PandaSync: Network and Workload aware Hybrid
Cloud Sync Optimization

Suzhen Wu*, Longquan Liu*, Hong Jiang*, Hao Che*, Bo Mao™™
*Computer Science Department of Xiamen University, China
fDepartment of Computer Science and Engineering, The University of Texas at Arlington, USA
TSoftware School of Xiamen University, China

™Corresponding author: maobo@xmu.edu.cn

Abstract—With the widespread use and increasing popularity
of cloud storage, more and more data are moved to the cloud,
making cloud storage a platform for both data sharing among
users, devices, and data backup for data reliability. Thus, it is
critically important to ensure data consistency through efficient
cloud synchronization (sync). The existing cloud synchronization
schemes are either delta sync, which sends only the updated
portion of a file but incurs high compute overhead of data
deduplication for small files, or full sync, which avoids data
deduplication by sending the full file but wastes network band-
width and lengthens sync time by transferring significant amount
of redundant data over the networks for large files. In this
paper, we propose a hybrid cloud sync scheme, PandaSync,
that combines full sync and delta sync dynamically based on
file size and network conditions. To further improve small-file
sync performance, we propose an optimization, Full2Sync, that
merges the sync request with the file-sending request to reduce
the number of network round-trips between the client and the
cloud servers. The experiments conducted on our lightweight
prototype implementation of PandaSync show that PandaSync
reduces the sync time by an average of 85.1% and 74.6% from
the delta sync scheme and full sync scheme, respectively.

Index Terms—Cloud Storage; Full Synchronization; Delta
Synchronization; Performance Evaluation

I. INTRODUCTION

Due to cost-effectiveness and ease of management, more
and more companies and users have moved or planned to
move data out of their own local storage into the cloud
storage systems. The use of the cloud storage has become
so pervasive that many organizations are adopting a “cloud-
first” approach [12]. The most recent annual cloud computing
survey by the venture firm North Bridge found that 50% of the
organizations had either a cloud-first or cloud-only policy and
more than 90% used the cloud in some way [31]. IDC predicts
that the collective sum of the world’s data will grow to 175ZB
and 49% data will be stored in public cloud environments
by 2025 [18]. In terms of the usages of cloud storage, file
sharing and collaboration continue to be the category with the
greatest variety of cloud services in use (e.g. Slack [29], Cisco
WebEx [7], etc.), accounting for 20.9% of cloud services in
use. Rounding out the top 5 categories are finance (7.5%), IT
services (7.1%), cloud infrastructure (7.1%), and development
(6.5%) [8].

One of the biggest advantages provided by cloud storage
is file sharing and collaboration, which enables the files to

be synchronized conveniently across multiple devices/users
anywhere and anytime via Internet. The data synchronization
(sync) is a primary and critical technique for cloud storage
services that allows the clients to automatically make the local
files consistent with the files stored in the remote cloud data
centers. From the end user’s perspective, higher sync perfor-
mance can provide better perceived service experience and
avoid inconsistency among different clients/devices and the
cloud data centers [1], [28]. From the cloud storage provider’s
perspective, shorter sync latency means higher system through-
put, which directly improves data center performance and cost
efficiency. Thus, the sync performance is considered the most
important factor for cloud storage services and directly affects
the system consistency and throughput [9], [10], [32].

The existing cloud sync schemes can be characterized as
either full sync or delta sync, with the latter being much
more widely studied [9], [13], [36], [37]. A full sync scheme
synchronizes the whole file no matter how many changes are
made to the file; whereas, in a delta sync scheme only the
changes made to the file are synchronized to significantly
reduce network transmission, which explains why it is much
more preferred in recent studies. However, the delta sync
schemes incur significant computing overhead in the critical
I/O path, also a key problem existing studies try to address.
Our preliminary performance evaluations reveal that the com-
puting and network overhead can be too high for a delta
sync scheme to be adopted for synchronizing small files even
when the delta is small, i.e., with high data redundancy in
such files. For example, with 3KB content updated in a 10KB
file, the delta sync scheme with fixed-size chunking increases
sync latency by more than 20% over the full sync scheme.
Moreover, the network latency accounts more than 50% of
the sync latency for small-file synchronization.

On the other hand, previous studies on the workload charac-
teristics of the enterprise and cloud environments have shown
that small files dominate, meaning that small files account for
the vast majority of all files [2], [19], [24], [33], [38]. More-
over, these small files also account for more than 80% of all
the user operations [2], [24]. Thus, the performance of small-
files accesses is critical to the overall system performance
and directly affects user experience [16], [17]. However,
most recent cloud sync schemes, including the state-of-the-art

QuickSync [9], DeltaCFS [37], and WebDelta [36], are delta-
based sync schemes. This, combined with our experimental
evaluations (Section IV), suggests that a sync scheme for
cloud storage that leverages the strengths of both the full sync
scheme and delta sync scheme in a sensible way adapting
to the network performance and characteristics of files to be
synchronized, is perhaps the most effective one. Moreover, the
synchronization of small files should be governed in part by
the Amdahl’s law [15] to strike an optimal balance between
performance and overhead.

To address the sync efficiency issue in cloud storage,
we propose a hybrid data sync approach, called PandaSync,
that dynamically switches between full sync and delta sync,
adapting to the changes in both the network performance and
the workload characteristics. Different from the existing sync
approaches, PandaSync utilizes full sync for small files and
delta sync for large files, where the size threshold between
small and large files is based on the network round-trip times.
By exploiting the workload characteristics and network condi-
tions, the advantages of both full sync and delta sync schemes
are exploited and their disadvantages alleviated. Moreover,
PandaSync merges the sync request and file-sending request
into a single request to further reduce the number of network
round-trip interactions between clients and cloud servers. The
extensive benchmark- and trace-driven experiments conducted
on our lightweight prototype implementation of PandaSync
demonstrate that PandaSync significantly outperforms both the
state-of-the-art full sync and delta sync schemes.

More specifically, this paper makes the following main
contributions:

¢ Our experimental analysis shows that while delta sync
schemes incur high processing overhead for small files,
full sync schemes are highly bandwidth inefficient and
thus induce long latency by their repeated data transfer-
ring of redundant large files.

e We propose a hybrid sync scheme, PandaSync, which
combines the strengths of delta sync and full sync by dy-
namically and judiciously switching between them based
on network performance and sync file characteristics.
Moreover, PandaSync further reduces the network latency
by merging the sync request and file-sending request for
small-file synchronization.

« We conduct experiments on our lightweight prototype
implementation to evaluate the PandaSync performance
and compare it with the existing state-of-the-art delta sync
scheme and full sync scheme with both benchmark-driven
and trace-driven experiments.

The rest of this paper is organized as follows. Background
and Motivation are presented in Section II. We describe
the PandaSync architecture and design in Section III. The
performance evaluation is presented in Section IV. We review
the related work in Section V and conclude this paper in
Section VI.

Client

% ‘ New Version

Sync File:

[B

—
£ : Changed Content

Old Version | @ New Version

Fig. 1. The full and delta synchronization schemes.

II. BACKGROUND AND MOTIVATION

In this section, we first present key problems associated with
cloud sync and some important observations drawn from our
preliminary analysis and evaluation results. Then we present
the workload characteristics to motivate the PandaSync study.

A. Cloud sync problems

Cloud synchronization is a process of keeping copies of files
in multiple devices/users up to date and consistent throughout
the cloud. For cloud sync, a user first sets up a cloud-based
folder, to which the desired files are copied. This folder makes
the files accessible via a cloud interface to multiple users, on
whatever device they are using. When a user updates a file on
the device, the modified file or changes made to the file are
automatically synchronized with the cloud folder, along with
the corresponding folders on other devices/users [5]. Figure 1
shows two sync schemes currently used by different cloud
storage providers: (1) the full sync scheme which is used
by Google Drive [14] and Microsoft OneDrive [25], and (2)
the delta sync scheme which is used by Dropbox [11] and
Seafile [27]. Moreover, two representative delta algorithms
are used in delta sync, fixed-size chunking which is used by
Dropbox and Content Defined Chunking (CDC) which is used
by Seafile.

We examine the efficiency of the above cloud sync methods
in terms of the sync time. Figure 2 shows the results as a
function of file size assuming an updated content of 3KB
located in the middle of the file and a network Round-Trip
Time (RTT) of 30ms, where F, D and S denote full sync,
Dropbox_rsync (Delta sync with fixed-size chunking scheme),
and Seafile_cdc (Delta sync with CDC scheme) respectively.
The results indicate that full sync performs better than delta
sync when the file size is small. As the file size increases,
delta sync with either fixed-size chunking or CDC becomes
advantageous. To better understand the performance results,
the sync time is broken down into that spent on the client
side, network transmission and the server side, as shown in
Figure 2(b). The network transmission dominates the total
sync time for the small-file sync both for full sync and delta
sync schemes, implying that the network transmission can be
optimized by reducing the network interactive time between
clients and cloud servers. Moreover, the computing overhead
in delta sync overwhelms the network transmission time by
a big margin as the file size increases, especially for the
CDC-based delta sync scheme. This observation is not only
consistent with those made in previous studies but also the key

1.8 4
—+—F (Full Sync)
© 16
E D (Dropbox)
g 147 S (Seafile)
Z 1.2
=
=
E 08 -
=
Z 06
0.4 : ‘
10KB 50KB 100KB 500KB IMB 10MB
File Size

(a) Sync Time

Client Network B Server
25
7 7
g 77
215 ??
2 7%
g)
2 05 % % Z ¢é§
'y 1 -
0 %" %S Fbps FbpS F DS
10KB 50KB 100KB 10MB
File Size

(b) Sync Time Profile

Fig. 2. The sync time as a function of file size with 3KB content of each being updated and 30ms network RTT.

problem they try to address [9], [36], [37]. In the evaluations,
we also conduct experiments with 30% content of a file being
updated and the results show similar trends.

In summary, two important observations are made from the
performance results. First, the full sync scheme is much more
efficient than the delta sync scheme for small-file synchro-
nization. Moreover, delta sync is not effective for small files
because they contribute relatively very little to redundancy
detection and reduction, which is also the reason why that a
lot of deduplication schemes simply skip small files. Second,
the network transmission dominates the overall sync time for
small-file synchronization, because in this case the round-trip
time between the client and server substantially overshadows
the data transfer time over the network. Unfortunately, none
of these observed issues has been addressed by the previous
studies.

B. The workload characteristics

To better support the upper layer applications, the charac-
teristics of workloads generated by these applications must be
considered in the storage system design. For example, the I/O
request size distribution is an important factor in workload
characterization. Knowing the I/O request size can directly
help with appropriate configuration of certain parameters, such
as the choice of data sync methods. Previous studies on the
workload characteristics have clearly shown that about 50%
of files are smaller than 4KB and over 80% of files are
smaller than 128KB in enterprise and cloud environments [38].
A recent study of cloud traces show that a vast majority
(77%) of files are small in size (less than 100KB) [19]. These
small files also receive a vast majority (over 80%) of file
references [2], [24], [34]. Moreover, the distribution of file
size has changed very little over the years [24], [38], which
indicates that optimizing storage systems for small files are
extremely important.

However, the existing studies are all trying to address the
problem of computing overhead associated with the delta
sync scheme [9], [36], [37] even for the small-file sync. Our
preliminary evaluation results reveal that delta sync is not
effective for small files due to the relatively small data-volume
saving but very high computational overhead, in addition to

U f/ \
ser
File Size Monitor |< N Sync Methods
Selector
Full2Sync
Delta Sync

0
Lol

PandaSync

Network-aware
Dynamic Threshold

Sync operation
Network
Monitor

ﬁ Threshold Selector
Sync folder
™

N

Client Server

Fig. 3. System architecture of PandaSync.

the network transmission and round-trip delays. In contrast, the
full sync scheme outperforms the delta sync scheme when the
file sizes are small. These important observations, combined
with the urgent need to address the sync efficiency problem
of cloud storage systems, motivate us to propose PandaSync,
which dynamically switches between the two sync schemes
adapting to changes in file size and network performance.
PandaSync retains the desirable advantages of both the full
sync and delta sync methods to improve the performance of
cloud storage systems.

III. THE DESIGN OF PANDASYNC

In this section, we first present the system overview of
PandaSync. Then we present its hybrid data synchronization
scheme and the network optimization method for small-file
synchronization, followed by the data consistency considera-
tion.

A. PandaSync system overview

Figure 3 shows a system architecture of PandaSync. It
is a set of enhanced and extended modules to the existing
sync modules and mainly located on the client side. It is
nontrivial to combine both full sync and delta sync into one
system, because how to choose the specific data sync method
is not predetermined and highly dependent on the workload
characteristics and network performance, such as file size
and current network RTT. PandaSync can be turned off and
switched to either Full Sync scheme or Delta Sync scheme to
provide much better flexibility.

Sync
operation,
Client Server

Delta Sync ﬁ

Sync request of file f°

Server

Client

Full2Sync @

Syne request of file ” &

Send literal byte & checksun N Y
< o

ACK

File size monitor &
Network-aware
dynamic threshold

Segmentation

Construct
& Fingerprint

new file £ Checksum list of file f

Matching Tokens &
Literal Bytes

Construct
ACK new file f*

Fig. 4. The sync method selection workflow in PandaSync.

Search & Compare
& Generate literal bytes

PandaSync has three main functional modules: File
Size Monitor, Network-aware Dynamic Threshold and Sync
Method Selector. The Network-aware Dynamic Threshold
module is responsible for determining the size threshold
between large files and small files based on the network
performance which is detailed in the next subsection. Upon
the initiation of a sync operation, the File Size Monitor first
fetches the information regarding the size of the file and
calculates the checksum values for later consistency checking.
This information is sent and gathered in the Sync Method
Selector module which chooses an appropriate sync method
between full sync and delta sync. In the Figure 3, Full2Sync
is an optimization to the full sync method for small files.

B. Hybrid data synchronization

As experimentally revealed in subsection II-A, no single,
fixed sync method performs the best all the time. The most
efficient sync method for a given file is highly dependent
on the file size and the network performance. The file size
information of a file is readily available when the file is
being prepared for sync. However, the network performance
information is dynamic and changes with time. With different
network conditions, the best sync method for a given file may
be different as well.

Figure 4 shows the sync method selection workflow in Pan-
daSync. When a file is ready for sync, the file size information
is obtained and compared with the size threshold determined
by the Network-aware Dynamic Threshold module. If the file
size is larger than the size threshold, the delta sync scheme is
selected for the file. Otherwise, an enhanced full sync scheme
for more efficient small-file full sync, Full2Sync, is used for
the file. Thus, the size threshold is a key to sync method
selection in PandaSync which in turn is highly dependent on
the network performance.

Network-aware Dynamic Threshold module is responsi-
ble for tracking and monitoring the network performance
to determine the appropriate size threshold. The cloud sync
communication relies on TCP and its performance is affected
by network factors such as round-trip time (RTT) [9]. The
network RTT is the duration from the time when a packet
is transmitted to the network until time when the acknowl-
edgement of the packet is received by the sender, e.g., the
sum of the path latencies in the forward and reverse directions
for the packet. The network RTT can be influenced by many

w
]
=3

A —Theoretical Threshold
-4 Experimental Threshold

] [
£ »
(=] (=]

[
=3
S

File Size Threshold (KB)
B 2

®
S

A

IS
=)

30 40 50 80 100 150 200

Network Round-Trip Time (ms)

Fig. 5. A comparison between theoretical and experimental results on the file
size threshold based on the Dropbox_rsync scheme and Full2Sync scheme.

factors, such as network queueing and path length, which
may change over time. Thus, the Network-aware Dynamic
Threshold module needs to adaptively track the network RTT
values at the client side through the “ping” command. Once
the network RTT value is obtained, the corresponding size
threshold is determined and applied to the subsequent sync
files.

The size threshold is essentially a file size value at which
the sync latencies of the full sync and the delta sync scheme
are expected to be the same. Here we assume that 30% new
content is inserted in the middle of the file. Let R denote the
network RTT and F the sync file size. Some parameters, such
as processing and querying latencies, are derived from real
experiments. The sync time is calculated within client, network
and server parts. Based on these values and definitions, the file
sync times for Dropbox_rsync and Full2Sync can be expressed
by Formula (1) and Formula (2).

0.392%R
SyncTimepropbox_rsyne = 594 + F (0.068 + T) 1)
2.25%R
SyncTimepisyne = 262+ F* (0.2 + T))

By making the two sync times equal with the two variables
(network RTT and sync file size), we have the approximate
relationship between network RTT and sync file size threshold,
shown in Formula (3).

. 332
T 0.14140.029 R

To validate the correctness of Formula (3), we conduct real
experiments to determine the size threshold. Figure 5 shows a
comparison between theoretic and experimental results on the
sync file size threshold, indicating a reasonably close match
between the two. Based on the validation, we can use Formula
(3) to calculate the size threshold once the network RTT value
is measured.

3)

C. Small-file sync optimization

Accesses to small files dominate user file accesses in the
cloud, thus optimizing small-file sync is critically important.

Server Server

W, < Q A

E nhamement

Syne request of file |:> Sync request of file £
& Send all literal byte
& checksum
Fi t
Checksum list of f (null) e:;%??;::[‘]‘ﬁg -

Construct

Generate || Flo
ACK new file f

literal bytes Literal bytes

Construct B
new file

(a) Full Sync (b) Full2Sync

Fig. 6. A comparison of the sync workflow between the full sync method
and the new full2sync method.

While full sync can provide better sync performance than delta
sync, the sync performance is still dominated by the network
delays for small files. The reason is that the sync process
separates the sync request from sync data by default, which
significantly increases the number of round-trips. To address
this problem and reduce the number of round-trips for small-
file sync, we propose an enhanced full sync, called Full2Sync,
by properly piggybacking in the sync request the file data to
maximize the utilization of network bandwidth by reducing
the number of client and server interactions.

Figure 6 shows a comparison of the sync workflow between
the original full sync method and the proposed Full2Sync
method in PandaSync. In the original full sync method, when a
user edits a file from f to {’, the client instantly sends a request
to the server for file sync. On receiving the request, the server
directly removes the old file f and return a null checksum list
of f to the client, telling the user that the modified file f* in
the server is a new file and there is no similar files on the
server side. After that, based on the null checksum list of f,
the client will directly send the file data in its entirety to the
server to create the new file f’. Finally, the server returns an
acknowledgment to the client to conclude the process.

To facilitate Full2Sync, both the sender and receiver pro-
cesses are enhanced to encapsulate the sync data within the
sync request to reduce the number of round-trips during small-
file sync operations. When a sync request is initiated in the
client, not only the metadata, such as the sync file list and
the files’ checksums, but also the data of the small files to be
synced, are enclosed in a single package. Upon receiving the
package in the cloud server, the receiver process checks the
files’ checksums based on the sync file list and their checksums
to determine which file should be updated. If it needs a
replacement, a temporary file is created and reconstructed
based on the sync data. The temporary file’s checksum will
be compared with the checksum in the sync request to make
sure that the reconstructed file is correct. Otherwise the sync
request will be resent. After the successful replacement, the
new file’s metadata is updated and the ACK is sent to the
sender to indicate that the sync process is completed, as
illustrated in Figure 6. Compared with the traditional full sync
workflow, not only is the number of round-trips reduced, but
also the network bandwidth efficiency is improved.

D. Data consistency

Data consistency in our PandaSync design refers to the
following two requirements: (1) The sync data must be atom-
ically stored on the cloud server, (2) The sync data shared by
multiple devices/users must be consistent.

First, the synced data in the cloud server must be consistent
with the data generated from the client. In the traditional sync
schemes, data consistency is guaranteed by the checksums as-
sociated with the sync requests. In PandaSync, the sync data is
encapsulated in the sync request, while the checksums are also
packaged and double checked once the file is reconstructed
in the cloud server. Thus, PandaSync provides the same data
consistency guarantees between the synced data in the cloud
server and the data generated from the client as the traditional
sync schemes.

Second, PandaSync provides better data consistency guar-
antees for synced data that is shared by multiple devices/users.
One of the biggest advantages of cloud storage is data sharing
and accessibility anytime and anywhere via the Internet. How-
ever, in order to make the data consistently and timely shared
by multiple devices/users anywhere, the sync latency must be
as short as possible. Shorter sync latency is also the main
objective of all the existing cloud sync optimizations [9], [36],
[37]. Compared with the existing optimizations, PandaSync
dynamically and judiciously switches between the full sync
scheme and the delta sync scheme based on the file’s character-
istics and network performance. Moreover, with its Full2Sync
enhancement, PandaSync further optimizes the small-file sync
workflow, thus reducing the sync latency significantly.

IV. PERFORMANCE EVALUATIONS

In this section, we first describe the prototype implemen-
tation of PandaSync, followed by the experimental setup and
methodology. Then we evaluate the performance of PandaSync
through both benchmark-driven and trace-driven experiments.

A. Prototype implementation

The PandaSync prototype is built on top of the Rsync
version 3.1.3 [26]. It adds and revises 2945 LOC on the
client side and 1152 LOC on the server side. Both SSH and
RSH can be used for the remote communications and SSH
is used in our evaluations by default in Rsync. Once the
connection between the client and the server is established,
the SmokePing [30] module, embedded in the Network-aware
Dynamic Threshold module, starts to monitor the network
latency. To accelerate the data processing and transferring,
a pool of concurrent threads is created to parallelize the
sync process. In addition, Full2Sync in PandaSync simplifies
the sync logic between the client and server by changing
the original sender, generator, and receiver into sender and
receiver. The receiver process on the server side is responsible
for checking the file list and file content, which reduces
the number of round-trip interactions between the client and
the server. The source code of the PandaSync prototype is
accessible on https://github.com/LongquanLiu/PandaSync.

TABLE I
THE WORKLOAD CHARACTERISTICS OF THE SIX TRACES.
Trace Name Volume | Min Size | Max Size | Redundancy
sugarsvnc-chaos 1.2GB 2Byte 262.5MB 29.7%
dropbox-xiaohe 2.2GB 3Byte 163MB 19.1%
box-wcx 9.0GB 3Byte 509.1MB 33.7%
dropbox-y 6.7GB 2Byte 232.1MB 12.1%
ubuntuone-green072 3.2GB 1Byte 356MB 55.2%
dropbox-jeff 2.7GB 1Byte 105.1MB 19.2%

B. Experimental setup and methodology

Our tests are conducted on a desktop PC (client) with an
Intel 15-3470 3.2 GHz quad-core processor and 4GB memory.
The cloud server is Aliyun ECS [3] with Intel Xeon ES5-
2682V4 2.5 GHz processor and 2GB memory & 40GB SSD
storage. The operating systems in both client and server sides
are Ubuntu 16.04.3 (Linux kernel version 4.4). They are
connected through the China Education and Research Net-
work [6] between cities of Xiamen (client side) and Shanghai
(cloud server side) in China. The network RTT is about
30ms normally and configurable to be variable. We compare
PandaSync with both the full sync scheme (Fullsync) and
delta sync schemes, including Dropbox_rsync with fixed-size
chunking scheme and Seafile_cdc with CDC-based scheme.
For Dropbox_rsync, we use rsync 3.1.3 to implement the delta
sync method with 4KB fixed-size chunking. For Seafile_cdc,
Seafile 6.0.1 is used with variable chunk size ranging from
2KB to 8KB, with an average of 4KB.

Our evaluation is based on both benchmark-driven and
trace-driven experiments. For the benchmark-driven experi-
ments, we configure the file update with one of the two
redundancy levels, i.e., 3KB content or 30% content is inserted
in the middle of a file. The file size ranges from 10KB
to 100MB. The trace-driven experiments are used on six
traces collected from real-world user activities of cloud storage
services in several universities and companies in the US and
China from July 2013 to March 2014 [19]. The file content
in the traces are initiated according to the file name and
sequences. Table I shows their key trace features of volume
size, minimum and maximum file size, and redundancy. For
cost-effectiveness assessment, the network traffic fee of Aliyun
ECS is charged at a rate of USD$0.11/GB [3].

C. Performance results and analysis

Benchmark-driven experiments: Figure 7 shows the
benchmark-driven sync times of different schemes as a func-
tion of file size. First, PandaSync consistently performs the
best among all the schemes for all file sizes, except for
files larger than 400KB when it performs the same as
Dropbox_rsync. The file size threshold under the specific
redundancy and network RTT values is between 300KB and
400KB. For files smaller than 400KB, PandaSync uses the
Full2Sync scheme which reduces the number of the round-trip
interactions between the client and the server, thus significantly
reducing the network latency, as illustrated in Figure 8 which
indicates a 50% network latency reduction from that of the
fullsync scheme achieved by PandaSync.

1.4
1.2

Dropbox_rsync Seafile_cdc Fullsync PandaSync

0.8
0.6
0.4
0.2

0 \
10 50 100 200 300 400 500 1000

File Size (KB)

(a) 3KB content insert

Sync Time (Second)

1.6
1.4
1.2

Dropbox_rsync ===Seafile_cdc —*~Fullsync ~#~PandaSync

0.8
0.6
0.4
0.2

0 T T T
10 50 100 200 300 400 500

File Size (KB)
(b) 30% content insert
Fig. 7. Benchmark-driven results on sync times as a function of file size.

Sync Time (Second)

1000

Second, full sync schemes (fullsync and full2sync) per-
form better than delta sync schemes (Dropbox_rsync and
Seafile_cdc) when the sync files are smaller than 200KB.
The reason is twofold: (1) The processing overhead associated
with the delta sync schemes is high both on the client side
and the server side; (2) The network latency for small-file
sync is affected by the number of RTTs, not the data volume
transferred over the network. Thus, it is not recommended to
use delta sync schemes for small-file sync. It is this reason
that motivated the PandaSync optimization for a hybrid sync
scheme for cloud storage systems.

To investigate the time spent in each step in the file sync
workflow, Figure 8 shows a breakdown of the sync latency
into the client, network and server portions for different cloud
sync schemes. We draw three important observations: (1) The
cloud sync latency is dominated by the network latency in the
fullsync scheme. The network portion of the latency remains
almost unchanged when the sync files are smaller than 400KB.
The reason is that the network latency is spent on context
switching and the number of round-trip communications. The
same phenomena is observed on the fixed-size based delta
sync method (Dropbox_rsync) for small files. (2) The CDC-
based delta sync scheme incurs significant latency overhead
on both client and server sides, which dominate the sync
time of the CDC-based delta sync. The reason is obvious
because the redundancy detection overhead incurred by the
CDC step is extremely high by itself, let alone the fingerprint
transmission overhead between the client side and the server
side. (3) PandaSync performs the best among all the cloud
sync schemes. It improves the small-file sync performance

4800 7000

= DeltaSync = FullSync
4000 I |
Seafile_cdc Dropbox_rsync

Fullsync

PandaSync
Delta: 5.2%
Full: 94.8%

o w
£ 0
S S
S =

Sync Time (Second)
>
8

Sync Time (Second)

3
S
S

o

PandaSync

(a) Sugarsync-chaos

7000
- I I
0

Seafile_cdc Dropbox_rsync

12000

= DeltaSync ™ FullSync 10500
PandaSync: 9000
[

£ 6000
4500
3000
1500

0

Fullsync

(d) Dropbox-y

e %3
] =N
S S
S S

Sync Time (Second)
8
8

Sync Time (Second)

PandaSync

7000
® DeltaSync ™ FullSync

. 5600 5600
e PandaSync:
PYPYy Delta: 2.4%

: 94. 4200 Full: 97.6% 4200

= 2800 ; 2800

1400 1400

0 0

Seafile_cdc Dropbox_rsync

(b) Dropbox-xiaohe

Seafile_cdc Dropbox_rsync

(e) ubuntuone-green072

® DeltaSync ™ FullSync

PandaSync:
Delta: 12.9%
Full: 87.1%

PandaSync

Sync Time (Second)

Fullsyne PandaSync Seafile cdc Dropbox_rsync Fullsync

(c) Box-wex

= DeltaSync ® FullSync 28000 = DeltaSync = FullSync

24000

PandaSync:

Delta: 5.4% 20000
Full:94.6%

16000
& 12000
8000
4000
0

PandaSync

PandaSync:
Delta: 2.0%
Full: 98.0%

PandaSync

Sync Time (Second)

Fullsync Seafile_cdc Dropbox_rsync Fullsync

(f) Dropbox-jeff

Fig. 9. The cloud sync times driven by the six traces for the different cloud sync schemes.

#client “network ®server
F: Fullsync S: Seafile_cdc D: Dropbox_rsync P: PandaSync

o I
E Z
g 7 Z Z AN 7577
£ o6 Z 7 !f /!! f/!! 7227
S 7 Z Z /’ Gioe %iny hng 9444
g Z %l 2 7o UM 044 7754 9447
Y Y
Z
é ’

B AN

FSDP FSDP
200KB 300KB

File Size

(a) 3KB content insert

% client # network ®server
F: Fullsync S: Seafile_cdc D: Dropbox_rsync P: PandaSync

1]

3 Z
7
Y

., T 1

£ 06 ; 7 7 ? g /

Z g : Z

& 3 Z

04 7

Z

%

FSDP
200KB

File Size

FSDP FSDP
300KB

FSDP
1000KB

(b) 30% content insert

Fig. 8. Breakdown of the sync latency into client, network and server for
different schemes.

by reducing the network latency. Moreover, for large files
it chooses the fixed-size chunking based delta sync scheme
and performs the same as the Dropbox_rsync scheme. To
assess PandaSync’s performance stability and consistency, we
compare it with the Dropbox_rsync scheme by increasing the
sync file size to 100MB, observing that the former continues

to perform the same as the latter. During the benchmark-
driven experiments, the file size is fixed thus the sync method
in PandaSync is also fixed. To evaluate the efficiency of
PandaSync in real environment, we also conduct trace-driven
experiments.

Trace-driven experiments: Figure 9 shows the cloud sync
times driven by the six traces for the different cloud sync
schemes. Each experiment runs at least 3 times and the average
cloud sync time, along with max and min, is shown in the
Figure 9. PandaSync reduces the cloud sync time by an
average of 97.3%, 85.1%, and 74.6% from the Seafile_cdc,
Dropbox_rsync, and Fullsync schemes respectively. In Pan-
daSync, a vast majority of files, above 84%, are synchronized
by the Full2Sync method for all the traces. For four out of
six traces this majority reaches a minimum of 94%, which
indicates that an overwhelming majority of files in these
traces are small files. Although Figure 10 shows that both
the Seafile_cdc and Dropbox_rsync schemes transfer less data
over the network than the FullSync and PandaSync schemes,
this advantage of the former is substantially overshadowed by
their much higher compute overhead in data deduplication,
resulting in longer total sync times than the latter. In contrast,
the reduction on the number of the network round-trips plays
a much more important role in accelerating the cloud sync
performance. With the Full2Sync optimization in the Pan-
daSync scheme, a large number of network round-trips has
been eliminated, as shown in Figure 11. In fact, the Fullsync
scheme performs even better than both the Seafile_cdc and
Dropbox_rsync schemes, because when small files dominate,
Fullsync performs better than delta sync schemes.

Figure 10 shows the total data volume transferred over the
network driven by the six traces for the different cloud sync
schemes. The Seafile_cdc and Dropbox_rsync schemes indeed

1500 2400
" DeltaSync ™ FullSync

1200 2000

Network Traffic (MByte)
Network Traffic (MByte)

Seafile cdc Dropbox_rsync Fullsync PandaSync

(a) Sugarsync-chaos

7000 3500
H DeltaSync B FullSync

5600
4200
2800
1400

0 -

Seafile_cdc Dropbox_rsync

3000 -

2500 -

2000 -

Network Traffic (MByte)
Network Traffic (MByte)

Fullsync

(d) Dropbox-y

PandaSync

= DeltaSync ® FullSync

1600
900
1200
600
800
300 400
0 0

Seafile_cdc Dropbox_rsync
(b) Dropbox-xiaohe

" mDeltaSync ® FullSyne

1500

1000 -
500
0

Seafile_cdc Dropbox_rsync

(e) ubuntuone-green072

9600
H DeltaSync ® FullSync

8000

6400
4800
3200
1600

0

Network Traffic (MByte)

Fullsync PandaSync Seafile_cdc Dropbox_rsync Fullsync PandaSync
(c) Box-wex
3000 |
DeltaSync ® FullSync
—
£ 2400
=)
g
o 1800
=
£
£ 1200
=
S
5
2 600
0
Fullsync PandaSync Seafile_cdc Dropbox_rsync Fullsync PandaSync

(f) Dropbox-jeff

Fig. 10. The total data volume transferred over the network driven by the six traces for the different cloud sync schemes.

18000 25000

® DeltaSync ® FullSync

15000 20000

15000

10000

Network Round-Trip Count
Network Round-Trip Count

Seafile_cdc Dropbox_rsync Fullsync PandaSync

(a) Sugarsync-chaos

25000 40000

= DeltaSync ™ FullSync

35000
30000
25000
20000
15000

10000

Network Round-Trip Count
Network Round-Trip Count

Seafile_cdc Dropbox_rsync Fullsync

(d) Dropbox-y

PandaSync

12000 K
9000
6000
3000 5000
0 0

Seafile_cdc Dropbox_rsync

(b) Dropbox-xiaohe

20000
15000
10000
5000
5000
0 0

Seafile_cdc Dropbox_rsync

(e) ubuntuone-green(072

20000

= DeltaSync ™ FullSync H DeltaSync ® FullSync

-
E
2 16000
)
=3
5. 12000
=
=
=
£ 8000
<
-
=3
£ 4000
o
z
0
Fullsync PandaSync Seafile_cdc Dropbox_rsync Fullsync PandaSync
(c) Box-wex
6000
¥ DeltaSync ® FullSyne i #DeltaSync ® FullSync
-
£ 80000
=
]
£ 64000
n
T 48000
H
% 32000
=
=
£ 16000
z
0

Fullsyne PandaSync Seafile_cdc Dropbox_rsync Fullsync PandaSync

(f) Dropbox-jeff

Fig. 11. The number of network round-trips, driven by the six traces for the different cloud sync schemes.

transferred over the network by up to 55.5% less data than
the Fullsync scheme with an average of 27.9% and 22.6%,
respectively. These reductions in data transferred stem mainly
from the large files. Compared with the cloud sync time
results shown in Figure 9, applying delta sync method to small
files does not reduce the amount of data transferred over the
network not only because small files account for a tiny fraction
of the total data transferred, but also because delta sync incurs
extra processing overhead and increases the number of the
network round-trips, thus increasing the cloud sync latency.

Figure 11 shows the number of network round-trips driven
by the six traces for the different cloud sync schemes. First,

PandaSync requires a much smaller number of network round-
trips than all the other schemes by merging the sync data
with the sync request and thus halving the number of network
round-trips for small-file synchronization. The fact that small
files dominate all the six traces explains why the number of
network round-trips is reduced significantly by the PandaSync
scheme. Second, both the delta sync schemes and the full sync
scheme have similar numbers of network round-trips because
they share the same workflow in terms of the number of
network round-trips as indicated in Figure 4 and Figure 6.
This also implies that optimizing the workflow to reduce the
number of network round-trips in the cloud sync process is an

7000
B Seafile cdc ™ Dropbox_rsync ¥ Fullsync ®PandaSync

6000 —

5000

4000 +

3000 -

2000 -

Cost-Effectiveness ($*S)

1000 -

WCeX chaos xiaohe

green072 y

jeff

Fig. 12. Comparison of the cost-effectiveness of the different cloud sync
schemes based on the latency and cost results obtained from the trace-driven
experiments.

effective way to improve the cloud sync performance.

Assessment of cost-effectiveness: To reasonably estimate
and quantify the cost-effectiveness of PandaSync relative to the
state-of-the-art cloud sync schemes, we use the cost-latency
product as a measure for cost-effectiveness [21], [23]. The
lower the cost-latency product value of a scheme, the more
cost-effective the scheme is.

Fig. 12 shows the cost-effectiveness, in terms of the cost-
latency product, of the different cloud sync schemes based
on the latency and cost results obtained from the trace-driven
experiments. Among all the schemes, PandaSync is the most
cost effective. It outperforms the Seafile_cdc, Dropbox_rsync,
and Fullsync schemes by an average of 41.9%, 76.0%, and
118.8%, respectively. The reasons behind PandaSync’s supe-
riority in cost-effectiveness are twofold. First, by applying the
Full2Sync optimization to small files to reduce the number of
network round-trips, the overall cloud sync latency is reduced.
Second, by applying the delta sync method to large files to
reduce total data volume transferred over the network, the
network traffic cost is reduced.

Sensitivity analysis: Network RTT is an important factor
in the PandaSync scheme that affects the file size threshold.
To examine its impact on PandaSync’s efficiency, we conduct
experiments on the Dropbox_rsync and PandaSync schemes
driven by the dropbox_xiaohe and dropbox_y traces under
different network round-trip times. Figure 13 shows the results
and indicates that PandaSync consistently improves cloud sync
efficiency with the increasing of the network round-trip time.
However, the improvement is slightly reduced from 51.6% to
40.3% driven under the dropbox_xiaohe workload, and from
48.9% to 36.8% under the dropbox_y workload. The reason
is that with a larger network round-trip time, the file size
threshold in PandaSync is reduced accordantly, thus fewer files
are optimized in PandaSync with the Full2Sync method. For
files larger than the file size threshold, their sync times are
the same as the Dropbox_rsync scheme. Thus, fewer files are
synchronized by the Full2Sync method, and less improvement
is achieved by the PandaSync scheme over the Dropbox_rsync
scheme.

Dropbox_rsync M PandaSync -#-PandaSync size_threshold

32000 31122.1 350
28000 300 ~
2 24000 g
S 250 =
3 =
@ 20000 18579.8 -
S 3
g 16000 =
= 150 &
g 12000 8
g N
%8000 6192.9 12315 1008
3594.1 =
4000 2997 50
. 1Im I = .
30 50 100 200
Network Round-Trip Time (ms)
(a) dropbox_xiaohe
Dropbox_rsync ®®PandaSync -¢-PandaSync size_threshold
54000 504823 350
45000 300 —~
5 g
g 250
g 36000 31904.7 2
‘a 28183.4 200 @
°~§> 27000 0 ‘E
=
o
2 18000 16797.3 3
& 10957.7 100 <2
9000 64989 5840.5 50 &=
3320.1
, ax .
30 50 100 200

Network Round-Trip Time (ms)
(b) dropbox_y
Fig. 13. Sensitivity analysis on the network round-trip time.

V. RELATED WORK

Cloud storage has become a popular and cost-effective
storage platform. More and more organizations and individual
users are moving their data to the cloud, which makes the
cloud sync efficiency increasingly more important and chal-
lenging for cloud storage users and providers.

There are two main cloud sync approaches, full sync and
delta sync. The full sync approach, which sends the file in its
entirety to the cloud during file synchronization, is simple and
incurs little, if any, extra processing overhead. As a result, it
is widely used in cloud applications on mobile devices where
the processing and memory resources are limited [36]. Some
main cloud storage products, such as Google Drive [14] and
Microsoft OneDrive [25], also use the full sync approach for
PC-based clients. In contrast, the delta sync approach only
transfers from the client to the server the differences (deltas)
between the client copy and the server copy of the sync
file, rather than the complete content of the sync file. It is
particularly useful for file modifications or incremental updates
on files with sufficient content redundancy. However, detecting
and eliminating the redundant content between copies of a
sync file, a technology known as data deduplication, usually
incurs significant compute overhead.

Dropbox [11] is the first cloud storage provider to adopt
fixed-size chunking-based delta sync (rsync) in around 2009
in its PC client-based file sync process [20]. Then, iCloud
Drive [4] and Seafile [27] followed the design choice of
Dropbox by utilizing delta sync, using either fixed-size-based

chunking (FC) or content-defined chunking (CDC), to reduce
cloud sync traffic. QuickSync [9] and DeltaCFS [37] imple-
mented FC- and CDC-based delta sync respectively for mobile
APPs. QuickSync [9] uses network-aware chunk size selection
to adaptively select the proper deduplication strategy based on
real-time network conditions. DeltaCFS combines delta sync
with NFS-like file RPC by leveraging the hints of typical file
update patterns, thus significantly cutting compute overhead
on both the client side and the server side while preserving
the network-level efficiency. Xiao et al. propose a web-based
delta sync solution (WebR2sync+) by moving expensive chunk
search and comparison operations from the client side to the
server side [35], [36]. It further leverages locality-aware chunk
matching and lightweight checksum algorithms to reduce the
overhead, thus providing a practical solution of web-based
delta sync for cloud storage services. In summary, all these
three schemes are trying to alleviate the processing overhead
associated with the delta sync approach. However, it is not
efficient to apply delta sync to small files even if they have
high redundancy.

Previous studies have found that delta sync suffers from
both traffic and compute overhead problems in the presence
of frequent, short data updates [9], [20]. To address these
issues, they have designed efficient batched synchronization
algorithms, such as batched sync [9] or UDS (Update-batched
Delayed Sync) [20] to reduce the bandwidth usage and CPU
usage by alleviating compute overhead. The delayed sync
method is mainly designed for small files that dominate in
the cloud storage systems [2], [19], [24]. However, delayed
sync methods will induce longer sync time, leading to data
consistency problems in cloud storage systems. Different from
these approaches, our proposed PandaSync scheme takes the
network conditions and the workload characteristics, specially
the network RTT and the sync file size, into the design
of the cloud sync strategy so that the advantages of both
the full sync and the delta sync approaches are exploited
while their disadvantages alleviated or hidden. As a result, the
sync performance is improved with a better data availability
guarantee.

VI. CONCLUSION

Sync performance is one of the main factors users consider
when deciding whether or not to move their data to the
cloud. This paper proposes a hybrid data sync approach, called
PandaSync, that exploits the workload characteristics and the
network conditions to improve the cloud sync performance.
PandaSync utilizes full sync for small files and delta sync
for large files, where the size threshold separating small files
from large files is based on the network round-trip time at
runtime. PandaSync further boosts sync performance for small
files by merging the sync request and file-sending request into
a single request to reduce the number of network round-trip
interactions between clients and cloud servers. By exploiting
the workload characteristics and the network conditions, the
advantages of both the full sync and delta sync approaches are
exploited while their disadvantages are alleviated. The experi-

ments conducted on our lightweight prototype implementation
of PandaSync show that PandaSync significantly outperforms
existing cloud sync schemes.

PandaSync is an ongoing research project and we are
currently exploring several directions for future research. First,
the data redundancy characteristics is an important factor de-
termining whether to apply delta sync for large files. However,
the data redundancy characteristics is hard to measure or
predict in advance for a specific file. We will further investigate
how to reduce the sync latency of large files by exploiting
the workload characteristics [22]. Second, we will extend
the PandaSync design to consider the diversity features of
cloud storage services, thus further improving the flexibility
of PandaSync and the efficiency of cloud storage services.

VII. ACKNOWLEDGMENTS

This work is supported by the National Natural Sci-
ence Foundation of China under Grant No. U1705261, No.
61872305, No. 61772439, and No. 61472336, the US NSF
under Grant No. CCF-1704504 and CCF-1629625.

REFERENCES

[1] M. Abebe, K. Daudjee, B. Glasbergen, and Y. Tian. EC-Store: Bridging
the Gap Between Storage and Latency in Distributed Erasure Coded
Systems. In Proceedings of the 38th IEEE International Conference on
Distributed Computing Systems (ICDCS’18), Vienna, Austria, Jul. 2018.

[2] N. Agrawal, William J. Bolosky, John R. Douceur, and Jacob R. Lorch.
A Five-Year Study of File-System Metadata. In Proceedings of the 5th
USENIX Conference on File and Storage Technologies (FAST’07), pages
31-45, Feb. 2007.

[3] Aliyun Open Storage Service. http://www.aliyun.com/. 2014.

[4] Apple iCloud. https://www.icloud.com/. 2018.

[5] F. Chen, M. Mesnier, and S. Hahn. Client-aware Cloud Storage. In
Proceedings of the 30th International Conference on Massive Storage
Systems and Technology (MSST’14), Santa Clara, CA, Jun. 2014.

[6] China Education and Research Network. http://www.edu.cn/english_
1369/index.shtml. 2014.

[7] Cisco Webex: Online Meetings.
Meetings. 2018.

[8] Cloud Adoption and Risk Report. https://info.skyhighnetworks.com/
WPCloudAdoptionRiskReport2019_BannerCloud- MFE.html?Source=
Website&LSource=Website. 2018.

[9] Y. Cui, Z. Lai, X. Wang, and N. Dai. QuickSync: Improving Synchro-
nization Efficiency for Mobile Cloud Storage Services. In Proceedings
of the 21st Annual International Conference on Mobile Computing and
Networking (MobiCom’15), Paris, France, Sep. 2015.

[10] I Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras. Benchmarking
Personal Cloud Storage. In Proceedings of the 13th ACM Internet
Measurement Conference (IMC’13), Barcelona, Spain, Oct. 2013.

[11] Dropbox. https://www.dropbox.com/. 2018.

[12] From Cloud First to Cloud Smart. https://cloud.cio.gov/strategy/. 2018.

[13] Y. Go, N. Agrawal, A. Aranya, and C. Ungureanu. Reliable, Consistent,
and Efficient Data Sync for Mobile Apps. In Proceedings of the 13th
USENIX Conference on File and Storage Technologies (FAST’15), Santa
Clara, CA, Feb. 2015.

[14] Google Drive. https://www.google.com/drive/. 2018.

[15] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach, Sixth Edition. Elsevier Science Ltd, Nov. 2017.

[16] B.Hou and F. Chen. Pacaca: Mining Object Correlations and Parallelism
for Enhancing User Experience with Cloud Storage. In Proceedings
of the 26th IEEE International Symposium on the Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MAS-
COTS’18), Milwaukee, WI, Sep. 2018.

[17] B. Hou, F. Chen, Z. Ou, R. Wang, and M. Mesnier. Understanding I/O
Performance Behaviors of Cloud Storage from a Client’s Perspective. In
Proceedings of the 32nd International Conference on Massive Storage
Systems and Technology (MSST’16), Santa Clara, CA, May 2016.

https://www.webex.com/Webex/

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]
[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

IDC Study, sponsored by Seagate: Data Age 2025, the Digitization of the
World. https://www.seagate.com/our-story/data-age-2025/. Nov. 2018.
Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng, Y. Liu, Y. Dai, and
Z. Zhang. Towards Network-level Efficiency for Cloud Storage Ser-
vices. In Proceedings of the 2014 Conference on Internet Measurement
Conference (IMC’14), Vancouver, BC, Canada, Nov. 2014.

Z. Li, C. Wilson, Z. Jiang, Y. Liu, Ben Y. Zhao, C. Jin, Z. Zhang,
and Y. Dai. Efficient Synchronization in Dropbox-like Cloud Storage
Services. In Proceedings of the 14th ACM/IFIP/USENIX International
Middleware Conference (Middleware’13), Beijing, China, Dec. 2013.
B. Mao, H. Jiang, and S. Wu. Improving Storage Availability in Cloud-
of-Clouds with Hybrid Redundant Data Distribution. In Proceedings
of the 29th IEEE International Parallel & Distributed Processing
Symposium (IPDPS’15), pages 633-642, May 2015.

B. Mao, H. Jiang, S. Wu, and L. Tian. POD: Performance Oriented
I/O Deduplication for Primary Storage Systems in the Cloud. In
Proceedings of the 28th IEEE International Parallel & Distributed
Processing Symposium (IPDPS’14), pages 767-776, May 2014.

B. Mao, S. Wu, and H. Jiang. Exploiting Workload Characteristics and
Service Diversity to Improve the Availability of Cloud Storage Systems.
IEEE Transactions on Parallel and Distributed Systems, 27(7):2010—
2021, 2016.

Dutch T. Meyer and William J. Bolosky. A Study of Practical Dedu-
plication. In Proceedings of the 9th USENIX Conference on File and
Storage Technologies (FAST’11), San Jose, CA, Feb. 2011.

Microsoft OneDrive. https://onedrive.live.com/about/en-us/. 2018.
Rsync open source utility. https://rsync.samba.org/. 2018.

Seafile: Enterprise file sync and share platform with high reliability and
performance. https://www.seafile.com/en/home. 2018.

A. Singh, X. Cui, B. Cassell, B. Wong, and K. Daudjee. MicroFuge:
A Middleware Approach to Providing Performance Isolation in Cloud
Storage Systems. In Proceedings of the 34th IEEE International
Conference on Distributed Computing Systems (ICDCS’14), Madrid,
Spain, Jul. 2014.

Slack: Team Messaging. https://www.slack.com/. 2018.

SmokePing keeps track of the network latency. https://oss.oetiker.ch/
smokeping/. 2018.

The Future of Cloud Computing by North Bridge (6th Annual Sur-
vey). http://nbvp.northbridge.com/2016- future-cloud-computing-survey.
2016.

T. Titcheu, E. Zhai, Z. Li, Y. Cui, and K. Ren. On the Synchroniza-
tion Bottleneck of OpenStack Swift-like Cloud Storage Systems. In
Proceedings of the 35th IEEE International Conference on Computer
Communications (INFOCOM’16), San Francisco, CA, Apr. 2014.

A. Traeger, E. Zadok, N. Joukov, and C. Wright. A Nine Year Study of
File System and Storage Benchmarking. ACM Transactions on Storage,
48(2):1-56, 2008.

J. Wang, W. Gong, Peter J. Varman, and C. Xie. Reducing Storage
Overhead with Small Write Bottleneck Avoiding in Cloud RAID Sys-
tem. In Proceedings of the 13th ACM/IEEE International Conference
on Grid Computing (GRID’12), Beijing, China, Sep. 2012.

H. Xiao, Z. Li, E. Zhai, and T. Xu. Practical Web-based Delta
Synchronization for Cloud Storage Services. In Proceedings of the
9th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage’17), Santa Clara, CA, Jul. 2017.

H. Xiao, Z. Li, E. Zhai, T. Xu, Y. Li, Y. Liu, Q. Zhang, and Y. Liu.
Towards Web-based Delta Synchronization for Cloud Storage Services.
In Proceedings of the 16th USENIX Conference on File and Storage
Technologies (FAST’18), Oakland, CA, Feb. 2018.

Q. Zhang, Z. Li, Z. Yang, S. Li, Y. Guo, and Y. Dai. DeltaCFS: Boosting
Delta Sync for Cloud Storage Services by Learning from NFS. In
Proceedings of the 37th IEEE International Conference on Distributed
Computing Systems (ICDCS’17), Atlanta, GA, Jun. 2017.

S. Zhang, H. Catanese, and An-I Andy Wang. The Composite-file File
System: Decoupling the One-to-One Mapping of Files and Metadata for
Better Performance. In Proceedings of the 14th USENIX Conference on
File and Storage Technologies (FAST’16), Santa Clara, CA, Feb. 2016.

