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Abstract—Inline deduplication is a popular technique to effec-
tively reduce the write traffic and improve the space efficiency
for flash-based storage. However, it also introduces computing
and memory overhead to generate and store the cryptographic
hash (fingerprint). Along the advent of 3D XPoint and Z-NAND
technologies with vastly improved latency and bandwidth, both
the computing and memory overheads are becoming much more
pronounced in deduplication-based flash storage with crypto-
graphic hash functions in use. To address these problems, we
propose an ECC (Error Correcting Code) assisted deduplication
approach, called EaD, which exploits the ECC property and the
asymmetric read-write performance characteristics of modern
flash-based storage. EaD first identifies data similarity based
on the fingerprints of data chunks represented by their ECC
values, thus significantly reducing the costly cryptographic hash
computing and alleviating the memory space overhead. Based
on the identification results, similar data chunks and their ECCs
are read from the flash to perform a byte-by-byte comparison
in memory to definitively identify and remove redundant data
chunks. Our experiments show that the EaD approach signifi-
cantly reduces the I/O latency by an average of 1.92× and 1.86×,
and reduces the memory consumption by an average of 35.0%
and 21.9%, compared with the existing SHA- and sampling-based
deduplication approaches, respectively.

Index Terms—Data Deduplication, Flash Storage, ECC, Colli-
sion Free, Performance Evaluation

I. INTRODUCTION

Flash-based devices have been extensively deployed in
modern computer systems to satisfy the increasing demand
for storage performance and energy efficiency. Due to the
unique characteristics of the flash memory technology, the
performance and reliability of flash storage is highly sensitive
to the write traffic [25], [21]. Thus, techniques that can reduce
the number of writes to flash storage are desirable and have
received a lot of attention from both industry and academia [6],
[11], [14]. The most popular and effective among these tech-
niques is data deduplication, which has gained increasing trac-
tion due to its ability to reduce the storage space requirement
by eliminating duplicate data and minimizing the transmission
of redundant data in storage systems.

Recent studies [6], [14], [22] have shown that the ability of
data deduplication to reduce the write traffic can significantly
improve the performance and reliability of the flash storage
systems. In fact, inline data deduplication has become a
commodity feature in flash-based storage products for many

leading companies, such as HPE Nimble Storage [5] and
Pure Storage [11], for the purpose of enhancing system
performance, reliability and space efficiency. However, despite
of data deduplication’s great benefits, it has two important
drawbacks, namely, high computational and memory over-
heads on the I/O critical path, which can adversely affect
the performance of such systems, and nonzero hash-collision
probability, which can cause unrecoverable data corruption.

First, the computational intensity of cryptographic hash
functions and memory consumption of fingerprints can lead to
serious performance degradation of deduplication-based flash
storage. Generally speaking, the deduplication process can
be divided into four stages: (1) data chunking that divides
data streams/files into roughly equal-sized chunks (often based
on content), (2) hash computing for chunk fingerprints that
uniquely identify data chunks, (3) index querying that deter-
mines whether incoming chunks are duplicates to be removed
using fingerprints, and (4) index and metadata updating. More
specifically, the MD5/SHA-based Content-Defined Chunking
(CDC) algorithms need to compute the hash value of all chunk
content, which significantly lengthens the write latency in
deduplication-based storage systems, especially in the high
performance flash-based devices with the 3D XPoint [1] and
Z-NAND [7] technologies. The occupied memory to store
fingerprints also implies less cache space to buffer user I/Os.
Moreover, the computational and memory overheads can be
a critical issue when data deduplication is embedded within
flash-based SSDs [6], [14] and Smartphones [22] where the
computing and memory resources are limited.

Second, all hash functions have potential collisions in which
two different data chunks share the same hash value, although
the collision probability depends on the specific hash function.
Since most cryptographic hash functions produce a fixed
size output from an arbitrarily long data chunks, there will
always be collisions due to the loss of precision inherent in
representing a larger data block with a smaller hash value. It
is now well-known that the MD5 and SHA-1 functions have
been cracked [12], [23]. For example, a recent collaborative
study between the CWI Institute in Amsterdam and Google
announced the first practical technique for generating a SHA-
1 hash collision in February 2017 [12]. Though using a more
secure hash algorithm like SHA-256 can reduce the probability



of hash collision, it also increases the computing overhead and
the memory overhead significantly due to lower cryptographic
hash speed and bigger hash length compared with SHA-1.

To simultaneously alleviate the performance and memory
overheads and completely avoid the hash collision issue in tra-
ditional MD5/SHA-based deduplicating flash storage systems,
this paper proposes an ECC assisted deduplication approach,
called EaD, which exploits the ECC property and high read
performance characteristics of modern flash-based SSDs to
establish a collision-free and high performance deduplication
system with low memory overhead. The main idea behind EaD
is its use of the ECC information already available in each
flash page in modern SSDs as the hash value of the chunk
content to definitively filter out non-duplicate data chunks
to prevent the unnecessary and costly hash computing and
comparison of their content. This is possible because there is
no false negative detection of duplicates by using ECC as a
hash function. The unfiltered blocks are then considered at
least similar, if not duplicate (due to false positives), to a
stored data chunk since their ECC values match those of stored
data chunks. Based on the preliminary identification results,
the similar data chunks are read from the flash to perform
a byte-by-byte comparison in memory to definitively identify
and remove redundant data chunks. Our experiments results
show that collision-free EaD significantly outperforms the ex-
isting SHA- and sampling-based deduplication approaches [6],
[14] in terms of I/O performance by an average of 1.92×
and 1.86×, respectively. Meanwhile, EaD also significantly
reduces the memory consumption by an average of 35.0% and
21.9%, respectively.

The rest of this paper is organized as follows. Background
and motivation are presented in Section II. We describe
the design details of EaD in Section III. The performance
evaluation is presented in Section IV and the related work is
presented in Section V. We conclude this paper in Section VI.

II. BACKGROUND AND MOTIVATION

A. A new performance landscape

The development of emerging storage technologies, such
as Intel 3D XPoint [1] and Z-NAND [7], has significantly
improved the performance of flash-based storage [30]. For
example, Intel has integrated the 3D XPoint memory into
Intel Optane series SSDs and Samsung has also deployed
Z-NAND flash into Samsung 983 ZET flagship datacenter
SSDs. Moreover, other manufacturers are also planning to
release low-latency flash products, such as Everspin’s nvNI-
TRO Technology and Toshiba’s XL-Flash [30]. On the other
hand, the cryptographic hash functions used in deduplication-
based storage systems for the purpose of data chunking and
fingerprinting, such as SHA-1 and SHA-256, have remained
unchanged. This has brought about a noticeable change in the
performance landscape of flash-based deduplication storage
systems in that the performance bottleneck is observed to shift
from the I/O stack to the compute layer due to the costly
computing of cryptographic hash functions.
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Fig. 1. A comparison of 4KB latencies of reading and writing from Intel
Optane 3D XPoint and Samsung Z-NAND flash devices, and performing
various computing functions including 4 different hash functions and the XOR
operation.

Figure 1 compares the 4KB latencies of reading and writing
from Intel Optane 3D XPoint [1] and Samsung Z-NAND flash
devices [7], and latencies of performing various computing
functions on a 4KB data page. It must be noted that the
SHA-based hash computing latencies shown in the bars of
Figure 1 are the lowest values derived from the fastest hashing
implementations [8], [3], considering the ARM Cortex R5
processor is used with the maximum clock frequency of 1.4
GHz, in contrast to the minimum adjustable frequency of
300MHz [27]. The minimal clock frequency is set to 300MHz.
In real SSD products, the SHA-based hash computing latency
could be much higher [6], [14], [15], [24]. For example, the
latest released Marvell NVMe SSD Controllers (88SS1092 and
88SS1093) use triple ARM Cortex R5 up to 500MHz [15],
which implies that the SHA-1 latency of a 4KB page will be
40us instead of the 15us shown in Figure 1 [8]. Samsung 840
series SSDs use the 3-core ARM Cortex R4 with 300 MHz in
the MDX controller and 400 MHz in the MEX controller [24]
which implies that the SHA-1 latency will be more than 50us
for a 4KB page.

Figure 1 shows that the cryptographic hash computing
latency is actually higher than or comparable to the write
latency of the modern flash devices, which indicates that the
hash computing process can potentially offset the benefit of
write traffic reduction brought by data deduplication to some
extent. Even with the fastest secure hashing algorithms, such as
Blake2 [3], the hash computing latency is still about half the
write latency. Moreover, for non-redundant data chunks, the
hash computing process will significantly increase the write la-
tency since it is on the critical I/O path. In deduplication-based
storage systems, all incoming data chunks must be calculated
to generate their corresponding cryptographic hash values as
fingerprints. Thus, the cryptographic hash computing latency
becomes an integral part of the overall write latency. When
the hash computing throughput is comparable to the write
throughput, the deduplication-induced performance overhead
will become a serious performance bottleneck. Furthermore,
Figure 1 indicates that the read latency is noticeably lower than
the write latency. It offers an opportunity for optimizing the
write performance by leveraging the high read performance
characteristics of flash-based storage systems.



49.10 

92.62 

36.17 

74.82 

49.11 

92.62 

36.18 

74.82 

49.10 

92.62 

36.17 

74.82 

0

25

50

75

100

VMDK Kernel MobileSys Firefox

SHA-1 ECC(T=2) ECC(T=4 or 8)

D
ed

u
p

li
ca

ti
o
n
 R

at
io

 (
%

)

Fig. 2. Comparisons of the deduplication ratios when using SHA-1 and BCH-
based ECC with T bits correction capability, driven by four real datasets.

B. An ECC primer

Because of the inherently unreliable nature of NAND mem-
ory, some of the stored data in NAND flash may differ in
value from the original one due to individual bit errors. Flash
controllers usually utilize the Error Correcting Code (ECC) to
accomplish the required dependability and reliability. When
data is written to NAND flash, an ECC of the data is generated
by the ECC engine and stored together with the data, normally
in the Out Of Band (OOB) region of each page. When the
data is read back, the ECC of the data is recomputed and
compared against the one already stored on flash for error
detection and correction. In SLC (Single Level Cell), MLC
(Multi Level Cell), and TLC (Triple Level Cell) flash devices,
Bose, Chaudhuri and Hocquenghem (BCH) codes are regularly
used for multi-bit error correction. Recently, Low Density
Parity Check (LDPC) codes are increasingly being used in
TLC and QLC (Quad Level Cell) NAND flash devices [19].

However, different data chunks may generate the same BCH
value or LDPC value, a problem referred to as hash collision.
To assess the extent of hash collisions of BCH-based ECC, we
examine the data redundancy based on the hash functions of
SHA-1 and BCH-based ECC respectively and compare their
deduplication ratios (i.e., percentage of original data detected
as duplicates), experimentally driven by real datasets. Here
we assume BCH (4224, 4096, 8) with an 8-bits correction
capability is used where 4096 bits (512 bytes) data need 104
bits (13 bytes) ECC [19]. That is, 104 bytes ECC is generated
and stored for a 4KB data page within flash device. We use
four datasets of real applications that represent different hash
functions with a data chunk size of 4KB. Experimental results
shown in Figure 2 help us draw the following key observations.

First, the deduplication ratios of BCH-based ECC, when
used as a hash function, are higher than those of SHA-
1. Given that SHA-1 is sufficiently secure with negligibly
low hash collision probability, this suggests that with BCH-
based ECC there is a measurable amount of different data
chunks that generate the same hash values and thus result
in non-negligible false positive duplicate detections (hence
the higher deduplication ratios). As a result, ECC cannot be
directly used to replace the SHA-based hash algorithms in
deduplication storage systems because false positive duplicate
detection can lead to unrecoverable data corruption. Second,

the hash collision rate is very small as implied by the very
small difference between the deduplication ratios in the two
cases. In fact, for the four data sets we evaluated, when BCH
have 2-bits correction capability (32 bytes ECC per 4KB),
the difference in deduplication ratio between BCH-based ECC
and SHA-1 is less than 0.01%, suggesting a hash-collision
rate of less than 0.01% relative to SHA-1. And there are no
measurable hash collisions when BCH has 4-bits (56 bytes
ECC per 4KB) and 8-bits (104 bytes ECC per 4KB) correction
capability. In other words, while ECC may not be used as a
hash function for duplicate detection, it can be used for the
detection of data similarity in the data deduplication process
provided that data integrity is ensured in a rigorous manner.

In conclusion, from our preliminary evaluations and analy-
sis, we find that the ECC values already available in each flash
page can be effectively used for similar data identification.
Based on the above observations and to address the challenge,
this paper proposes an ECC assisted Deduplication (short
for EaD) to construct a collision-free and high-performance
deduplication approach with low memory overhead for modern
high-performance flash-based devices. EaD exploits the ECC
property and leverages the asymmetric read-write performance
characteristics to improve the write efficiency. By reducing
the write traffic and latency, the read/write interference is also
alleviated which results in an improved read performance in
deduplication-based flash storage.

III. EAD DESIGN

A. Overview of EaD

EaD locates inside and works with the Flash Translation
Layer (FTL) in flash-based devices. The design objectives of
EaD are improving both performance and memory efficiency
while providing collision free deduplication guarantee for
deduplication-based flash storage. EaD does not guarantee that
all deduplicate write data can be eliminated but makes sure that
write data are safely and correctly stored in flash. Moreover,
EaD merely intercepts existing ECC values for data-similarity
identification on the write path and is independent of the
recovery capability and workflow of ECC on the read path.

Figure 3 shows an overview of the system architecture of
EaD. Different from the traditional deduplication workflow,
EaD is new and unique in that there are no hash computing
procedures conducted on the full data chunks. Considering
the high memory overhead of using the ECC code as the
fingerprints directly, EaD piggybacks on the ECC information
automatically generated by the ECC engine within FTL as the
fingerprint for each data chunk. The size of the data chunk
is fixed and usually determined by the default page size of
the flash. Note that the size of the data chunk can be adjusted
by combining the ECC values of a group of data pages to
generate the Blake2 fingerprints.

EaD consists of two main functional modules: ECC-based
Redundancy Detection and Deduplication Engine, as shown
in Figure 3. ECC-based Redundancy Detection is responsible
for detecting possible redundant data chunks by checking
with an ECC-based Bloom filter and comparing the Blake2
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fingerprint of ECC values associated with data chunks. Based
on the results, the non-deduplicate data chunks can be defini-
tively filtered out. Deduplication Engine is responsible for
definitively verifying whether a data chunk with a matched
Blake2 fingerprint from the ECC-based redundancy detection
is redundant or unique by fetching the data and their ECC
to perform a byte-by-byte comparison. Leveraging these two
modules and four data structures elaborated next, EaD can
eliminate most duplicate data chunks with minimal compute
and memory overhead.

B. Data Structures

EaD relies on four key data structures to identify data
similarity and eliminate the redundant data chunks, namely,
ECC-based Bloom Filter (BF), Blake2 Index Table (BIT),
Primary Mapping Table (PMT) and Secondary Mapping Table
(SMT), as shown in Figure 4(a).

The ECC-based Bloom filter is constructed and stored in
main memory to check whether the Balke2 value of a data
chunk’s ECC exists in the Blake2 Index Table. Initially, the
ECC-based Bloom filter is a bit array consisting of m bits that
are set to “0”. Each element e within the ECC Set E uses
k hashing functions h1, h2, ..., hk and each hashing function
hi(e) returns an address value in the bit array that ranges from
0 to m-1. Subsequently, the addressed bit is set to “1”. Upon
inserting a new element (i.e., a new ECC value) into the Bloom
filter, if none of the bits addressed by the returned values from
the k hashing functions on the ECC value is “0”, the ECC
value is considered to have already existed in the ECC-based
Bloom filter that represents the membership of Blake2 values
of ECC information in the Blake2 Index Table. Otherwise,
the ECC value is considered to be a new one and the ECC-
based Bloom filter will be updated accordantly (by setting all
addressed “0” bits to “1”).

Blake2 Index Table (BIT) is an in-memory hash structure
to store the fingerprints of ECC codes in EaD. Each entry is
a key-value pair, fingerprint, Address. The indexed fingerprint
is generated with Blake2 [3] algorithm on ECC value and its
length can be configured, 8 bytes by default in EaD. Blake2 is
a cryptographic hash function faster than MD5 and SHA-based
hashes and is at least as secure as the latest standard SHA-3. It
has been adopted by many projects and can produce digests of
any size between 1 and 64 bytes at a speed of 3.08 cycles per

Blake2 Index 
& Mapping 
Tables in 

Memory/Flash

Is page 1 

redundant?
No

No

Is page 2 

redundant?
No

Yes
(False positive)

No

No

Yes

Yes

Unnecessary 

access

No

Necessary 

access

Y
es

Is page 3 

redundant?

No
(True negative)

(1) (2) (3)

PBA

ECC-based Bloom Filter in Memory

Blake2 Index Table of ECC Information

(a) Data structures and locations (b) Access conditions

Blake2
PBA/
VBA

F
la
shECC & Data

No No Yes

Unnecessary 
access

No

Necessary 

access

Y
e
s

ECC & Data based XOR Comparison

Unnecessary 

access

No

Y
e
s

Is page 4 

redundant?

(4)

Yes

Yes

No

ECC4KBWrite Page

ECC-based 
Bloom Filter in 

Memory

PBA/VBA

LBA 0 1 2 3 m4 5

Ref.

VBA 0 1 2 n

PBA

BIT

PMT

SMT

BF

Fig. 4. The data structures and access conditions within EaD. PBA and VBA
stand for Physical Block Address and Virtual Block Address, respectively.

byte [3]. Due to the much shorter length of ECC codes (tens
to hundreds of bytes) than the length of data chunks (4KB or
above), the hash generation latency on ECC codes is much
shorter than that on data chunks. The 32-bit Address indicates
where we can read the data, either the PBA of a physical flash
page or the VBA of a Secondary Mapping Table entry.

Besides the above two data structures to detect possible
redundant data chunks, EaD uses a two-level indirect mapping
mechanism consists of Primary Mapping Table (PMT) and
Secondary Mapping Table (SMT) in deduplication-based flash
devices [6]. PMT maps an LBA (Logical Block Address) to
either a PBA address or a Virtual Block Address in SMT
which is differentiated by the highest bit in the 32-bit page
address. Each entry in SMT is indexed by the VBA and has
two variables, PBA and reference. The 32-bit PBA indicates
the physical flash page and the 32-bit reference records the
exact reference count, i.e., the number of different of logical
pages mapped to this physical flash page. The relationship
between entries in PMT and entries in SMT is essentially N-to-
1 mapping. By using a two-level indirect mapping mechanism,
the reverse update issue during garbage collection is simplified
to only update the corresponding entry in SMT [6]. By doing
so, all the logical pages linked to this physical flash page are
updated automatically without exhaustively searching for all
the referencing LBAs in PMT. Moreover, SSD with EaD can
easily switch to a conventional FTL by mapping LBAs to
PBAs directly in PMT, which shows the EaD’s flexibility.

C. ECC-based Redundancy Detection

ECC-based redundancy detection is the core mechanism
in EaD that is different from the previous SHA-based or
Sampling-based deduplication approaches. It relies on ECC-
based Bloom filter and Blake2 Index Table to filter out the
unique data chunks.

Figure 4(b) shows the access conditions among ECC-based
Bloom filter, Blake2 Index Table, ECC and data store in flash.
If the ECC-based Bloom filter returns “No”, meaning that the
ECC value does not hit the ECC-based Bloom filter, then the
ECC value is definitely not in the current Bloom filter as there
are no false negatives in Bloom filters [4]. It further indicates
that the data chunk associated with the ECC value is unique.
For such unique data chunks, no extra read requests will be



issued in EaD. This access condition is labeled (1) in Figure 4.
On the countrary, if the ECC-based bloom filter returns “Yes”,
a query into the Blake2 Index Table is performed to check
whether the Balke2 of ECC value is in the Blake2 Index Table
because there are possible false positives in Bloom filters.

There are three access conditions, labeled (2), (3) and (4)
in Figure 4. First, for (2), if the Blake2 Index Table returns
“No”, meaning that the Blake2 of ECC value does not hit the
Blake2 Index Table which indicates that the corresponding
ECC is unique. This further confirms that the data chunk is
definitely unique since there are no false negatives in ECC.
Second, for (3) and (4), if the Blake2 Index Table returns
“Yes”, it indicates that the Blake2 of ECC value indeed
exists in the Blake2 Index Table. However, it still cannot
definitively confirm that the data chunk is redundant because
of ECC’s non-negligible hash collisions. In order to provide
100% certainty, the Deduplication Engine will initiate a read
process to fetch data chunks and ECC values, as elaborated in
Section III-D.

It must be noted that the unnecessary read requests, as a
result of verifying similar chunks as non-duplicate ones, are
extremely rare in Figure 4. First, for (2), due to the low
probability of Bloom-filter’s false positives, the performance
overhead induced by the unnecessary accesses is acceptable
since these accesses are performed in memory. Second, for
(3), due to the almost 0 hash collision rate of ECC as shown
in Figure 2, the probability of these unnecessary accesses to
memory/flash will be negligibly low. Our evaluation results
also confirm and validate these low probabilities.

D. Deduplication Engine

The main objective of the Deduplication Engine is to
confirm and eliminate the redundant data chunks. Since ECC
has non-zero collision probability as SHA-based algorithms,
different data chunks can have the same ECC value, which,
however small the probability may be, must not be ignored to
avoid unrecoverable data corruption. To address this problem,
EaD performs byte-by-byte comparisons between the incom-
ing write data chunks and previously stored data chunks that
have been filtered by the ECC-based Redundancy Detection,
triggering read operations to fetch the previously stored data
chunks from flash. However, these read operations only occur
for ascertaining data redundancy for chunks already identified
by the ECC-based Redundancy Detection module as being
highly likely to be redundant ones. Moreover, based on
the performance characteristics of modern flash devices with
superior read performance and SHA-based hash computing
operations with very high compute overheads, trading off some
extra read operations for write traffic reduction and reliability
enhancement is not only feasible but also arguably highly
desirable.

Figure 5 shows an illustration of the process of handling
a write request in EaD. Upon receiving a data chunk, its
ECC value is generated and checked in both the ECC-based
Bloom filter and the Blake2 Index Table. If it hits the ECC-
based Bloom filter, its Blake2 value will be generated and
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Fig. 5. An illustration of the process of handling a write request in EaD.

checked in the Blake2 Index Table. Only the data chunk
whose ECC’s Blake2 value exists in the Blake2 Index Table
is further processed by the Deduplication Engine. In this case,
EaD fetches the previously stored data chunk and its ECC
value from the flash and performs a byte-by-byte comparison
between these ECC and data chunks in main memory. If
both the ECC and data chunks are matched, the incoming
data chunk is redundant and, other than only updating the
corresponding metadata, its data need not be stored. Otherwise,
the incoming data chunk is unique. For the data chunks only
with ECC matched but content are not matched, EaD directly
writes them to the flash without updating the ECC-based
Bloom filter and the Blake2 Index Table.

Although not updating the overlapped ECC values of these
unique data chunks will likely decrease the deduplication ratio,
our experimental results show that the decreased deduplication
ratio is minimal. On the other hand, by only keeping a
unique Blake2-Address key-value pair within the Blake2 Index
Table, EaD significantly reduces the memory overhead of
storing the fingerprints, which is analogous to the fingerprint
table in the traditional deduplication-based storage systems.
Moreover, EaD also reduces the number of read requests when
these overlapped ECC values hit the Blake2 Index Table. In
summary, by sacrificing a tiny amount of deduplication ratio,
EaD can achieve high deduplication performance and low
memory overhead. Section IV also validates this by providing
the detailed experimental results.

IV. PERFORMANCE EVALUATION

A. Evaluation setup and methodology

We implemented EaD in SSDSim [16] and the configuration
of SSDSim is summarized in Table II. We compare the
performance of EaD with that of the SHA-1-based approach
(SHA-1), Blake2-based deduplication approach with 16 bytes
Blake2 code (Blake2), and a 4-byte/4KB sampling-based
deduplication method (Sampling) proposed in CA-FTL [6].
For fairness, we add the Bloom filter to all deduplication
approaches. Since the objectives of EaD are to avoid the
performance bottleneck of the cryptographic hash computing
and improve the deduplication efficiency, we measure the



TABLE I
THE CHARACTERISTICS OF FOUR TRACES.

Trace Read request Write request Dedup. Ratio
Homes 150156 10380822 33.3%
Webs 3116456 11177701 47.3%
Mails 1948414 20762862 91.0%
Hadoop 5596819 3844964 20.7%

TABLE II
THE EXPERIMENTAL PLATFORM.

Parameters Value Parameters Latency (us)
Page Size 4KB Page Read 3

Pages per Block 64 Page Wrte 100
Blocks per Plane 4096 SHA-1 hashing (4KB) 14.3
Planes per Die 2 Blake2 hashing (4KB) 9.8
Dies per Chip 2 Blake2 hashing (104B) 1

Chips per Channel 2 XOR 1
Channel number 18 Hardware BCH [18] 1

deduplication ratio, memory consumption, the read and write
response times to evaluate the efficacy of EaD.

We use three FIU traces [10] and Hadoop trace [6] to
evaluate different deduplication methods. The characteristics
of these traces are summarized in Table I. However, FIU
traces and Hadoop traces only contain MD5- and SHA-1-
based fingerprints [10], [6], but not the BCH-ECC fingerprint.
To obtain the latter, we cut an existing fingerprint into 8
pieces, replicate each 1/8 hash fingerprint to 512 Bytes and
combine them together to reconstruct the original 4KB data.
We calculate the BCH (4224, 4096, 8) per 512 Byte as the
ECC value in the EaD approach, and we use the first 4 bytes
of the reconstructed data as the sample in the sampling-based
approach.

We use the Z-NAND latency to configure the SSDSim
simulator, as shown in Table II. For the Samsung Z-NAND
technology, the read latency is 3us, which is nearly 20 times
faster than conventional NAND [7]. Our preliminary result
shows that hashing a 4KB page is 20 times slower than hashing
a 104B block, considering that Blake2 is faster than SHA-1,
which implies that the latency of Blake2 is less than 1us for
a 104B BCH code. It must be noted that the latency of SHA-
based hashing is configured to be the lowest based on Figure 1,
which implies that the improvements of EaD shown in the rest
of this section are the lower bound, the real improvements
achieved by EaD will likely be much more significant.

B. Performance evaluation

Response Time: Figure 6(a) shows a comparison of av-
erage write response times among traditional SHA-1-based,
sampling-based, Blake2-based deduplication approaches, and
the EaD scheme, driven by the four traces, indicating that
EaD has the lowest average response time among the four
approaches. Our experimental results show that EaD outper-
forms the SHA-1-based, sampling-based, and Blake2-based
deduplication approaches by an average of 1.92×, 1.86×,
and 1.42×, respectively. The reason is that EaD only incurs
cryptographic hash computing latency for BCH code, and the
hash computing latency of 104B BCH code is far less than that
of 4KB data. Actually, in an EaD-based storage system, the
average response time is determined by the write latency when
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Fig. 6. A comparison of average response times between traditional dedupli-
cation approaches and EaD driven by the four traces.

the data chunk is determined to be unique (an unavoidable
latency for any deduplication systems), or read latency when
determining whether a highly likely redundant data chunk is
indeed redundant. Fortunately, for modern flash-based storage
devices, the read/write latencies tend to become increasingly
shorter than the cryptographic hash computing latency. On the
other hand, compared with the SHA-1-based deduplication
approaches, the Blake2-based deduplication approach has a
shorter cryptographic hash computing latency.

Figure 6(b) shows a comparison in average read response
time. Because the original read requests have higher priority,
EaD does not increase the read latency notably. The difference
of read response time between EaD and SHA-1 is less than
1.7%.

Tail Latency: In modern large-scale storage systems, such
as Google, Microsoft Bing, Facebook and Amazon, the long
tails of the service latency are of particular concerns [9].
With the wide deployment of flash-based storage devices in
large-scale storage systems, the tail latency of flash-based
devices ought to be a very important consideration for the
design of storage systems [29]. One of EaD’s objectives is
to avoid the cryptographic hash computing latency bottleneck
in traditional SHA-1-based and sampling-based deduplication
storage systems, which should have a direct impact on the tail
latency.

To estimate this impact of EaD, we evaluate and analyze
the response time distributions for the different deduplication
approaches on SSDSim driven by the four traces, as shown
in Figure 7. The results illustrate that 90% of requests can
be completed with a much shorter latency by EaD than any
of the other three approaches. As shown in Figure 7, for
the EaD-based deduplication system, 90% of requests are
completed within 17us, 16us, 16us, and 15us under the Homes,
Webs, Mails, and Hadoop traces, respectively. However,
for the SHA-1/Sampling/Blake2-based deduplication systems,
their corresponding 90-percentile latencies are 28us/26us/24us,
27us/27us/24us, 28us/28us/25us, and 28us/30us/24us, respec-
tively. The reason is that in the SHA-1/Sampling/Blake2-based
deduplication systems, the cryptographic hash computing la-
tency occupies a significant portion in the request response
time. While data deduplication can reduce the write traffic to
the flash-based storage systems and some systems are specifi-
cally designed for this purpose [6], [14], the unavoidable hash
computing overhead in traditional systems will significantly
degrade the system performance of modern flash-based storage
systems.
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Fig. 7. Response time distributions for the different deduplication approaches driven by the four traces, where the X-axis indicates the request response times
while the Y-axis indicates the fraction of requests whose response times are lower than the corresponding values on the X-axis.
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Fig. 8. A comparison of deduplication ratios among different deduplication
approaches driven by the four traces.

Deduplication Ratio: As described in Section III-D, the
deduplication engine of EaD only stores a single data chunk
among the different chunks that happen to have the same
ECC value (hash collisions) to reduce the memory overhead
and the number of read requests. This is a conscious design
choice we made in favor of deduplication performance at the
expense of possible small deduplication ratio reductions. In
other words, in the unlikely event of ECC hash collisions EaD
will prevent some redundant data chunks from being detected
and eliminated. To quantify this design choice’s negative
impact on deduplication ratios, Figure 8 shows a comparison
in deduplication ratios among the SHA-1, sampling, Blake2,
and EaD approaches and indicates that the deduplication ratio
of EaD is almost the same as that of SHA-1 and Blake2.
The reason is that the hash collision rate of BCH-based ECC
is no more than 0.01% higher than that of SHA-1 as shown
in Figure 2 in Section II. Moreover, EaD guarantees that the
determined redundant data chunks are definitively redundant
by byte-by-byte comparisons. In other words, EaD guaran-
tees that there are no false positive detections of redundant
data chunks and thus no unrecoverable false data removals,
something that none of the SHA-1/Blake2-based deduplication
systems can guarantee in theory. However, the sampling-
based approach noticeably decreases the deduplication ratio
due to its inaccurate detection of redundancy [6]. In sum-
mary, EaD provides similar deduplication ratios to those of
traditional deduplication approaches, but has 0% false positive
redundancy detection and removal and much higher system
performance.

Memory Overhead: Memory overhead for storing finger-
prints is unavoidable in deduplication systems. Figure 9 shows
a comparison in memory consumptions among the different
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Fig. 9. A comparison among the different deduplication approaches in the
memory consumptions under the four traces.

deduplication approaches, including SHA-1-based, Sampling-
based, Blake2-based approaches, and the EaD scheme, driven
by the four traces. Because directly using the BCH code as
the fingerprint consumes significantly more memory space
than the traditional deduplication approaches, EaD addresses
the challenge by using the Blake2 of the BCH code. The
results shown in Figure 9 indicate that EaD consumes notably
less memory space than the traditional SHA-1/Blake2- and
sampling-based deduplication approaches, by an average of
35.0%, 21.9%, and 23.4%, respectively. The reason is that
for the ECC-LBA or SHA-1-LBA/Blake2-LBA mapping table,
EaD uses less memory than the traditional deduplication ap-
proaches. Given the small memory overhead of EaD, it is more
suitable for EaD to store all the information of the mapping
table in memory to accelerate the deduplication speed.

V. RELATED WORK

The state-of-the-art approaches to accelerating the compute-
intensive data deduplication processes are broadly either
software-based optimizations that exploit the parallelism of the
deduplication workflow [20], [28] or hardware-assisted opti-
mizations that leverage the data-parallel processing capabilities
of the GPU technology [2].

Of the four stages of traditional deduplication identified in
Section 1, chunking (either fixed-size FSC or content-defined
CDC), fingerprinting, indexing and updating, P-Dedupe [28]
further parallelizes the sub-tasks of chunking and fingerprint-
ing, thus achieving higher throughput by effectively exploiting
the idle resources of modern computer systems with multi-core
or many-core processors. Guo et al. [13] propose an event-
driven and multi-threaded client-server interaction model to
pipeline FSC-based deduplication systems. Ma et al. [20]
propose an adaptive pipelining model to determine the optimal



order of the sub-tasks in the pipeline based on different
hardware platforms and data types.

The CDC-based deduplication approaches can improve the
deduplication ratio but require extra processing resources.
Therefore, GPU-based hardware accelerators for the hash
computation of the deduplication-based storage systems have
been proposed. For example, Shredder [2] accelerates the
popular compute-intensive primitives (i.e., chunking and fin-
gerprinting) in deduplication-based storage systems by ex-
ploiting the massively parallel processing power of GPUs.
In summary, software-based solutions can be easily imple-
mented in deduplication-based storage systems by pipelining
the deduplication tasks or parallelizing the tasks of chunking
and fingerprinting, while hardware-based solutions can provide
higher throughput but require additional hardware costs.

Recently, primary storage systems are found or expected
to have moderate data redundancy, which means that the
deduplication technique can also bring significant cost saving
for primary storage systems [26]. For example, the CAFTL [6]
and CA-SSD [14] schemes utilize the deduplication technique
in the internal flash-based SSD to reduce the write traffic to the
SSD device. However, due to the limited computing resources
within flash-based SSDs, CAFTL and CA-SSD have to design
a set of acceleration techniques to reduce the runtime overhead
and minimize the performance impact. Kim et al. [17] propose
the SHA-1 hardware logic with sampling-based filtering to
alleviate the SHA-1 processing overhead. Different from the
traditional MD5/SHA-based deduplication approaches, EaD
does not need data chunking and hash computing, but lever-
ages the existing ECC function to identify the similar data
chunks and optimizes the write performance by leveraging the
high read performance characteristics for flash-based storage
systems.

VI. CONCLUSION

This paper proposes an ECC assisted Deduplication ap-
proach (called EaD) that avoids cryptographic hash computing
altogether by leveraging the existing ECC function embedded
in the memory hierarchy to identify the similar data chunks
based on their ECC values. EaD reads the identified similar
data chunks from flash storage and performs byte-by-byte
comparison of the data content to detect and eliminate the
redundant data chunks with complete certainty. Experiments
conducted on our lightweight prototype implementation of
the EaD system show that the EaD approach significantly
reduces the I/O latency by an average of 1.92× and 1.86×, and
reduces the memory consumption by an average of 35.0% and
21.9%, compared with the existing SHA- and sampling-based
deduplication approaches, respectively.
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