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Abstract

Popular LSM-tree based key-value stores suffer from subopti-
mal and unpredictable performance due to write amplification
and write stalls that cause application performance to peri-
odically drop to nearly zero. Our preliminary experimental
studies reveal that (1) write stalls mainly stem from the sig-
nificantly large amount of data involved in each compaction
between L0-L1 (i.e., the first two levels of LSM-tree), and (2)
write amplification increases with the depth of LSM-trees.
Existing works mainly focus on reducing write amplification,
while only a couple of them target mitigating write stalls.

In this paper, we exploit non-volatile memory (NVM) to
address these two limitations and propose MatrixKV, a new
LSM-tree based KV store for systems with multi-tier DRAM-
NVM-SSD storage. MatrixKV’s design principles include
performing smaller and cheaper L0-L1 compaction to reduce
write stalls while reducing the depth of LSM-trees to mitigate
write amplification. To this end, four novel techniques are
proposed. First, we relocate and manage the L0 level in NVM
with our proposed matrix container. Second, the new column
compaction is devised to compact L0 to L1 at fine-grained key
ranges, thus substantially reducing the amount of compaction
data. Third, MatrixKV increases the width of each level to
decrease the depth of LSM-trees thus mitigating write ampli-
fication. Finally, the cross-row hint search is introduced for
the matrix container to keep adequate read performance. We
implement MatrixKV based on RocksDB and evaluate it on
a hybrid DRAM/NVM/SSD system using Intel’s latest 3D
Xpoint NVM device Optane DC PMM. Evaluation results
show that, with the same amount of NVM, MatrixKV achieves
5× and 1.9× lower 99th percentile latencies, and 3.6× and
2.6× higher random write throughput than RocksDB and the
state-of-art LSM-based KVS NoveLSM respectively.

*Corresponding author. Email: jgwan@hust.edu.cn

1 Introduction

Persistent key-value stores are increasingly critical in support-
ing a large variety of applications in modern data centers. In
write-intensive scenarios, log-structured merge trees (LSM-
trees) [49] are the backbone index structures for persistent
key-value (KV) stores, such as RocksDB [24], LevelDB [25],
HBase [26], and Cassandra [35]. Considering that random
writes are common in popular OLTP workloads, the perfor-
mance of random writes, especially sustained and/or bursty
random writes, is a serious concern for users [2, 41, 51]. This
paper takes random write performance of KV stores as a ma-
jor concern. Popular KV stores are deployed on systems with
DRAM-SSD storage, which intends to utilize fast DRAM
and persistent SSDs to provide high-performance database
accesses. However, limitations such as cell sizes, power con-
sumption, cost, and DIMM slot availability prevent the sys-
tem performance from being further improved via increasing
DRAM size [4, 23]. Therefore, exploiting non-volatile mem-
ories (NVMs) in hybrid systems is widely considered as a
promising mechanism to deliver higher system throughput
and lower latencies.

LSM-trees [49] store KV items with multiple exponentially
increased levels, e.g., from L0 to L6. To better understand
LSM-tree based KV stores, we experimentally evaluated the
popular RocksDB [24] with a conventional system of DRAM-
SSD storage, and made observations that point to two chal-
lenging issues and their root causes. First, write stalls lead to
application throughput periodically dropping to nearly zero,
resulting in dramatic fluctuations of performance and long-tail
latencies, as shown in Figures 2 and 3. The troughs of system
throughput indicate write stalls. Write stalls induce highly
unpredictable performance and degrade the quality of user ex-
periences, which goes against NoSQL systems’ design goal of
predictable and stable performance [53, 57]. Moreover, write
stalls substantially lengthen the latency of request process-
ing, exerting high tail latencies [6]. Our experimental studies
demonstrate that the main cause of write stalls is the large
amount of data processed in each L0-L1 compaction. The L0-
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L1 compaction involves almost all data in both levels due to
the unsorted L0 (files in L0 are overlapped with key ranges).
The all-to-all compaction takes up CPU cycles and SSD band-
width, which slows down the foreground requests and results
in write stalls and long-tail latency. Second, write amplifica-
tion (WA) degrades system performance and storage devices’
endurance. WA is directly related to the depth of the LSM-
tree as a deeper tree resulting from a larger dataset increases
the number of compactions. Although a large body of re-
search aims at reducing LSM-trees’ WA [20,36,41,44,45,51],
only a couple of published studies concern mitigating write
stalls [6, 31, 53]. Our study aims to address both challenges
simultaneously.

Targeting these two challenges and their root causes, this
paper proposes MatrixKV, an LSM-tree based KV store for
systems with DRAM-NVM-SSD storage. The design prin-
ciple behind MatrixKV is leveraging NVM to (1) construct
cheaper and finer granularity compaction for L0 and L1, and
(2) reduce LSM-trees’ depth to mitigate WA. The key en-
abling technologies of MatrixKV are summarized as follows:

Matrix container. The matrix container manages the un-
sorted L0 of LSM-trees in NVM with a receiver and
a compactor. The receiver adopts and retains the
MemTable flushed from DRAM, one MemTable per row.
The compactor selects and merges a subset of data from
L0 (with the same key range) to L1, one column per
compaction.

Column compaction. A column compaction is the fine-
grained compaction between L0 and L1, which compacts
a small key range a time. Column compaction reduces
write stalls because it processes a limited amount of
data and promptly frees up the column in NVM for the
receiver to accept data flushed from DRAM.

Reducing LSM-tree depth. MatrixKV increases the size of
each LSM-tree level to reduce the number of levels. As
a result, MatrixKV reduces write amplification and de-
livers higher throughput.

Cross-row hint search. MatrixKV gives each key a pointer
to logically sort all keys in the matrix container thus
accelerating search processes.

2 Background and Motivation

In this section, we present the necessary background on NVM,
LSM-trees, LSM-based KV stores, and the challenges and
motivations in optimizing LSM-based KV stores with NVMs.

2.1 Non-volatile Memory
Service providers have constantly pursued faster database
accesses. They aim at providing users with a better quality
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Figure 1: The structure of RocksDB and NoveLSM.

of service and experience without a significant increase in
the total cost of ownership (TCO). With the emergence and
development of new storage media such as phase-change
memory [8, 33, 48, 52], memristors [55], 3D XPoint [28], and
STT-MRAM [21], enhancing storage systems with NVMs
becomes a cost-efficient choice. NVM is byte-addressable,
persistent, and fast. It is expected to provide DRAM-like
performance, disk-like persistency, and higher capacity than
DRAM at a much lower cost [9, 16, 61]. Compared to SSDs,
NVM is expected to provide 100× lower read and write la-
tencies and up to ten times higher bandwidth [3, 10, 14, 22].

NVM works either as a persistent block storage device ac-
cessed through PCIe interfaces or as main memory accessed
via memory bus [1, 38]. Existing research [31] shows that
the former only achieve marginal performance improvements,
wasting NVM’s high media performance. For the latter, NVM
can supplant or complement DRAM as a single-level memory
system [27, 58, 61, 65], a system of NVM-SSD [30], or a hy-
brid system of DRAM-NVM-SSD [31]. In particular, systems
with DRAM-NVM-SSD storage are recognized as a promis-
ing way to utilize NVMs due to the following three reasons.
First, NVM is expected to co-exist with large-capacity SSDs
for the next few years [32]. Second, compared to DRAM,
NVM still has 5 times lower bandwidth and 3 times higher
read latency [28]. Third, a hybrid system balances the TCO
and system performance. As a result, MatrixKV focuses on
efficiently using NVMs as persistent memory in a hybrid
system of DRAM, NVMs, and SSDs.

2.2 Log-structured Merge Trees

LSM-trees [29, 49] defer and batch write requests in mem-
ory to exploit the high sequential write bandwidth of storage
devices. Here we explain a popular implementation of LSM-
trees, the widely deployed SSD-based RocksDB [24]. As
shown in Figure 1 (a), RocksDB is composed of a DRAM
component and an SSD component. It also has a write-ahead
log in SSDs protecting data in DRAM from system failures.

To serve write requests, writes are first batched in DRAM
by two skip-lists (MemTable and Immutable MemTable).
Then, the immutable MemTable is flushed to L0 on SSDs
generating Sorted String Tables (SSTables). To deliver a fast
flush, L0 is unsorted where key ranges overlap among dif-
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ferent SSTables. SSTables are compacted from L0 to deeper
levels (L1, L2...Ln) during the lifespan of LSM-trees. Com-
paction makes each level sorted (except L0) thus bounding
the overhead of reads and scans [53].

To conduct a compaction, (1) an SSTable in Li (called a
victim SSTable) and multiple SSTables in Li+1 who has over-
lapping key ranges (called overlapped SSTables) are picked as
the compaction data. (2) Other SSTables in Li that fall in this
compaction key ranges are selected reversely. (3) Those SSTa-
bles identified in steps (1) and (2) are fetched into memory,
to be merged and sorted. (4) The regenerated SSTables are
written back to Li+1. Since L0 is unsorted and each SSTable
in L0 spans a wide key range, the L0-L1 compaction performs
step (1) and (2) back and forth involving almost all SSTables
in both levels, leading to a large all-to-all compaction.

To serve read requests, RocksDB searches the MemTable
first, immutable MemTable next, and then SSTables in L0
through Ln in order. Since SSTables in L0 contain overlapping
keys, a lookup may search multiple files at L0 [36].

2.3 LSM-tree based KV stores

Existing improvements on LSM-trees includes: reducing
write amplification [19, 36, 44, 46, 51, 62–64], improving
memory management [7, 39, 56], supporting automatic tun-
ing [17, 18, 40], and using LSM-trees to target hybrid storage
hierarchies [5, 47, 50]. Among them, random write perfor-
mance is a common concern since it is severely hampered by
compactions. In the following, we discuss the most related
studies of our work in three categories: those reducing write
amplification, addressing write stalls, and utilizing NVMs.

Reducing WA: PebblesDB [51] mitigates WA by using
guards to maintain partially sorted levels. Lwc-tree [62] pro-
vides lightweight compaction by appending data to SSTables
and only merging the metadata. WiscKey [36] separates keys
from values, which only merges keys during compactions thus
reducing WA. The key-value separation solution brings the
complexities of garbage collection and range scans and only
benefits large values. LSM-trie [59] de-amortizes compaction
overhead with hash-range based compaction. VTtree [54]
uses an extra layer of indirection to avoid reprocessing sorted
data at the cost of fragmentation. TRIAD [44] reduces WA by
creating synergy between memory, disk, and log. However,
almost all these efforts overlook performance variances and
write stalls.

Reducing write stalls: SILK [6] introduces an I/O sched-
uler which mitigates the impact of write stalls to clients’
writes by postponing flushes and compactions to low-load
periods, prioritizing flushes and lower level compactions, and
preempting compactions. These design choices make SILK
exhibits ordinary write stalls on sustained write-intensive
and long peak workloads. Blsm [53] proposes a new merge
scheduler, called “spring and gear”, to coordinate compactions
of multiple levels. However, it only bounds the maximum

write processing latency while ignoring the large queuing
latency [43]. KVell [37] makes KV items unsorted on disks
to reduce CPU computation cost thus mitigating write stalls
for NVMe SSD based KV stores, which is inapplicable to
systems with general SSDs.

Improving LSM-trees with NVMs: SLM-DB [30] pro-
poses a single level LSM-tree for systems with NVM-SSD
storage. It uses a B+-tree in NVM to provide fast read for the
single level LSM-tree on SSDs. This solution comes with the
overhead of maintaining the consistency between B+-trees
and LSM-trees. MyNVM [23] leverages NVM as a block
device to reduce the DRAM usage in SSD based KV stores.
NoveLSM [31] is the state-of-art LSM-based KV store for
systems with hybrid storage of DRAM, NVMs, and SSDs.
NVMRocks [38] aims for an NVM-aware RocksDB, similar
to NoveLSM, which adopts persistent mutable MemTables
on NVMs. However, as we verified in § 2.4.3, mutable NVM
MemTables only reduce access latencies to some extent while
generating a negative effect of more severe write stalls.

Since we build MatrixKV for systems with multi-tier
DRAM-NVM-SSD storage and redesign LSM-trees to ex-
ploit the high performance NVM, NoveLSM [31] is consid-
ered the most relevant to our work. We use NoveLSM as our
main comparison in evaluations. In addition, we also evaluate
PebblesDB and SILK on NVM-based systems since they are
state-of-art solutions for reducing WA or write stalls but their
original designs are not for the hybrid systems.

2.4 Challenges and Motivations

To explore the challenges in LSM-tree based KV stores, we
conduct a preliminary study on the SSD-based RocksDB. In
this experiment, an 80 GB dataset of 16bytes-4KB key-value
items is written/loaded to RocksDB in uniformly random or-
der. The evaluation environments and other parameters are
described in § 5. We record random write throughput every
ten seconds as shown in Figure 2. The experimental results
expose two challenging issues. Challenge 1, Write stalls.
System performance experiences peaks and troughs, and the
troughs of throughput manifest as write stalls. The significant
fluctuations indicate unpredictable and unstable performance.
Challenge 2, Write amplification. WA causes performance
degradation. System performance (i.e., the average through-
put) shows a downward trend with the growth of the dataset
size since the number of compactions increases with the depth
of LSM-trees, bringing more WA.

2.4.1 Write Stalls

In an LSM-based KV store, there are three types of possible
stalls as depicted in Figure 1(a). (1) Insert stalls: if MemTable
fills up before the completion of background flushes, all insert
operations to LSM-trees are stalled [31]. (2) Flush stalls: if
L0 has too many SSTables and reaches a size limit, flushes to
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Figure 2: RocksDB’s random write performance and L0-L1
compactions. The blue line shows the random write through-
put measured in every 10 seconds. The green line shows the
average throughput. Each red line represents the duration
and amount of data processed in a L0-L1 compaction.

Figure 3: The CDF of latencies of the 80 GB write requests.

storage are blocked. (3) Compaction stalls: too many pending
compaction bytes block foreground operations. All these stalls
have a cascading impact on write performance and result in
write stalls.

Evaluating these three types of stalls individually by record-
ing the period of flushes and compactions at different levels,
we find that the period of L0-L1 compaction approximately
matches write stalls observed, as shown in Figure 2. Each red
line represents a L0-L1 compaction, where the length along
the x-axis represents the latency of the compaction and the
right y-axis shows the amount of data processed in the com-
paction. The average amount of compaction data is 3.10 GB.
As we elaborate in § 2.2, since L0 allows overlapping key
ranges between SSTables, almost all SSTables in both levels
join the L0-L1 compaction. A large amount of compaction
data leads to heavy read-merge-writes, which takes up CPU
cycles and the SSD bandwidth, thus blocking foreground re-
quests and making L0-L1 compaction the primary cause of
write stalls.

Write stalls not only are responsible for the low system
throughput, but also induce high write latency leading to the
long-tail latency problem. Figure 3 shows the cumulative
distribution function (CDF) of the latency for each write re-
quest during the 80 GB random load process. Although the
latency of 76% of the write requests is less than 48 us, the
write latency of the 90th, 99th, and 99.9th percentile reaches
1.15, 1.24, and 2.32 ms respectively, a two-order magnitude in-
crease. The high latency significantly degrades the quality of
user experiences, especially for latency-critical applications.
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Figure 4: NoveLSM’s random write performance and L0-L1
compactions. Comparing to RocksDB in Figure 2, the average
period of write stalls is increased.

2.4.2 Write Amplification

Next, we analyze the second observation, i.e., system through-
put degrades with the increase in dataset size. Write ampli-
fication (WA) is defined as the ratio between the amount of
data written to storage devices and the amount of data written
by users. LSM-tree based KV stores have long been criticized
for their high WA due to frequent compactions. Since the
sizes of adjacent levels from low to high increase exponen-
tially by an amplification factor (AF = 10), compacting an
SSTable from Li to Li+1 results in a WA factor of AF on av-
erage. The growing size of the dataset increases the depth of
an LSM-tree as well as the overall WA. For example, the WA
factor of compacting from L1 to L2 is AF , while the WA factor
of compacting from L1 to L6 is over 5×AF . The increased
WA consumes more storage bandwidth, competes with flush
operations, and ultimately slows down application through-
put. Hence, system throughput decreases with higher write
amplification caused by the increased depth of LSM-trees.

2.4.3 NoveLSM

NoveLSM [31] exploits NVMs to deliver high throughput for
systems with DRAM-NVM-SSD storage, as shown in Fig-
ure 1(b). The design choices of NoveLSM include: (1) adopt-
ing NVMs as an alternative DRAM to increase the size of
MemTable and immutable MemTable; (2) making the NVM
MemTable mutable to allow direct updates thus reducing
compactions. However, these design choices merely postpone
the write stalls. When the dataset size exceeds the capacity
of NVM MemTables, flush stalls still happen, blocking fore-
ground requests. Furthermore, the enlarged MemTables in
NVM are flushed to L0 and dramatically increase the amount
of data in L0-L1 compactions, resulting in even more severe
write stalls. The worse write stalls magnify performance vari-
ances and hurt user experiences further.

We evaluate NoveLSM (with 8 GB NVM) by randomly
writing the same 80 GB dataset. Test results in Figure 4 show
that NoveLSM reduces the overall loading time by 1.7×
compared to RocksDB (Figure 2). However, the period of
write stalls is significantly longer. This is because the amount
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of data involved in each L0-L1 compaction is over 15 GB,
which is 4.86× larger than that of RocksDB. A write stall
starts when compaction threads call for the L0-L1 compaction.
Then, the compaction waits and starts until other pending
compactions with higher priorities complete (i.e., the grey
dashed lines). Finally, performance rises again as the com-
paction completes. In general, NoveLSM exacerbates write
stalls.

From the above analysis, we conclude that the main cause
of write stalls is the large amount of data involved in L0-L1
compactions, and the main cause of increased WA is the deep-
ened depth of LSM-trees. The compounded impact of write
stalls and WA deteriorates system throughput and lengthens
tail latency. While NoveLSM attempts to alleviate these is-
sues, it actually exacerbates the problem of write stalls. Moti-
vated by these observed challenging issues, we propose Ma-
trixKV that aims at providing a stable low-latency KV store
via intelligent use of NVMs, as elaborated in the next section.

3 MatrixKV Design

In this section, we present MatrixKV, an LSM-tree based key-
value store for systems with multi-tier DRAM-NVM-SSD
storage. MatrixKV aims to provide predictable high perfor-
mance through the efficient use of NVMs with the following
four key techniques, i.e., the matrix container in NVMs to
manage the L0 of LSM-trees (§ 3.1), column compactions
for L0 and L1 (§ 3.2), reducing LSM-tree levels (§ 3.3), and
the cross-row hint search (§ 3.4). Figure 5 shows the overall
architecture of MatrixKV. From top to bottom, (1) DRAM
batches writes with MemTables, (2) MemTables are flushed
to L0 that is stored and managed by the matrix container in
NVMs, (3) data in L0 are compacted to L1 in SSDs through
column compactions, and (4) SSDs store the remaining levels
of a flattened LSM-tree.
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Figure 6: Structure of matrix container. The receiver absorbs
flushed MemTables, one per row. Each row is reorganized as a
RowTable. The compactor merges L0 with L1 in fine-grained
key ranges, one range at a time, referred to as column com-
paction. In Process A, the receiver becomes the compactor
once RowTables fill its capacity. In Process B, each column
compaction frees a column.

3.1 Matrix Container

LSM-tree renders all-to-all compactions for L0 and L1 be-
cause L0 has overlapping key ranges among SSTables. The
heavy L0-L1 compactions are identified as the root cause of
write stalls as demonstrated in § 2.4. NoveLSM [31] exploits
NVM to increase the number and size of MemTables. How-
ever, it actually exacerbates write stalls by having a larger
L0 and keeping the system bottleneck, L0-L1 compactions,
on lower-speed SSDs. Hence, the principle of building an
LSM-tree based KV store without write stalls is to reduce the
granularity of L0-L1 compaction via high-speed NVMs.

Based on this design principle, MatrixKV elevates L0 from
SSDs to NVMs and reorganizes L0 into a matrix container
to exploit the byte-addressability and fast random accesses
of NVMs. Matrix container is a data management structure
for the L0 of LSM-trees. Figure 6 shows the organization of
a matrix container, which comprises one receiver and one
compactor.

Receiver: In the matrix container, the receiver accepts
and retains MemTables flushed from DRAM. Each such
MemTable is serialized as a single row of the receiver and or-
ganized as a RowTable. RowTables are appended to the matrix
container row by row with an increasing sequence number, i.e.,
from 0 to n. The size of the receiver starts with one RowTable.
When the receiver size reaches its size limit (e.g., 60% of the
matrix container) and the compactor is empty, the receiver
stops receiving flushed MemTables and dynamically turns
into the compactor. In the meantime, a new receiver is created
for receiving flushed MemTables. There is no data migration
for the logical role change of the receiver to the compactor.

RowTable: Figure 7(a) shows the RowTable structure con-
sisting of data and metadata. To construct a RowTable, we
first serialize KV items from the immutable MemTable in the
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order of keys (the same as SSTables) and store them to the
data region. Then, we build the metadata for all KV items
with a sorted array. Each array element maintains the key, the
page number, the offset in the page, and a forward pointer
(i.e., pn). To locate a KV item in a RowTable, we binary
search the sorted array to get the target key and find its value
with the page number and the offset. The forward pointer in
each array element is used for cross-row hint searches that
contribute to improving the read efficiency within the matrix
container. The cross-row hint search will be discussed in §
3.4. Figure 7(b) shows the structure of conventional SSTable
in LSM-trees. SSTables are organized with the basic unit of
blocks in accordance with the storage unit of devices such as
SSDs and HDDs. Instead, RowTable takes an NVM page as
its basic unit. Other than that, RowTables are only different
from SSTables in the organization of metadata. As a result, the
construction overhead of SSTables and RowTables is similar.

Compactor: The compactor is used for selecting and merg-
ing data from L0 to L1 in SSDs at a fine granularity. Leverag-
ing the byte addressability of NVMs and our proposed RowTa-
bles, MatrixKV allows cheaper compactions that merge a
specific key range from L0 with a subset of SSTables at L1
without needing to merge all of L0 and all of L1. This new L0-
L1 compaction is referred to as column compaction (detailed
in § 3.2). In the compactor, KV items are managed by logical
columns. A column is a subset of key spaces with a limited
amount of data, which is the basic unit of the compactor in
column compactions. Specifically, KV items from different
RowTables that fall in the key range of a column compaction
logically constitute a column. The amount of these KV items
is the size of a column, which is not strictly fixed but at a
threshold determined by the size of column compactions.

Space management: After compacting a column, the
NVM space occupied by the column is freed. To manage
those freed spaces, we simply apply the paging algorithm [3].
Since column compactions rotate the key ranges, at most one
page per RowTable is partially fragmented. The NVM pages
fully freed after column compactions are added to the free list
as a group of page-sized units. To store incoming RowTables
in the receiver, we apply free pages from the free list. The 8
GB matrix container contains 211 pages of 4 KB each. Each
page is identified by the page number of an unsigned inte-

ger. Adding the 8 bytes pointer per list element, the metadata
size for each page is 12 bytes. The metadata of the free list
occupies a total space of 24 KB on NVMs at most.

It is worth noting that in the matrix container, while
columns are being compacted in the compactor, the receiver
can continue accepting flushed MemTables from DRAM si-
multaneously. By freeing the NVM space one column at a
time, MatrixKV ends the write stalls forced by merging the
entire L0 with all of L1.

3.2 Column Compaction

Column compaction is a fine-grained L0-L1 compaction that
each time compacts only a column, i.e., a small subset of
the data in a specific key range. Thus, column compaction
can significantly reduce write stalls. The main workflow of
column compaction can be described in the following seven
steps. (1) MatrixKV separates the key space of L1 into multi-
ple contiguous key ranges. Since SSTables in L1 are sorted
and each SSTable is bounded by its smallest key and largest
key, the smallest keys and largest keys of all the SSTables in
L1 form a sorted key list. Every two adjacent keys represent
a key range, i.e., the key range of an SSTable or the gap be-
tween two adjacent SSTables. As a result, we have multiple
contiguous key ranges in L1. (2) Column compaction starts
from the first key range in L1. It selects a key range in L1 as
the compaction key range. (3) In the compactor, victim KV
items within the compaction key range are picked concur-
rently in multiple rows. Specifically, assuming N RowTables
in the compactor, k threads work in parallel to fetch keys
within the compaction key range. Each thread in charge of
N/k RowTables. We maintain an adequate degree of concur-
rent accesses on NVMs with k = 8. (4) If the amount of data
within this key range is under the lower bound of compaction,
the next key range in L1 joins. The k threads keep forward in
N sorted arrays (i.e., the metadata of the RowTables) fetching
KV items within the new key range. This key range expan-
sion process continues until the amount of compaction data
reaches a size between the lower bound and the upper bound
(i.e., 1

2 AF ×Ssst and AF ×Ssst respectively). The two bounds
guarantee the adequate overhead of a column compaction. (5)
Then a column in the compactor is logically formed, i.e., KV
items in N RowTables that fall in the compaction key range
make up a logical column. (6) Data in the column are merged
and sorted with the overlapped SSTables of L1 in memory. (7)
Finally, the regenerated SSTables are written back to L1 on
SSDs. Column compaction continues between the next key
range of L1 and the next column in the compactor. The key
ranges of column compaction rotate in the whole key space
to keep LSM-trees balanced.

We show an example of column compaction in Figure 8.
First, MatrixKV picks the SSTable with key range 0-3 in
L1 as the candidate compaction SSTable. Then, we search
the metadata arrays of the four RowTables. If the amount
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Figure 8: Column compaction: an example. There are 4
RowTables in the compactor. Each circle represents an
SSTable on L1. Columns are logically divided (red dashed
lines) according to the key range of compaction.

of compaction data within key range 0-3 is under the lower
bound, the next key range (i.e., key range 3-5) joins to form
a larger key range 0-5. If the amount of compaction data is
still beneath the lower bound, the next key range 5-8 joins.
Once the compaction data is larger than the lower bound, a
logical column is formed for the compaction. The first column
compaction compacts the column at the key range of 0-8 with
the first two SSTables in L1.

In general, column compaction first selects a specific key
range from L1, and then compacts with the column in the
compactor that shares the same key range. Comparing to the
original all-to-all compaction between L0 and L1, column
compaction compacts at a much smaller key range with a lim-
ited amount of data. Consequently, the fine-grained column
compaction shortens the compaction duration, resulting in
reduced write stalls.

3.3 Reducing LSM-tree Depth

In conventional LSM-trees, the size limit of each level grows
by an amplification factor of AF = 10. The number of levels in
an LSM-tree increase with the amount of data in the database.
Since compacting an SSTable to a higher level results in a
write amplification factor of AF, the overall WA increases with
the number of levels (n) in the LSM-tree, i.e., WA=n*AF [36].
Hence, the other design principle of MatrixKV is to reduce
the depth of LSM-trees to mitigate WA. MatrixKV reduces
the number of LSM-tree levels by increasing the size limit of
each level at a fixed ratio making the AF of adjacent levels
unchanged. As a result, for compactions from L1 and higher
levels, the WA of compacting an SSTable to the next level
remains the same AF but the overall WA is reduced with due
to fewer levels.

Flattening conventional LSM-trees with wider levels brings
two negative effects. First, since the enlarged L0 has more
SSTables that overlap with key ranges, the amount of data
in each L0-L1 compaction increases significantly, which not
only adds the compaction overhead but also lengthens the
duration of write stalls. Second, traversing the larger unsorted

83 136 30 45 51

73 105 23 28
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RowTable3

RowTable2

RowTable1

35

RowTable0

91 104 13 38 42

113 128 14 40 48

Figure 9: Cross-row hint search. This figure shows an example
of searching the target key (k = 12) with forward pointers of
each array element.

L0 decreases the search efficiency. MatrixKV addresses the
first problem with the fine-grained column compaction. The
amount of data involved in each column compaction is largely
independent of the level width as a column contains a limited
amount of data. For the second problem, MatrixKV proposes
the cross-row hint search (§ 3.4) to compensate for the in-
creased search overhead due to the enlarged L0. It is worth
noting that locating keys in fewer levels reduces the lookup
time on SSDs, since SSTables from L1 to Ln are well-sorted.

3.4 Cross-row Hint Search

In this section, we discuss solutions for improving the read
efficiency in the matrix container. In the L0 of MatrixKV, each
RowTable is sorted and different RowTables are overlapped
with key ranges. Building Bloom filters for each table is a
possible solution for reducing search overheads. However, it
brings costs on the building process and exhibits no benefit to
range scans. To provide adequate read and scan performances
for MatrixKV, we build cross-row hint searches.

Constructing cross-row hints: When we build a
RowTable for the receiver of the matrix container, we add
a forward pointer for each element in the sorted array of meta-
data (Figure 7). Specifically, for a key x in RowTable i, the
forward pointer indexes the key y in the preceding RowTable
i−1, where the key y is the first key not less than x (i.e., y≥ x).
These forward pointers provide hints to logically sort all keys
in different rows, similar to the fractional cascading [11, 53].
Since each forward pointer only records the array index of
the preceding RowTable, the size of a forward pointer is only
4 bytes. Thus, the storage overhead is very small.

Search process in the matrix container: A search pro-
cess starts from the latest arrived RowTable i. If the key range
of RowTable i does not overlap the target key, we skip to its
preceding RowTable i−1. Else, we binary search RowTable
i to find the key range (i.e., bounded by two adjacent keys)
where the target key resides. With the forward pointers, we can
narrow the search region in prior RowTables, i−1, i−2, . . .
continually until the key is found. As a result, there is no need
to traverse all tables entirely to get a key or scan a key range.
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Cross-row hint search improves the read efficiency of L0 by
significantly reducing the number of tables and elements in-
volved in a search process.

An example of cross-row hint search is shown in Figure 9.
The blue arrows show the forward pointers providing cross-
row hints. Suppose we want to fetch a target key k = 12 in
the matrix container, we first binary search RowTable 3 to get
a narrowed key range of key=10 to key=23. Then their hints
lead us to the key 13 and 30 in RowTable 2 (the red arrows).
The preceding key is added into the search region when the
target key is not included in the key range of the two hint keys.
Next, we binary search between key=8 and key=30. Failing
to find the target key, we move to the prior RowTable 1, then
RowTable 0, with the forward pointers. Finally, the target key
12 is obtained in RowTable 0.

4 Implementation

We implement MatrixKV based on the popular KV en-
gine RocksDB [24] from Facebook. The LOC on top of
RocksDB is 4117 lines 1. As shown in Figure 5, MatrixKV
accesses NVMs via the PMDK library and accesses SSDs
via the POSIX API. The persistent memory development kit
(PMDK) [1, 60] is a library based on the direct access fea-
ture (DAX). Next, we briefly introduce the write and read
processes and the mechanism for consistency as follows.

Write: (1) Write requests from users are inserted into a
write-ahead log on NVMs to prevent data loss from system
failures. (2) Data are batched in DRAM, forming MemTable
and immutable MemTable. (3) The immutable MemTable is
flushed to NVM and stored as a RowTable in the receiver of
the matrix container. (4) The receiver turns into the compactor
logically if the number of RowTables reaches a size limit (e.g.,
60% of the matrix container) and the compactor is empty.
This role change has no real data migrations. (5) Data in
the compactor is column compacted with SSTables in L1
column by column. In the meantime, a new receiver receives
flushed MemTables. (6) In SSDs, SSTables are merged to
higher levels via conventional compactions as RocksDB does.
Compared to RocksDB, MatrixKV is completely different
from step 3 through step 5.

Read: MatrixKV processes read requests in the same way
as RocksDB. The read thread searches with the priority of
DRAM>NVMs>SSDs. In NVMs, the cross-row hint search
contributes to faster searches among different RowTables
of L0. The read performance can be further improved by
concurrently searching in different storage devices [31].

Consistency: Data structures in NVM must avoid incon-
sistency caused by system failures [12, 13, 34, 42, 58]. For
MatrixKV, writes/updates for NVM only happen in two pro-
cesses, flush and column compaction. For flush, immutable

1MatrixKV source code is publicly available at https://github.com/
PDS-Lab/MatrixKV.

Table 1: FIO 4 KB read and write bandwidth
SSDSC2BB800G7 Optane DC PMM

Rnd write 68 MB/s 1363 MB/s
Rnd read 250 MB/s 2346 MB/s
Seq write 354 MB/s 1444 MB/s
Seq read 445 MB/s 2567 MB/s

MemTables flushed from DRAM are organized as RowTables
and written to NVM in rows. If a failure occurs in the mid-
dle of writing a RowTable, MatrixKV can re-process all the
transactions that were recorded in the write-ahead log. For
column compaction, MatrixKV needs to update the state of
RowTables after each column compaction. To achieve con-
sistency and reliability with low overhead, MatrixKV adopts
the versioning mechanism of RocksDB. RocksDB records
the database state with a manifest file. The operations of com-
paction are persisted in the manifest file as version changes.
If the system crashes during compaction, the database goes
back to its last consistent state with versioning. MatrixKV
adds the state of RowTables into the manifest file, i.e., the
offset of the first key, the number of keys, the file size, and the
metadata size, etc. MatrixKV uses lazy deletion to guarantee
that stale columns invalidated by column compactions are not
deleted until a consistent new version is completed.

5 Evaluation

In this section, we run extensive experiments to demonstrate
the key accomplishments of MatrixKV. (1) MatrixKV ob-
tains better performance on various types of workloads and
achieves lower tail latencies (§ 5.2). (2) The performance
benefits of MatrixKV come from reducing write stalls and
write amplification by its key enabling techniques (§ 5.3).

5.1 Experiment Setup

All experiments are run on a test machine with two Genuine
Intel(R) 2.20GHz 24-core processors and 32 GB of memory.
The kernel version is 64-bit Linux 4.13.9 and the operating
system in use is Fedora 27. The experiments use two storage
devices, an 800 GB Intel SSDSC2BB800G7 SSD and 256 GB
NVMs of two 128 GB Intel Optane DC PMM [28]. Table 1
lists their maximum single-thread bandwidth, evaluated with
the versatile storage benchmark tool FIO.

We mainly compare MatrixKV with NoveLSM and
RocksDB (including RocksDB-SSD and RocksDB-L0-
NVM). RocksDB-SSD represents the conventional RocksDB
on a DRAM-SSD hierarchy. The other three KV stores are
for systems with DRAM-NVM-SSD storage. They use 8 GB
NVM to be consistent with the setup in NoveLSM’s paper
and force the majority of the 80 GB test data to be flushed
to SSDs. RocksDB-L0-NVM simply enlarges L0 into 8 GB
and stores it in NVM. MatrixKV reorganizes the 8 GB L0
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Figure 10: Performance on Micro-benchmarks with different value sizes.

in NVM and enlarges the L1 in SSDs into the same 8 GB.
NoveLSM employs NVM to store two MemTables (2*4 GB).
Test results from this configuration can also demonstrate that
MatrixKV achieves system performance improvement with
the economical use of NVMs. Finally, we evaluate PebblesDB
and SILK for systems with DRAM-NVM storage since they
are the representative studies on LSM-tree improvement but
are not originally designed for systems with multi-tier storage.
Unless specified otherwise, the evaluated KV stores assume
the default configuration of RocksDB, i.e., 64 MB MemTa-
bles/SSTables, 256 MB L1 size, and AF of 10. The default
key-value sizes are 16 bytes and 4 KB.

5.2 Overall performance evaluation
In this section, we first evaluate the overall performance of
the four KV stores using db_bench, the micro-benchmark
released with RocksDB. Then, we evaluate the performance
of each KV store with the YCSB macro-benchmarks [15].

Write performance: We evaluate the random write perfor-
mance by inserting KV items totaling 80 GB in a uniformly
distributed random order. Figure 10(a) shows the random
write throughput of four KV stores as a function of value
size. The performance difference between RocksDB-SSD
and RocksDB-L0-NVM suggests that simply placing L0 in
NVM brings about an average improvement of 65%. We use
RocksDB-L0-NVM and NoveLSM as baselines of our eval-
uation. MatrixKV improves random write throughput over
RocksDB-L0-NVM and NoveLSM in all value sizes. Specifi-
cally, MatrixKV’s throughput improvement over RocksDB-
L0-NVM ranges from 1.86× to 3.61×, and MatrixKV’s
throughput improvement over NoveLSM ranges from 1.72×
to 2.61. Taking the commonly used value size of 4 KB as
an example, MatrixKV outperforms RocksDB-L0-NVM and
NoveLSM by 3.6× and 2.6× respectively. RocksDB-L0-
NVM delivers relatively poor performance since putting L0 in
NVM only brings a marginal improvement. NoveLSM uses
a large mutable MemTable in NVM to handle a portion of
update requests thus slightly reducing WA. However, for both
RocksDB and NoveLSM, the root causes of write stalls and
WA remain unaddressed, i.e., the all-to-all L0-L1 compaction
and the deepened depth of LSM-trees.

We evaluate sequential write performance by inserting a
total of 80 GB KV items in sequential order. From the test
results in Figure 10(b), we make three main observations.
First, sequential write throughput is higher than random write
throughput for the four KV stores as sequential writes incur no
compaction. Second, RocksDB-SSD performs the best since
the other three KV stores have an extra NVM tier, requir-
ing data migration from NVMs to SSDs. Three, MatrixKV
and RocksDB-L0-NVM have better sequential write through-
put than NoveLSM since contracting RowTable/SSTables in
NVMs is cheaper than updating the skip list of NoveLSM’s
large mutable MemTable.

Read performance: Random/sequential read perfor-
mances are evaluated by reading one million KV items from
the 80 GB randomly loaded database. To obtain the read per-
formance free from the impact of compactions, we start the
reading test after the tree becomes well-balanced. Figure 10(c)
and (d) show the test results of random reads and sequential
reads. Since NVM only accommodates 10% of the dataset,
the read performance in SSDs dominates the overall read per-
formance. Besides, since a balanced tree is well-sorted from
L1 to Ln on SSDs, the four KV stores exhibit similar read
throughputs. MatrixKV does not degrade read performance
and even has a slight advantage in sequential reads for two
reasons. First, the cross-row hint search reduces the search
overhead of the enlarged L0. Second, MatrixKV has fewer
LSM-tree levels, resulting in less search overhead on SSDs.

Macro-benchmarks: Now we evaluate four KV stores
with YCSB [15], a widely used macro-benchmark suite de-
livered by Yahoo!. We first write an 80 GB dataset with 4KB
values for loading, then evaluate workload A-F with one mil-
lion KV items respectively. From the test results shown in
Figure 11, we draw three main conclusions. First, MatrixKV
gets the most advantage from write/load dominated work-
loads, i.e., load, and workload A and F. MatrixKV is 3.29×
and 2.37× faster than RocksDB-L0-NVM and NoveLSM on
the load workload (i.e., random write). Second, MatrixKV
maintains adequate performance over read-dominated work-
loads, i.e., workloads B to E. Third, NoveLSM and MatrixKV
behave better on workload D due to the latest distribution,
where they both hit more in NVMs and thus MatrixKV can
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Load A B C D E F
Inserts 100% 0% 0% 0% 5% 0%
Updates 0% 50% 5% 0% 0% 0%
Reads 0% 50% 95% 100% 95% 50%
Range query 0% 0% 0% 0% 0% 0%
RMW 0%
Distribution Zipfian
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Figure 11: Macro-benchmarks. The y-axis shows the through-
put of each KV store normalized to RocksDB-SSD. The num-
ber on each bar indicates the throughput in ops/s.

Table 2: Tail Latency
Latency (us) avg. 90% 99% 99.9%
RocksDB-SSD 974 566 11055 17983
NoveLSM 450 317 2080 2169
RocksDB-L0-NVM 477 528 786 1112
MatrixKV 263 247 405 663

benefit more from cross-row hints.
Tail latency: Tail latency is especially important for LSM-

tree based KV stores, since they are widely deployed in pro-
duction environments to provide services for write-heavy
workloads and latency-critical applications. We evaluate the
tail latency with the same methodology used in SILK [6],
i.e., using the YCSB-A workload and setting request arrival
rate at around 20K requests/s. Table 2 shows the average,
90th, 99th, and 99.9th percentile latencies of four key-value
stores. MatrixKV significantly reduces latencies in all cases.
The 99th percentile latency of MatrixKV is 27×, 5×, and
1.9× lower than RocksDB-SSD, NoveLSM, and RocksDB-
L0-NVM respectively. The test results demonstrate that by
reducing write stalls and WA, MatrixKV improves the quality
of user experience with much lower tail latencies.

5.3 Performance Gain Analysis
To understand MatrixKV’s performance improvement over
random write workloads, we investigate the main challenges
of LSM-trees (§ 5.3.1) and the key enabling techniques of
MatrixKV (§ 5.3.2).

5.3.1 Main Challenges

In this section, we demonstrate that MatrixKV does address
the main challenges of LSM-trees, i.e., write stalls and WA.

Write Stalls: We record the throughput of the four KV
stores in every ten seconds during their 80 GB random write
process (similar to Figures 2 and 4) to visualize write stalls.
From the performance variances shown in Figure 12, we
draw three observations. (1) MatrixKV takes a shorter time
to process the same 80GB random write since it has higher
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Figure 12: Throughput fluctuation as a function of time. The
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Figure 13: Write amplification of 80 GB random writes.The
numbers on each bar show the amount of data written to SSDs
and the WA ratio respectively.

random write throughput than other KV stores (as demon-
strated in § 5.2). (2) Both RocksDB and NoveLSM suffer
from write stalls due to the expensive L0-L1 compaction. Nov-
eLSM takes longer to process a L0-L1 compaction because L0
maintains large MemTables flushed from NVMs. Comparing
to RocksDB-SSD, RocksDB-L0-NVM has lower throughput
during write stalls, which means that it blocks foreground
requests more severely because of the enlarged L0. (3) Ma-
trixKV achieves the most stable performance. The reason is
that we reduce write stalls by the fine-grained column com-
paction which guarantees a small amount of data processed
in each L0-L1 compaction.

Write Amplification: We measure the WA of four systems
on the same experiment of randomly writing 80 GB dataset.
Figure 13 shows the WA factor measured by the ratio of
the amount of data written to SSDs and the amount of data
coming from users. The WA of MatrixKV, NoveLSM, and
RocksDB-L0-NVM are 2.56×, 1.83×, and 1.99× lower than
RocksDB-SSD respectively. MatrixKV has the smallest WA
since it reduces the number of compactions by lowering the
depth of LSM-trees.

5.3.2 MatrixKV Enabling Techniques

Column compaction: To demonstrate the efficiency of col-
umn compaction, we record the amount of data involved, the
duration of every L0-L1 compaction for four KV stores in the
same 80 GB random write experiment. As shown in Figure 14,
MatrixKV conducts 467 column compactions, each 0.33 GB,
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Figure 15: Compaction analysis. This figure shows the amount
of data of every individual compaction during the 80 GB
random write.

written a total of 153 GB data. RocksDB-SSD processes
52 compactions, each 3.1 GB on average, written a total of
157 GB data. MatrixKV processes more fine-grained L0-L1
compactions, where each has the least amount of data and
the shortest compaction duration. As a result, column com-
pactions have only a negligible influence on foreground re-
quests and finally significantly reduce write stalls. NoveLSM
actually exacerbates write stalls since the enlarged MemTa-
bles flushed from NVM significantly increase the amount of
data processed in each L0-L1 compaction.

Overall compaction efficiency: We further record the
overall compaction behaviors of four KV stores by recording
the amount of data for every compaction during the random
write experiment. From the test results shown in Figure 15,
we draw four observations. First, MatrixKV has the smallest
number of compactions, attributed to the reduced LSM-tree
depth. Second, all compactions in MatrixKV process similar
amount of data since we reduce the amount of compaction
data on L0-L1 and does not increase that on other levels. Third,
NoveLSM and RocksDB-L0-NVM have fewer compactions
than RocksDB-SSD. The reasons are: (1) NoveLSM uses
large mutable MemTables to serve more write requests and
absorb a portion of update requests, and (2) RocksDB-L0-
NVM has an 8 GB L0 in NVM to store more data. Fourth,
the substantial amount of compaction data in NoveLSM and
RocksDB stems from the L0-L1 compaction.

Reducing LSM-tree depth: To evaluate the technique of
flattening LSM-trees, we change level sizes for both RocksDB

256MB 8GB 256MB 8GB 256MB 8GB
RocksDB-SSD MatrixKV RocksDB-L0-NVM

L0
L1

0.00 0.00 0.00 0.00 0.00 0.00

L2
0.19 7.95 0.23 8.01 0.24 7.99

L3
2.47 43.92 2.45 44.67 2.45 41.04
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24.97 24.99 25.00
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Figure 16: Reducing LSM-tree depth. The y-axis shows ran-
dom write throughputs of RocksDB and MatrixKV when L1 is
256 MB/8 GB. The table below shows the data distribution
among levels (in GB).

and MatrixKV. The first configuration is L1 = 256MB (the
default L1 size of RocksDB). The second configuration is
L1 = 8GB. The following levels exponentially increased at
the ratio of AF=10. Figure 16 shows the throughput of ran-
domly writing an 80 GB dataset. The table under the figure
shows the data distribution on different levels after balancing
LSM-trees. The test results demonstrate that both RocksDB
and MatrixKV reduce the number of levels by enlarging level
sizes, i.e., from 5 to 3. However, they exert opposite influences
on system performance. RocksDB-SSD and RocksDB-L0-
NVM reduce their random write throughputs by 3× and 1.5×
respectively as level sizes increase. The reason is that the
enlarged L1 significantly increases the amount of compaction
data between L0 and L1. RocksDB-L0-NVM is slightly better
than RocksDB-SSD since it puts L0 in NVMs. For MatrixKV,
the throughput increases 25% since the fine granularity col-
umn compaction is independent of level sizes. Furthermore,
the MatrixKV with 256 MB L1 shows the performance im-
provement of only addressing write stalls.

Cross-row hint search: To evaluate the technique of cross-
row hint search, we first randomly write an 8 GB dataset with
4 KB value size to fill the L0 in NVMs for MatrixKV and
RocksDB-L0-NVM. Then we search for one million KV
items from NVMs in uniformly random order. This experi-
ment makes NVMs accommodate 100% of the dataset to fully
reflect the efficiency of cross-row hint searches. The random
read throughput of RocksDB-L0-NVM and MatrixKV are 9
MB/s and 157.9 MB/s respectively. Hence, compared to sim-
ply placing L0 in NVMs, the cross-row hint search improves
the read efficiency by 17.5 times.

5.4 Extended Comparisons on NVMs

To further verify that MatrixKV’s benefits are not solely due
to the use of fast NVMs, we evaluate more KV stores on
the DRAM-NVM hierarchy, i.e., RocksDB, NoveLSM, Peb-
blesDB, SILK, and MatrixKV, where DRAM stores MemTa-
bles, and all other components are stored on NVMs.
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Figure 17: Throughput on NVM based KV stores.

Table 3: Tail latency on NVM-based KV stores
Latency (us) avg. 90% 99% 99.9%
RocksDB 385 523 701 864
NoveLSM 377 250 808 917
SILK 351 445 575 747
PebblesDB 335 1103 1406 1643
MatrixKV 209 310 412 547

Throughput: Figure 17 shows the performance for ran-
domly writing an 80 GB dataset. MatrixKV achieves the best
performance among all KV stores. It demonstrates that the
enabling techniques of MatrixKV are appropriate for NVM
devices. Using NVM as a fast block device, PebblesDB does
not show much improvement over RocksDB. SILK is slightly
worse than RocksDB since its design strategies have limited
advantages over intensive writes.

Tail latency: Tail latencies are evaluated with YCSB-A
workload as in § 5.2. Since NVM has a significantly better
performance than SSDs, we speed up the requests from clients
(60K requests/s). Test results in Table 3 show that with the
persistent storage of NVMs most KV stores provide adequate
tail latencies. However, MatrixKV still achieves the shortest
tail latency.

6 Conclusion

In this paper, we present MatrixKV, a stable low-latency key-
value store based on LSM-trees. MatrixKV is designed for
systems with multi-tier DRAM-NVM-SSD storage. By lift-
ing the L0 to NVM, managing it with the matrix container,
and compacting L0 and L1 with the fine granularity column
compaction, MatrixKV reduces write stalls. By flattening
the LSM-trees, MatrixKV mitigates write amplification. Ma-
trixKV also guarantees adequate read performance with cross-
row hint searches. MatrixKV is implemented on a real system
based on RocksDB. Evaluation results demonstrate that Ma-
trixKV significantly reduces write stalls and achieves much
better system performance than RocksDB and NoveLSM.
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