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Abstract—Reservoir sampling is widely employed to charac-
terize connectivity of large graph streams by producing edge
samples. However, existing reservoir-based sampling methods
mainly characterize large graph streams by a measure of count-
ing triangle but perform poorly in accuracy when used to analyze
the topological characteristics reflected by node degrees because
they produce disconnected edge samples, making them ineffective
in many applications that require both types of connectivity
estimation simultaneously in real time. This paper proposes a new
method, called triangle-induced reservoir sampling, or T-Sample,
to produce connected edge samples. While every edge in a graph
stream is still processed only once by T-Sample, a dual sampling
mechanism performing both uniform sampling and non-uniform
sampling is carefully designed with a base reservoir and an
incremental reservoir. Specifically, the uniform sampling can be
used to count triangles by employing the existing algorithms
while the non-uniform sampling ensures that the edge samples
are connected. Experimental results driven by real datasets show
that T-Sample can obtain much more accurate estimations on the
distributions of node degrees than the existing reservoir-based
sampling methods.

I. INTRODUCTION

The rapid growth in the scale of real-world application
scenarios, e.g., bioinformatics, social media and computer net-
work traffic, necessitates the storage, processing and analysis
of the data content in the form of large graph streams for
which each edge carries the information about interaction
between one node (entity) and another node (entity) [1]. Given
the sheer size of data, many recent studies focus on one-
pass stream sampling methods [2], [3], in which each edge
is processed for only one time to conduct two analyses. The
first is an analysis of the total number of triangles (called
triangle count) of a graph stream, which is used to provide an
overall description of the connectivity of a large graph stream
and has attracted considerable attentions [2]. The second is to
show the connectivity of a large graph stream by an analysis
of the distributions of the node degrees. This analysis is used
to provide a quantitative description of a specific connectivity
among the entities in a large graph stream.

In many classes of applications, the analyses of both the
triangle count and node degrees of a large graph stream are

required simultaneously. For example, in social media, the
triangle count reflects the overall connectivity among the users.
On the other hand, the specific connectivity and relationship
among the users are uncovered through data mining based on
node degrees [4]. The combination of these two analyses is
helpful in evaluating the influence of the social media while
providing precise predictions, e.g., product recommendations
and extent of rumor spreads.

However, existing one-pass sampling methods only focus on
producing edge samples either for the triangle count or node
degrees but not both. Even if two corresponding processes of
existing one-pass sampling methods cooperate to uncover the
connectivity of a large graph stream with both analyses, there
are two main problems. First, when the two methods, one for
each of the two analyses, are executed simultaneously, more
computation and memory resources are consumed. Second and
more importantly, they cannot obtain these two analyses in
real-time when the two methods are executed asynchronously.
Even without these problems, existing one-pass sampling
methods suffer from inaccurate estimations when they are
used to obtain information on node degrees by producing edge
samples that are rarely connected.

In a one-pass stream sampling method, a reservoir is used
to preserve the sampled edges of a graph stream [5], [6],
which gives rise to the name of a reservoir-based sampling
method. In this paper, we propose a new one-pass stream
sampling method, called triangle-induced reservoir sampling
or T-Sample, to better characterize the connectivity of a large
graph stream from the perspective of counting the triangles
and obtaining the information on node degrees simultaneously.
Specifically, T-Sample employs a dual sampling mechanism,
namely, combining a uniform sampling with a non-uniform
sampling to produce connected edge samples, which over-
comes the problems of the single sampling mechanism used
by existing one-pass sampling methods.

II. MOTIVATION

The existing reservoir-based sampling methods can be
classified into two categories, i.e., uniform reservoir-based



sampling, which is capable of learning the probability of an
edge entering a reservoir in a graph stream prior to sampling,
and non-uniform reservoir-based sampling for which the prob-
ability of an edge entering a reservoir is not known before
the sampling process. However, both the existing uniform and
non-uniform reservoir-based sampling methods produce edge
samples that no longer contain or convey sufficient actual
connectivity of a graph stream.

As shown in Figure 1, the existing reservoir-based sampling
methods provide very limited information about the different
types of node degrees as the percentage of the nodes with
degrees more than 10 is almost equal to zero, where GPS-
Post [7], Triest-IMPR [8], GSH [9] are the uniform reservoir-
based sampling while NeiSampling [10], StreamSampling [11]
and PIES [6] are the non-uniform reservoir-based sampling.
Furthermore, Figure 1 also shows that the degrees of most
of the nodes (70%—92%) are equal to one, based on the
edge samples obtained by the existing reservoir-based methods
implemented in the same platform (described in Section IV).
Since the degree of any node is at least equal to one because
each edge consists of exactly two nodes, the results in Figure
1 clearly imply that the edge samples produced by the ex-
isting reservoir based sampling methods are mostly isolated,
unconnected edges.
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Fig. 1: The distribution of node-degree counts (and pro-
cessing times) of edge samples generated by the existing
reservoir-based sampling methods over the Youtube graph
stream (Section IV) when the capacity of the reservoir is
set to S5K.

Furthermore, except for PIES which does not estimate the
triangle count, Figure 1 shows that the non-uniform sampling
methods (NeiSampling and StreamSampling) have slightly
better results than the uniform sampling ones in estimating
the information of node degrees while they spend much
more time than the latter. Such experimental results imply
that it is more cost-efficient to estimate the triangle count
using the uniform reservoir-based sampling while it is more
effective in estimating the specific topological characteristics
by non-uniform reservoir-based sampling. Therefore, to meet
the requirement of the applications to analyze both the triangle
count and the node degrees, a new reservoir-based sampling
method should inherit the advantages of both categories of

uniform and non-uniform sampling while alleviating their
disadvantages. Motivated by these insights, we propose in this
paper a new reservoir-based sampling method, called T-Sample
that employs a dual-sampling mechanism and is capable of
producing connected edge samples.

III. DESIGN AND ANALYSIS OF T-SAMPLE

In this section, we first elaborate on the design of T-
Sample’s dual sampling mechanism. Then, we analyze the
probabilities of an edge entering the two types of reservoirs
in T-Sample based on the triangle count obtained and the
connected edge samples produced.

A. Dual sampling

T-Sample, as a one-pass sampling method for which each
edge of a graph stream is processed only one time, em-
ploys a dual sampling mechanism (uniform and non-uniform).
Specifically, such a sampling process relies on two types of
reservoirs, base reservoir and incremental reservoir, to estimate
the triangle count while simultaneously obtaining the actual
connectivity information of a graph stream based on node
degrees (i.e., the degree distributions).

Base reservoir. T-Sample’s uniform sampling employs a
reservoir with a static capacity, namely, a base reservoir Ry, se-
An important characteristic for the edge samples preserved in
the base reservoir is that these edges are updated frequently
with the arrival of each new edge in a graph stream while the
number of the edges preserved in it is static.

Incremental reservoir. T-Sample’s non-uniform sampling
employs a reservoir with a dynamic capacity, namely, an
incremental reservoir R;,.re, to produce the connected edge
samples. The prerequisite for an edge to enter the incre-
mental reservoir is that the edge can form triangles with the
edges currently preserved in the base reservoir. An edge once
sampled by the non-uniform sampling cannot be removed
from the incremental reservoir. Therefore, the volume of the
edges preserved in the incremental reservoir, is always non-
decreasing. To limit the memory space used by the incremental
reservoir, we design a parameter to control the probability of
an edge entering the incremental reservoir by exploiting the
density/sparsity of the connectivity of a graph stream. Before
we derive the sampling probabilities, we first present the work
flow of T-Sample with its dual-sampling mechanism.

As illustrated in Figure 2, at the very beginning of T-
Sample’s process, the front ¢ edges of a graph stream are
directly preserved in the base reservoir of capacity c. From this
point on, whether a newly arrived edge is sampled or not by T-
Sample depends on if the edge has a chance to be preserved in
either the base reservoir or the incremental reservoir. Notice
that any edge of a graph stream can only be preserved in at
most one of the two reservoirs. Figure 2 depicts the T-Sample’s
dual sampling process: the i*" (i > c) edge will first try to
enter the base reservoir and, when this effort fails, it then tries
to enter the incremental reservoir.

Generally speaking, each edge in a graph stream has a
chance to be preserved in the base reservoir. Thus, the proba-
bilities by which the triangles are formed based on the whole
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Fig. 2: T-Sample’s dual sampling mechanism, with uniform
sampling in solid black lines and non-uniform sampling
in dashed black lines while p; denotes the probability of
entering a reservoir respectively for the i*" edge.

graph stream can be inferred to estimate the triangle count as
described in [8]. On the other hand, the edges that fail to enter
the base reservoir have chances of entering the incremental
reservoir by leveraging the important structures of triangles
that express the basic and cohesive connectivity among the
edges in a graph stream. Thus, the edge samples, preserved in
both the base and incremental reservoirs, are able to largely
preserve the connectivity.

B. Probabilities of an edge entering the reservoirs

Due to the dual sampling mechanism, the probability of an
edge entering the base reservoir or the incremental reservoir
in T-Sample is analyzed from two cases as follows: that in
uniform sampling and that in non-uniform sampling.

Uniform sampling. Let p™ denote the probability of the i'"
arriving edge entering the reservoir and p,,: the probability
of an edge already preserved in the reservoir being replaced
by the newly sampled edge. p" and p,,; are given as,
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Notice that T-Sample’s uniform sampling does not change
the sampling processes of Triest and Triest-IMPR that were
proposed in [8]. Therefore, the algorithms for counting the
triangles by Triest and Triest-IMPR can be used to count the
triangles during T-Sample’s sampling process.

Non-uniform sampling. In T-Sample, a newly arrived edge,
which has failed to enter the base reservoir, has a chance to
enter into the incremental reservoir if the edge satisfies the
prerequisite for entering the incremental reservoir. Since the
size of the incremental reservoir is non-decreasing with ¢, the
probabilities for edges to be preserved in it must be properly
controlled to limit its memory usage while preserving the
topological structures approximately.

Intuitively, a more densely connected graph stream tends to
have a correspondingly higher triangle count, implying that
a newly arrived edge is more likely to form at least one
triangle with edges preserved in the base reservoir and thus
meet the perquisite for entering the incremental reservoir. On
the other hand, the opposite is true for a sparsely connected
graph stream, i.e., a newly arrived edge is less likely to
meet the prerequisite. Based on this intuition, the parameter

r +n‘;mi helps indicate whether a graph stream being sampled

is densely or sparsely connected, where num,; is the total
number of edges satisfying the prerequisite for entering the
incremental reservoir among the front ¢ — 1 edges and can be
calculated during the process of counting the triangles. That
is, the lower the value of this parameter, the more densely
connected a graph stream is. Thus, we use this parameter
r +n‘;mi to control the probability of an edge entering the
incremental reservoir and further limit T-Sample’s memory
usage.

Specifically, in face of a densely connected graph stream,
the value of - Hfumi decreases rapidly as ¢ increases, mean-
ing that the probability of an edge entering the incremental
reservoir will diminish rapidly. This helps limit the number
of edges added to the incremental reservoir when sampling
a densely connected graph stream for which there are indeed
many edges already preserved in the incremental reservoir. On
the other hand, for a sparely connected graph stream, the value
of - +ncum1, decreases very slowly as ¢ increases, meaning that
the probability of an edge entering the incremental reservoir
will remain relatively steady. This helps obtain as many
connected edge samples as possible for uncovering the original
connectivity of a sparsely connected graph stream.

Therefore, the probability pi"°"® of the i*" edge entering

the incremental reservoir is given as,
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where pe¢tFre signifies whether an edge meets the prereq-

uisite to enter the incremental reservoir. In other words, in an
actual sampling process, p7**“*’™® = 1 means the i*" edge

meets the prerequisite, or p*°“*F"¢ = ( otherwise.

IV. EVALUATION

Platform and Workload. The simulations are conducted
on a computer with Intel Xeon E5620 processors and 64-
bit Ubuntu Linux OS. Each experiment, which employs a
single core with at most 4GB of RAM, entails 20 runs of the
simulation so that the results reported are statistically stable
and meaningful. The workload traces, summarized in Table I
and downloadable from [12] and [13] include two public real-
world graph datasets (graph streams) of which one contains
more than a billion edges.

TABLE I: Summary of Graph Datasets, where |V|, |EF]
and /Ay, denote the total numbers of nodes, edges and
triangles in a graph stream G = (V| E), respectively.

Graph |V‘ |E| Atotal
Youtube 1,134,890 2,987,624 3,056,386
Twitter 41,652,230 | 1,468,365,182 | 34,824,916,864

Baseline methods. The following state-of-the-art reservoir-
based sampling methods, GPS Post-Stream (GPS-Post) [7],
Triest-IMPR [3], GSH [9] and PIES [6], are considered the
evaluation baselines for T-Sample. Although In-Stream (GPS-
In), proposed in [7], shows smaller estimation errors and
variances than GPS-Post, it consumes much more time than
GPS-Post and thus is not selected as a baseline. In GPS-Post,
the weight of a newly arrived edge is set as the number of the



triangles formed by it and the edges preserved in the reservoir
thus far [7]. All these sampling schemes are implemented in
C++. Since T-Sample can use the method proposed in [3] to
count the triangles and produce the same experimental results
as those reported in [3], we do not further illustrate the results
of counting the triangles base on the process of T-Sample due
to the page limits.

Capacity of the reservoir. As described in Section III,
for T-Sample, the base and incremental reservoirs are used
to obtain information on node degrees. However, for all the
baseline methods, only one reservoir is used to preserve edge
samples. When the baseline schemes are used to estimate the
node degrees, there are two cases for comparison with T-
Sample in terms of estimation accuracy, time and memory
costs. In the first case, the capacity of the reservoir for the
baseline sampling schemes is set to be the same as that of
T-Sample’s base reservoir, which means that T-Sample will
use more total memory capacity to obtain information about
node degrees. The second case sets the reservoir capacity for
the baseline schemes to be the sum of those for the base and
incremental reservoirs of T-Sample, |Rpasciine| = |Rtotall =
|Rbase| + |Rinc're‘~
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Fig. 3: The distributions of node-degree counts over
Youtube and Twitter with |Rpgsciine] = |Rbase| and
| Rpaseline| = | Rtotar| respectively. Note that each data point
(z,y) in the figures indicates that 100 x y% of nodes are
of degree equal to or smaller than z.

Node-degree counts refer to the numbers of nodes with
different node degrees and are measured by the distributions
of node-degree types inferred by edge samples (or the ground
truth from the dataset) among the nodes in a graph stream. This
measure indicates how closely the node-degree counts inferred
by edge samples reflect the ground truth with a very small
sample set. Figure 3 shows that, whether |Rpqsetine| = |Rbase|
(10* in Youtube and 10° in twitter) or | Rpascline| = | Rtotal
(2.5x10% in Youtube and 5 x 10° in twitter), T-Sample obtains
the node-degree counts that are much closer to the ground-
truth values than the four baseline methods, as measured in the

complementary cumulative distribution function (CCDF), over
YouTube and Twitter. Furthermore, the node-degree counts
distributions obtained by the baseline methods do not change
significantly with the increase of the sample size, as shown
in Figure 3, because these methods are not able to produce
connected edge samples.

V. CONCLUSIONS

In this paper, we propose a new reservoir-based sampling
method, called triangle-induced sampling or T-Sample, which
can leverage the existing uniform reservoir-based sampling
process to count the triangles over large graph streams ef-
ficiently. Furthermore, significantly different from existing
reservoir-based sampling methods, T-Sample is a first attempt
at producing connected edge samples. Extensive dataset-driven
experimental results show that T-Sample characterizes the
connectivity of a graph stream much more accurately than
the existing reservoir-based sampling methods at the same
memory Ccosts.
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