
Load-aware Elastic Data Reduction and
Re-computation for Adaptive Mesh Refinement

Mengxiao Wang1, Huizhang Luo2, Qing Liu2, and Hong Jiang1

1 Department of Computer Science and Engineering, University of Texas at Arlington
2 Department of Electrical and Computer Engineering, New Jersey Institute of Technology

Abstract—The increasing performance gap between compu-
tation and I/O creates huge data management challenges for
simulation-based scientific discovery. Data reduction, among
others, is deemed to be a promising technique to bridge the
gap through reducing the amount of data migrated to persistent
storage. However, the reduction performance is still far from
what is being demanded from production applications. To this
end, we propose a new methodology that aggressively reduces
data despite the substantial loss of information, and re-computes
the original accuracy on-demand. As a result, our scheme creates
an illusion of a fast and large storage medium with the availability
of high-accuracy data. We further design a load-aware data
reduction strategy that monitors the I/O overhead at runtime,
and dynamically adjusts the reduction ratio. We verify the
efficacy of our methodology through adaptive mesh refinement,
a popular numerical technique for solving partial differential
equations. We evaluate data reduction and selective data re-
computation on Titan, using a real application in FLASH and
mini-applications in Chombo. To clearly demonstrate the benefits
of re-computation, we compare it with other state-of-the-art data
reduction methods including SZ, ZFP, FPC and deduplication,
and it is shown to be superior in both write and read speeds,
particularly when a small amount of data (e.g., 1%) need to be
retrieved, as well as reduction ratio. Our results confirm that
data reduction and selective data re-computation can 1) reduce
the performance gap between I/O and compute via aggressively
reducing AMR levels, and more importantly 2) can recover the
target accuracy efficiently for AMR through re-computation.

I. INTRODUCTION

In recent years, the advances in high-performance comput-
ing (HPC) are at an accelerated rate. However, the perfor-
mance of storage systems is still lagging far behind, despite
the emergence of new storage technologies, such as solid-
state drive (SSD), and non-volatile memory. This trend has
continued on the next-generation leadership class systems. For
example, for Summit [1] at Oak Ridge Leadership Computing
Facility (OLCF), it is designed to have 5-10X more flops with,
however, a modest 2.5X higher I/O throughput than Titan
[2], the current production system at OLCF. Suggested by the
Amdahl’s Law, the improved flops without the commensurate
improvement in I/O can limit the overall speedup, and there-
fore must be addressed in order to fully exploit the compute
capabilities of these systems. The HPC communities have been
striving to explore solutions across the software and hardware
stacks to mitigate the growing disparity between compute and
I/O. This disparity is further exacerbated by the fact that I/O
interference from applications running concurrently.

Very recently, there has been renewed interest in data
reduction, and its importance in exascale science production
has been well recognized. The goal of data reduction is to
reduce the volume and velocity of data from applications
before data are migrated to the persistent storage. Prior work in
this area include both lossless and lossy compression. Lossless
data compression, e.g., Huffman encoding [3], LZ77 [4],
FPZIP [5], GZIP [6], data deduplication [7], can guarantee no
information loss, however, it only achieves a modest reduction
ratio due to the typical high entropy of scientific data [8].
In particular, data deduplication, commonly used for non-
HPC data, retains unique data and discard redundant data
by calculating and checking a cryptographically secure hash-
based fingerprint for each data chunk. A recent study [9] shows
that data deduplication can only reduce 20% to 30% data
of scientific applications on HPC systems, which is far from
being useful in production. In contrast, lossy data compression,
e.g., ISABELA [10], ZFP [11] and SZ [12], improves the
compression ratio at a cost of information loss. While these
lossy compressors achieve higher compression performance,
the reduction ratio is still far from the 100X reduction that is
demanded from large HPC applications. Another key concern
is the negative impact of reduced accuracy on knowledge
discovery, which is not well-studied and may be unacceptable
in certain cases.

This work aims to address the aforementioned challenges
by more aggressively reducing data coming out of HPC
applications according to the storage overhead, but with the
ability to maintain the original data accuracy. By and large, our
approach is motivated by three key observations. First, HPC
simulations are governed by well-established laws of physics
and mathematics, which can always be re-computed in contrast
to perishable data (e.g., observational, and social data). For
example, solving the Navier-Stokes equation for modeling
viscous fluid under the same parameter space, the same results
should be re-produced. Second, given the general trend that
compute is becoming increasingly cheaper as compared to
I/O, it presents an opportunity of trading compute for I/O.
Ideally what will be sent to the storage system should be
the minimum to reduce the storage footprint, and the full
data can be computed on demand. Third, HPC storage is
shown to have significant I/O variability [13], and therefore
data reduction needs to be load-aware so that the precious
resources on HPC systems can be well utilized. Especially for

978-1-7281-4409-2/19/$31.00 c©2019 IEEE



I/O-intensive applications, I/O performance degrading caused
by interference becomes an issue to be addressed on demand
as the gap between compute and I/O increasing. The data re-
computation is selective in nature, since scientific discovery
commonly examines a subset of data in physical problem,
e.g., extracting an isosurface or a 2D plane. In re-computation,
a subset of a spatial region or a subset of time steps is
re-computed on-the-fly to construct the accuracy demanded.
Analogous to the idea of using cache to bridge the gap
between on-chip registers and DRAM, this approach provides
an illusion of a fast and large storage medium to applications,
and high-accuracy data can be accommodated with fast access
speed. In essence, this methodology is designed to lower the
I/O burden of those data that users are less likely to examine.
Finally, the subset of data to be re-computed is determined and
driven by users, and therefore the execution of data analytics
is more targeted and the efficiency can be greatly improved.

We implement this idea on four adaptive mesh refinement
(AMR) applications from Chombo [14], an open source AMR
framework, and FLASH [15], a production astrophysics code.
Herein, the data reduction is achieved by discarding a certain
number of levels of AMR data product, and the reduction
ratio can be dynamically adjusted online based upon I/O
overhad and the performance goal of applications. During
post-processing, the original accuracy can be recovered by
further refining meshes over selected spatiotemporal slices.

The rest of the paper is organized as follows. We introduce
the background and motivation in Section II. The design and
the detailed implementation are described in Section III. The
performance results are presented in Section IV. In Section
V, related work is demonstrated, along with conclusions in
Section VI.

II. BACKGROUND AND MOTIVATION

Scientific applications running on HPC platforms are all
applying discrete computing and modeling due to the nature
features. Since the complexity in practical environment, scien-
tific computing and modeling need to solve partial differential
equations instead of simply applying physical and mathemat-
ical equations. Finite element method (FEM) subdivides a
problem domain in to small part and then assemble them to-
gether while minimizing the associated error via computation
to obtain the target function, which has been developed to
be the primary method in scientific applications to model and
simulate the problems. Therefore, as a transformation of FEM,
AMR has the advantages in flexibility and scalability through
tracking features with adaptive mesh and providing adequate
higher spacial and temporal resolution, which is widely used
in computational fluid dynamics (CFD), astrophysics, climate
modeling, turbulence, mantle convection modeling, combus-
tion, biophysics and many more areas.

A. AMR Basics

AMR provides adaptive numerical methods to refine the
spatiotemporal resolution of grids in regions where there are
interesting physics. Fig. 1 shows an example of AMR data
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Fig. 1. AMR meshes in three levels. The refinement ratio is 2 in both
dimensions. The area with the coarsest mesh is the original problem domain.
The area with finer mesh (in blue) is the region refined at level 1, and the area
the finest mesh (in red) is the region further refined at level 2. B1

0 and B1
1

are the grids at level 1. B2
0 and B2

1 are the grids at level 2, are computed
based upon B1

0 and B1
1.

output consisting of three levels of fidelity. In a time-dependent
AMR, a new level of grid can be computed in the following
steps:

Step 1: Estimate the point-wise local error in the current
grid, e.g., using the Richardson extrapolation [16].

Step 2: Identify those grid points that yield an error that is
higher than the prescribed threshold.

Step 3: Generate a new set of finer grids that can cover
the flagged grid points efficiently. Finer grids are identified
recursively until either the maximum level of refinement is
reached, or the local error bound is satisfied. In particular, for
time evolution, the error estimation and regridding are applied
to both the temporal and spatial dimensions.

Data reduction can be executed with regard to resolution,
precision, and fidelity, respectively. To reduce the resolution, a
mesh can be decimated by a given factor into a smaller mesh.
To reduce the precision, the number of bits used to represent a
floating-point number is reduced by cutting down the mantissa.
To reduce the fidelity of data, the degree of freedom involved
in solving a model is reduced, e.g., by reducing the number of
variables. Recognizing that the reduction ratio of precision re-
duction is limited which is usually used in lossy compressors,
and fidelity reduction is in general domain and application
dependent, we choose the resolution reduction, which in
general works for all mesh-based applications. Therefore, we
choose AMR applications in this work which have general
usage in scientific computing and the level-structured output,
where reduction and re-computation can be done without
sophisticated physics or mathematics related changes. Namely,
1) the tree-like block-structured data can be easily reduced
by cutting blocks, and 2) a child grid (e.g., level 2) can be
computed based upon its immediate parent grid (e.g., level 1).
Thus, AMR makes data reduction and re-computation easy to
be implemented.

In this paper, we select four AMR applications: Pois-
sonNode is a node-centered Poisson solver; Sedov is an



astrophysical fluid dynamics model to simulate blast wave;
AMRGodunov is a CFD solver for compressible flow; AMRINS
is a simulator for incompressible flow.

B. Motivation
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Fig. 2. Application performance vs. the number of AMR levels. The notation
of (X-Y, Z) means that the data from level X to level Y are calculated and
written to the storage device with size of Z. For example, in the figure of
PoissonNode, (0-1, 856.12MB) represents the data of level 0 to level 1 are
computed and written, and the data size is 856.12MB.

To quantitatively understand the I/O overhead in applica-
tions and the potential of using data reduction to improve
application performance, we run four AMR applications, i.e.,
PoissonNode, Sedov, AMRGodunov, and AMRINS, which in-
volve both time-dependent and time-independent calculations.
We measured the execution and I/O time under various
number of refinement levels, as shown in Fig. 2. From the
results, we can find two observations: 1) As the number of
levels increases, the four applications become quickly I/O-
bottlenecked. For PoissonNode, at 512-core with a single stor-
age device, a ratio reflecting the full Titan [2] configuration,
the time spent on writing four levels accounts for 52% of the
total execution time, while that of writing two levels only takes
6% of the execution time; 2) The I/O overhead is sensitive to
data fidelity. For example, in the case of PoissonNode, writing
data without the two highest levels, i.e., (0-1, 856.12MB), can
reduce the I/O overhead to 6%. With the two additional AMR
levels, PoissonNode quickly transits from compute-intensive
to I/O-intensive, and this clearly demonstrates the sensitivity
of application performance to data fidelity.

III. DESIGN AND IMPLEMENTATION

The heart of our work is a strategy that utilizes data reduc-
tion in an aggressive and adaptive manner, by adjusting the
amount of data that are migrated to storage, with the awareness
of storage load. The caveat of degraded fidelity is resolved

by re-computing the original fidelity, if needed, during post-
processing. As such, our approach takes advantage of the
strengths from both lossy compression (i.e., high reduction
ratio) and lossless compression (i.e., no information loss). This
creates an illusion to end users that accessing high-fidelity data
from storage systems is dramatically faster, without increasing
the physical bandwidth of storage hardware.
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Fig. 4. An example of temporally data selection.

A. Load-aware Data Reduction

In a production HPC environment, I/O interference can
occur when multiple applications utilize the same storage
devices concurrently. As a result, the I/O overhead can be
fairly random and may grow to a degree that is beyond
the performance goal. Therefore, at each timestep we need
to make runtime adjustments of data reduction so that the
performance goal can be achieved, while retaining most data
product. To achieve this goal, we implement two different
strategies.

1) Semi-dynamic Data Reduction: Semi-dynamic data re-
duction consists of two data reduction processes, static data
reduction and dynamic data reduction. To reduce data, we first
select a set of high levels of AMR grids to be eliminated from
further refinement, e.g., in Fig. 1, data in B2

1, based upon
the performance goal of an application and the system load,
which is considered as the process of static data reduction. If
the current I/O overhead is deemed as high (e.g., 15%) as a
result of a transient peak of storage load, we further discard
a set of levels to reduce the data volume.

For unknown I/O performance of the storage system, at each
timestep, both the per-step and accumulated I/O overhead are
calculated to monitor the dynamics of the storage system load,
by recording the execution and write time of the current step,
and the accumulated execution and write time. In particular,
the purpose of controlling the per-step overhead is to avoid
overloading the storage system during the congested period,
while that of controlling the accumulated overhead is to attain
the overall performance goal of an application. If either of the
two metrics exceeds a given threshold, we further reduce the
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AMR levels, e.g., data in B2
0 are not computed and written

to storage in the subsequent timestep.
For I/O performance of the storage system we can predict,

according to the compute phase and write phase of each
timestep of applications, the write time can be estimated to
decide whether the timestep needs further reducing data or not.
If I/O bursts occur within the write phase of each timestep, data
generated in the timestep will be further reduced, which means
both computation and write are reduced, e.g., data in B2

0 are
not computed and written to storage in the current timestep.
For HPC platforms, applications typically run repeatedly in a
period of time, so similar I/O patterns can be seen no matter
in a long-term or short-term observation. In other words, the
past I/O behavior of the storage systems have high likelihood
to reflect the future I/O behavior for prediction use on HPC
platforms.

Semi-dynamic data reduction is designed and implemented
to make the applications’ I/O consumption controlled while the
system is relatively busy. It is aimed to increase the efficiency
of the system instead of I/O taking a significant part of total
machine time and increasing runtime. By reducing the amount
of data output to the storage devices, semi-dynamic data
reduction can restrain the total I/O time of applications and
bring impressive total time saving. Meanwhile, faster I/O also
benefits other applications with the same limited I/O resources.

2) Full-dynamic Data Reduction: Full-dynamic data reduc-
tion is a strategy to adaptively control the amount of data
generated and written to the storage according to the I/O
performance of the storage system. When the storage system
is idle or slightly used with minor I/O operations, it is much
under-utilized which is a waste in a concept of energy and
resource. Therefore, during the period of time, the system
should be fully utilized by running computation timesteps and
migrating data generated. If the time is long enough, all data
produced by the timesteps will be written without any data
reduction and any needs for re-computation. However, if the
time is not enough to migrate all data, we will dynamically
reduce data to avoid over-utilization of the system, which the
amount of data reduced without computation is decided by the
time length of idle status of the storage system and this part of
data can be recovered through re-computation. In this manner
for data reduction, the utilization of the storage system can be
maximized to output data generated by applications. Data with
high accuracy can be produced as much as possible for users’

demand and the re-computation for other details of the data
can be minimized in post data processing, where the overhead
of re-computation is mitigated. However, for applications may
generating large amount of redundant data, the reduction ratio
is much smaller than semi-dynamic and simple data reduction,
which results in large burden to the capacity of the storage
system and high I/O consumption of the HPC platform with
low efficiency.

B. Data Selection in Post-Processing

As aforementioned, to deal with information loss as a
result of data reduction, a higher accuracy is required to be
re-computed during post-processing. However, if the entire
dataset needs to be re-computed to the original accuracy, there
is no performance gain using our methodology. Therefore,
understanding the impact of data selection to the overall
performance is important. Prior work has documented that
retrieving and analyzing only a subset of a problem domain
is common [17], if not always. Overall data selection aims
to select data of interest both spatially and temporally, and
we choose a few of them to evaluate data re-computation
in this work. The classic spatially selection methods include,
e.g., bounding box (BB), automatic scale selection (ATSS)
[18], and norm calculation (NC). Bounding box is a simple
selection method that retrieves a rectangular or a cuboid region
of data chosen by users. ATSS applies the size of local
scales to extract features. NC calculates the spatial distance
between two points to cluster the data points with similar
characteristics. Fig. 3 illustrates a bounding box selection on
top of a level 3 grid in an AMR output. Similarly, Fig. 4
shows the temporal selection in a time evolution alongside
spatial selection, in which n timesteps are selected out of
T simulation outputs. The classic temporal selections include
time step selection (TSS), which selects timesteps at a certain
interval, adaptive time step control [19], termed as ATSC1,
and a variant of adaptive time evolution strategy [20], termed
as ATSC2. ATSC1 uses an explicit Runge Kutta method to
control timesteps within a prescribed tolerance. In contrast,
ATSC2 applies the finite-difference adaptive moving grid to
control timesteps with discontinuous boundary conditions.

C. Re-computation in Post-Processing

After data selection, the selected spatiotemporal regions
will be recovered to a higher fidelity according to the users’



requirement, and the process of selection and re-computation
will iterate until the resulting fidelity is satisfactory. For time-
dependent applications, the steps of re-computation are listed
in Fig. 5. A typical post-processing data analysis is described
as follows: The re-computation starts with reading AMR
configurations, including refinement ratio, error threshold, and
etc., and the reduced data from the persistent storage, e.g.,
level 0 to level (m− 1). Subsequently, the temporal selection
is applied to filter timesteps, followed by spatial selection to
identify sub-regions for further re-computation. Then a new set
of finer grids at level m is computed, in a way that is similar
to how a regular AMR grid is computed (Section II-A). The
regenerated level m is analyzed by end users, who then decide
whether a further refinement is needed for level m + 1. For
example in Fig. 1, the end users may perform analysis on level
0 and 1. Although level 1 data have a lower fidelity than level
2, the analysis can provide insights and guidance to determine
whether or where the subsequent re-computation in boxes B2

0

and B2
1 at level 2 is needed. If the accuracy of level 1 suffices

or it does not contain important physics as determined by the
users, the data analysis terminates.

IV. PERFORMANCE EVALUATION

This section aims to quantitatively understand the efficacy of
elastic data reduction and re-computation, and verify whether
our design goal of providing a fast data store with high-
accuracy data is possible on the current leadership class
systems. Our approach is implemented in Chombo, a widely
used adaptive mesh refinement package, and we test three
AMR applications, PoissonNode, AMRGodunov, AMRINS, and
a production application FLASH (Sedov). Among these four
applications, PoinssonNode and Sedov are time-independent
applications, while the rest are time-dependent. We use Cray-
Pat, a performance analysis tool, to measure the compute and
I/O timings.

A. Testbed

We ran all experiments on Titan, the current leadership
class system at OLCF that provides computational and storage
resources for the largest computational applications. It features
a hybrid architecture that consists of 18,688 compute nodes,
with each containing two 16-core AMD Opteron processors
and a NVIDIA Tesla K20 GPU accelerator, with the total
memory capacity of 710 TB. Titan utilizes a center-wide Lus-
tre file system to sustain the I/O outputs from large simulations
as well as to accommodate data analysis and visualization
needs. In total, Titan can achieve a peak performance of 27
PF with 1TB/s I/O bandwidth. For all the results in this work,
one Lustre storage target is used to store AMR data.

B. Load-aware Elastic Data Reduction

We evaluate the effect of load-aware data reduction. In
order to accurately examine the impact of the I/O interference
for a running application, we measure the I/O trace of the
Lustre storage device around two month. Then, we apply
long short-term memory (LSTM) algorithm to learn the I/O
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Fig. 6. I/O prediction. (a) - (c) shows per-minute I/O prediction for 2 hours,
6 hours and 12 hours, respectively. (d) shows per-5-minute I/O prediction for
12 hours. The orange line represents the predicted I/O trace of the storage
device we monitored meanwhile the blue lines shows the real I/O trace of
that.

performance of HPC storage system on Titan and try to predict
the I/O performance. LSTM is a popular recurrent neural
network technique, which can keep the impact of system status
for a relatively long time to influence the current system
status. Therefore, we can predict the occurrence of the I/O
interference in the future hours. Fig. 6 shows that the predicted
I/O trace and the real I/O trace we monitored and that the
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Fig. 7. Performance comparison of AMRGodunov applying (a) semi-dynamic
data reduction and that (b) without dynamical data reduction according to the
I/O prediction. The orange line represents the predicted I/O trace of the storage
device we monitored meanwhile the blue lines shows the real I/O trace of that.
The gray line indicates the I/O percentage changes for all timesteps and the
reduction ratio of each timestep is shown by the yellow line.

overall I/O prediction accuracy of LSTM is around 80%.
1) Semi-dynamic Data Reduction: To maintain the I/O

percentage of an application execution under its I/O budget,
e.g., 15%, high levels of AMR data are eliminated directly
and low levels of AMR data are determined to be further
reduced when I/O interference occurs. Otherwise, the I/O will
be an issue to degrade the performance of the application and
decrease the efficiency of the storage system.

Fig. 7(a) shows AMRGodunov I/O performance with semi-
dynamic data reduction according to the I/O prediction and
Fig. 7(b) shows the I/O performance only with high levels
of AMR data reduction. While applying semi-dynamic data
reduction strategy, we can dynamically further reduce data
according to the I/O prediction with statically data reduction
at the beginning of the execution of the application. As
shown in Fig. 7, data of 16 of 100 timesteps are further
reduced based on the I/O prediction, which the reduction ratio
of the 16 timesteps changes dramatically. However, without
dynamic data reduction of low levels according to the I/O
prediction, the reduction ratio of each timestep are constant
and only 66 timesteps are executed in 250 minutes of which
the I/O percentage of 16 timesteps increases due to the I/O
interference in the storage system.

2) Full-dynamic Data Reduction: When the system is rel-
atively idle or all the generated data are very important, full-
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Fig. 8. Performance comparison of AMRGodunov (a) with applying full-
dynamic data reduction and (b) without applying full-dynamic data reduction
according to the I/O prediction.

dynamic data reduction plays an important role by outputting
the data with dynamically reducing data while I/O interference
occurs to avoid system over-utilization.

Fig. 8 shows the performance difference between AMRGo-
dunov with and without applying full-dynamic data reduction.
With full-dynamic data reduction, the reduction ratio and the
I/O percentage of each timestep of the application dynamically
change according to the I/O prediction. When the storage
system has few I/O operations, the application writes data
with high accuracy to the storage system in order to reduce
the cost of re-computation for the recovery use. When the
storage system is busy or I/O bursts occur, we compute
and write data with relatively high accuracy, which would
increase data recovery of re-computation for future analysis
use. In this data reduction strategy, we can obtain data of 64
timesteps of AMRGodunov with around 250-minute execution
time. However, data of only 37 timesteps can be generated by
AMRGodunov without full-dynamic data reduction in around
250-minute execution time, which none of data are reduced
and I/O percentage of each timestep is around 50%.

C. Data Selection and Re-computation

Data selection is crucial for identifying the right subset of
data to re-compute.If data selection is not effective in nar-
rowing down either the regions or time slices, re-computation
will result in equal storage overhead as other approaches. To
understand the advantages of data selection, we apply classic
data selection algorithms to both time-independent and time-



0

200

400

600

800

1000

1200

Forth-level data (132.7GB) Selective forth-level data
(10.0GB) (ATSS)

Selective forth-level data
(10.0GB) (BB)

PoissonNode (512 cores)

Ti
m

e
(s

)

Selective AMR data recalculation 

MPI Computation Write Read Others

Example: PoissonNode

102.24

1081.77

111.77

0

600

1200
T

im
e 

(s
)

(3, O, 132.7GB)   (3, ATSS, 7.8GB)  (3, BB, 41.4GB) 
Selective Data Generation

PoissonNode (512 cores)
MPI
Computation
Write
Read
Others

421.74

1081.77

185.91

0

200

400

600

800

1000

1200

Forth-level data (132.7GB) Selective forth-level data
(10.0GB) (NC)

Selective forth-level data
(10.0GB) (BB)

PoissonNode (512 cores)

Ti
m

e
(s

)

Selective AMR data recalculation 

MPI Computation Write Read Others

Example: PoissonNode

102.24

1081.77

108.43

0

600

1200

T
im

e 
(s

)

(3, O, 132.7GB)      (3, NC, 7.2GB)      (3, BB, 29.7GB) 
Selective Data Generation

PoissonNode (512 cores)
MPI
Computation
Write
Read
Others

328.74

1081.77

177.72

Example: Sedov - FLASH

0

200

400

600

800

1000

1200

1400

Sixth&seventh-level data
(182.6GB)

Selective sixth&seventh-level
data (23.9GB) (ATSS)

Selective sixth&seventh-level
data (23.9GB) (BB)

Sedov - FLASH (512 cores)

Ti
m

e
(s

)

Selective AMR data recalculation 

MPI Computation Write Read Others

240.57

1226.66

262.48

0

600

1200

T
im

e 
(s

)

(5-6, O, 182.6GB)(5-6, ATSS, 18.5GB)(5-6, BB, 83.6GB)           
Selective Data Generation

Sedov (512 cores)
MPI
Computation
Write
Read
Others

697.23

1286.66

332.33

Example: Sedov - FLASH

0

200

400

600

800

1000

1200

1400

Sixth&seventh-level data
(182.6GB)

Selective sixth&seventh-level
data (23.9GB) (NC)

Selective sixth&seventh-level
data (23.9GB) (BB)

Sedov - FLASH (512 cores)

Ti
m

e
(s

)

Selective AMR data recalculation 

MPI Computation Write Read Others

240.57

1226.66

260.14

0

600

1200
T

im
e 

(s
)

(5-6, O, 182.6GB) (5-6, NC, 15.7GB) (5-6, BB, 51.3GB) 
Selective Data Generation

Sedov (512 cores)
MPI
Computation
Write
Read
Others

509.13

1286.66

312.48

Fig. 9. Comparison of spatial selections for time-independent applications.
The notation of (X, Y, Z) means that the data of level X are selectively
re-computed with selection strategy Y, and then are written to the storage
device with a volume of Z. “O” represents the case that all original data are
selected. In each plot, BB is set to a mimimal rectangular area that can cover
the regions selected by Y for a fair comparison. For example, in PoissonNode,
BB generates the smallest box to contain all the data selected by ATSS.

dependent applications and perform re-computation. Fig. 9
shows the time-independent applications, i.e., PoissonNode
(top two plots) and Sedov (bottom two plots), applied with
spatial data selection algorithms and re-computation. In each
plot, we compare ATSS or NC to BB and the original data
without data selection (right most bar). For a fair comparison,
the region of a BB is chosen to be the smallest box that can
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Fig. 10. Comparison of spatial data selections for time-dependent applica-
tions.

cover all the points selected by ATSS or NC. It is clear in
Fig. 9 that ATSS and NC are more fine-grained selections than
BB. In general, the volume of data selected is related to an
application itself and the selection method. Fig. 10 shows the
impact of spatial data selection criteria used in AMRGodunov
and AMRINS, which are time-dependent applications. For
time-dependent applications, each timestep can be regarded
as a time-independent application, therefore, applying spacial
data selection on these two applications indicates the same ex-
periment results. For temporal data selection, the comparison
between re-computation with different selections can be found
in Fig. 11. The effectiveness of only applying the adaptive
time step controls (ATSC1 and ATSC2) are not as obvious as
that of using TSS with certain intervals due to the non-trivial
correlation between the consecutive time steps in these two
applications. However, TSS may lose important physics when
capturing the transient states of a scientific process.
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Fig. 11. Comparison of temporal selections for time-dependent applications.

D. Data Reduction and Re-computation vs. State-of-the-art

In this part, we aim to understand whether the re-
computation brings performance advantages over other state-
of-the-art solutions. For easy analysis, we apply static data
reduction, which is directly reducing high levels of AMR data
of each application without further data reduction while I/O
interference occurs. Table 1 compares re-computation with
some of the best lossy compressors (SZ, ZFP), and lossless
compressors (FPC, DEDUP), for all four applications. We
measured the compression time, decompression time as well as
the compression ratio. For lossy compressors, SZ and ZFP are
selected since they are shown to be best compressors across
13 datasets [12]. For lossless compressors, FPC is shown to
be superior in compression ratio for 5 out of 13 datasets, and
be comparable to the rest, and achieve the best throughput
among all lossless compressors. DEDUP is chosen because
deduplication as data reduction technique has been widely
used in storage systems, including in some as a standard
feature. Through Table 1, it is evident that the compression
ratios of FPC and DEDUP are significantly lower than others.
This is mainly due to the fact that scientific data are inherently
noisy and random with very high information entropy, which
makes lossless compressors less effective. More importantly,
this observation suggests, even in AMR datasets where there is
substantial information redundancy between AMR levels, the



TABLE I
RE-COMPUTATION VS. STATE-OF-THE-ART COMPRESSORS

Application Method Total time Data retrieval Compression
(execution+compression+write) (read+decompression) ratio

SZ 554.9s+69.7s+78.4s 114.1s+10.6s 7.8
ZFP 552.6s+110.9s+245.4s 345.5s+109.6s 2.5

PoissonNode
Re-computation 113.2s+0s+60.9s

1% 5% 10% 20%
15.1Decompression Decompression Decompression Decompression

(142.1GB) 59.9s+11.4s 60.3s+49.5s 60.8s+70.1s 59.6s+127.4s
FPC 553.3s+59.9s+500.9s 707.9s+16.8s 1.2

DEDUP 550.8s+25.8s+468.2s 634.5s+77.3s 1.3
SZ 578.8s+78.6s+123.1s 171.22s+12.5s 7.2

ZFP 580.4s+104.6s+226.5s 311.0s+114.6s 3.9
Sedov

Re-computation 156.9s+0s+84.8s
1% 5% 10% 20%

12Decompression Decompression Decompression Decompression
(199.2GB) 101.9s+20.5s 101.6s+87.3 100.4s+126.4s 102.3s+221.1s

FPC 573.3s+24.9s+673.5s 900.1s+22.8s 1.3
DEDUP 575.6s+36.5s+668.7s 896.1s+102.4s 1.3

SZ 350.1min+141.3s+93.2min 5.2min+30.3s 3.4
ZFP 348.3min+195.2s+82.4min 4.7min+61.3s 3.8

AMRGodunov
Re-computation 85.3min+0s+18.6min

1% 5% 10% 20%
18Decompression Decompression Decompression Decompression

(272.5GB) 63s+10.1min 67.2s+43.5min 73.8s+72.4min 77.4s+132.4min
FPC 348.9min+38.1s+283.6min 16.2min+31.5s 1.1

DEDUP 351.8min+48.7s+237.7min 13.6min+138.2s 1.3
SZ 316.4min+81.3s+26.6min 1.4min+15.2s 9.2

ZFP 318.2min+122.1s+54.3min 2.8min+110.1s 4.5
AMRINS

Re-computation 72.2min+0s+16.1min
1% 5% 10% 20%

16.3Decompression Decompression Decompression Decompression
(196.5GB) 53.7s+9.2min 52.2s+41.3min 55.1s+67.1min 54.3s+110.4min

FPC 315.7min+26.8s+230.9min 11.4min+23.5s 1.1
DEDUP 313.6min+35.1s+192.1min 9.6min+95.9s 1.3

best lossless compressors are still sensitive to the minuscule
difference between AMR levels, resulting in subpar compres-
sion ratios. Compared to lossy compressors, re-computation
achieves a compression ratio that is 1.5-5X and 3-6X higher
than that of SZ and ZFP, respectively. With the philosophy
that aggressively decimates AMR levels, it by design leads to
a higher reduction ratio.

For domain scientists, they have need of frequent data access
for post-analysis and in other data compression techniques
data compression is also an essential process before storing
data for post-processing to reduce I/O burden. That is why
compression time is presented as a part of total time as well
as execution time and write time of applications. In addition,
the total of decompression time and read time of accessing the
essential data is regarded as data retrieval time. In the column
of data retrieval, our approach of re-computation shows 1%,
5%, 10% and 20% decompression, which represent that 1%,
5%, 10% and 20% of high-level data users interested in
were re-computed by our approach, respectively, while other
methods cannot do. Through the results in this column, it can
be observed that re-computation has much less data accessing
time than other data compression techniques due to the higher
compression ratio achieved by our approach. However, for
decompression time, re-computation is increasingly lower than
others with the percentage of high-level data increasing, which
results from that our approach selectively re-computed the data
to retrieve the information of users’ interest, especially for
time-dependent applications. In the column of total time, it can
be seen that our approach has zero overhead for compressing
data since our approach eliminated high levels of data to retain
the essential low levels of data for subsequent analysis during

applications run, which is much better than other compression
techniques. Meanwhile, with high levels of data reduced, re-
computation also reduced time costs for execution of the
applications comparing to other methods needing to compute
the original datasets. Moreover, due to the high compression
ratio of our approach, the write time of re-computation is also
much less than other techniques. Therefore, through the results
in the column of total time, re-computation saves around 6X
of total time for the four applications. Since domain scientists
care the time cost from end to end more than the time cost of
data compression and decompression, our approach compares
total time plus data retrieval as a whole part to other methods.
In this term, re-computation still has a better performance than
other compression techniques due to without calculating and
storing data that users are not to examine.

V. RELATED WORK

A multitude of I/O optimizations have been studied to
address I/O contention, such as collective I/O and MPI-IO,
these optimizations did not address the interferences generated
by the concurrent usage of a shared parallel file system from
multiple applications. The root cause is that there are no QoS
mechanisms on HPC storage systems, and that HPC systems
deploy “first-in-first out (FIFO) I/O job scheduling at the file
system level with and adjustment based on priority. Recently,
several scheduling policies were proposed to address inter-job
I/O congestion on HPC systems. These strategies range from
non-work-conserving scheduling (anticipatory scheduling [21]
and the CFQ scheduler [22]) which keeps the disk head
idle after serving a request until the next request arrives,
to resource-aware job scheduling [23] and I/O-aware job



scheduling [24], [25] which obtain per-application resource
or I/O requirements through tracing/profiling.

One recent effort of note is the in-memory computing. In-
memory computing is a novel paradigm to process data as
much as possible in RAM , instead of in storage devices, to
reduce the cost of data movement. Analyzing data online and
reducing the amount of data migrated to storage make in-
memory computing an attractive and effective approach for
data-intensive applications. Overall, there are two in-memory
computing strategies, in situ and in transit, which have been
developed for various applications scenarios for HPC data
analytics. In situ data analytics can be either embedded in the
application code, or run on the same node using helper cores,
e.g., Darmaris [26], Functional Partitioning [27], GePSeA
[28]. However, in situ typically requires modifications to appli-
cations, and may interfere with simulations. Meanwhile, for in
transit, GLEAN [29] and DataSpaces [30], are performed on
auxiliary staging nodes. In transit decouples analytics from
simulations, and hence the impact on simulations can be
minimized through asynchronous data movement. In addition,
a few frameworks involve both in situ and in transit analysis.
PreData [31] uses simple stateless analysis codes in situ, and
then further extract data from applications to staging nodes.
Bennett et al. [32] combine in situ and in transit visualization
and analysis using DataSpaces and ADIOS [33]. However,
despite of the advantages of in situ and in transit techniques,
a fact of required data post-analyzing and necessary data post-
processing for most scientific applications must be confronted,
where data-backed analysis is still significant for many re-
searchers as the standard for data analysis. Key challenges of
in-memory computing are that it cannot support exploratory
data analytics where the quantities to examine are unknown
a priori, and for both in situ and in transit, they incur higher
resource overhead, and the cost-performance trade-off needs
to be carefully considered.

VI. CONCLUSION

In this paper, we demonstrate that under the growing gap
between CPUs and disks, I/O is often disrupting scientific
application performance. However, it is still entirely possible
to achieve a good reduction ratio without sacrificing the
accuracy. Therefore, we present load-aware data reduction in
conjunction with re-computation, a methodology inspired by
the philosophy behind caching that eliminates the amounts
of data migrated to storage systems according to the runtime
storage system load, and selectively produces data with the
desired accuracy, thus creating an illusion that I/O performance
is dramatically improved.

ACKNOWLEDGMENT

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES
[1] Summit. Https://www.olcf.ornl.gov/summit/.
[2] Titan. Http://www.olcf.ornl.gov/titan/.
[3] D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Proceedings of the IRE, vol. 40,

no. 9, pp. 1098–1101, 1952.
[4] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Transactions on information

theory, vol. 23, no. 3, pp. 337–343, 1977.
[5] P. Lindstrom and M. Isenburg, “Fast and efficient compression of floating-point data,” IEEE transactions on

visualization and computer graphics, vol. 12, no. 5, pp. 1245–1250, 2006.
[6] J.-l. Gailly and M. Adler. GNU zip. Http://www.gzip.org.
[7] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu, Y. Zhang, and Y. Zhou, “A comprehensive study

of the past, present, and future of data deduplication,” Proceedings of the IEEE, vol. 104, no. 9, pp. 1681–1710,
2016.

[8] T. Lu, Q. Liu, X. He, H. Luo, E. Suchyta, J. Choi, N. Podhorszki, S. Klasky, M. Wolf, T. Liu, and Z. Qiao,
“Understanding and modeling lossy compression schemes on hpc scientific data,” in IEEE International Parallel
and Distributed Processing Symposium (IPDPS 18),, 2018, pp. 1–10.

[9] D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and J. Kunkel, “A study on data deduplication in hpc
storage systems,” in High Performance Computing, Networking, Storage and Analysis (SC), 2012 International
Conference for. IEEE, 2012, pp. 1–11.

[10] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham, R. Ross, and N. F. Samatova, “Compressing
the incompressible with isabela: In-situ reduction of spatio-temporal data,” in European Conference on Parallel
Processing. Springer, 2011, pp. 366–379.

[11] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE transactions on visualization and computer
graphics, vol. 20, no. 12, pp. 2674–2683, 2014.

[12] S. Di and F. Cappello, “Fast error-bounded lossy hpc data compression with sz,” in Parallel and Distributed
Processing Symposium, 2016 IEEE International. IEEE, 2016, pp. 730–739.

[13] Q. Liu, N. Podhorszki, J. Logan, and S. Klasky, “Runtime i/o re-routing + throttling on HPC storage,” in Presented
as part of the 5th USENIX Workshop on Hot Topics in Storage and File Systems. San Jose, CA: USENIX, 2013.
[Online]. Available: https://www.usenix.org/conference/hotstorage13/workshop-program/presentation/Liu

[14] M. Adams, P. O. Schwartz, H. Johansen, P. Colella, T. J. Ligocki, D. Martin, N. Keen, D. Graves, D. Modiano,
B. Van Straalen et al., “Chombo software package for amr applications-design document,” Tech. Rep., 2015.

[15] The Flash Center for Computational Science at the University of Chicago. FLASH 4.4.
Http://flash.uchicago.edu/site/flashcode/.

[16] L. F. Richardson, “The approximate arithmetical solution by finite differences of physical problems involving
differential equations, with an application to the stresses in a masonry dam,” Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 210, pp.
307–357, 1911.

[17] T. Lu, E. Suchyta, D. Pugmire, J. Choi, S. Klasky, Q. Liu, N. Podhorszki, M. Ainsworth, and M. Wolf, “Canopus: A
paradigm shift towards elastic extreme-scale data analytics on hpc storage,” in 2017 IEEE International Conference
on Cluster Computing (CLUSTER), Sept 2017, pp. 58–69.

[18] T. Lindeberg, “Feature detection with automatic scale selection,” International journal of computer vision, vol. 30,
no. 2, pp. 79–116, 1998.

[19] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, “Implicit-explicit runge-kutta methods for time-dependent partial
differential equations,” Applied Numerical Mathematics, vol. 25, no. 2-3, pp. 151–167, 1997.

[20] L. K. Bieniasz, “Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations:
Part 3. an adaptive moving grid–adaptive time step strategy for problems with discontinuous boundary conditions
at the electrodes,” Journal of Electroanalytical Chemistry, vol. 374, no. 1-2, pp. 23–35, 1994.

[21] S. Iyer and P. Druschel, “Anticipatory scheduling: A disk scheduling framework to overcome deceptive idleness in
synchronous i/o,” in ACM SIGOPS Operating Systems Review, vol. 35, no. 5. ACM, 2001, pp. 117–130.

[22] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger, “Argon: Performance insulation for shared storage
servers.” in FAST, vol. 7, 2007, pp. 5–5.
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