
BFO: Batch-File Operations on Massive Files for
Consistent Performance Improvement

Yang Yang∗, Qiang Cao∗�, Hong Jiang†, Li Yang∗, Jie Yao∗, Yuanyuan Dong‡, Puyuan Yang‡
∗Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System of Ministry of Education,

School of Computer Science and Technology, Huazhong University of Science and Technology
†Department of Computer Science and Engineering, University of Texas at Arlington

‡Alibaba Group
�Corresponding Author: caoqiang@hust.edu.cn

Abstract—Existing local file systems, designed to support a typ-
ical single-file access pattern only, can lead to poor performance
when accessing a batch of files, especially small files. This single-
file pattern essentially serializes accesses to batched files one by
one, resulting in a large number of non-sequential, random, and
often dependent I/Os between file data and metadata at the
storage ends. We first experimentally analyze the root cause
of such inefficiency in batch-file accesses. Then, we propose
a novel batch-file access approach, referred to as BFO for
its set of optimized Batch-File Operations, by developing novel
BFOr and BFOw operations for fundamental read and write
processes respectively, using a two-phase access for metadata
and data jointly. The BFO offers dedicated interfaces for batch-
file accesses and additional processes integrated into existing file
systems without modifying their structures and procedures. We
implement a BFO prototype on ext4, one of the most popular
file systems. Our evaluation results show that the batch-file
read and write performances of BFO are consistently higher
than those of the traditional approaches regardless of access
patterns, data layouts, and storage media, with synthetic and
real-world file sets. BFO improves the read performance by up
to 22.4× and 1.8× with HDD and SSD respectively; and boosts
the write performance by up to 111.4× and 2.9× with HDD and
SSD respectively. BFO also demonstrates consistent performance
advantages when applied to four representative applications,
Linux cp, Tar, GridFTP, and Hadoop.

I. INTRODUCTION

In the Big Data era, batch-file accesses are observed to be
prevalent in a variety of data processing platforms, ranging
from mobile devices, personal computers, storage servers, to
even data centers. Many routine applications, such as storage
device upgrade and replacement [1] [2], data aggregation [3]
[4], big-data analytics [5] and cloud computing [6], inter-cloud
synchronization [7] [8], heavily depend on batch-file accesses
and operations.

Unfortunately, batch-file accesses fail to fully utilize the I/O
capacity potentials offered by the underlying storage system.
In particular, accessing a batch of small files has been a long-
standing but not well resolved problem. Existing file systems,
such as ext4 [9] and Btrfs [10], only provide the standard
file-access system calls based on a single-file access (called
single-file) pattern. With this pattern, reading a file entails first
reading the file metadata from the block device, which is then
followed by fetching the file data using the addresses obtained
by parsing the metadata. Similarly, when writing a file, its

metadata and file data also are in turn written into different
locations. In other words, the access of any file, regardless its
size, requires two separate I/Os, one for metadata and one for
data. Therefore, reading/writing a file causes a traditional file
system to be extremely inefficient due to such non-sequential
and dependent small I/Os with high overhead [11] [12]. More
importantly, accessing a batch of files, especially small files,
with the single-file pattern can make things much worse
because of traversing and reading/writing all files or directories
involved one by one. In this paper, we focus on optimizing the
file operations when processing a large number of files.

Prior works attempt to address this issue by leveraging
techniques such as multi-threading, prefetching, page cache,
emerging storage hardware, and specialized file systems to
alleviate the bottlenecks. Multi-threading is user-space solution
with limited, if not negative effect, due to potential I/O
contention [13] [14]. Prefetching [15] [16] can indirectly and
implicitly improve the read performance only if the prefetched
file will be accessed next in the buffer cache. On the other
hand, page cache can buffer file writes and absorb metadata
updates, reducing the number of actual write I/Os. However,
several limitations such as buffer capacity, persistency en-
forcement, and flushing overheads, actually weaken its effect.
Emerging storage media such as solid-state drive can signifi-
cantly improve the actual data access performance. However,
the batch-file accesses based on the single-file pattern cannot
make full use of these new hardware (shown in the Section II).
Other solutions [17] [18] have to redesign a file system
with new data layout and access procedures, and are not
easily portable to existing file systems. More importantly,
although these techniques can indirectly lessen the inefficiency
in reading/writing files, they cannot fundamentally change the
inherent serialized file-access pattern, losing opportunities to
improve the performance when accessing massive numbers of
files.

Therefore, in this paper, we propose BFO, a novel Batch-
File access mechanism to explicitly speed up processing file
sets, particularly for batched small files. Complementing the
single-file access pattern using the standard file operations
(i.e., read(), write()) in traditional file systems, BFO provides
Batch-File Read (BFOr) and Batch-File Write (BFOw) oper-
ations to optimize batch-file accesses. The key idea behind

BFO is to treat metadata differently from file data of files,
and process each type in a batch separately from the other, and
further re-order and optimize the storage I/Os when accessing
a batch of files. More specifically, BFOr scans the metadata
of all directories and files to determine their data locations
in the first phase, and then leverages a layout-aware I/O
scheduling policy to read these data with a minimal number
of large I/Os in the second phase. On the other hand, BFOw
first stores all file data of multiple files into contiguous free
blocks, and then updates their corresponding file metadata
to be eventually flushed to disks with the fewest large I/O
operations. These two fundamental batch-file operations can
also be easily extended to other batch-file operations, such as
create, update, and append. Moreover, BFO can be integrated
into current file systems without modifying the latters data
structures and existing procedures.

The major contributions of this work are:
1) We analyze the I/O behaviors when accessing a batch of

files under different layouts and access orders through
extensive experiments. We observe that the single-file
pattern of traditional file systems requires the accesses to
files to jump back and forth between metadata and data
areas from one file to another, and these files are also
accessed in a random order, resulting in a large number
of small, non-sequential, and often dependent I/Os in the
underlying storage device, degrading the overall access
performance.

2) We propose BFO to optimize batch-file operations by
developing two novel and fundamental batch-file access
operations, BFOr and BFOw, for read and write respec-
tively. BFO separates operations on metadata from those
on file data, and data of each type from batched files are
operated together in a batched fashion.

3) We have implemented a BFO prototype on ext4, one
of the most popular file systems. Our evaluation results
show that BFOs read and write operations consistently
outperform the traditional approaches regardless of ac-
cess patterns, data layouts, and storage media under
synthetic and real-world file sets. We also apply BFO to
boost the overall performance of real-world applications.

The rest of the paper is organized as follows. In Section II,
we present the background and motivation for the BFO re-
search. The design and implementation of BFO are detailed
in Sections III and Sections IV respectively. We evaluate BFO
in Section V. The related works are reviewed in Section VI.
Finally, we conclude our work in Section VII.

II. BACKGROUND AND MOTIVATION

A. Batch-File Access

Emerging data-intensive applications in the big data era are
rapidly transforming the data processing landscape. One of
the prevalent trends is the increasing storage of and access to
large-scale file sets. Enterprises require to backup considerable
amounts of files from servers and desktops frequently. File-
level data replication and data archiving also demand the

copying and migration of massive numbers of files to ensure
data availability [19] [20]. In big data analytics systems such as
Hadoop and Spark, applications need to fetch a large number
of files to process them in parallel, and create many files as
either intermediate or final results to store [5] [6]. In IoT
environments, a typical sensor system can collect a tremendous
amount of sampling files from thousands of sensors with
high sampling precisions and rates to edge-computing nodes.
These files eventually swarm into clouded data centers [3]
[4]. A recent study estimates that billions of the users of
social media and online shopping websites browse and upload
trillions of photos and videos each day [21] [22]. Most of
the data generated in the above scenarios are organized,
stored and accessed in sets, or batches of (often small) files.
Unfortunately, the existing batch-file access operations are to
invoke the standard system calls (e.g. open, read, and write) to
access the files one by one. Such access pattern, called single-
file access pattern, cannot fully utilize the potential capacity
offered by the underlying storage systems, leading to subpar
or even unpleasant user experiences when processing massive
files, particularly small files [23] [24].

A large body of prior studies strive to overcome the ineffi-
ciency of batch-file processing, and can be roughly divided
into four categories: application-level optimization, indirect
system-level optimization, dedicated file-systems, and new
hardware deployment. First, several application tools such as
fastcopy [25] adopt multi-threading and larger buffer to accel-
erate batch-file copy while potentially leading to more random
and contentious I/Os. Second, current Linux operating systems
have provided several mechanisms to indirectly improve the
performance of accessing batched files. The prefetching mech-
anisms [15] [16] use a large I/O to read consecutive data likely
belonging to multiple files once. Nevertheless, the effective-
ness of this approach heavily depends on the data layout and
future access patterns. Incorrect prefetching can even harm
the overall performance due to a waste of storage I/Os and
memory cache space. The page cache mechanisms buffering
new and updated data in memory can quickly acknowledge the
file write requests, absorb multiple updates for the same pages,
and periodically flush dirty pages. However, such implicit
buffering potentially compromises file persistency [26] [27],
and can be highly inefficient when the number of file writes
is huge due to the limited capacity and passively flushing.
And block-level I/O schedulers, such as CFQ [28] and Dead-
line [29], reorder and dispatch the I/O requests to specific
devices by using scheduler queues. But they cannot change
the serialized order of file-level accesses under the single-
file access pattern. Third, several proposed solutions [17] [18]
pack and store small files and metadata together to reduce I/O
overhead for file accesses. However, these solutions have to
redesign their own file systems with new data structures, disk
layout, and software flow, which will not be easily portable to
existing file systems. Finally, emerging solid-state drives with
several orders of magnitude higher IOPS than traditional hard
disks can significantly improve I/O performance. However, the
batch-file accesses based on the single-file access pattern still

cannot fully exploit the performance potentials of these new
hardware.

As a real-world actual example, a file set of the meteoro-
logical administration of Hubei Province of China, consists
of 8,639,303 weather sampling files (about 1.5TB in total)
collected from hundreds of locations in 5-years, and needs to
be migrated from a source hard disk with NTFS to a target
RAID array with ext4. As a result, it takes about two days to
duplicate all files via the USB3.0 interface. We also employed
configurable system-level optimizations such as large buffer,
prefetching, I/O scheduling, and hardware RAID with higher
bandwidth, however, to little avail. This motivates us to explore
the root cause of the inefficiency.

B. Problem Analysis

The single-file access pattern, using the standard POSIX
system calls, is universally applicable and effectively hides
sophistical internal implementation of file systems from the
applications. However, when accessing a batch of files, the
pattern needs to repeatedly pass through a full storage I/O
stack, and frequently read/write metadata and data on different
locations of the underlying storage device, resulting in many
non-sequential, random and often dependent I/Os. Therefore,
for batch-file access, this approach accumulates I/O overhead
of each file, potentially leading to very low efficiency.

4

16

64

256

1024

4096

16384

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ti
o

n
 t

im
e

 (
s)

File size in different file sets

HDD_R
HDD_S
SSD_R
SSD_S

(a) Read

2

8

32

128

512

2048

8192

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

ti
o

n
 t

im
e

(s
)

File size in different file sets

HDD_R
HDD_S
SSD_R
SSD_S

(b) Write

Fig. 1. The overall execution time of accessing different file sets on three
storage devices with different access orders. The y-axis is in log scale.

1) Inefficiency: In order to experimentally explore the inef-
ficiency of the single-file pattern in batch-file access situations,
we design a set of experiments to investigate the impact
of file size and access order on the overall performance.
We use Filebench [30] to generate multiple file sets with
the same total amount of data (i.e., 4GB) with different file
sizes (i.e., from 4KB to 4MB) and file counts on hard disk
and SSD under default ext4 configuration. Every file set is

consecutively stored in the storage devices, which is an ideal
layout for sequential accesses. However, users are unaware of
the locations of all accessed files, and may access these files
in any order. Therefore, to simulate two extreme access cases,
we further read all files in each file set in totally sequential
and random manners, and collect their execution times, shown
in Figure 1(a). On the one hand, the execution time of the
random read for 4KB-sized files is up to 57.8× longer than
the sequential under the same read case, when using hard disk
as the underlying storage device. Even using SSD with higher
performance, for random access, there still exists about 2.6×
performance degradation compared to the sequential access
case for the file set. On the other hand, we also observe in
Figure 1(a) that the read performance of large-file set (i.e.,
4MB-sized files) gradually reaches the peak performance of
the storage devices, the performance of small-file set (i.e.,
below 1MB-sized files), however, is much lower than that of
large-file set in both access orders. For example, the sequential
case with small files (e.g. 4KB) is significantly slower than
the same case with large files (e.g. 4MB) by about 5×. Notice
that they have the same consecutive file data layout, and it
takes about extra 28 seconds to access inodes of 4KB-sized
file set. Therefore, the consecutive file data is not fetched
sequentially. Likewise, the performances of updating (writing)
a batch of files under different configurations are illustrated in
Figure 1(b). The performance behaviors are still similar to the
previous read case.

In summary, the traditional single-file access approach is
very inefficient for batch-file operations, especially for small
files (below 1MB) in a random manner, and can hardly make
full use of the underlying devices.

2) Storage Behavior: In order to better understand the I/O
behaviors under the single-file access pattern in typical file
systems, we employ blktrace [31] to capture I/O footprints
when accessing the Linux kernel source codes (ver 3.5.0) as
a real file set.

Figure 2 and Figure 3 illustrate the read and write be-
haviors respectively during accessing the file set with three
representative file systems, ext4 [9], Btrfs [10], and F2FS
[32]. The test file set is initially stored contiguously on the
storage device in the read case, and is totally buffered in
memory in the write case. Nevertheless, the expected large
and sequential I/Os for the file data are actually broken into
more, smaller, and potentially non-sequential read/write I/Os,
due to the interweaving between metadata and file data I/Os.

For the read operation, the underlying file systems first
access file metadata to determine the location of each file
data, and then read the file data. Considering that the file data
and metadata are always stored in different disk locations,
each file read operation actually entails at least two I/Os to
access metadata and data respectively. On the other hand,
for these file systems, a file write operation first modifies
the file inode, and then update the global metadata (e.g.,
bitmap) to confirm the allocated disk space, and finally writes
the data. For the journaling file systems like ext4 and XFS
[33], the write operation also invokes additional journaling

11.015

11.025

11.035

11.045

11.055

Lo
gi

ca
l B

lo
ck

 A
dd

re
ss

 (X
10

6)

(a) Ext4

25

25.2

25.4

25.6
Data Metadata

(b) Btrfs

50

55

60

65

70

(c) F2FS

Fig. 2. File access behaviors for reading the Linux-kernel-source-code file set with three representative file systems in sequential manner. The metadata I/Os
break contiguous I/Os into many non-sequential and random read I/Os.

0

5

10

15

20

Lo
gi

ca
l B

lo
ck

 A
dd

re
ss

 (
X1

06
)

(a) Ext4

25

25.5

26

26.5

27

Data Metadata

(b) Btrfs

300

400

500

600

(c) F2FS

Fig. 3. File access behaviors when writing the Linux-kernel-source-code file set with three representative file systems in sequential manner. The metadata
I/Os also break contiguous data write into multiple non-sequential I/Os.

procedure to ensure file consistency. As a result, the file
systems generate several small and non-sequential I/Os for
writing a file. Therefore, such a single-file access approach
leads to the back and forth seek operations between the
metadata area and data area, resulting in many non-sequential
I/Os.

We further analyze the I/O behaviors of the file data
(excluding the metadata) during reading the file set, when
the metadata have been buffered in memory. Ideally, the
actual file data in contiguous locations should be accessed
sequentially. However, as shown in Figure 4, the read I/Os are
completely random when accessing file data. This is because
the traditional single-file access approach is unaware of the
underlying data layout, and may read these files/directories
in any order, such as depth/breath-first way, but leading to
random I/Os in the block-level.

In conclusion, the traditional access approaches uncon-
sciously seek forth and back between different areas, and
also access these file data in random order, thus resulting
in many small, non-sequential and often dependent I/Os,
harming the access performance.

C. Motivation

Current single-file access approaches are inefficient for ac-
cessing batched files, especially small files. Therefore, in order
to fully unleash the power of the underlying storage devices,
we are motivated to propose an explicit and fundamental
batch-file access approach for existing local file systems to
holistically optimize the overall performance when accessing
batched files from the block devices.

135

135.5

136

136.5

137

0 0.2 0.4 0.6 0.8 1

Lo
gic

al
Bl

oc
k A

dd
re

ss
 (X

10
6)

Time (s)

Fig. 4. Block trace of file data excluding the metadata with a 1s window
when reading the Linux-kernel-source-code file set.

III. DESIGN OF BFO

To overcome the drawback of the single-file access pattern
in existing file systems for efficiently processing batched files,
we design the BFO approach, based on a set of effective
Batch-File Operations. The key to BFO are two fundamental
batch-file operations, the batch-file read operation BFOr and
the batch-file write operation BFOw. The core principles of
these operations can also be easily extended to other batch-file
operations such as batch-file create which can be considered
as a special case of BFOw that only revises the metadata.
The batch-file update and append are also considered special
cases of BFOw. Besides, BFOr and BFOw can be integrated
together to accelerate the combined batch-file operations such
as batch-file copy.

A. Batch-file Operations

Different from the single-file access interfaces that only
need the information about the target file, BFO is designed
for the Batch-file access pattern and needs to pre-determine the
targeted file list and their storage volume. To this end, BFO
provides two new batch-file access interfaces for the read and
write operations respectively.

Batch-File Read: Batchread(list<filename>, VolumeID):
The list<filename> contains the file paths of all accessed files.
The batch-file read operation eventually fetches these file data
into memory from the source volume VolumeID.

Batch-File Write: Batchwrite(list<pointer>,
list<filename>, VolumeID): The list<pointer> and
list<filename> contain the pointers of the buffered data
and the corresponding file paths respectively. The batch-
file write operation creates and writes all files and their
corresponding inodes into to the target volume VolumeID.

B. BFOr

D1 D2 D3

Order_node

Filename (256 bytes)

Start-point (8 bytes)

Length (4 bytes)

Seg_num (4 bytes)

Order list

Disk blocks

Fig. 5. The structure of the ORDER LIST.

1) Two-Phase Read: For batch-file reads, in order to avoid
frequently seeking back and forth between the metadata area
and data area due to serially reading files, BFOr uses a two-
phase read mechanism to separately read the metadata and
file data of all accessed files in batches. In the first phase,
BFOr scans the inodes of these files from the underlying
storage devices according to file paths. In the second phase,
BFOr directly issues disk I/Os to sequentially read data in all
storage locations covered by these files without any file system
interventions.

The metadata area takes up relatively very small disk space
(for example, just 2MB space for inodes in a 128MB data
group in ext4 [9]), and a data block contains multiple file
inodes. Therefore, all inodes in a batch may be stored in a
small and contiguous disk region. This batching technique
can use existing prefetching mechanisms to enhance their
performance of accessing all file metadata and the associated
global metadata of the file system.

Once the metadata are read into the buffer, BFOr can obtain
all raw inodes (i.e., ext4 raw inode in ext4) recording the
address information (file address, file length, etc.) of each file
data. According to this information, we can further fetch all
file data from disks.

2) Layout-aware Scheduling: Unlike the metadata, the data
blocks of all files can be stored in more discontinuous lo-
cations. Random accesses to these data can lead to a large

number of small random I/Os, and incur severe latency penalty,
as analyzed in Section II. Fortunately, the address information
of all files is made available from the first phase, which can
help determine the information about file data layout on disks.
Therefore, we propose a layout-aware read scheduler to access
all file data efficiently.

To determine the data layout of all files, we design a data
structure called ORDER LIST as illustrated in Figure 5, to
record the address information of each file. More specifically,
each ORDER NODE in the ORDER LIST contains the address
information about the location of a contiguous data segment
for a file. Figure 5 indicates that each NODE in the LIST holds
four parameters for a file segment, including filename (256
bytes), startpoint (8 bytes), length (4 bytes), and seg num
(4 bytes). Filename records the file name of each file, while
startpoint and length, used to locate this segment, represent
the starting address and size of a contiguous segment of the
file, respectively. Since each file may contain more than one
contiguous segment on the storage device, we use one or more
order ORDER NODEs to locate these segments, and seg num
to record the order of these segments for each file.

The main purpose of the read scheduling policy is to access
these data segments as sequentially as possible, and launch
fewer but larger sequential read I/Os. Therefore, before issuing
these data read requests, we need to sort and merge the
data segments within a batch in increasing order of their
starting addresses. To do so, when scanning all metadata in the
first read phase, BFOr also extracts the address information
from the inode for each file, and then creates one or more
ORDER NODEs using this information, finally inserts these
NODEs to the ORDER LIST in order of their startpoints.
Meanwhile, BFOr periodically traverses the ORDER LIST to
merge contiguous segments in order to fetch them with a single
or a small number of I/O operations. In summary, the order of
these segments stored on disks is approximately equal to the
order in which they are kept in the ORDER LIST. Therefore,
when the number of accessed files reaches a threshold, BFOr
sends block I/O requests to the storage devices, and can
sequentially fetch all file data into memory according to the
order of these ORDER NODEs in the list. The pseudo-code of
BFOr is shown in Algorithm 1.

For large contiguous file segments, BFOr does not merge
them to read together, because the traditional file systems
already offer high sequential read performance for these seg-
ments. Therefore, BFOr directly sends the read requests into
the storage devices for these segments whose size exceeds
a pre-determined threshold, which eliminates any negative
effect on reading these large segments. The threshold value
will be further discussed in the evaluation section. Besides,
considering that the number of blocks the block device can
handle at a time is limited, a long batch-file read process
can potentially block the data-hungry applications, which wait
for new on-disk data to analyze. As a result, BFO issues the
block I/Os, either periodically (i.e., 100ms), or after batching
a predetermined amount of read requests, and fetches these
file data into memory for subsequent processing.

Algorithm 1 Batch-file read algorithm
Input: fileset: file names;
Output: filedata: in-memory file data of the file set;

1: Initialize inodes[], order list, filedata;
2: for each batched files in the file set do
3: i ← 0;
4: clear order list;
5: for each file in a batch do
6: inodes[i++] ← ReadInode(filename);
7: order node ← ParseInode(inode);
8: insert order node into order list;
9: end for

10: SortAndMerge(order list);
11: filedata ← ReadData(order list);
12: end for
13: return filedata;

C. BFOw

1) Two-Phase Write: Similar to BFOr, BFOw also involves
a two-phase process to write a batch of files into a destination
disk. In the first phase, BFOw creates a global file to store all
file data once. The underlying file system (i.e., ext4, F2FS, or
Btrfs) allocates as few contiguous disk spaces as possible to
accommodate all data by default, and finally creates a specific
inode (called stem inode) for this global file to maintain the
file metadata information, including file address information,
file length, and other attributes. In the second phase, BFOw
updates the inode for each file in a batched manner using the
stem inode and existing information, such as the system time,
the size of newly written file data.

For these inodes, most of the metadata attributes (i.e., file
permissions, owners, and groups) do not need to be changed at
all for these files, except for the time attributes, the file sizes,
and the index data of newly written data. For the time attributes
(atime, mtime, and ctime) in the inodes, we can use the current
system time or the time attributes from the stem inode to
modify them. And the file size can be updated according to
the size of newly written file data for each file. Therefore, the
most important task in this phase is to obtain the logical block
address of each file in order to update the index data (i.e., the
extent tree in ext4) within the corresponding inode. Since the
global file contains all file data sequentially, the index data
within its inode records the data block addresses of all files.
We can use the index data of the stem inode to restore the
index data of all inodes. However, the stem index data only
records the addresses of all data blocks of these files, and we
cannot determine which file each block belongs to. To solve
this problem, when writing the data of all files into the global
file, we use an ORDER LIST to record the order of the written
files and the length of each file. Therefore, when updating the
inodes for these files, we first extract the block addresses of
all data from the stem inode, and then use the file order and
file lengths in the ORDER LIST to determine the range of the
block addresses of each file, and finally update these inodes

with the corresponding address ranges. The pseudo-code of
BFOw is shown in Algorithm 2.

This two-phase write process is different from the traditional
file write policy in two aspects. First, BFOw writes the data
and metadata of all files in separate batches. Second, the
conventional file write generally allocates and creates a file
inode before the file data is written into the disk, while
BFOw first writes the file data and then generates their
own inodes. We refer to this approach as reordering-write-
allocation. Compared to the traditional delayed allocation [34]
in current file systems, which does not allocate blocks for
the file until its data are written to disk, the reordering-write-
allocation approach actively allocates and flushes a batch of
file data buffered in memory into a large contiguous free
disk space, and then generates the relevant inodes for these
files in batches, as well as updates global metadata once for
the underlying file system. The two-phase write mechanism
fundamentally unlocks the strict order constraint among the
inter-file and intra-file write I/Os of metadata and data.

BFOw not only needs to provide high write performance
by using its two-phase write process, but also needs to flush
the data onto the underlying storage device in a timely
manner to avoid memory overflows and data loss in crashes.
Therefore, BFOw flushes these in-memory data periodically
(e.g., 100ms), or when the data size exceeds a pre-determined
threshold, whichever comes first. Taking ext4 as an example,
when the size of these in-memory file data approaches 128MB,
we flush these data into an ext4 data group, which contains
128MB data blocks.

Algorithm 2 Batch-file write algorithm
Input: filedata: all files’ data in a batch; filename: all files’

paths;
1: Initialize address, steminode, inodes[];
2: steminode, order list ← WriteFile(filedata);
3: address ← ParseInode(steminode);
4: for i=0; order list[i]!=null; i++ do //update inodes
5: inodes[i] ← ReadInode(order list[i].filename);
6: inodes[i].i atime(i mtime, i ctime) ←

steminode.i atime(i mtime, i ctime);
7: inodes[i].i size ← order list[i].length;
8: inodes[i].address ← address;
9: address ← address+order list[i].length;

10: end for

2) Data Consistency: It is extremely important to preserve
the data consistency in BFOw, since BFOw needs to store
a considerable amount of data and update multiple inodes
at a time. When storing all the file data, BFOw invokes the
standard POSIX calls to create a global file and write all file
data, the underlying file system can maintain the consistency
actively by employing some mechanisms such as journaling
[9] or copy-on-write (CoW) [10]. For example, in ordered
journaling mode, ext4 journals metadata only, but all data is
persisted prior to its metadata being committed to the journal.
However, the phase of updating all inodes is vulnerable to

file system corruption. Therefore, we design a light-weight
consistency strategy to protect the inodes. Before writing
all file data into the storage devices, BFOw first writes the
ORDER LIST into journal files as an atomic operation. Even
in the absence of metadata consistency, we can still fetch
the ORDER LIST and the stem inode to continue creating all
inodes. Finally, BFOw deletes and reclaims the stem inode and
the on-disk ORDER LIST when the batch-file write operation
is completed.

IV. IMPLEMENTATION

In this section, we describe the implementation details of
BFO on top of the ext4 file system. And the governing design
principles in this implementation are equally applicable to
other file systems.

To implement BFO, we develop a Batch Module that is
designed as a file system metadata middleware layer on top
of the existing ext4 file system. As Figure 6 shows, the Batch
Module contains two sub-modules: the data sub-module, the
metadata sub-module. The data sub-module implements the
aforementioned two new batch-file interfaces, Batchread()
and Batchwrite() in the user space for BFOr and BFOw oper-
ations, respectively. Therefore, applications can directly invoke
these two interfaces in the library mode to access batched files
efficiently. The data sub-module also maintains a file request
queue to keep the file access requests, and an ORDER LIST
to record the mapping information for all files. For the BFOr
operation, the sub-module sorts the ORDER NODEs based on
their startpoints, and merges contiguous file segments to read
with large I/Os; and for the BFOw operation, the sub-module
creates a new file, and writes all file data into this file using
the standard file system interfaces, then records the write order
of all files and file lengths into the ORDER LIST, and finally
sends the LIST to the metadata sub-module for the metadata
creation or update. Additionally, the Batch Module can also
be implemented as a kernel module.

Because local file systems do not directly expose the file
data layout to the user space, we design a metadata sub-module
to obtain and modify the underlying storage layout in the
kernel. We develop a function, called BatchReadInode(), to
fetch the ext4 raw inode structure in the kernel, then extracts
the ext4 extent structure, which contains the starting addresses
and lengths of all segments, from the inode, by calling
filp open, file inode(), and ext inode hdr(), and further
create the address information using the starting addresses and
lengths of these extents by calling ext4 ext pblock(extent),
and ext4 ext get actual len(extent), and finally send the
mapping information to the data sub-module. Moreover, for
the BFOw operation, we also design a BatchWriteInode()
function in the metadata sub-module to fetch the stem
inode and all inodes of newly written files by invoking
filp open(filename), filp inode(), and ext4 raw inode(),
and extracts all extent information (i.e., the starting addresses,
lengths and offsets) from the stem inode into an extent item
as described above. Finally, we use this existing information
to update these raw inodes as follows: STEP 1: update

the file length of each file using ext4 isize set(raw inode,
order list[i].size); STEP 2: update the time attributes of each
inode by assigning the ones of the stem inode; STEP 3:
update the ext4 extent structure of each file inode according
to the extent item and the ORDER LIST. More specifically,
we first update the extent structure of the VFS inode with
extent->ee start = extent item.startaddr, extent->ee len = or-
der list[i].size, extent item.startaddr = extent item.startaddr
+ order list[i].size, and update the extent structure (i.e,
i block[]) of the ext4 raw inode using the VFS extent in-
formation, and update the block count (i.e, i blocks) of the
file.

The data sub-module is file-system-independent, while the
metadata sub-module is file-system-dependent. Therefore, for
other file systems, we only need to redesign the metadata sub-
module according to the data structures of the corresponding
file system. Notice that widely used existing file systems such
as ext4 and Btrfs are indeed extremely complex and have
evolved over a dozen years with high maturity. We do not
alter their on-disk structure and software flow. BFO merely
adds a set of new flows on top of these components, keeping
their existing functionality and maturity.

Moreover, for comparison with the traditional single-file
access approaches using the standard POSIX interface for
batched files, we also modify the Linux cp source code to
implement the read, write, and copy operations using the
standard POSIX interface for batched files. Based on BFOr
and BFOw, we also design BFOcp by periodically launching
BFOr and then BFOw. There are 500+ lines of code for the
data sub-module based on Linux cp source code, and 700+
lines of code for metadata sub-module.

User Space

Kernel

Bitmap

Inode

Data

Journal

Batchread() & Batchwrite()

Data Submodule

Metadata Submodule

Batch Module

Orderlist Manager Data buffer

Applications

Standard File

System Calls

BatchReadInode()

BatchWriteIndoe()

Data flow

Instruction

flow

Fig. 6. Architecture of the batch module.

A. Applicability

When users need to access a large number of files explicitly,
such as file backup and data synchronization, BFO can be
invoked to process these files efficiently. Moreover, in some
scenarios, applications are unaware of future access behaviors,
for example Globus GridFTP [35] and Hadoop Wordcount
application [36], and cannot directly use BFO interfaces when
they have to access a batch of files within a certain period.
Therefore, our proposed BFO idea can also be implemented
as a file-level request scheduler in the kernel to implicitly

optimize the batch-file access requests, without modifying the
traditional POSIX interfaces in user applications. When users
expect a higher access performance for a batch of files, rather
than a single file, the BFO request scheduler can be used for
them as a kernel module.

V. EVALUATION

To thoroughly and fairly evaluate the effectiveness of BFO,
extensive experiments were conducted on a BFO prototype
running on a server equipped with an Intel (R) Xeon (R) CPU
E5620 @ 2.40GHz and 16GB RAM. The storage subsystem
contains a RAID0 with 5 Western Digital 7200RPM 4TB
SAS HDDs, a Western Digital 4TB SAS HDD, and a 480GB
SAMSUNG 750 EVO SSD. The operating system is Ubuntu
16.04 with kernel version 4.4.24. We use ext4 as the default file
system. By default, dirty pages are asynchronously committed
to the storage device every 5 seconds. The sizes of block and
inode are set to be 4096 bytes and 256 bytes respectively. All
experiments are conducted on a cold-cache basis.

We examine the performance of BFOr, BFOw separately in
comparison with the single-file access approaches in ext4. We
then explore the performance impact of BFO by varying the
number of files for each batch-file operation and buffer size.
Finally, we measure the performance of real-world applica-
tions using BFOr or BFOw.

A. Batch-file Access Performance

In this subsection, we first evaluate BFO in term of read and
write performances compared with the single-file pattern under
different conditions, including different file sizes (from 4KB
to 4MB), different storage devices (RAID, HDD, and SSD),
and different access orders (sequential and random). The file
sets used in the experiments contain the same total amount of
file data (i.e., 4GB) but differ in file size (i.e., ranging from
4KB to 4MB). Then, we also analyze the I/O behaviors of
BFO.

1) Read Performance: Figure 7 shows the execution times
of reading different file sets into memory using BFOr and
Linux read() system call respectively in all cases. As we can
see, for random read, BFOr outperforms the traditional read
process by up to 42.1× and 22.4× with 4KB files on RAID
and HDD, respectively. This is because BFOr sorts and merges
small I/Os, and can access all file data as sequentially as
possible with fewer read I/Os, the storage devices do not need
to seek back and forth for different files, especially for random
accesses on hard disks. Even for SSD, BFOr achieves up
to 81.4% performance improvement, since SSDs have higher
sequential access performance compared to random one [37].
For sequential read, the performance improvement of BFOr
is relatively small, due to prefetching and I/O scheduling
mechanisms. Nevertheless, BFOr brings 1.6×, 2.0×, and 1.8×
performance gains for RAID, HDD, and SSD respectively.
We also observe that the performance gap shrinks with the
increase of file size. When the file size reaches 4MB, BFO
still has higher performance for random access. However,
for sequential read, when the file size reaches 256KB, the

execution time of traditional approach is close to that of BFOr,
and can also sufficiently benefit from the sequential access of
storage devices. In practical scenarios, users are unaware of
the layout of all accessed files, especially for aged storage
systems, therefore, it is almost impossible to access all files
in a totally sequential way for these users.

2) Write Performance: Figure 8 shows the execution times
when using BFOw and the write() system call to write all
buffered file data of different file sets to the three types
of storage devices in different access orders. The sequential
write is invoked when users write new files into unused disk
areas, and the random write is used when users updates all
files in-place. For these two write patterns, BFOw simply
writes all file data into the newly allocated free space, and
updates the metadata for all files. Therefore, for BFOw, we
do not distinguish between the sequential and random orders
in the experiments. BFOw also exhibits consistently higher
write performance in all cases. When writing all 4KB files
randomly, BFOw outperforms the traditional write approach
by up to 71.8×, 111.4× and 2.9× on RAID, HDD, and
SSD respectively. This is mainly because the traditional write
approach needs to locate each file by retrieving its metadata
first, and then update the file data and file metadata, which
leads to a large number of random writes. BFOw can write
all file data sequentially with a write request, and update
all inodes at once. Even for the sequential write pattern, the
performance improvement of BFOw is still significant (up to
1.32×). Furthermore, with the increase of file size, BFOw still
outperforms the traditional write approach, even though the
performance of traditional approach is close to that of BFOw.

Therefore, BFO demonstrates consistent performance gains,
both batch read and batch write, over the traditional ap-
proaches, regardless of access patterns, data layouts, and
storage media.

3) I/O Behavior: In this subsection, we use a real file set to
further observe the detailed I/O behaviors of BFO. To do so,
we first duplicate the Linux source code (ver 3.5) six times
as the real file set, called Linux-kernel-source-code file set,
containing 233,988 files in 14,587 directories with 3.1GB in
size.

Figure 9 shows the execution times for reading all files in the
file set into memory. As can be seen, the results share similar
trends to previous experiments. BFOr exhibits the higher read
performance in all cases, and can reduce the execution time
by up to 47.1% compared to the single-file access pattern
on ext4. Even for SSD, the access policy can approximately
double the overall performance in the best case. Moreover,
for sequential read, although the traditional single-file access
approach can leverage the prefetching mechanism and the I/O
scheduler in the Linux kernel to fetch several accessed files
each time, the performance improvement contributed by these
techniques is limited, and BFOr achieves up to 1.44× speedup
when accessing files sequentially.

To better understand the results, we take a closer look at
the distribution of the read I/O sizes when fetching the file
set sequentially in Figure 11. As the figure shows, the number

2

16

128

1024

8192

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

u
ti

o
n

 t
im

e
 (

s)

File size in different file sets

Read_R
BFOr_R
Read_S
BFOr_S

(a) RAID

2

16

128

1024

8192

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

u
ti

o
n

 t
im

e
(s

)

File size in different file sets

Read_R
BFOr_R
Read_S
BFOr_S

9704

(b) HDD

1

4

16

64

256

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

u
ti

o
n

 t
im

e
(s

)

File size in different file sets

Read_R
BFOr_R
Read_S
BFOr_S

(c) SSD

Fig. 7. The execution time of reading a batch of files as a function of file size on three types of the storage devices with different access orders. The y-axis
is in log scale.

4

16

64

256

1024

4096

4KB 16KB 64KB 256KB 1MB 4MB

Ex
ec

u
ti

o
n

 t
im

e
(s

)

File size in different sets

RAID_RW RAID_SW RAID_BFOw

HDD_RW HDD_SW HDD_BFOw

SSD_RW SSD_SW SSD_BFOw

Fig. 8. The execution time of writing a batch of files as a function of file size
on three types of the storage devices with different access orders. The bars of
each different color represent the write performances of different approaches
with the different storage devices. The y-axis is in log scale.

0

30

60

90

120

RAID HDD SSD

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

Read_S
BFOr_S
Read_R
BFOr_R

Fig. 9. The execution time of reading a file set from different storage devices
with different access orders. Read S(R) denotes the traditional read approach
reading data in sequential (random) workload.

8

16

32

64

128

256

RAID HDD SSD

Ex
ec

u
ti

o
n

 t
im

e
(s

)

Write_S

Write_R

BFOw

Fig. 10. The execution time of writing a file set into different storage devices
with different access orders. Write S(R) denotes the traditional write approach
writing data in sequential (random) order. The y-axis is in log scale.

of total I/Os and the number of small I/Os of BFOr are both
significantly lower than that of the traditional read approach,
and most of the accesses for small files are combined into

1

8

64

512

4096

32768

262144

8 40 72 104 136 168 200 232

I/
O

 N
u

m
b

er

I/O Size (KB)

Read

BFOr

Fig. 11. The distribution of the read I/O sizes when using BFOr and the
single-file read approach on ext4.

1

8

64

512

4096

32768

8 40 72 104 136 168 200 232

I/
O

 N
u

m
b

er

I/O Size (KB)

Write

BFOw

Fig. 12. The distribution of the write I/O sizes when using BFOw and the
single-file write approach on ext4.

larger I/Os (256KB). Moreover, these files are mostly accessed
sequentially as shown in Figure 13(a).

Furthermore, for the write process, Figure 10 shows the
execution times when using BFOw and the write() system
call to write the Linux-kernel-source-code file set. We observe
that BFOw exhibits higher write performance in all cases, and
decreases the execution time by up to 52% under the sequential
write pattern, and 74% under the random write pattern, on all
storage devices.

Figure 12 plots the distribution of the write I/O sizes.
Similar to the read case, BFOw merges many small I/Os into
fewer large ones, alleviating a performance penalty caused
by the single-file pattern. In addition, these write I/Os are
sequential as shown in Figure 13(b).

The experiments reveal that the effectiveness of BFO comes
from its optimization of storage I/Os in the batch-file access
situations, making full use of the underlying storage capability.

500

550

600

650

700

25 26 27 28 29 30

Lo
gic

al
Bl

oc
k A

dd
re

ss
 (X

10
6)

Time (s)

(a) Read

4

6

8

10

25 26 27 28 29 30

Lo
gi

ca
l B

lo
ck

 A
dd

re
ss

 (X
10

6)

Time (s)

(b) Write

Fig. 13. Block traces when using BFO to read/write the file set in sequential
order with a 5s window.

128

512

2048

8192

50

55

60

65

128 256 512 1K 2K 4K 8K 16K 32K 64K 128K

Ex
ec

u
ti

o
n

 t
im

e
 (

s)

Ex
ec

u
ti

o
n

 t
im

e
 (

s)

The number of the accessed files in each batch

BFOr_S

BFOr_R

Fig. 14. The execution time of accessing a 4GB file set as a function of
number of files accessed by each BFOr operation.

B. Impact of the Batch Size

We investigate the effect of the batch size, i.e., the number of
accessed files for each batch-file operation on the performance
of BFO. The number of files varies from 128 to 131072. We
use a 4GB file set with 1,000,000 4KB fixed-size files. The
HDD is used as the underlying storage device.

The results of BFOr are shown in Figure 14. The execution
time of BFOr drops as the number of accessed files increases.
For sequential access, BFOr can achieve the peak performance
when reading 2,048 files each time, and can take full advantage
of the sequential disk accesses. Moreover, significant perfor-
mance improvement can still be achieved when accessing 128
files at once.

On the other hand, for random accesses, when the number
reaches 65,536 (about 6.6% of total number of files), the
highest performance is achieved for BFOr. This is because
with the increasing number of files, BFOr can not only merge
many contiguous I/Os, but also reduce the number of the
batch-file read operations. And for each BFOr operation, we
need to access almost the entire 4GB disk space for these files

in a batch. Even though the BFOr operation is invoked to fetch
128 files each time, 105% performance improvement over the
traditional read approach is achieved by BFOr.

For BFOw, when the total size of in-memory file data is
above 256KB, we can achieve its peak performance as shown
in Figure 8.

C. Impact of Buffer Size

0

50

100

150

200

20

35

50

65

80

W
ri

te
 t

h
ro

u
gh

p
u

t
(M

B
/s

)

R
ea

d
 t

h
ro

u
gh

p
u

t
(M

B
/s

)

Buffer size (B)

BFOr

BFOw

Fig. 15. The throughput of accessing a batch of files as a function of buffer
size.

Next, we evaluate how much buffer space is appropriate for
merging data, or for buffering the written data. The file set
in this set of experiments is a batch of small files, each of
size 4KB. The HDD is used as the underlying storage device.
Figure 15 shows the throughput as a function of the buffer
size. The read throughput of BFOr with a 128KB buffer is
two times higher than that with a 4KB buffer. Considering
that all files are of size 4KB, a 4KB buffer means that
BFOr cannot merge any file. And with 2MB buffer, BFOr
exhibits a read throughput close to its maximum. With a buffer
larger than 2MB, the throughput of BFOr does not increase
significantly, because the I/O size of the data has saturated
the maximum I/O size of the storage device. However, the
throughput cannot reach the peak I/O bandwidth of the device,
because BFOr cannot merge all metadata I/Os. And some
small but synchronized I/Os from other tasks have a side
impact on the performance.

For write operations, because of the existence of the page
cache, the file system itself absorbs and delays some small
I/Os. In order to avoid the interference from the page cache,
in this set of experiments, we employ the synchronized write
operations. And when the buffer is full, we flush the buffered
data onto the storage device forcefully. As Figure 15 shows,
when the buffer size is below 256 KB, BFOw has very low
write throughput, since a small quantity of (about 64) files
are kept in the buffer, and can be merged to flush onto the
storage device with a single I/O operation. After that, the
write performance increases more notably with the buffer size.
When the buffer size reaches 64MB, BFOw achieves the high-
est performance for writes. Therefore, even with a relatively
small buffer (64MB), BFOw can achieve the maximum read
performance and write performance.

D. Applicability
To further demonstrate that the real-world applications can

benefit from BFO, we choose four representative applications

0

40

80

120

160

Ex
ec

u
ti

o
n

 t
im

e
(s

)

CP

BFO

Fig. 16. The execution time of copying a file set with different storage devices.
SHSP (SSSP) means that the files are migrated within the same partition of the
same HDD (SSD), SHDP (SSDP) means that the files are migrated between
the different partitions of the same HDD (SSD).

0

50

100

150

200

tar untar

Ex
ec

u
ti

o
n

 t
im

e
(s

) Tar
Tar on BFO

(a) Tar

0

50

100

150

200

250

read write overall

Ex
ec

u
ti

o
n

 t
im

e
(s

) GridFTP
GridFTP on BFO

(b) GridFTP

0

60

120

180

240

300

read write overall

Ex
ec

u
ti

o
n

 t
im

e
(s

) Wordcount
Wordcount on BFO

(c) Wordcount

Fig. 17. Application performance with or without BFO. When testing the
read performance, we write all output files to memory, in order to avoid the
effect of the write process; similarly, when testing the write performance, we
read all input files from memory.

to run with and without BFO. These four applications are
Linux cp, which is frequently used to copy files locally,
Linux Tar [38], which is a widely-used tool to compress
and decompress files, Globus GridFTP [35], which is the
most popular transfer tool in the BigSet scientific computing
facility [39], and Hadoop Wordcount [36], which is a typical
MapReduce application that processes the text files.

Batch-file Copy We re-implement the Linux cp (called
BFOcp) based on BFO, and evaluate the batch-file copy
performance with BFOcp and Linux cp by copying the Linux-
kernel-source-code file set between the storage devices or the
disk partitions of the same disk. BFOcp periodically launches
BFOr and then BFOw to copy the file set. Figure 16 plots
the execution times of BFOcp and Linux cp based on the
single-file access pattern. Both BFOcp and cp access all
files sequentially. Overall, BFOcp reduces the execution time
by about 46.6% compared to the traditional cp tool. When
copying within a storage device, our solution can not only
improve the read and write performances respectively, but also
reduce the I/O contention. For the file copy between different
storage devices, we can efficiently read and write the data in
parallel using BFOr and BFOw concurrently.

Based on the above results, we observe that Linux cp
can benefit from BFO, regardless of the underlying storage
devices. Next, we focus on the performance improvements of
these applications brought by BFO, and only use the HDD as
the storage device.

Tar The Linux Tar application is used to compress the on-
disk Linux-kernel-source-code file set to a large in-memory
file; and then decompress the in-memory file to restore all files,
and write to the storage device. We measure the execution
times of the above two phases with and without BFO as
shown in Figure 17(a). Tar with BFO provides 109% and
75% higher performance than the one without BFO for the
compression and decompression phases respectively, because
reading/writing all files when compressing/decompressing the
file set is aggregated into large, sequential disk I/Os.

GridFTP GripFTP is used to transfer the Linux-kernel-
source-code file set. In order to avoid the impact of network
transfer, the experiment reads the file set to memory as the
client end, and writes all files to the destination disk as the
server end. When measuring the performance impact of the
read process, we transfer all on-disk files into memory to
avoid the effect of the write process; similarly, when testing the
impact of the write process, we transfer all input files from
memory into the underlying HDD. The overall performance
is tested when transferring the file set between two different
HDDs locally in order to avoid the network overheads. The
results are shown in Figure 17(b). GridFTP with BFO gains
up to 81% performance improvement from the batch-file
operations. When transferring the file set, GridFTP needs to
take most of the execution time to read and write the file
set. Therefore, BFO can support efficient file processing for
GridFTP.

Wordcount The Wordcount application is used to analyze
a text file set obtained from [40] containing 7,850 files with
195MB in size at a single node, and it needs to fetch all files to
analyze, and write the intermediate and final results into disk.
We also write the output files into memory, or read the input
files from memory when measuring the impact of the read
or write process. Figure 17(c) shows the execution times for
the Wordcount with or without BFO. For the application, the
performance gain is relatively small (up to 16%) with BFO,
this is because the Wordcount reads only a few megabytes
of data into memory to process every second, and generates
hundreds of files to store the intermediate results or final
results. Such access patterns represent very light load for the
Wordcount application, which explains why the application
can benefit only marginally from BFO.

VI. RELATED WORK

A. System-level Optimization

Current Linux operating systems have made some implicit
efforts to improve the performance of accessing batched files.
For the read operation, the prefetching mechanism [15] [16]
uses a large I/O to read consecutive data likely belonging to
multiple files at once. Nevertheless, the effectiveness of this
approach heavily depends on the data layout and future access

patterns. Incorrect prefetching can even harm the overall
performance due to a waste of storage I/Os and memory cache.
For the write operation, the page cache mechanism buffering
new and updated data in memory, can quickly acknowledge the
file write requests, absorb multiple updates for the same pages,
and periodically flush dirty pages. However, such implicit
buffering can potentially compromise file persistency [26]
[27], and it could be inefficient for a huge number of file writes
due to limited capacity and passive flushing. And block-level
I/O schedulers, such as CFQ [28] and Deadline [29], reorder
and dispatch the requests to specific devices when accessing
a batch of files, but they focus mainly on I/O priority and
deadline, rather than the overall performance.

B. Dedicated File System

To improve the inefficient access patterns for batched small
files, emerging file systems leverage schemes that combine
metadata of multiple files into a single unit of storage, thus
reducing the number of metadata I/Os for small file accesses
[18] [21] [41]. CFFS [18] introduces an internal physical
representation to allow multiple small files to share a single
inode, which enables users to access these file metadata with
a single I/O. However, CFFS requires a new inode structure
that is not easily extendable to other file systems. In parallel
and distributed systems, the idea of consolidating metadata
has also been explored, with solutions tailored for various
homogeneous data types in different systems [21] [41].

Packing and storing files and metadata together is another
effective way to improve I/O performance when writing a
batch of small files. Btrfs [10] stores metadata of files and
directories in copy-on-write B-trees. Small files are grouped
into one or more fragments, which are then packed inside the
B-trees. For small files, the fragments are indexed by object
identifiers (analogous to inode numbers); the locality of a
directory with multiple small files depends upon the proximity
of the object identifiers. BetrFS [42] [43] stores metadata and
data as key-value pairs in two Bε-trees. Nodes in a Bε-trees
are large in size (2-4 MB), amortizing seek costs. Key-value
pairs are packed within a node by sort-order, and these nodes
are periodically rewritten, using copy-on-write, as changes
are applied in batches. TableFS [17] uses LevelDB to store
file-system metadata. It packs small files and metadata to a
chunk in LevelDB. These approaches will provide a good write
performance, but usually by sacrificing the read performance.
More importantly, these solutions require the redesign of a
file system with new data structures and layout to implement
their access procedures, and can not be ported or extended
to existing popular file systems. In contrast, BFO is more
portable and able to provide a good performance for small
file accessed by reducing the number of disk I/Os without
modifying the existing data layout, and thus without sacrificing
any read performance.

VII. CONCLUSION

In this paper, we experimentally investigate the root cause
of the inefficiency of the traditional single-file access pattern

for batched files. To solve the problem, we present a novel
solution, BFO, for batch-file access, with optimized batch-
file read (BFOr) and write (BFOw) operations for local file
systems. BFO performs metadata and file data operations on
all involved batched files separately in batches, eliminating
unnecessary discontinuous I/O overhead. We implement BFO
in the ext4 file system as a case study, and show that BFO
can improve the access performance significantly, and remove
a significant amount of random and non-sequential I/Os from
the state-of-the-art techniques.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive comments. This work is supported in
part by NSFC No. 61872156, Creative Research Group Project
of NSFC No.61821003, the Fundamental Research Funds for
the Central Universities No. 2018KFYXKJC037, the US NSF
under Grant No.CCF-1704504 and No.CCF-1629625, and
Alibaba Group through Alibaba Innovative Research (AIR)
Program.

REFERENCES

[1] J. Liang, Y. Xu, Y. Li, and Y. Pan, “ISM- an intra-stripe data migration
approach for RAID-5 scaling,” in 2017 International Conference on
Networking, Architecture, and Storage, NAS 2017, Shenzhen, China,
August 7-9, 2017, 2017, pp. 1–10.

[2] W. Yan, J. Yao, Q. Cao, C. Xie, and H. Jiang, “ROS: A rack-based
optical storage system with inline accessibility for long-term data
preservation,” in Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys 2017, Belgrade, Serbia, April 23-26, 2017,
pp. 161–174.

[3] M. P. Andersen and D. E. Culler, “Btrdb: Optimizing storage system
design for timeseries processing,” in Proceedings of the 2016 USENIX
Conference on File and Storage Technologies, pp. 39–52.

[4] Y. Liu, S. Hu, T. Rabl, W. Liu, H. Jacobsen, K. Wu, J. Chen, and
J. Li, “Dgfindex for smart grid: Enhancing hive with a cost-effective
multidimensional range index,” Proceedings of the VLDB Endowment,
vol. 7, no. 13, pp. 1496–1507, 2014.

[5] H. Zhang, B. Cho, E. Seyfe, A. Ching, and M. J. Freedman, “Riffle:
optimized shuffle service for large-scale data analytics,” in Proceedings
of the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal,
April 23-26, 2018, 2018, pp. 43:1–43:15.

[6] S. Rao, R. Ramakrishnan, A. Silberstein, M. Ovsiannikov, and
D. Reeves, “Sailfish: a framework for large scale data processing,” in
ACM Symposium on Cloud Computing, SOCC ’12, San Jose, CA, USA,
October 14-17, 2012, 2012, p. 4.

[7] Skyvia, 2018, https://skyvia.com/data-integration/synchronization.
[8] Netapp, Cloud Sync, 2018, https://cloud.netapp.com/cloud-sync.
[9] S. C. Tweedie, “Ext3, journaling filesystem,” in InOttowa Linux Sym-

posium, Ottowa, ON, Canada, July 20, 2000.
[10] O. Rodeh, J. Bacik, and C. Mason, “Btrfs:the linux b-tree filesystem,”

Acm Transactions on Storage, vol. 9, no. 3, pp. 1–32, 2013.
[11] J. Esmet, M. A. Bender, M. Farach-Colton, and B. C. Kuszmaul, “The

tokufs streaming file system,” in 4th USENIX Workshop on Hot Topics
in Storage and File Systems, HotStorage’12, Boston, MA, USA, June
13-14, 2012, 2012.

[12] S. Fu, L. He, C. Huang, X. Liao, and K. Li, “Performance optimization
for managing massive numbers of small files in distributed file systems,”
IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 12, pp. 3433–3448, 2015.

[13] Y. Kim, S. Atchley, G. Vallée, and G. M. Shipman, “LADS: optimizing
data transfers using layout-aware data scheduling,” in Proceedings of the
2015 USENIX Conference on File and Storage Technologies, pp. 67–80.

[14] T. Li, Y. Ren, D. Yu, and S. Jin, “RAMSYS: resource-aware asyn-
chronous data transfer with multicore systems,” IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 5, pp. 1430–1444, 2017.

[15] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang, “Diskseen:
Exploiting disk layout and access history to enhance I/O prefetch,” in
Proceedings of the 2007 USENIX Annual Technical Conference, Santa
Clara, CA, USA, June 17-22, 2007.

[16] Y. Joo, S. Park, and H. Bahn, “Exploiting I/O reordering and I/O
interleaving to improve application launch performance,” TOS, vol. 13,
no. 1, pp. 8:1–8:17, 2017.

[17] K. Ren and G. A. Gibson, “TABLEFS: enhancing metadata efficiency
in the local file system,” in Proceedings of the 2013 USENIX Annual
Technical Conference, pp. 145–156.

[18] S. Zhang, H. Catanese, and A. A. Wang, “The composite-file file system:
Decoupling the one-to-one mapping of files and metadata for better
performance,” in Proceedings of the 2016 USENIX Conference on File
and Storage Technologies, pp. 15–22.

[19] B. W. Settlemyer, J. D. Dobson, S. W. Hodson, J. A. Kuehn, S. W.
Poole, and T. Ruwart, “A technique for moving large data sets over
high-performance long distance networks,” in MSST, 2011, pp. 1–6.

[20] P. Shilane, M. Huang, G. Wallace, and W. Hsu, “WAN optimized repli-
cation of backup datasets using stream-informed delta compression,”
in Proceedings of the 2012 USENIX Conference on File and Storage
Technologies, p. 5.

[21] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, “Finding a needle
in haystack: Facebook’s photo storage,” in 9th USENIX Symposium on
Operating Systems Design and Implementation, OSDI, 2010,, pp. 47–60.

[22] Alibaba, 2018, http://code.taobao.org/p/tfs/src/,.
[23] Binfer, 2018, https://www.binfer.com/high-speed-file-transfer-software/,.
[24] Nexor, 2018, https://www.nexor.com/case-studies/files-transfer-secure-

networks/.
[25] Shirouzu, FastCopy, 2018, https://ipmsg.org/tools/fastcopy.html.
[26] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau, “Consistency without ordering,” in Proceedings of the 2012
USENIX Conference on File and Storage Technologies, p. 9.

[27] M. K. Mckusick and T. J. Kowalski, “Fsck - the unix file system check
program,” 2007.

[28] Kernel, CFQ, 2018, https://www.kernel.org/doc/Documentation/block/cfq-
iosched.txt.

[29] LinuxKernel, Deadline, 2018, https://www.kernel.org/doc/Documentation/block/deadline-
iosched.txt.

[30] Filebench, 2018, http://sourceforge.net/projects/filebench/.
[31] J. Axboe, Blktrace, 2018, https://git.kernel.org/pub/scm/linux/kernel/git/axboe.
[32] C. Lee, D. Sim, J. Y. Hwang, and S. Cho, “F2FS: A new file system

for flash storage,” in Proceedings of the 2015 USENIX Conference on
File and Storage Technologies, pp. 273–286.

[33] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and
G. Peck, “Scalability in the XFS file system,” in Proceedings of the
USENIX Annual Technical Conference, San Diego, California, USA,
January 22-26, 1996, 1996, pp. 1–14.

[34] T. S. Pillai, R. Alagappan, L. Lu, V. Chidambaram, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Application crash consistency
and performance with CCFS,” in 15th USENIX Conference on File and
Storage Technologies, FAST 2017, Santa Clara, CA, USA, February 27
- March 2, 2017, 2017, pp. 181–196.

[35] W. E. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link, “The globus
striped gridftp framework and server,” in SC, 2005, p. 54.

[36] Apache, Hadoop, 2018, http://hadoop.apache.org/.
[37] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,

“Wisckey: Separating keys from values in ssd-conscious storage,” in
14th USENIX Conference on File and Storage Technologies, FAST 2016,
Santa Clara, CA, USA, February 22-25, 2016., 2016, pp. 133–148.

[38] GNU, Linux tar, 2018, http://www.gnu.org/software/coreutils/coreutils.html.
[39] Z. Liu, R. Kettimuthu, I. T. Foster, and Y. Liu, “A comprehensive

study of wide area data movement at a scientific computing facility,” in
38th IEEE International Conference on Distributed Computing Systems,
ICDCS 2018, Vienna, Austria, July 2-6, 2018, 2018, pp. 1604–1611.

[40] textfiles.com, TextFiles, 2018, http://www.textfiles.com/bbs/.
[41] W. Yu, J. S. Vetter, S. Canon, and S. Jiang, “Exploiting lustre file joining

for effective collective IO,” in 7th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, CCGRID 2007, pp. 267–274.

[42] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet, Y. Jiao, A. Mittal,
P. Pandey, P. Reddy, L. Walsh, M. A. Bender, M. Farach-Colton,
R. Johnson, B. C. Kuszmaul, and D. E. Porter, “Betrfs: A right-
optimized write-optimized file system,” in Proceedings of the 2015
USENIX Conference on File and Storage Technologies, pp. 301–315.

[43] J. Yuan, Y. Zhan, W. Jannen, P. Pandey, A. Akshintala, K. Chandnani,
P. Deo, Z. Kasheff, L. Walsh, M. A. Bender, M. Farach-Colton, R. John-
son, B. C. Kuszmaul, and D. E. Porter, “Optimizing every operation
in a write-optimized file system,” in Proceedings of the 2016 USENIX
Conference on File and Storage Technologies, pp. 1–14.

