LOSC: Efficient Out-of-Core Graph Processing with
Locality-optimized Subgraph Construction

Xianghao Xu
Wuhan National Laboratory for
Optoelectronics, Huazhong
University of Science and Technology
xianghao@hust.edu.cn

Yongli Cheng*
College of Mathematics and
Computer Science, FuZhou University
chengyongli@fzu.edu.cn

Fang Wang' '

Wuhan National Laboratory for
Optoelectronics, Huazhong
University of Science and Technology
wangfang@hust.edu.cn

Yu Hua
Wuhan National Laboratory for
Optoelectronics, Huazhong
University of Science and Technology
csyhua@hust.edu.cn

Yongxuan Zhang
Wuhan National Laboratory for
Optoelectronics, Huazhong
University of Science and Technology
zyx@hust.edu.cn

Hong Jiang
Department of Computer Science &
Engineering, University of Texas at

Arlington
hong jiang@uta.edu

Dan Feng
Wuhan National Laboratory for
Optoelectronics, Huazhong
University of Science and Technology
dfeng@hust.edu.cn

ABSTRACT

Big data applications increasingly rely on the analysis of large
graphs. In recent years, a number of out-of-core graph processing
systems have been proposed to process graphs with billions of edges
on just one commodity computer, by efficiently using the secondary
storage (e.g., hard disk, SSD). On the other hand, the vertex-centric
computing model is extensively used in graph processing thanks to
its good applicability and expressiveness. Unfortunately, when im-
plementing vertex-centric model for out-of-core graph processing,
the large number of random memory accesses required to construct
subgraphs lead to a serious performance bottleneck that substan-
tially weakens cache access locality and thus leads to very long
waiting time experienced by users for the computing results. In this
paper, we propose an efficient out-of-core graph processing system,
LOSC, to substantially reduce the overhead of subgraph construc-
tion without sacrificing the underlying vertex-centric computing
model. LOSC proposes a locality-optimized subgraph construction

*This author is the corresponding author.

T Also with Shenzhen Huazhong University of Science and Technology Research
Institute.

Also with Wuhan National Laboratory for Optoelectronics, Huazhong University of
Science and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6778-3/19/06....$15.00

https://doi.org/10.1145/3326285.3329069

scheme that significantly improves the in-memory data access local-
ity of the subgraph construction phase. Furthermore, LOSC adopts
a compact edge storage format and a lightweight replication of
vertices to reduce I/O traffic and improve computation efficiency.
Extensive evaluation results show that LOSC is respectively 6.9x
and 3.5x faster than GraphChi and GridGraph, two state-of-the-art
out-of-core systems.

CCS CONCEPTS

» Theory of computation — Graph algorithms analysis; «
Hardware — External storage;

KEYWORDS

graph computing, out-of-core, subgraph construction

ACM Reference Format:

Xianghao Xu, Fang Wang, Hong Jiang, Yongli Cheng, Yu Hua, Dan Feng,
and Yongxuan Zhang. 2019. LOSC: Efficient Out-of-Core Graph Processing
with Locality-optimized Subgraph Construction. In IEEE/ACM International
Symposium on Quality of Service (IWQoS ’19), June 24-25, 2019, Phoenix, AZ,
USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3326285.
3329069

1 INTRODUCTION

Graph is a powerful data structure to model and solve many real-
world problems. There exist various modern big data applications
relying on graph computing, including social networks, Internet of
things, and neural networks.

However, with the real-world graphs growing in size and com-
plexity, processing these large and complex graphs in a scalable way
has become increasingly more challenging. To tackle this challenge,
a number of graph-specific processing frameworks have been pro-
posed. With these graph processing frameworks, users can write an

https://doi.org/10.1145/3326285.3329069
https://doi.org/10.1145/3326285.3329069
https://doi.org/10.1145/3326285.3329069

IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

update function for a specific graph application without considering
the underlying execution details. The quality of service of the graph
processing frameworks depends on the processing performance of
their graph processing jobs. To obtain a better performance, many
systems adopt a large cluster to deploy their their large graph pro-
cessing jobs, such as Pregel [17], PowerGraph [9], GraphX [10], etc.
These systems distribute a large graph into the compute nodes of
a cluster by constructing node-resident subgraphs from the origi-
nal graph, which enables them to utilize the aggregate memory of
a cluster to achieve good scalability. Unfortunately, they usually
suffer from high hardware and communication/synchronization
costs [7] because of the significant amount of communication and
coordination required among a large number of computing nodes
when processing large graphs.

In recent years, several out-of-core graph processing systems
such as GraphChi [13], X-Stream [19], GridGraph [26], etc. have
been proposed to process large graphs on a single compute node,
by efficiently using the secondary storage (e.g., hard disk, SSD).
As we know, the secondary storage has much larger capacity and
lower price than the DRAM. Therefore, the out-of-core systems
can scale to very large graphs, serving as a promising alternative
to distributed solutions. These systems divide a large graph into
many partitions and load and process one partition from disk at a
time. Current out-of-core graph processing systems mainly adopt
two computing models, i.e., vertex-centric and edge-centric.

Vertex-centric systems. The vertex-centric computing model
takes the vertex as the processing unit and each vertex can invoke
a user-defined function to update its own value in parallel. Most
graph processing systems [9, 13, 17] are based on the vertex-centric
model as it is intuitive for users to express many graph algorithms.
GraphChi [13] is a widely-used out-of-core graph processing sys-
tem that supports vertex-centric computation and is able to express
many graph algorithms. It divides the vertices into disjoint intervals
and breaks the large edge list into smaller shards containing edges
with destinations in the corresponding vertex intervals. By using a
novel parallel sliding windows method to reduce random I/O ac-
cesses, GraphChi is able to process large-scale graphs in reasonable
time. Based on GraphChi, other systems like BSPP [18], VENUS
[6] and ODS [21] also adopt the vertex-centric model to further
improve the performance of out-of-core graph processing systems.

Edge-centric systems. The edge-centric computing model ex-
plicitly factors computation over edges instead of vertices and takes
the edge as the processing unit. X-Stream [19] is a typical one that
uses an edge-centric scatter-gather computing model. In the scatter
phase, it streams the entire edge list and produces updates. In the
gather phase, it propagates these updates to vertices. Similar to
X-Stream, GridGraph [26] uses a 2-Level hierarchical partition and
a streaming-apply model to reduce the amount of data transfer,
enable streamlined disk access, and maintain locality.

Compared with the vertex-centric model, the edge-centric model
can leverage high disk bandwidth with fully sequential accesses.
However, as traditional iterative graph computation is naturally
expressed in a vertex-centric manner, users must re-implement
many algorithms in edge-centric API [6]. Furthermore, for some
algorithms such as community detection, it is difficult to implement
them in an edge-centric model [6]. Therefore, in this paper, we

X. Xu et al.

18001 Il Vertex Updating |
I Subgraph Construction

1500 /MDIskvo B

12004 oo

900 - mmm P

6001-- - ----- -

300 - BN

runtime(s)

0,
PageRank WCC BFS SSSP

Figure 1: Breakdown time of several algorithms on Twitter
for GraphChi

Table 1: cache misses of different execution phases

Execution Phase LLC Miss (Read) LLC Miss (Write)

Disk I/O 1.8% 1.5%
Subgraph Construction 14.1% 31.1%
Vertex Updating 2.3% 9.1%
Overall 4.3% 6.8%

mainly focus on the vertex-centric out-of-core graph processing
systems for their better applicability and expressiveness.

Unfortunately, our experimental results show that the perfor-
mance of vertex-centric out-of-core systems is usually limited by
the inefficient subgraph construction that causes frequent random
memory accesses. In fact, when implemented in an out-of-core sys-
tem to process a graph partition, the vertex-centric model requires
all edges of the partition to be loaded from the disk and assigned
to their source and destination vertices to construct an in-memory
vertex-centric subgraph structure, before updating the vertices of
the partition. This is the phase of subgraph construction. Since the
vertex data structures are stored sequentially by the vertex ID in
memory, the assignments of edges will incur many random memory
accesses as the source or destination vertices of the edges usually
have non-sequential vertex IDs. Random memory accesses greatly
weaken cache access locality and thus degrade performance by
increasing cache miss rate. Figure 1 shows the runtime breakdown
of several algorithms on Twitter graph [12] executed by GraphChi.
We observe the subgraph construction phase is responsible for at
least 48% of the whole execution time, which leads to very long
waiting time experienced by users for the computing results, sig-
nificantly reducing the quality of service. Table 1 shows the cache
misses of different execution phases when running BFS on Twitter.
We can see that the last-level cache (LLC) miss rate of the subgraph
construction phase is much higher than those of other execution
phases, which explains both the random memory accesses and high
execution time caused by the subgraph construction phase, con-
sidering the much higher miss penalty of LLC than other levels of
cache.

In this paper, we present LOSC, an efficient out-of-core graph pro-
cessing system that significantly reduces the overhead of subgraph
construction without sacrificing the underlying vertex-centric com-
puting model. The main contributions of LOSC are summarized as
follows.

Graph Processing with Locality-optimized Subgraph Construction

shard 1 shard 2 shard 3

src dst src dst src dst
1 2 1 101 2 278
a . 130
34 . 34 3 201
100 . . 245
3 100 . B 300
2 a3 | 125 .
B . 169
10 5 . o 5
55 . . 200 | 300
100 | 117 . .
. . 156
300 | 21 .
a
1-100 101-200 201-300

(a) Intervals and shards of a graph

IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

Source =1

~ N

12345+ 1021+ 34+ 55100 -+ 300

W

Source =3

(b) Sequence of memory access when constructing sub-
graphs (shard 1)

Figure 2: The example of constructing subgraphs

e LOSC proposes a locality-optimized subgraph construction
scheme that improves the locality of memory access to greatly
reduce the overheads of constructing subgraphs. The locality-
optimized subgraph construction scheme ensures that the
vertices required for adding incoming and outgoing edges are
stored sequentially in memory when constructing subgraphs,
which significantly improve the memory access locality.

e LOSC implements a compact edge storage format by com-
bining several graph compression methods to save storage
size and reduce I/O traffic.

e LOSC adopts a lightweight replication of interval vertices
(vertices within an interval) to improve computation effi-
ciency by enabling full thread-level parallelism.

e We evaluate LOSC on several real-world graphs with differ-
ent algorithms. Extensive evaluation results show that LOSC
outperforms GraphChi and GridGraph by 6.9x and 3.5x on
average respectively due to its locality-optimized subgraph
construction and reduced disk I/Os.

The rest of the paper is organized as follows. Section 2 presents
the background and motivation. Section 3 describes the detailed
system design of LOSC. Section 4 presents an extensive performance
evaluations. We discuss the related works in Section 5 and conclude
this paper in Section 6.

2 BACKGROUND AND MOTIVATION

In this section, we first present a brief introduction to the vertex-
centric computing model. Then, we introduce the state-of-art out-
of-core graph processing systems. Finally, We take GraphChi as
an example to demonstrate the process and performance impact
of subgraph construction. This helps motivate us to propose a new
out-of-core system that significantly improves system performance
by reducing the overhead of subgraph construction.

2.1 Vertex-centric Computing Model

The vertex-centric computing model establishes a "think like a
vertex" idea [17] that can express a wide range of graph algorithms,
for example, graph mining, data mining, machine learning and
sparse linear algebra, as shown by many researchers [9, 13, 16, 17].
This model consists of a sequence of iterations and a user-defined
update function executed for all vertices in parallel. In each iteration
of computation, each vertex gathers data from its incoming edges;
then it uses the gathered data to update its own value by invoking

the user-defined update function; finally, it propagates its new value
along its outgoing edges to its neighbors.

2.2 Out-of-Core Graph Processing

GraphChi [13] is an extensively-used out-of-core graph processing
system that supports vertex-centric computation and is able to ex-
press many graph algorithms. It divides the vertices into disjoint
intervals and breaks the large edge list into smaller shards contain-
ing edges with destinations in the corresponding vertex intervals.
For a given vertex interval, its incoming edges are stored in its
associated shard called memoryshard, while its outgoing edges are
distributed among other shards called sliding shards. In addition,
edges in a shard are sorted by their source vertices. GraphChi ex-
ploits a novel method of parallel sliding windows (PSW) to process
all intervals. For each interval, PSW loads the incoming edges of
the interval from memoryshard and loads the outgoing edges from
sliding shards. Updating messages with their destination vertices
in the working interval will be applied instantly, while other up-
dates will be written to the rest of the sliding shards on the disk.
GraphChi can process large graphs with a reasonable performance
while using much fewer hardware resources than a distributed sys-
tem. However, as shown in Figure 1, the subgraph construction
phase significantly degrades the overall performance.

Other studies such as X-Stream [19] and GridGraph [26] utilize
different computing models that can eliminate the overhead of sub-
graph construction. For example, X-Stream adopts an edge-centric
computing model and avoids constructing vertex-centric subgraphs.
However, this edge-centric model usually has poorer applicability
and expressiveness than the vertex-centric model. And some algo-
rithms such as community detection can not be implemented in an
edge-centric model [6]. Therefore, most graph processing systems
implement the vertex-centric computing model.

2.3 Subgraph Construction in Out-of-Core
Graph Processing

For out-of-core systems where all edges are stored on the disk,
when implementing the vertex-centric computation on a graph
partition, all edges of the partition should be loaded into memory
and assigned to corresponding vertices of the partition. This is the
phase of subgraph construction. During this phase, each edge is
added to the edge array of its source or destination vertex.

IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

‘ Graph Algorithms ‘

‘ CPU ‘ CPU ‘ CPU ‘

! ! !
DRAM
‘ Vertex-Centric Subgraph ‘

‘Locality-optimized Subgraph Construction‘

Compact Edge Storage
‘ p g 8 ‘ ‘ Memory-mapped Vertex Data ‘

! i

Disk
i Compact Edge Data
Storage Devices

Figure 3: The LOSC Architecture

Lightweight Replication of Interval
Vertices i

Figure 2 illustrates an example of constructing subgraphs in
GraphChi. As shown in Figure 2(a), the vertices of the example
graph are split into three intervals: 1-100, 101-200 and 201-300.
Each interval is associated with a shard containing incoming edges
of vertices in the interval. When constructing the subgraph of shard
1, GraphChi first processes the edge(1,2) and accesses the memory
address of vertex 2, then it writes the edge to the incoming edge
array of vertex 2. Afterwards, it accesses the memory address of
vertex 4 and writes the edge(1,4) into the incoming edge array of
vertex 4 until all edges in the shard are added. The non-sequential
destination vertices of the edges casue many random reads and
writes in memory to add the incoming edges when constructing
subgraphs as shown in Figure 2(b). It is a known fact that random
memory accesses tend to weaken cache locality and result in high
cache miss rate, thus degrading memory access performance. Thus,
the subgraph construction phase becomes a severe performance
bottleneck when processing large real-world graphs for out-of-core
graph processing systems. This motivates us to seek a design that
minimizes random memory accesses to reduce the overhead of
subgraph construction.

3 SYSTEM DESIGN

In this section, we first present the system overview of LOSC. Then,
we illustrate the graph representation and the locality-optimized
subgraph construction scheme. Next, we introduce the compact
edge storage format and the lightweight replication of interval
vertices. Finally, we describe the main workflow of LOSC in detail
with an example.

3.1 System Overview

A graph problem is usually encoded as a directed graph G = (V, E),
where V is the set of vertices and E is the set of edges. For a di-
rected edge e = (u, v), we refer to e as v’s in-edge, and u’s out-edge.
Additionally, u is an in-neighbor of v, v is an out-neighbor of u. The
computation of a graph G is usually organized in several iterations
where V and E are read and updated. Updating messages are propa-
gated from source vertices to destination vertices through the edges.
The computation terminates after a given number of iterations or
when it converges. Like previous works [6, 24], we treat all ver-
tices as mutable data and edges as read-only data. Furthermore,
this optimization does not result in any loss of expressiveness as
mutable data associated with edge e = (u, v) can be stored in vertex

X. Xu et al.

u [6]. Therefore, only the vertex values are updated during the
computation. For the large graphs whose vertex data is too large
to be cached in memory, we simply mmap all the vertex data into
memory as previous works [2, 15], to reduce random disk accesses.

LOSC is an efficient out-of-core graph processing system sup-
porting vertex-centric computing model. Figure 3 presents the sys-
tem architecture of LOSC. LOSC improves the performance by
reducing the overhead of subgraph construction using a novel
locality-optimized subgraph construction scheme. This scheme
greatly improves the data access locality when constructing sub-
graphs. Furthermore, LOSC adopts a compact edge storage format
to reduce I/O traffic and a lightweight replication of interval vertices
to improve computation efficiency.

3.2 Graph Representation

LOSC adopts the similar graph representation as GraphChi, which
splits the vertices V of graph G into P disjoint intervals and edges E
into P shards with source or destination vertices in corresponding
vertex intervals. It differs from GraphChi in that it associates two
edge shards for each interval: in-shard and out-shard. In-shard(n)
contains all in-edges of the vertices in interval(n), sorted by the
destination vertices. Out-shard(n) contains all out-edges of the
vertices in interval(n), sorted by the source vertices. We illustrate
the contrast between the representation of GraphChi and LOSC
of an example graph in Figure 4. The example graph has six ver-
tices, which have been divided into two equal intervals: 1-3 and
4-6. While GraphChi only stores the in-edges of an interval in the
corresponding shard, LOSC stores in-edges and out-edges of each
interval in the corresponding in-shard and out-shard respectively.

Although maintaining both in-edges and out-edges is not a novel
design [14, 20, 22, 25], we use this to solve a totally different prob-
lem than previous works [14, 20, 25]. Specifically, previous works
use this design to support different computing models and graph
algorithms that need both in-edges and out-edges. For example,
Ligra [20] stores both in-edges and out-edges to enable the adaptive
push/pull update model. Moreover, these systems are designed for
in-memory graph processing and do not need subgraph construc-
tion. On the other hand, LOSC uses this graph representation to
solve the inefficient subgraph construction problems of out-of-core
systems by fully utilizing the memory access locality. In addition, by
storing in-edges and out-edges of an interval separately, it requires
only two non-sequential disk reads to fully process an interval sub-
graph, rather than the P non-sequential reads required by GraphChi
(P is the number of intervals), which substantially improves the
disk accesses locality.

3.3 Locality-optimized Subgraph Construction

As mentioned in Section 2.3, the subgraph construction phase sig-
nificantly degrades the overall performance of out-of-core systems
due to a large amount of random memory accesses. To solve this
problem, LOSC implements a locality-optimized subgraph construc-
tion method significantly reduces the random memory accesses
locality of the subgraph construction phase.

Algorithm 1 presents the procedure of high performance sub-
graph construction scheme. The procedure of subgraph construc-
tion is to add in-edges/out-edges to the in-edge array/out-edge

Graph Processing with Locality-optimized Subgraph Construction

IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

shard 1 shard 2 in-shard(1) out-shard(1) in-shard(2) out-shard(2)
src dst src dst src dst src dst src dst src dst
1 2 1 5 3 1 1 2 2 4 4 3
2 3 2 4 1 2 5 5 6
5
5 2 3 1 5 5 2
3 1
4 5 2 | 3 4 2 3
4 3
5 4 4 5 6 5 4
5 2
3 6 [5 3 1 4 6 6 5

(a) Example graph

(b) GraphChi shard representation

(c) LOSC’s representation

Figure 4: Illustration of graph representation

array of vertices. For each in-edge, LOSC first accesses the mem-
ory address of its destination vertex, and then adds the edge into
the in-edge array of the vertex. Similarly, for each out-edge, LOSC
accesses the memory address of its source vertex, and adds the
edge into the out-edge array of the vertex. Since the in-edges in
the in-shards are sorted by the destination vertices and the out-
edges in the out-shards are sorted by the source vertices. In this
case, LOSC maximizes sequential memory access when adding the
in-edges/out-edges to the destination/source vertices and data ac-
cess locality is exploited as much as possible when constructing
subgraphs.

Algorithm 1 Locality-optimized Subgraph Construction

1: for each interval p do

2 /* Initialization */

3 a « interval(p).start

4 b « interval(p).end

5 G « InitializeMemoryForSubgraph(a, b)
6 /* Load in-edges in in-chunk */

7 Inegdes «— in — chunk(p).read fully()

8 for each edge e in Inedges do

9 G.vertex|e.dest]|.addInEdge(e.source)
10: end for

11: /* Load out-edges in out-chunk */

12: Outegdes «— out — chunk(p).read fully()
13: for each edge e in Outedges do

14: G.vertex|e.source].addOutEdge(e.dest)
15: end for

16: return G

17: end for

Figure 5 provides an example to compare the locality-optimized
subgraph construction with GraphChi’s PSW subgraph construc-
tion. Both LOSC and GraphChi construct a subgraph for interval 1
of the graph in Figure 4(a). As we see in Figure 5(a), for interval 1,
the access order of vertices to construct subgraph is 1, 2, 3 and these
vertices are stored sequentially in memory. When LOSC executes
the construction program, it first accesses the address of vertex 1,
then it adds edge(3, 1) to the in-edge array of vertex 1 and adds
edge(1, 2) and edge(1, 5) to the out-edge array in parallel. After-
wards, it successively accesses the addresses of vertex 2, vertex
3, and adds their in-edges and out-edges. However, for GraphChi,
it requires many random memory accesses to add in-edges for

in-shard(1) out-shard(1) sequence of memory access
src | dst src | dst
3 . 1 5 m
1 2 5 vertex ID 1 2 3
2,3
s 2 3 in-edges |3 ;) (1,2) 24: 3;
2 3 4 array (5.2) (5,3)
(2,3)
4 5 out-edges 8 g; (2, 4) (3, 1)
5 3 1 array ! (2,5)
v
process in-memory structure
sequence of vertices
(a) LOSC’s locality-optimized subgraph construction
shard 1 shard 2 sequence of memory access
src | dst src | dst
1 2 1 5
2 | 3 2 | 4 vertex ID 1 2 3
2,3
3 ! s in-edges |3 1) (1,2) 24’ 3;
a | 3 4 |6 array (5.2) (s, 3)
(2,3)
5 2 5 g out-edges ﬁ 3 (2, 4) (3,1)
3 6 | s array ’ (2,5)
v
process in-memory structure
sequence of vertices

(b) GraphChi’s subgraph construction

Figure 5: Comparison of Constructing Subgraphs

vertices in interval 1 as shown in Figure 5(b). When processing real-
world graphs that have large numbers of vertices and edges and
complex structures, the inefficiency of GraphChi’s PSW subgraph
construction will become an extremely serious problem for system
performance.

Due to a great reduction of random memory accesses, the locality-
optimized subgraph construction scheme significantly improves the
system performance. We will quantitatively evaluate the efficiency
of locality-optimized subgraph construction in Section 4.3.

3.4 Compact Edge Storage Format

Although our graph representation improves the performance of
subgraph construction, it takes more storage space than the existing
graph representations since it stores both in-edges and out-edges.
To solve this problem, we implement a compact edge storage format
by combining several graph compression methods, i.e., compression
of undirected graph, delta compression and ID compression.

IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

Compression of undirected graph. For undirected graphs,
LOSC stores each edge twice, one for each of the two directions.
Actually, for an undirected edge e = (u, v), e can be regarded as
the in-edge and out-edge of u and v simultaneously. Therefore, for
a vertex interval i, in-shard (i) and out-shard (i) are a duplicate of
each other. To avoid this redundant storage, LOSC only maintains
one copy of edges for undirected graphs, i.e., only storing in-edges
or out-edges of an interval.

Delta compression. In fact, each in-shard or out-shard consists
of all adjacency lists of the vertices in an interval. The adjacency
list of a vertex consecutively stores the vertex IDs of the vertex’s
neighbors. We can compress the adjacency lists by utilizing the
delta values of vertex IDs. This is motivated by the locality and
similarity in web graphs [5] where most links contained in a page
lead the user to some other pages within the same host. In this case,
the neighbors of many vertices may have similar vertex IDs. Instead
of storing all vertex IDs in an adjacency list, LOSC stores the vertex
ID of the first neighbors and the delta values of the vertex IDs of
remaining neighbors.

ID compression. Current systems always store the ID as an
integer of four-byte or eight-byte length. However, this can be
wasteful if the IDs are of small values. LOSC adopts a variable-length
integer [23] to encode each vertex ID (including the delta values).
Thus, a minimum number of bytes are used to encode a given
integer. Furthermore, the most significant bit of each compressed
byte is used to indicate different IDs and the remaining seven bits
are used to store the value. For example, considering an adjacency
list of vertex v1, adj(v1l) = {v2, 03, v4}. Supposing that the IDs of
v2, v3 and v4 are 2, 5, and 300, the adjacency list of vertex vI is
stored as "00000010 10000011 00000010 00100111". The first byte is
the id of 2, and the second byte is the delta value between 2 and 5
(removing the most significant bit). The third byte and the fourth
byte have the same most significant bit, which means that they are
used to encode the same ID. 00000100100111 (after removing the
most significant bit of the third and fourth byte) is the delta value
between 300 and 5.

By combining these compression techniques, the compact edge
storage format can significantly reduce disk storage consumption,
which further reduces I/O traffic and improves system performance
with very little extra preprocessing and decompression time, as
shown in the evaluation results in Section 4.4.

3.5 Lightweight Replication of Interval
Vertices

As shown in Section 2.1, each vertex computes its new value in
parallel in the vertex-centric computing model. However, if two
vertices in the same vertex interval have a common edge, e.g., vertex
1 and vertex 2 in Figure 4(c), they can not be updated in parallel
as update sequences of these vertices have an influence on the
computing result. For example, when vertex 2 is updated, it reads
the value of vertex 1. If vertex 1 is updated earlier, vertex 2 will
obtain the latest value of vertex 1. Otherwise, it will obtain the value
of the last iteration. To solve this problem, GraphChi implements a
deterministic parallelism in which vertices of the same interval are
updated sequentially if they share a common edge. Although this

X. Xu et al.

method eliminates race conditions, it limits the utilization of CPU
parallelism and reduces the computation efficiency.

To solve the above problem, LOSC adopts a lightweight replica-
tion of interval vertices to eliminate race conditions while enabling
full CPU parallelism. Concretely, LOSC maintains two copies of
the interval vertices, Latest-copy and Old-copy, when executing a
vertex interval. Latest-copy stores the latest values and is updated
during the computation. Old-copy serves as the in-neighbors and
is read by other vertices, storing the values of the last iteration.
Consequently, all vertices in an interval can access their read-only
in-neighbors and execute update function in parallel, and the up-
date sequence of vertices will not affect the computing result. Since
LOSC just replicates the vertices in an interval, it will not cause
much memory pressure. After a vertex interval is processed, LOSC
synchronizes the values of the Latest-copy and the Old-copy and
deletes the Latest-copy.

3.6 Workflow Example

We now use an example to illustrate the main workflow of LOSC in
detail. LOSC processes the input graph one vertex interval at a time.
The processing of an interval consists of four steps: 1) load edges; 2)
construct subgraph; 3) parallel update; 4) synchronize vertex values.
Figure 6 shows an example of processing on interval 1 of the graph
in Figure 4(a).

Load edges. The loading phase of LOSC is very simple but I/O-
efficient. As we see in Figure 6, LOSC concurrently loads the in-
edges from the in-shard and out-edges from the out-shard for in-
terval 1 (shards in shaded color are loaded into memory). Unlike
PSW of GraphChi, it maximizes the sequential access and requires
only two non-sequential disk reads to process an interval subgraph,
rather than the P non-sequential reads in GraphChi (P is the number
of intervals).

Construct subgraph. When the edges are loaded into memory,
LOSC starts the locality-optimized subgraph construction for the
interval as described in Section 3.3. LOSC sequentially accesses the
memory addresses of vertices 1, vertex 2, vertex 3, and adds their
in-edges and out-edges. In fact, LOSC overlaps subgraph construc-
tion with edge loading as much as possible to make better use of
parallelism.

Parallel update. After the subgraph is constructed, LOSC exe-
cutes a user-defined update program for each vertex of the current
interval in parallel. When a vertex is updated, it first reads the val-
ues of its in-neighbors and produces an aggregated value. Then, the
user-defined update program takes this value as input and updates
the value of the vertex. Algorithm 2 shows an example update pro-
gram that computes PageRank of an input graph. In addition, for
the interval vertices, e.g., vertex 1, 2, 3 in Figure 6, LOSC maintains
two types of values (Latest-copy and Old-copy) to enable full CPU
parallelism while ensures the consistency of computation.

Synchronize vertex values. When all vertices of an interval
have been updated, LOSC directly updates the values of the Old-
copy of interval vertices (e.g., vertex 1, 2, 3) with the values of the
Latest-copy. Unlike previous systems [13, 19] that write the updated
edge attributes back to the disk for subsequent processing, synchro-
nization of vertices significantly reduces disk IOs and improves
system performance.

Graph Processing with Locality-optimized Subgraph Construction

in-shard(1) out-shard(1) in-shard(2) out-shard(2)

src | dst src | dst src | dst src | dst
3 1 1 2 2 4 4 3
1 2 5 5 6
5 2 8 1 5 5 2
2 5} 4 2 3
4 5 6 5 4
5 3 1 4 6 6 5
subgraph of
interval 1
1. load edges

2. construct subgraph

IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

interval vertices (Latest-copy)

BE
4. Synchronize update interval vertices
vertex values “,/ljse,_\\ 3. parallel
| defined |
‘ update

read from in-neighbors

vertex data

interval vertices
(Old-copy)

Figure 6: An Example of the LOSC workflow

Algorithm 2 Update Function (v): PageRank

1: Procedure PageRank

2. /* read values from in-neighbors */

3: for each edge e of v.iinedges() do

4 src «— e.source

5 sum «— sum + src.value/src.outdegree
6: end for

7. /* update the value */

8: pagerank < 0.15 + 0.85 X sum

9: v.value < pagerank

0: End Procedure

—_

In addition, LOSC supports selective scheduling to skip inactive
vertices like GraphChi by representing the current schedule as a
bit-array (we assume enough memory to store |V|/8 bytes for the
schedule). This enables LOSC to focus on computation only where
it is needed and improve the efficiency of computation.

4 EVALUATION

In this section, we first introduce our evaluation environment and
the algorithms we used. Then, we evaluate LOSC by measuring the
overall performance, the effects different system optimizations and
the scalability.

4.1 Experiment Setup

All experiments are conducted on an 8-core commodity machine
equipped with 12GB main memory and 600GB 7200RPM HDD, run-
ning Red Hat 4.8.5. In addition, a 128GB SATA2 SSD is installed
for evaluating the scalability. Datasets used for the evaluation are
all real-world graphs with power-law degree distribution, summa-
rized in Table 2. LiveJournal, Twitter2010 and Friendster are social
graphs, showing the relationship between users within each online
social network. UK2007 and Ukunion are web graphs that consist of
hyperlink relationships between web pages, with larger diameters
than social graphs. The in-memory graph LiveJournal is chosen to
evaluate the performance of subgraph construction and the scal-
ability of LOSC. The other three graphs Twitter2010, Friendster,
UK2007 and UKUnion are larger than memory by 2.1x, 2.6x, 5.2x
and 7.9x respectively.

Table 2: Datasets used in evaluation

Dataset Vertices Edges Type
LiveJournal [3] 4.8 million 69 million Social Network
Twitter2010 [12] 42 million 1.5 billion Social Network
Friendster [5] 66 million 1.8 billion Social Network
UK2007 [4] 106 million 3.7 billion = Web Graph
UKunion [4] 133 million 5.5 bilion =~ Web Graphs

We implement several different graph algorithms to show the ap-
plicability of LOSC: PageRank (PR), Sparse Matrix Vector Multiply
(SpMV), Breadth-first search (BFS), Weak Connected Components
(WCCQ), and Single Source Shortest Path (SSSP). These algorithms
exhibit different I/O access and computation characteristics, which
provides a comprehensive evaluation of LOSC. For PageRank, we
run five iterations on each graph. For SpMV, we run one iteration
to calculate the multiplication result. For BFS, WCC and SSSP, we
run them until convergence.

We compare LOSC with two state-of-art out-of-core systems
that use the vertex-centric and edge-centric model respectively,
GraphChi (introduced in Section 2.2) and GridGraph [26]. For all
compared systems, we provide 8GB memory budget, 8 execution
threads for the executions of all algorithms.

4.2 Overall Performance

We first report the execution time of the chosen algorithms on
different graphs and systems in Table 3. We can see that LOSC
significantly outperforms GraphChi and GridGraph. On average,
LOSC outperforms GraphChi and GridGraph by 6.9x and 3.5x re-
spectively.

The speedup over GraphChi mainly derives from the significant
reduction in time spent on subgraph construction and in number
of disk I/Os. PR and SpMV are computation-intensive algorithms
in which subgraph construction dominates the execution time. For
these algorithms, on average LOSC speeds up graph processing by
9.3x and 10.1x respectively, compared with GraphChi. BFS, WCC
and SSSP are I/O-intensive algorithms and the disk I/O costs become

IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

Table 3: Execution time (in seconds)

PageRank SpMV BFS WCC SSSp

LiveJournal

GraphChi 16.6 14.1 20.9 24.4 21.4
GridGraph ~ 10.9 5.1 5.2 5.1 6.1
LOSC 1.7 0.9 3.7 4.1 4.0
Twitter2010

GraphChi 928.6 371.4 1624.3 913.7 1913.9
GridGraph ~ 451.9 197.2 598.9 522.5 660.4
LOSC 126.5 57.6 230.1 176.3 249.2
Friendster

GraphChi 2562.8 568.8 2294.5 2612.3 1802.4
GridGraph 1009.4 371.4 578.6 526.8 708.6
LOSC 230.2 70.8 473.4 481.3 376.2
UK2007

GraphChi 2812.5 1160.7 7154.5 6862.8 7495.8
GridGraph 1242.2 511.2 6025.2 4783.8 7029.4
LOSC 265.1 121.7 1172.2 864.7 1171.4
Ukunion

GraphChi 3376.6 1620.8 240623 5665.8 56650.9
GridGraph 1829.3 810.5 18929.2 13265.1 25554.2
LOSC 390.1 178.9 13022.5 3513.9 18171.4

the key factor on the system performance for these algorithms.
Thanks to the significant reduction in disk I/Os due to the compact
edge storage format, LOSC still outperforms GraphChi by 5.5x, 4.7x
and 5.7x respectively on these three algorithms.

For GridGraph, although it processes the input graph without
non-sequential disk reads and avoids constructing vertex-centric
subgraphs since the computation is based on the edge lists, it has
a worse performance than LOSC. This attributes to LOSC’s com-
pact edge storage format that leads to much fewer disk I/Os than
GridGraph. Moreover, GridGraph disables full CPU parallelism and
incurs a significant overhead to ensure consistency when updating
vertices.

Furthermore, to analyze the performance gains obtained by us-
ing each optimization, we compare the system performance by
respectively applying each optimization to LOSC. The optimiza-
tions include the locality-optimized subgraph construction scheme
(LSCS), the compact edge storage format (CESF), the lightweight
replication of interval vertices (LRIV). As the baseline, we disable all
optimizations of LOSC. As shown in Figure 7, we can see that LSCS
contributes to the most performance improvement while LRIV con-
tributes to the least. This is because the vertex update phase has
relatively less impact on the overall performance, compared with
subgraph construction and disk I/Os.

X. Xu et al.

(N SpMV I WCC I SSSP]

relative runtime

0+
Baseline LSCS CESF LRIV

Figure 7: Varying performance by applying different opti-
mizations to LOSC

1000 I LOsC-Psw [l LOSC I L OSC-Psw [l LOSC
2
@
£
°
o]
7]
aQ
<
0]
0 0
PageRank BFS WCC PageRank BFS WCC
(a) Twitter (b) UK2007

Figure 8: Time cost of subgraph construction

Table 4: Memory access and cache miss

System Read Write
mem. refs 416278519 212376955
LOSC-PSW
LLC misses 32053445 49059076
LLC miss rate 7.7% 23.1%
mem. refs 410852346 205426173
LOSC
LLC misses 1608991 6183666
LLC miss rate 0.4% 3.0%

4.3 Effect of Locality-optimized Subgraph
Construction

To evaluate the effect of the locality-optimized subgraph construc-
tion scheme, we compare LOSC with its baseline implementation
(LOSC-PSW) that constructs subgraphs by using the PSW method
[13] of GraphChi. Figure 8 shows the time cost of subgraph con-
struction. We find that LOSC exhibits high efficiency of subgraph
construction and achieves an average speedup of 10.3x compared
with LOSC-PSW. This is mainly attributed to the locality-optimized
subgraph construction scheme that makes better use of the local-
ity of memory access during the subgraph construction phase. To
further demonstrate that LOSC significantly improves the memory
access locality, we measure the number of memory reads/writes
and cache misses during the subgraph construction phase using
Cachegrind [1], a tool capable of simulating memory, the first-level
and last-level caches etc. Here, we just report the number of mem-
ory reads and writes, last-level cache read and write misses (LL

Graph Processing with Locality-optimized Subgraph Construction

GraphChi [l GridGraph
LOSC-baseline [l LOSC

required disk space(GB)

Twitter Friendster UK2007 UKunion

a) Disk space consumption when storing differ-
ent data sets

I GraphChi [l GridGraph
Il LOSC-baseline [l LOSC

Il LOSC-baseline Il LOSC

= N W W A
® 5 O @ N
S o © © o

1/0 traffic(GB
B
releative runtime

@
o o

0.0+
PageRank BFS SSsP PageRank BFS WCC

(b) 1/0 Traffic

(c) Runtime

Figure 9: Evaluating the benefits of compact edge storage for-
mat

misses). The focus on the last-level cache stems from the fact that
it has the most influence on the time of subgraph construction, as
it masks accesses to main memory and a last-level cache miss can
cost as much as 200 cycles [1]. For the ease of measure, we run 1
iteration of BFS on the small graph, LiveJournal, and summarize
the results in Table 4. We observe that the LL miss rate of LOSC-
PSW is much higher than LOSC. This means that the locality of
memory access is exploited better and CPU is able to do more work
on data residing in the cache for subgraph construction of LOSC.
For LOSC-PSW, CPU has to frequently access memory to read data,
which significantly increases the access latency.

4.4 Effect of Compact Edge Storage Format

We evaluate the benefits of the compact edge storage format on stor-
age space, I/O traffic and runtime of algorithms. Figure 10 shows
the evaluation results. We compare LOSC with GraphChi, Grid-
Graph and LOSC-baseline ! in the evaluations. As shown in Figure
10(a), we observe that the storage of LOSC is much more efficient
even though it stores two copies of each edge. Specially, the stor-
age usages of GraphChi and GridGraph are respectively 1.4x and
3.1x higher than that of LOSC on average. Compared with LOSC-
baseline, the compact edge storage format can save storage size
by up to 76%. Figure 10(b) and Figure 10(c) shows the effects of
the compact edge storage format on I/O traffic and runtime of al-
gorithms. We can see that the compact edge storage format can
significantly reduce the amount of I/O traffic, leading to better
algorithm performance.

!implement LOSC without using the compact edge storage format.

IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

6] g = I HDD

14
12
10

8 —=— GraphChi
6 —e— GridGraph
4

2

runtime(s)

——LOSC

\\‘\‘

Tthread 2threads 4 threads 8 threads
(a) Scalability with threads

0
GraphChi GridGraph LOSC
(b) Scalability with I/O

Figure 10: Evaluation of scalability

4.5 Scalability

We evaluate the scalability of LOSC by observing the improvement
when more hardware resource is added. Figure 11(a) shows the
execution time of PageRank on LiveJournal when using different
numbers of threads. We observe that GridGraph and LOSC im-
proves the performance as the number of threads increases. For
GridGraph, it enables parallel processing by overlapping the vertex
updating and edge streaming [26]. For LOSC, it makes full use of
parallelism by using a lightweight replication of interval vertices
during the computation as introduced in Section 3.5. On the other
hand, GraphChi shows poor scalability as we increase the number
of threads. The main blame is GraphChi’s deterministic parallelism
that limits the utilization of multi-threads [13].

Figure 11(b) shows the performance improvement of BFS on UK
when using different I/O devices. Compared with disk performance,
GraphChi, GridGraph and LOSC achieves a speedup of 1.3x, 1.8x
and 1.7x respectively when using SSD. This indicates that LOSC
and GridGraph can benefit more from the utilization of SSD, since
the key performance bottleneck of them is the disk I/O costs. For
GraphChi in which the subgraph construction is also a performance
bottleneck, using fast I/O devices can only bring limited improve-
ment.

5 RELATED WORK

Out-of-core graph processing systems enable users to analyze, pro-
cess and mine large graphs in a single PC by efficiently using disks.
Current out-of-core graph processing systems mainly adopt two
computing models, i.e., vertex-centric and edge-centric.
Vertex-centric systems. TurboGraph [11] inspired by GraphChi
focuses on improving parallelism by overlapping the CPU and
I/O processing with a novel concept called pin-and-slide, but it is
applicable only to certain embarrassingly parallel algorithms [6].
Bishard Parallel Processor [18] also separates in-edges and out-
edges to reduce non-sequential I0s. However, it sorts all edges
by source vertices and still suffers the inefficiency of constructing
subgraphs. VENUS [6] uses a vertex-centric streamlined computing
model and proposes a new storage scheme that streams the graph
data while performing computation. Nevertheless, it only loads the
in-edges of vertices during computation, which disables selective
scheduling and is inappropriate for certain algorithms that also
require out-edges of vertices. [21] provides a general optimization
for out-of-core graph processing, which removes unnecessary I/O
by employing dynamic partitions whose layouts are dynamically

IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

adjustable. However, it incurs significant extra computation over-
heads.

Edge-centric systems. X-Stream [19] advocates a novel edge-
centric scatter-gather computing model. In the scatter phase, it
streams the entire edge list and produces updates. In the gather
phase, it propagates these updates to vertices. Although it lever-
ages high disk bandwidth through sequential accessing, it writes a
large amount of intermediate updates to disks and disables selec-
tive scheduling, which incurs great I/O and computation overhead.
Similar to X-Stream, GridGraph [26] also uses an edge-centric com-
puting model. Differently, it combines the scatter and gather phases
into one "streaming-apply" phase and uses a 2-Level hierarchical
partition to break graph into 1D-partitioned vertex chunks and 2D-
partitioned edge blocks. It supports selective scheduling by skipping
the edge blocks for which vertices in the corresponding chunks are
not scheduled. NXgraph [8] proposes destination-sorted subshard
structure to store a graph so as to further ensure locality of graph
data access. Although these systems can skip the phase of subgraph
construction. However, as traditional iterative graph computation
is naturally expressed in a vertex-centric manner, users need to
re-implement many algorithms in edge-centric APL

6 CONCLUSION

In this paper, we present an efficient out-of-core graph processing
system called LOSC that aims to reduce the significant overhead
of subgraph construction in vertex-centric out-of-core graph pro-
cessing. LOSC proposes a locality-optimized subgraph construction
scheme that improves the in-memory data access locality. LOSC
adopts a compact edge storage format and a lightweight replication
of vertices to reduce I/O traffic and improve computation efficiency.
Our evaluation results show that LOSC can be much faster than
GraphChi and GridGraph, two state-of-the-art out-of-core systems.

ACKNOWLEDGMENTS

This work is supported in part by NSFC No.61772216, National
Key R&D Program of China NO.2018YFB10033005, National De-
fense Preliminary Research Project(31511010202), Hubei Province
Technical Innovation Special Project (2017AAA129), Wuhan Appli-
cation Basic Research Project(2017010201010103), Project of Shen-
zhen Technology Scheme JCYJ20170307172248636, Fundamental
Research Funds for the Central Universities. This work is also sup-
ported by CERNET Innovation Project NGII20170120. This work is
also supported by the Open Project Program of Wuhan National
Laboratory for Optoelectronics NO.2018WNLOKF006 and NSFC
No.61772212.

REFERENCES

[1] 2018. http://www.valgrind.org/. (2018).

[2] Zhiyuan Ai, Mingxing Zhang, Yongwei Wu, Xuehai Qian, Kang Chen, and Weimin
Zheng. 2017. Squeezing out All the Value of Loaded Data: An Out-of-core Graph
Processing System with Reduced Disk I/O. In USENIX ATC’17.

[3] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.
Group formation in large social networks: membership, growth, and evolution.
In KDD’06. 44-54.

[4] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. 2008. A large time-aware
web graph. In ACM SIGIR Forum. 33-38.

[5] Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: compression
techniques. In WWW’04. 595-602.

X. Xu et al.

[6] Jiefeng Cheng, Qin Liu, Zhenguo Li, Wei Fan, John CS Lui, and Cheng He. 2015.
VENUS: Vertex-centric streamlined graph computation on a single PC. In ICDE’15.
1131-1142.

Yongli Cheng, Fang Wang, Hong Jiang, Yu Hua, Dan Feng, and Xiuneng Wang.

2016. LCC-Graph: A high-performance graph-processing framework with low

communication costs. In IWQoS’16. IEEE, 1-10.

[8] Yuze Chi, Guohao Dai, Yu Wang, Guangyu Sun, Guoliang Li, and Huazhong Yang.
2016. Nxgraph: An efficient graph processing system on a single machine. In
ICDE’16. IEEE, 409-420.

[9] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

2012. Powergraph: Distributed graph-parallel computation on natural graphs. In

OSDr’12. 17-30.

Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J

Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed

Dataflow Framework.. In OSDI’'14. 599-613.

[11] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim,
Jinha Kim, and Hwanjo Yu. 2013. TurboGraph: a fast parallel graph engine
handling billion-scale graphs in a single PC. In KDD’13. 77-85.

[12] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is

Twitter, a social network or a news media?. In WWW’10. 591-600.

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: large-scale

graph computation on just a PC. In OSDI’'12. 31-46.

Kisung Lee, Ling Liu, Karsten Schwan, Calton Pu, Qi Zhang, Yang Zhou, Emre

Yigitoglu, and Pingpeng Yuan. 2015. Scaling iterative graph computations with

GraphMap. In SC’15. 57.

Zhiyuan Lin, Minsuk Kahng, Kaeser Md Sabrin, Duen Horng Polo Chau, Ho

Lee, and U Kang. 2014. Mmap: Fast billion-scale graph computation on a pc via

memory mapping. In Big Data’14. 159-164.

Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,

and Joseph M Hellerstein. 2012. Distributed GraphLab: a framework for machine

learning and data mining in the cloud. PVLDB (2012), 716-727.

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,

Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale

graph processing. In SIGMOD’10. 135-146.

Kamran Najeebullah, Kifayat Ullah Khan, Waqas Nawaz, and Young-Koo Lee.

2014. Bishard parallel processor: A disk-based processing engine for billion-scale

graphs. IJMUE (2014), 199-212.

[19] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: edge-

centric graph processing using streaming partitions. In SOSP’13. 472-488.

Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing

framework for shared memory. In Proceeding of the 18th ACM SIGPLAN Sympo-

sium on Principles and Practice of Parallel Programming(PPoPP), Vol. 48. 135-146.

[21] Keval Vora, Guoging Xu, and Rajiv Gupta. 2016. Load the edges you need: A

generic I/O optimization for disk-based graph processing. In USENIX ATC’16.

507-522.

Xianghao Xu, Fang Wang, Hong Jiang, Yongli Cheng, Dan Feng, and Yongxuan

Zhang. 2018. HUS-Graph: I/O-Efficient Out-of-Core Graph Processing with

Hybrid Update Strategy. In ICPP’18. ACM, 3.

Pingpeng Yuan, Pu Liu, Buwen Wu, Hai Jin, Wenya Zhang, and Ling Liu. 2013.

TripleBit: a fast and compact system for large scale RDF data. PVLDB (2013),

517-528.

Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E Priebe,

and Alexander S Szalay. 2015. FlashGraph: Processing billion-node graphs on an

array of commodity SSDs. In FAST’15. 45-58.

Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:

A computation-centric distributed graph processing system. In OSDI’16. 301-316.

[26] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-scale
graph processing on a single machine using 2-level hierarchical partitioning. In
USENIX ATC’15. 375-386.

7

[10

[13

[14

[15

[16

[17

[18

)
=

[22

[23

[24

™
2

http://www.valgrind.org/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Vertex-centric Computing Model
	2.2 Out-of-Core Graph Processing
	2.3 Subgraph Construction in Out-of-Core Graph Processing

	3 System Design
	3.1 System Overview
	3.2 Graph Representation
	3.3 Locality-optimized Subgraph Construction
	3.4 Compact Edge Storage Format
	3.5 Lightweight Replication of Interval Vertices
	3.6 Workflow Example

	4 Evaluation
	4.1 Experiment Setup
	4.2 Overall Performance
	4.3 Effect of Locality-optimized Subgraph Construction
	4.4 Effect of Compact Edge Storage Format
	4.5 Scalability

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

