<
£
S 20% |
5
=9
0%
SLC MLC TLC QLC

Different Types of Flash Chips

Fig. 9. The performance speedup results of the HotR scheme over the baseline
system with 10% read data pages being hot and migrated, as a function of
the different flash chips from SLC, to MLC, TLC and QLC, driven by the
four workloads.

than Rails. Consequently, neither Rails or TTFlash is cost
effective and they are even worse than the baseline system
without any optimizations. By contrast, HotR has a better
balance between system performance and space overhead by
exploiting the workload characteristics, thus achieving the best
cost effectiveness among all the schemes.

The performance of HotR scheme can be affected by the
types of NAND flash chips. Figure 9 shows the performance
speedup results of HotR scheme over the baseline system with
10% read data pages being hot and migrated, as a function of
the different flash chips from SLC, to MLC, TLC and QLC,
driven by the four workloads. As bit-per-cell density increases
from SLC to QLC, the performance speedup achieved by HotR
increases accordingly. The reason is that TLC- and QLC-
based flash chips have longer program latency, as indicated
in Figure 1(a), which significantly prolongs the latency of
the conflicted read requests. Moreover, longer program latency
also causes larger percentage of read requests being blocked
by the on-going write requests. On the other hand, we also see
that HotR improves system performance for SLC- and MLC-
based flash storage, though the performance is not significant
as that for TLC- and QLC-based flash storage.

V. CONCLUSION

This paper proposes HotR to address the read/write inter-
ference problem of flash storage by exploiting both the work-
load characteristics and device characteristics. HotR scheme
removes some conflicted read requests from the original
addresses in flash chips by proactively replicating the fre-
quent read data pages into the staging space. The extensive
trace-driven experimental results show that HotR significantly
improves the system performance and cost efficiency of the

state-of-the-art approaches. Consequently, the tail-latency of
the flash-based storage systems is also reduced.

ACKNOWLEDGEMENT
This work is supported by the National Natural Sci-

ence Foundation of China under Grant No. 61872305, No.
61772439, No. U1705261, and No. 61472336, the US National
Science Foundation under Grant No. CCF-1704504 and No.
CCF-1629625.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse, and
R. Panigrahy. Design Tradeoffs for SSD Performance. In USENIX
ATC’08, Jun. 2008.

[2] M. Balakrishnan, A. Kadav, V. Prabhakaran, and Dahlia Malkhi. Dif-
ferential RAID: Rethinking RAID for SSD Reliability. In EuroSys’10,
Apr. 2010.

[3] G. Belelloch, J. Fineman, P. Gibbons, Y. Gu, and J. Shun. Sorting with
Asymmetric Read and Write Costs. In SPAA’I5, Jun. 2015.

[4] Block I/0 Traces in SNIA. http://iotta.snia.org/tracetypes/3.

[5] Y. Cai, S. Ghose, E. Haratsch, Y. Luo, and O. Mutlu. Error Character-
ization, Mitigation, and Recovery in Flash-Memory-Based Solid-State
Drives. Proceedings of the IEEE, 105(9):1666—-1704, 2017.

[6] W. Choi, M. Jung, and M. Kandemir. Parallelizing Garbage Collection
with I/O to Improve Flash Resource Utilization. In HPDC’18, Jun. 2018.

[71 J. Cui, Y. Zhang, J. Huang, W. Wu, and J. Yang. ShadowGC:
Cooperative Garbage Collection with Multi-level Buffer for Performance
Improvement in NAND Flash-based SSDs. In DATE’18, Mar. 2018.

[8] C. Gao, L. Shi, M. Zhao, C. Xue, K. Wu, and E. Sha. Exploiting
parallelism in I/O scheduling for access conflict minimization in flash-
based solid state drives. In MSST’14, May 2014.

[9] S. Koh, C. Lee, M. Kwon, and M. Jung. Exploring System Challenges

of Ultra-Low Latency Solid State Drives. In HotStorage’18, Jun. 2018.

Q. Li, L. Shi, C. Xue, K. Wu, C. Ji, Q. Zhuge, and E. Sha. Access

Characteristic Guided Read and Write Cost Regulation for Performance

Improvement on Flash Memory. In FAST’16, Feb. 2016.

B. Mao and S. Wu. Exploiting Request Characteristics and Internal

Parallelism to Improve SSD Performance. In /CCD’15, Oct. 2015.

S. Park and K. Shen. FIOS: A Fair, Efficient Flash I/O Scheduler. In

FAST’12, Feb. 2012.

QLC. https://www.micron.com/products/advanced-solutions/qlc-nand.

D. Skourtis, D. Achlioptas, N. Watkins, C. Maltzahn, and S. Brandt.

Flash on Rails: Consistent Flash Performance through Redundancy. In

USENIX’14, Aug. 2014.

UMass Trace Repository. http://traces.cs.umass.edu/index.php/.

H. Wang, J. Zhang, S. Shridhar, G. Park, M. Jung, and N. Kim. DUANG:

Fast and Lightweight Page Migration in Asymmetric Memory Systems.

In HPCA’16, Mar. 2016.

G. Wu and B. He. Reducing SSD Read Latency via NAND Flash

Program and Erase Suspension. In FAST’12, Feb. 2012.

S. Wu, Y. Lin, B. Mao, and H. Jiang. GCaR: Garbage Collection aware

Cache Management with Improved Performance for Flash-based SSDs.

In ICS’16, Jun. 2016.

S. Wu, W. Zhu, G. Liu, H. Jiang, and B. Mao. GC-aware Request

Steering with Improved Performance and Reliability for SSD-based

RAIDs. In IPDPS’18, May 2018.

S. Yan, H. Li, M. Hao, H. Tong, S. Sundararaman, A. Chien, and

H. Gunawi. Tiny-Tail Flash: Near-Perfect Elimination of Garbage

Collection Tail Latencies in NAND SSDs. In FAST’17, Feb. 2017.

[10]

[11]
[12]

[13]
[14]

[15]
[16]

(17]

[18]

[19]

[20]

