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Abstract—With the high volume and velocity of scientific data
produced on high-performance computing systems, it has become
increasingly critical to improve the compression performance.
Leveraging the general tolerance of reduced accuracy in appli-
cations, lossy compressors can achieve much higher compression
ratios with a user-prescribed error bound. However, they are still
far from satisfying the reduction requirements from applications.
In this paper, we propose and evaluate the idea that data need to
be preconditioned prior to compression, such that they can better
match the design philosophies of a compressor. In particular,
we aim to identify a reduced model that can be utilized to
transform the original data to a more compressible form. We
begin with a case study of Heat3d as a proof of concept, in which
we demonstrate that a reduced model can indeed reside in the
full model output, and can be utilized to improve compression
ratios. We further explore more general dimension reduction
techniques to extract the reduced model, including principal
component analysis, singular value decomposition, and discrete
wavelet transform. After preconditioning, the reduced model
in conjunction with delta is stored, which results in higher
compression ratios. We evaluate the reduced models on nine
scientific datasets, and the results show the effectiveness of our
approaches.

Index Terms—High-performance computing, data reduction,
reduced model, data precondition.

I. INTRODUCTION

Simulation-based scientific discovery produces extreme vol-
umes of data that capture new physics in high fidelity [1],
[2]. For example, for fusion XGC [3], a high-fidelity first-
principle simulation to model ITER-scale1 fusion devices, it
generates more than 1 TB of particle data per snapshot, with
the total analysis output easily reaching PBs for one campaign.
More recently, for climate modeling, it was estimated that
running large ensembles of high-fidelity simulations on future
exascale systems would generate 260 TB for every 16 seconds
[4], [5], which translates to 1.4 EB per day. These science
requirements have completely changed the status quo of sci-
entific data management on large high-performance computing
(HPC) systems. Data reduction, for a long time playing a
performance improvement role that is often secondary and
dispensable, has become a pivotal step in scientific processes
to allow science campaigns to be done within the resource and

1https://www.iter.org/

time constraints. To date, researchers in HPC have proposed
various approaches to reducing data, such as compression [6]–
[10], data deduplication [11], delta snapshot [12], and more
broadly in-situ methods [13]. Among them, data compression
is recognized as a fundamental technique that complements
other layers in the software stack. In general, both lossless
and lossy compressors are used to compress scientific data.
Compared to lossless compressors that preserve the exact
content of original data, lossy compressors yield much higher
compression ratios by trading accuracy for performance. De-
spite the recent success in lossy compression, e.g., by ZFP [8]
and SZ [9], the reduction ratios are still far from what are
ultimately demanded by applications. A root cause is that
floating-point compressors are typically designed around the
presumptive local smoothness in data, which may not be true
for all datasets.

In this work, complementary to the existing efforts, we
explore the idea that data are transformed prior to compression
such that they can better match the design philosophies (e.g.,
local smoothness) of a compressor. The intuition behind our
strategies arises from the concept of preconditioning in solving
a linear system, Ax − b = 0, to achieve an improved
rate of convergence, e.g., using a preconditioned conjugate
gradient method [14]. The goal of this work is to capture
the latent characteristics or representations of data, termed as
reduced model2, and transform data in a way that compression
ratios can be improved. A simple example that illustrates our
methodology is when compressing a signal that consists of a
sine wave and white noise, we can identify the parameters (am-
plitude, frequency, and phase) of the sine wave first, and only
compress the white noise, which is intuitively smoother, thus
being more compressible than the original data. In our prior
work DuoModel [15], a simple reduced model is constructed
by running a light version of the application with enlarged
grid spacing. However, this approach requires extra compute
nodes and involves communications with simulations, a key
concern for its applicability to large-scale runs.

In this work, we aim to address the aforementioned weak-

2In the context of this paper, the terms of reduced model data and reduced
representation are interchangeable.



ness by synthesizing a reduced model directly from the
analysis data, as opposed to from the simulation model. To
understand the effectiveness of this methodology, we examine
a set of techniques to obtain reduced representation, including
principal component analysis (PCA), singular value decom-
position (SVD), and discrete wavelet transform (Wavelet).
We investigate the latent reduced models in the context of
spatial outputs, which are typical of scientific simulations. Our
solution stores the reduced model in conjunction with delta,
which results in higher compression ratios. The original data
can be re-computed by reconstructing the full model data and
applying the delta. The major contributions of this paper are
as follows:
• We synthesize the reduced model directly from the

analysis output. Our Heat3d case study suggests that
this approach results in higher compression ratios than
compressing data directly or using DuoModel.

• We develop the methodology to precondition, compress,
and reconstruct data, and conduct comprehensive perfor-
mance evaluations for three popular dimension reduction
techniques to precondition compression, including PCA,
SVD, and Wavelet.

The remainder of this paper is organized as follows. Sec-
tion II provides the background. Section III provides the
motivation. Sections IV and V discuss how to identify the
reduced model from analysis output using project-based meth-
ods and dimension reductions. Section VI presents the most
related works. Conclusions are presented in Section VII.
Our experiments for evaluation are publicly available at
https://github.com/luohuizhang/IPDPS2019.

II. BACKGROUND

A. Lossy Compression

Lossy compression for floating point data has received
renewed interest recently due to its higher compression per-
formance. The main idea is to trade accuracy for performance,
and use approximations and partial data discarding to represent
the content. We next focus on two leading lossy compressors,
ZFP [8] and SZ [9], which were shown to be superior in our
prior work [16].

ZFP employs fixed-point integer conversion, block trans-
form, and binary representation analysis with bit-plane en-
coding. It partitions a d-dimensional array into blocks of 4d

elements, and each block is compressed independently. Overall
ZFP compression involves the following three steps: 1) It
aligns the floating-point data within a block to a common
exponent, and the original data in the block are then converted
to mantissas along with the common exponent; 2) It converts
the mantissas to fixed-point signed integers. A de-correlating
transform, e.g., discrete cosine transform (DCT), is applied
to generate near-zero coefficients that can be compressed
efficiently; 3) It encodes the coefficients using embedded
encoding.

In contrast, SZ, based upon polynomial predictions, com-
presses the delta between the prediction and the original value.

It comprises four steps: 1) It predicts the next data point
using a polynomial combination of its neighboring points; 2)
If there is a prediction hit, an m-bit quantization factor is
used to encode the point; 3) If there is a miss prediction, it
performs binary representation analysis; 4) The quantized data
are then further compressed using conventional compression
techniques, such as Huffman encoding and LZ77, to remove
the redundancy of quantization factors.

B. Model Reduction

It is well recognized that the complexity of running large-
scale simulations grows exponentially with the desired reso-
lution and fidelity [17]. The purpose of model reduction in
general is to lower the computational complexity so that the
problem is more tractable, while achieving similar results. By
scaling down a computational model, such as the degrees of
freedom, spatiotemporal resolution, and precision, the conver-
gence to the solution can be made faster and more efficient
resource consuming. Nevertheless, model reduction must meet
the following requirements in order to be relevant: 1) Loss
of accuracy is acceptable. The increasing error as a result of
model reduction must be within the prescribed tolerance; 2)
Features in analytical data are still preserved. For knowledge
discovery, the key properties of a full model must be retained
by the reduced model; 3) Complexity must be substantially
reduced. The reduced model must be orders of magnitude
cheaper than the full model to be meaningful.

In general, there are two approaches to reducing a full
model [17]. The first approach is to simply run a light
version of the full model in less expensive settings, e.g.,
using a lower spatiotemporal resolution or precision. A key
advantage of this approach is that no source code modification
is required, thus greatly simplifying the model reduction. In
fact, DuoModel [15] adopted this approach to demonstrate
the usefulness of using reduced models to compress data.
However, a potential weakness is that it may discard important
physics that would otherwise be captured in the full model. For
example, a lower resolution may discard important features
that can be only seen at the original grid spacing. Another
approach is projection-based model reduction, which builds
a reduced model by projecting the equations of a full model
onto a reduced coordinate system. It essentially transforms
the full model into a lower-dimensional reduced model by
removing the non-critical terms. Clearly, compared to the first
approach, it takes major engineering efforts to implement the
reduced model. However, it may better retain the underlying
structure of the full model, since only non-essential terms
are discarded. For example, the reduced model of Heat3d,
a code that models how heat propagates in a closed system,
can be built by projecting the full Heat3d. It is shown that
the data features of the two models are highly similar, as
shown in Section IV-A. This reveals that a reduced model
can indeed retain a similar system state, motivating us to use
it to precondition data prior to compression.

https://github.com/luohuizhang/IPDPS2019


TABLE I: Dataset description.

Dataset Description
Heat3d Distribution of heat in a given region over time.
Laplace Description of steady state situations of values distributions.

Wave Hyperbolic PDE for the description of waves.
Umbrella Molecular dynamics simulations for Umbrella sampling.

Virtual sites Molecular dynamics simulation for virtual sites.
Astro Velocity magnitude in a supernova simulation.

Fish Velocity magnitude in a CFD calculation of cooling
air being injected into a mixing tank.

Sedov pres Pressure of strong shocks in a hydrodynamical simulation.
Yf17 temp Temperature in a computational fluid dynamics calculation.

III. MOTIVATION

In this section, we identify the opportunity of synthesizing
a reduced model directly from analysis output and use it
to precondition compression. We first illustrate through nine
applications that similarity does exist between full model and
reduced model output, and then discuss the disadvantages of
the prior work DuoModel which further motivates this work.

A. Similarity Between Full Model and Reduced Model

In order to understand whether a full model and a reduced
model can yield similar data products, we investigate a set
of double-precision floating-point datasets that are generated
from real HPC applications. The details of the datasets are
shown in Table I. In particular, a full model dataset is directly
generated by the application itself, and the associated reduced
model output is generated by scaling down the full model. For
the three classical partial differential equation (PDE) datasets,
i.e., Heat3d, Laplace, and Wave, we obtain the reduced model
by scaling down the problem size. For example, for Heat3d,
we set the number of points on each dimension of full
(reduced) model as 192 × 192 × 192 (48 × 48 × 48). For
the two Gromacs3 simulations, Umbrella and Virtual sites, we
scale down the problem complexity by lowering the number
of atoms simulated. In particular, there are 1,960 atoms in the
full model, and 490 atoms in the reduced model. For other four
applications, we set a smaller size of computational domain
and examine physical quantities at shorter times. For example,
for Sedov pres, we set the sizes of computational volume of
full model and reduced model as (1, 1, 1) and (0.5, 0.5, 0, 5),
and the maximum number of time steps to compute before
halting the simulation as 20,000 and 10,000, respectively, to
observe Courant-Friedrichs-Lewy (CFL) condition [18].

Fig. 1 demonstrates the similarity between the full model
and reduced model for the nine datasets. Herein, we use
cumulative distribution function (CDF), along with three scalar
quantities, byte entropy, byte mean, and serial correlation
[16], to describe data characteristics. In particular, byte
entropy denotes entropy that measures the randomness of
data, which ranges in [0, 8]. The closer the entropy value
is to 8, the higher the entropy is. Byte mean captures the
arithmetic mean of data in bytes. This is simply the result
of summing all the bytes of a dataset and dividing by the
file length. If the data are fairly random, this metric should

3http://www.gromacs.org/
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Fig. 1: Data characteristics of full model and reduced model. The
curve shows the CDF of data values. ent, mean, and corr denote the
byte entropy, byte arithmetic mean, and serial correlation coefficient,
respectively.

be close to 127.5. If it deviates from this value, the values
are consistently high or low. Serial correlation measures
the extent to which each byte in the file depends upon the
previous byte, and the metric ranges from -1 to 1. The closer
the value is to 1 (or -1), the higher the data are positively
(or negatively) correlated. For completely uncorrelated data,
serial correlation is close to 0.

It is evident that the full model and reduced model share
nearly identical trends in their CDFs. All three scalar quantities
also yield similar outcome for the two models. Therefore,
there exists high similarity between the full model and reduced
model. The high correlations between them inspire us to use
the reduced model output to precondition data and compress
the difference.

B. Weakness of DuoModel

DuoModel is based upon a simple idea that reducing the
resolution of an application should result in similar results.



The main goal of DuoModel is to improve the compression
ratios for a compressor C on output O produced by a sim-
ulation code S. The idea is to run a less expensive model
S′, calculate the differences, i.e., S(O) − S′(O), and then
output C(S(O)−S′(O)), i.e., the compressed delta, instead of
C(S(O)). Note that the minus sign here does not necessarily
indicate a direct subtraction. For data analysis, the original
data can be regenerated by re-running S′(O) and applying the
decompressed S(O)− S′(O).

DuoModel builds upon two key observations: 1) Compared
to storage, the cost of compute is getting cheaper. We can re-
compute data rather than store them with a huge I/O overhead.
A trade-off between compute and storage can be exploited
to reduce the I/O cost. 2) For modern lossy compressors,
e.g., ZFP, SZ, the compression ratios are data dependent.
They rely on the local smoothness within a dataset to com-
press data, and this can be captured by a reduced model.
While achieving substantial compression ratio improvement,
DuoModel has the following shortcomings: 1) The model
reduction for simulations is in general complex, and requires
substantial domain knowledge. 2) DuoModel involves extra
communications between full model and reduced model. This
may not be efficient at scale on large HPC systems. 3) For
decompression, the overhead of running the reduced model is
unacceptable for some situations, e.g., using 25% of compute
resources that are originally allocated to the simulation [15].

IV. PROJECTION-BASED REDUCED MODEL

In this section, we explore the mechanisms to build a
reduced model using projection-based model reduction. We
conduct a case study using Heat3d, and develop an ad-hoc
solution to precondition Heat3d data.

A. Case Study of Heat3d

The projection-based model reduction targets a broad class
of modeling and simulation-based problems for which there
are underlying governing equations determining the system
behaviors [17]. A central idea is to remove non-essential terms,
thus reducing the computational complexity. To understand
the effectiveness of this methodology, we conduct a case
study using a classical PDE application, Heat3d [19], which
studies how heat propagates in a closed system. The Heat3d
is parallelized using the message passing interface (MPI) for
inter-processor communication. Mathematically, the 3D heat
equation can be described as follows.

∂u

∂t
= κ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
where κ is the thermal conductivity coefficient, and u is the
temperature at coordinate (x, y, z) at time t. After discretiza-

TABLE II: Heat3d full model and reduced model.

Full model Reduced model
Problem size 192 × 192 × 192 192 × 192

Processors 8 × 8 × 8 8 × 8
# of steps 50,000 260
Time step 1.712 × 10−8 3.391 × 10−6

Byte entropy 7.002972 7.031746
Byte mean 137.657090 134.727085

Serial correlation -0.040376 -0.023018

tion, u at coordinate (i, j, k) of step n + 1 can be calculated
using the central difference, as shown below.

un+1[i][j][k] = un[i][j][k]+

κ∆t(
un[i+ 1][j][k] − 2un[i][j][k] + un[i− 1][j][k]

h2x

+
un[i][j + 1][k] − 2un[i][j][k] + un[i][j − 1][k]

h2y

+
un[i][j][k + 1] − 2un[i][j][k] + un[i][j][k − 1]

h2z
)

(1)

Subsequently, we project the 3D solution space into 2D by
collapsing the Z dimension. This essentially disregards the heat
conduction in Z direction. Therefore, equation (1) is reduced
to the following.

un+1[i][j] =un[i][j] + κ∆t(
un[i+ 1][j] − 2un[i][j] + un[i− 1][j]

h2x

+
un[i][j + 1] − 2un[i][j] + un[i][j − 1]

h2y
)

Table II shows the setup and some key quantities of both
models. In particular, the number of processors is reduced
from 512 to 64. Besides, to guarantee that equation (1) can
result in a mathematically stable solution, the length of a
timestep should be less than the stability condition [18], ∆t =
1

8κ
(min(hx, hy, hz))

3. Since the Z dimension is collapsed,
we set a larger time step for the reduced model, i.e., increasing
from 1.712×10−8 to 3.391×10−6. We also calculate the three
scalar quantities of data characteristics (detailed in Section III).
It is shown that they are nearly the same. This indicates that
the reduced model generated by projection-based reduction
method can be highly similar to the full model.

We further calculate the difference between the full model
and reduced model output. To that end, we subtract each
horizontal plane in the original 3D space by the reduced 2D
plane to calculate the residuals. We notice that for the Heat3d
solution space, its middle plane is almost the same as 2D
solution of the reduced model, and it is the symmetry plane in
the solution space. Therefore we intuitively choose the middle
plane as the reduced model. Overall, this observation inspires
us that a reduced model can reside in the full model output
itself, without constructing another application instance which
can be cumbersome.

Fig. 2 illustrates various reduced models for Heat3d. We
develop two ad-hoc projection-based schemes, termed as, one-
base and multi-base, to understand how well the proposed idea
can perform. For one-base, as detailed in Algorithm 1, we
choose a horizontal mid-plane from the full model and use
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Fig. 2: Reduced models of Heat3d. a) One-base: the middle horizon-
tal plane within the solution space is used as the reduced model; b)
Multi-base: the middle horizontal plane in each sub-domain is used
as the reduced model; c) DuoModel: a lower resolution of the original
model is used.

it as reference to calculate the delta. Implementation wise,
the processors that contain the mid-plane will send the plane
to other processors to calculate the delta. For multi-base,
to avoid the communication overhead of sending the mid-
plane, we select the mid-plane on a per sub-domain basis.
Accordingly, the delta calculation within a sub-domain is
done by only subtracting its local mid-plane. For comparison,
we also illustrate DuoModel that uses a lower resolution as
a reduced model. The delta is calculated as the difference
between the full model data and the linear constructed data
(detailed in prior work [15]).

Algorithm 1 Calculating the delta (using one-base as an
example).

Require: mz planes of full model data matrix u, the zhigh and
zlow are the upper and lower indices in the Z dimension
of the subdomain.

Ensure: The delta between the full model and reduced mod-
els.

1: if u(mz/2) is within the MPI rank then
2: Broadcast the plane to all other ranks.
3: else
4: Receive the plane u(mz/2).
5: end if
6: for all i ∈ [zlow, zhigh]) do
7: ∆(i) = u(i)− u(mz/2).
8: end for
9: Gather the delta.

B. Performance Evaluation

We evaluate the projection-based reduced models on Titan
at Oak Ridge National Laboratory. We use 32 compute nodes
(512 MPI processors) to run Heat3d and Laplace, respectively.
Since the Wave application is only one dimensional, it is not
relevant here. We run both lossless and lossy compressors to
understand more broadly how much projection-based reduced
models can improve compression ratios. In particular, we use
SZ (1.4.11) with the default mode and point-wise relative error
bound of 10−5. For ZFP (0.5.0), since it does not support

point-wise relative error, we choose the fixed-precision mode
with 16 bits of precision. For FPC (1.1), we use the level of
20 with the internal table size of 224 bytes.
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Fig. 3: Compression ratios using projection-based methods. The blue
bars represent the baseline where datasets are directly compressed,
and the yellow bars represent our previous work DuoModel. The x-
axis is the test setup (i.e., dataset name and compressor used. In this
paper, original means to use the compressors directly). Each data
point shows the average compression ratio of 20 outputs of each
application.

Fig. 3 shows the compression ratios achieved by the three
reduced models. It is evident that the projection-based reduced
models result in significant improvement in compression ratios
for both Heat3d and Laplace, particularly for lossy compres-
sion. On average, the compression ratios of ZFP increase
from 4X to greater than 15X for all three methods. Using SZ
to compress the preconditioned data, the compression ratios
increase from 17X to greater than 40X for both one-base and
multi-base. Intuitively speaking, multi-base should outperform
one-base due to its better capability of capturing data charac-
teristics. However, multi-base requires more storage space to
save the reduced models, thus offsetting its compression ratios.
In addition, one-base and multi-base outperform DuoModel.
The reason is that the delta generated by the one-base and
multi-base are with more smoothness than those generated by
DuoModel. Even for those planes that are physically far away
from the middle plane, the absolute values of delta are large,
but the variations are smaller than those of DuoModel, thus
being more compressible. To further show this, we evaluate
the techniques with FPC [6]. It is also found that one-base
and multi-base can significantly improve the compression ratio
of FPC, but DuoModel cannot. This suggests that the delta
generated by one-base and multi-base are more compressible.

Fig. 4 further reveals that the effectiveness of projection-
based reduced models depends on the compressibility of
datasets. The more compressible the data are, the more com-
pression ratio improvement we can achieve by using reduced
models.

V. EXPLORING GENERAL REDUCED MODELS

For datasets that model sophisticated problems with com-
plex geometry, identifying the reduced model may not be
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Fig. 4: Compression ratio improvement vs. the compressibility of
original data (indirectly captured by the compression ratios achieved
by ZFP). The reduced model used is one-base. For Heat3d and
Laplace, both include 20 outputs of the simulations, uniformly chosen
from the beginnings to the ends of their lifetimes.

as straightforward as one-base and multi-base in Heat3d.
Fortunately, scientific data are naturally multi-dimensional,
capturing physical quantities in both space and time [20]. A
straightforward idea is to further explore common dimension
reduction techniques to extract reduced model. Unlike one-
base or multi-base reduced models whose data outputs are a
subset of the full model data, the dimension reduction can be
viewed as a transformation from the full model data, e.g., the
reduced model data of PCA are linear combinations of the
original data in columns.
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Fig. 5: Data reduction and reconstruction using dimension reduction
techniques.

Fig. 5 illustrates the workflow of using dimension reduction

techniques to find the reduced model, including PCA, SVD,
and Wavelet. In particular, the upper part shows the reduction
phase, and the lower part shows the reconstruction (i.e.,
decompression) phase. For the reduction phase, we transform
analysis data to their reduced representations, which are then
used to precondition the compression. In particular, we run
the inverse transformation on the reduced representation and
then calculate the delta between the original data and the
reconstructed data. In the end, the reduced representation
along with the delta is compressed and stored. The key idea,
similar to projection-based methods, is that after dimension
reduction, the reduced representation is much smaller but still
can capture the characteristics of the original data. This also
results in highly compressible delta. For the reconstruction
phase, an inverse transformation is executed upon the reduced
representation, and the original data is regenerated by further
applying the decompressed delta.

A. Adopting Dimension Reduction Techniques

1) PCA: PCA uses an orthogonal transformation to convert
correlated variables into a set of uncorrelated variables, called
principal components [21]. In particular, the first primary
component captures the original variance as much as possible,
and the second primary component captures the remaining
variance, and so on. To use PCA to find the reduced model,
the eigenvectors and eigenvalues of the covariance matrix of
the original data are first calculated. Then, k eigenvectors
with the largest eigenvalues are selected and multiplied by
the original data to reorient the dimension-reduced data. The
dimension-reduced data and the eigenvectors are retained to
be the reduced representation.

2) SVD: In contrast to PCA that only focuses on the column
space, SVD focuses on both the column and row space [22].
The singular-value decomposition of a matrix A can be repre-
sented as U ·Σ ·V , and the diagonal entries σi of Σ are known
as the singular values of A. Similar to PCA, a larger singular
value tends to capture more important information than a
smaller singular value. To obtain the reduced representation,
we only retain k largest singular values, and the corresponding
k rows of U and k columns of V .

3) Wavelet: Discrete wavelet transform [23] decomposes a
signal into mutually orthogonal set of wavelet basis functions.
In this work, we apply Haar Wavelet [24] to find the reduced
model detailed in the following steps.

Step 1: For each row, group the entries into pairs, store
their differences, and pass their sums to prove a new row with
smaller scale. This process is repeated recursively, which ends
when only one entry is a sum and all the other entries are
differences.

Step 2: Repeat the same process of Step 1 to each column.
Step 3: The resultant matrix contains many near-zero

entries. We subsequently pick a threshold θ > 0 and set
those entries with absolute value smaller than θ to zeros. The
new matrix in principle is sparser and can be stored more
efficiently. The new spare matrix is regarded as the reduced
representation.



TABLE III: Comparison of PCA, SVD, and Wavelet for a multi-
dimensional dataset of m×n. For the storage cost, all methods need
to additionally store delta, which are not listed here.

Method Complexity Storage

PCA Column
correlation O(mn2 + n3)

Dimension-reduced data,
associated eigenvectors

SVD Column/row
correlation O(m2n + mn2 + n3)

Three refactored
matrices

Wavelet Haar wavelet O(4mn2 logn) Sparse matrix

4) Comparisons of Dimension Reduction Techniques: Ta-
ble III shows the comparisons of dimension reduction meth-
ods, in terms of methodology, complexity, and storage. The
key idea of PCA is to find correlation between columns,
while SVD considers both columns and rows. Wavelet is to
find an inverse transformation that results in a sparse matrix
that is typically more efficient to store. For a dataset that
is a m × n matrix, the time complexity of PCA and SVD
is O(mn2 + n3) and O(m2n + mn2 + n3), respectively.
Haar Wavelet, similar to 2D Fast Fourier Transform [25],
has the complexity of O(4mn2logn). For the storage cost,
PCA needs to store eigenvectors associated with k primary
components, while SVD stores three refactored matrices. For
Wavelet, the sparse matrix is stored. All three methods need to
additionally store deltas which are needed to reconstruct the
original dataset.

B. Performance Evaluation

Herein we evaluate the compression ratio, information loss,
and compression/decompression overhead. The experiments
were conducted on a Linux server with Intel CoreTM i5-
7500 that has 4 cores with the frequency of 3.4GHz and
16 GB of memory. The operating system is Ubuntu 16.04.5
LTS. Note that the size of compressed data is contributed
by both the reduced representation and the compressed delta.
With regard to the information loss, we use the root mean
square error (RMSE) to assess the compression quality of
dimension reduction techniques. The configurations of ZFP
and SZ are the same as those in Section IV-B. Note that
different relative error bounds are applied to the original data
and delta. The reason is that the effect of relative error bounds
is data dependent. Since the delta is often much smaller in its
magnitude than the original data, as a result of the similarity
between full model and reduced model, we need to apply a
looser relative error bound to achieve the prescribed accuracy.
For example, assuming the value of a data point is denoted as
V , the corresponding delta is 10−2 ·V . A relative error bound
of 10−5 for the original data means that the decompressed
data error is in the range of [−10−5 · V , +10−5 · V ]. For the
delta, maintaining a relative error bound of 10−5 would result
in an error in the range of [−10−7 · V , +10−7 · V ], a tighter
error bound that is unnecessary. Therefore, in this work, for
ZFP, the error bounds for original data and delta are set to 16
and 8 bits of precision, respectively. For the SZ, the relative
error bounds for original and delta are set to 10−5 and 10−3,
respectively. We select the number of components, k, such that

k∑
i=1

σi/
n∑

i=1

σi ≥ 95% [26], in which σi is the variance of the

i-th largest primary components (or singular values) for PCA
(or SVD). At last, for Wavelet, we set the threshold θ to 5%
of the maximum value in the transformed matrix.

1) Compression Ratio: Fig. 6 shows the compression ratios
of using PCA, SVD, and Wavelet to precondition data. The
resultant data are further compressed using either ZFP or
SZ. It is shown that the PCA and SVD can significantly
improve the compression ratios of Heat3d, Laplace, Wave,
Astro, and Sedov pres. However, the improvement for other
datasets is insignificant. In particular, for Fish data, PCA,
SVD, and Wavelet all result in lower compression ratios than
compressing it directly. The reason is that Fish is a peculiar
dataset that contains many zeros. Using these three methods,
the delta will, however, contain near-zero values, which are
less compressible than the original Fish. To further understand
the different outcomes across datasets, Figs. 7 and 8 show the
proportion of variance of the primary components in PCA, and
that of singular values of SVD, respectively. It is found that,
the more dominant the first primary component (or singular
value) is, the higher compression ratio improvement we can
achieve.

Among the three reduced representations, PCA and SVD are
overall better than Wavelet for most datasets. The improvement
from Wavelet is insignificant as compared to compressing
data directly. The reason is that the sparse matrix produced
by Wavelet can still result in high storage overhead. Fig. 9
shows the size of reduced representations produced by PCA,
SVD, and Wavelet. The size of Wavelet is much higher than
the other two methods. One could set a larger threshold θ
to further reduce the reduced representation size of Wavelet.
However, the associated delta will become less compressible,
which offsets the overall improvement.

2) RMSE Evaluation: Fig. 10 shows the RMSE results
of PCA, SVD, and Wavelet, respectively. Overall Wavelet
yields a much higher RMSE than compressing data directly
for most datasets. Given the insignificant compression ratios
and high RMSE, Wavelet is not deemed to be a good strategy
to precondition compression. For PCA and SVD, despite the
significant compression ratio improvement, they also yield a
higher RMSE than compressing data directly. The reason is
that there is information loss for the reduced representation
with ZFP and SZ, and the information loss may be amplified
in the inverse transformation during reconstruction phase.

This further raises a new question - can PCA and SVD
improve the compression ratio while maintaining the same
information loss? We evaluate different error bounds on all
datasets using ZFP. In particular, the number of precision bits
for the compression is varied from 8 to 32. Fig. 11 shows
the results of compression ratios under different RMSEs. It is
found that under the same information loss, PCA and SVD
can achieve higher compression ratios than compressing data
directly using ZFP for some of the datasets. Therefore, the
finding here is that using dimension reductions is possible to
outperform conventional compressors but this depends on the
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Fig. 6: Comparison of compression ratios. The legends show the conjunctions of the three dimension reduction techniques with ZFP and
SZ, respectively.
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Fig. 7: PCA proportion of variance of the primary components. Note
that PC is the abbreviation for primary component.
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Fig. 8: SVD proportion of variance of the singular values.

characteristics of data.
3) Overhead Analysis: Fig. 12 shows the average com-

pression and decompression time. Compared to compressing
data directly using ZFP, PCA, SVD, and Wavelet increase
the compression time by 6.5X, 16.6X, and 3.1X, respectively.
The overhead is governed by the computational complexity
of dimension reductions. Compared to decompressing data
directly using ZFP, PCA, SVD, and Wavelet increase the de-
compression time by 4.9X, 6.9X, and 1.2X, respectively. It is
clear that compression is more expensive than decompression,
which can be attributed to the expensive matrix decomposition
during compression.

4) End-to-end Time: The significant compression overhead
naturally raises a question: will the reduction in I/O time
pay off the added compression overhead for the reduced
model based methods? We take Heat3d as an example to
evaluate PCA to understand the end-to-end time including the
compression and I/O times. The experiments are conducted
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Fig. 9: The size of reduced representations.

TABLE IV: Compression and I/O time.

Method Compression time(s) I/O time(s) Total time(s)
Baseline (I/O

with no compression) N/A 52.48 52.48

ZFP+I/O 12.09 20.39 32.49
SZ+I/O 9.72 19.36 29.09

PCA(ZFP)+I/O 44.87 9.23 54.11
PCA(SZ)+I/O 42.95 9.00 51.96

Staging+PCA+I/O N/A 13.17 13.17

on the supercomputer Titan4 and Lustre parallel file system.
The number of processors is set to 64, and each processor
generates 16.7 GB data. We evaluate six schemes, as shown
in Table IV, the baseline (i.e., no compression), four compres-
sion methods, including direct compression using ZFP (i.e.,
ZFP+I/O) and SZ (i.e., SZ+I/O), PCA in conjunction with ZFP
(i.e., PCA(ZFP)+I/O) or SZ (i.e., PCA(SZ)+I/O), and PCA in
conjunction with data staging (Staging+PCA+I/O) [27], [28].
In particular, for the baseline, each processor of Heat3d writes
its subdomain to persistent storage without compression. In
contrast, for the four compression methods, each processor
compresses its local subdomain prior to storing. Regarding
the implementation on a parallel file system, each processor
compresses and writes independently in an N-to-N fashion.
The results in Table IV show that the compression time of
ZFP (or SZ) is 12.09s (or 9.72s), and the I/O time is 20.39s
(or 19.36s). Thus, the benefit of data reduction outweighs
the increased compression time. However, for the proposed
reduced model based methods, the compression overhead
is significantly higher. The results show that the total time
in this case is similar to that of the baseline. To address
this issue, we further take advantage of data staging, which

4https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
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Due to the space limit, we only take ZFP as an example to show the
results. The y-axis is labeled as compression ratio, and the x-axis is
RMSE.

is a new paradigm that allows data processing to be done
asynchronously, thus greatly alleviating the demands for high
I/O rates. We note that data staging, such as burst buffer, is
prevalent on emerging HPC architectures, e.g., Cori and Sum-
mit. In particular, in our experiments, one additional compute
node is allocated as a staging node, and the compressions
and I/O operations can be done there asynchronously without
impacting the HPC simulation. The last row of Table IV shows
the total time with data staging, and it is found that total time is
reduced to 13.17s, which is mainly the time spent on sending
data from the application to the staging node.

VI. RELATED WORK

As far as we are aware, our work is the first one that
uses reduced models to improve the compression ratio of
existing compressors. The most related work to this paper
are summarised as two categories. The first one is Tucker
decomposition. Austin et al. [20] showed that the scientific
datasets can have high excellent compression rates by taking
the advantages of data dimensions. They proposed a parallel
implementation for computing the Tucker decomposition of
general dense tensors. Choi et al. [29] proposed an implemen-
tation and performance analysis of GPU-accelerated Tucker
decomposition for dense tensors. A slice block partitioning
method is used to improve performance for GPUs, and a
tensor matricization layout to reduce the number of all-reduce
communications and matricizations. The second category is
the optimizations of existing ZFP and/or SZ. Gok et al.
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Fig. 12: Compression and decompression overhead. The y-axis is the
average compression or decompression time across all datasets.

proposed PaSTRI [10] for compressing integral data used in
quantum chemistry. They first mined of the latent pattern
features of the integral data with an in-depth analysis. Then,
they utilized the patterns for the optimization of SZ with
different error bounds. Tao et al. [5] noted that neither SZ or
ZFP is the best compressor across different datasets and across
different fields of a dataset. Thus, they proposed an online
selection method that guides users to select the best-fit lossy
compressor between SZ and ZFP. Liang et al. [30] focused
on the trade-off between compression ratio and reconstructed
data loss. They controlled the data distortion when reducing
the data size. The main idea was to adaptively select the best-
fit prediction approach with the consideration of data features
in different regions of a dataset.

VII. CONCLUSION AND FUTURE WORK

The paper focuses on further improving the compression
ratios by preconditioning data. The central idea is to identify
the reduced model from the full model applications, and
use it for preconditioning prior to compression. We first
illustrate that there are high similarities between the full



model and reduced model, and compressing the delta between
them often results in high compression ratios. As a proof
of concept, we develop a projection-based model reduction
in Heat3d to find the reduced model within the full model
output itself. As such, the disadvantages of DuoModel, such
as the resource and communication overhead, can be avoided.
More general dimension reduction techniques, including PCA,
SVD, and Wavelet, are then explored for the purpose of data
compression. We evaluate various reduced methods on nine
scientific datasets, and the results show the effectiveness of our
approach. The future work consists of two directions. The first
is to implement the proposed reduced methods in partitioned
matrix to further reduce the compression overhead. For the
second one, we notice that there is no single reduced method
that is the best of all datasets. Therefore, it is motivated to
propose a model selection strategy that selects the best model
prior to data reduction.
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