
This paper is included in the Proceedings of the
18th USENIX Conference on File and

Storage Technologies (FAST ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-12-0

Open access to the Proceedings of the
18th USENIX Conference on File and

Storage Technologies (FAST ’20)
is sponsored by

BCW: Buffer-Controlled Writes to HDDs
for SSD-HDD Hybrid Storage Server

Shucheng Wang, Ziyi Lu, and Qiang Cao, Wuhan National Laboratory for
Optoelectronics, Key Laboratory of Information Storage System; Hong Jiang,

Department of Computer Science and Engineering, University of Texas at Arlington;
Jie Yao, School of Computer Science and Technology, Huazhong University of Science

and Technology; Yuanyuan Dong and Puyuan Yang, Alibaba Group
https://www.usenix.org/conference/fast20/presentation/wang-shucheng

BCW: Buffer-Controlled Writes to HDDs for SSD-HDD Hybrid Storage Server

Shucheng Wang1, Ziyi Lu1, Qiang Cao1∗, Hong Jiang3,

Jie Yao2, Yuanyuan Dong4 and Puyuan Yang4

1Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System,
2School of Computer Science and Technology, Huazhong University of Science and Technology,

3Department of Computer Science and Engineering, University of Texas at Arlington,
4Alibaba Group

Abstract
Hybrid Storage servers combining high-speed SSDs and

high-capacity HDDs are designed for high cost-effectiveness

and provide μs-level responsiveness for applications. Observa-

tions from the production hybrid cloud storage system Pangu

suggest that HDDs are often severely underutilized while

SSDs are overused, especially for writes that dominate the

hybrid storage. This lopsided utilization between HDDs and

SSDs leads to not only fast wear-out in the latter but also

very high tail latency due to frequent garbage collections in-

duced by intensive writes to the latter. On the other hand,

our extensive experimental study reveals that a series of se-

quential and continuous writes to HDDs exhibit a periodic,

staircase shaped pattern of write latency, i.e., low (e.g., 35μs),

middle (e.g., 55μs), and high latency (e.g., 12ms), resulting

from buffered writes in HDD’s controller. This suggests that

HDDs can potentially provide μs-level write IO delay (for

appropriately scheduled writes), which is close to SSDs’ write

performance. These observations inspire us to effectively ex-

ploit this performance potential of HDDs to absorb as many

writes as possible to avoid SSD overuse without performance

degradation.

To achieve this goal, we first characterize performance be-

haviors of hybrid storage in general and its HDDs in particular.

Based on the findings on sequential and continuous writes, we

propose a prediction model to accurately determine next write

latency state (i.e., fast, middle and slow). With this model,

a Buffer-Controlled Write approach, BCW, is proposed to

proactively and effectively control buffered writes so that

low- and mid-latency periods in HDDs are scheduled with

application write data and high-latency periods are filled with

padded data. Based on BCW, we design a mixed IO scheduler

(MIOS) to adaptively steer incoming data to SSDs and HDDs

according to write patterns, runtime queue lengths, and disk

status. We perform extensive evaluations under production

workloads and benchmarks. The results show that MIOS re-

moves up to 93% amount of data written to SSDs, reduces

∗Corresponding author. Email: caoqiang@hust.edu.cn

Figure 1: Sequential writing in a 10TB Western Digital HDD.

average and 99th-percentile latencies of the hybrid server by

65% and 85% respectively.

1 Introduction

Storage clouds have prevalently deployed hybrid storage

servers integrating solid-state drives (SSDs) and hard-drive

disks (HDDs) in their underlying uniform storage infrastruc-

ture, such as Alibaba Pangu [9], Amazon [38], Facebook [35],

Google [20], Microsoft Azure [8]. Such hybrid storage servers

employ an SSD-HDD tiered architecture to reap the bene-

fits of both SSDs and HDDs for their superior IO perfor-

mance and large capacity respectively, thus achieving high

cost-effectiveness. Incoming writes are quickly persisted in

the SSD tier and acknowledged, and then flushed to the HDD

tier at a later time.

Our observations from real-world production workloads

of hybrid storage servers in Pangu indicate that, SSDs are

generally over-used while HDDs are less than 10% utilized

on average, missing the opportunity to exploit HDDs’ perfor-

mance and capacity potentials. However, writes are known

to be unfriendly to SSDs for two reasons. First, SSDs have

limited P/E (Program/Erase) cycles [6, 36] that are directly

USENIX Association 18th USENIX Conference on File and Storage Technologies 253

related to the amount of writes. Second, SSDs suffer from un-

predictable, severe performance degradations resulting from

garbage collections [26, 51]. To guarantee stable write per-

formance of storage servers in write-heavy workloads, cloud

providers have to deploy more and/or larger SSDs, signifi-

cantly increasing their total investment capital.

Our extensive experimental study on HDD write behav-

iors, conducted on various HDD products and with results

shown in Figure 1, suggests that a series of continuous and

sequential small HDD writes (e.g., 4KB) exhibit low latency

(e.g., 35μs) for about 60 ms, and then a sharply elevated high

latency (e.g., 12ms), which is followed by medium latency

(e.g., 55μs) for about 40ms. The three states of write behav-

iors, or write states in short, are referred to in this paper as

fast, mid, and slow writes, respectively. The former two types

of writes can provide μs-level responsiveness, because incom-

ing writes are considered complete and acknowledged (to the

host) once their data have been written into the built-in buffer

in the controller. However, when the write buffer is full, host

writes have to be blocked until the buffered data are flushed

into the disk, causing slow writes. This finding inspires us

to fully exploit performance potentials offered by buffered

writes of HDD, improving the performance while mitigating

write-penalty on SSDs. Our goal is to enable hybrid storage

servers to achieve higher performance and reliability without

introducing extra hardware.

However, the key challenge for adopting buffered writes in

HDDs to take advantage of the fast and mid writes is the dif-

ficulty in predicting precisely when these write states would

occur. The internal buffer and other components of HDDs are

completely hidden from the host. Host can only identify the

current write state according to its own delay, but not future

write states. To address this issue, we build a prediction model

for sequential and continuous write patterns that predicts the

next HDD write state. The insights is that, the write states of

continuous and sequential HDD write requests is periodical.

The prediction of next write state can be achieved with the

information of buffered-write period and current write state.

Then, we propose a Buffer-Controlled Write (BCW) approach.

BCW can proactively and effectively control the buffer write

behavior according to the predictor and runtime IO monitor-

ing. Besides, BCW also actively “skip” slow writes by filling

padded data during HDD slow writes.

We further propose a mixed IO scheduler (MIOS) for SSD-

HDD hybrid storage by leveraging the BCW approach. MIOS

adaptively redirects incoming writes to SSDs or HDDs de-

pending on write states, runtime queue length, and disk status.

Under high IO intensity, MIOS can be triggered to reduce

IO pressure, the amount of data written and write penalty on

SSDs while improving both average and tail latency.

The main contributions of this paper are as follows.

• Through extensive experimental studies on HDD write

behaviors, we discover that there exist a periodic

staircase-shaped write latency pattern consisting of μs-

level write latency (low and mid write states) followed

by ms-level write latency (slow write state) upon con-

tinuous and sequential writes, because of the buffered

write feature in HDDs. To facilitate the full exploita-

tion of this write latency pattern, we build a predictor to

pre-determine what the next write state is.

• We propose a buffer-controlled write (BCW) approach,

which proactively activates continuous and sequential

write patterns, as well as effectively controls the IO be-

havior, according to the predictor and runtime IO mon-

itoring. BCW also employs data padding to actively

avoid, or skips, slow writes for the host.

• We design an SSD-HDD mixed IO scheduler (MIOS) to

improve the overall performance of SSD-HDD hybrid

storage servers, while substantially reducing write traffic

to SSDs.

• We prototype and evaluate MIOS under a variety of pro-

duction workloads. The results demonstrate that MIOS

reduces average and tail latency significantly with dra-

matic decrease in the amount of data written to SSDs.

The rest of the paper is organized as follows. Section 2

provides the necessary background for the proposed BCW

approach. Section 3 analyzes the behaviors of HDD buffered

writes. Section 4 describes design and implementation of

BCW and MIOS. We evaluate the effectiveness of MIOS

in Section 5. Finally, Section 6 describes related works and

Section 7 concludes the paper.

2 Background and Motivation

2.1 Primary Storage

Nowadays, primary storage involves popular solid-state

driver (SSD), and traditional hard disk drive (HDD). SSDs

have become a mainstream storage media due to its superior

performance to and lower power consumption than HDDs

[1, 49]. However, the limited write endurance has become a

critical design issue in SSD-based storage systems [34]. Fur-

thermore, SSDs suffer from performance-degrading garbage

collections (GCs), which recycle the invalid pages by moving

valid parts to new blocks and then erasing old blocks [27, 37].

GCs with ms-level delays can block incoming user requests,

thus leading to long tail latency [17]. On the other hand, both

large IO blocks and high IO intensity can lead to sudden

increase in SSD queue, resulting in high tail latency [26].

Therefore, recent studies [50] indicate that SSDs do not al-

ways exhibit their ideal performance in practical.

HDDs have large capacity at low cost without the wear-out

problem. However, HDDs have relatively low performance

compared to SSDs. A random HDD IO has 2∼3 orders of

magnitude higher latency than an SSD IO. This is primarily

because of the ms-level mechanical seeking of disk head.

254 18th USENIX Conference on File and Storage Technologies USENIX Association

2.2 SSD-HDD Hybrid Storage
To accommodate exponentially increasing storage require-

ment while achieving overall cost-effectiveness, SSD-HDD

hybrid storage has emerged to be an inevitable choice for

cloud providers [40,47]. Most providers, such as Google [20],

Amazon [38], Facebook [35], and Microsoft’s online ser-

vices [8], expect larger storage capacity and better perfor-

mance but at lower cost. To meet this demand, they increas-

ingly embrace storage heterogeneity, by deploying variable

types and numbers of SSDs, which offer lower IO latency [14],

as the primary tier and HDDs, which provide larger capacity

at low cost as the secondary tier. The fast SSD tier generally

plays the role of a write buffer to quickly persist incoming

write data, which are eventually flushed to the slower but

larger HDD tier. As a result, the SSD tier absorbs most of the

write traffic from foreground applications.

2.3 Write Behavior of Hybrid Storage
Write-intensive workloads widely exist in many production

environments, such as enterprise applications, supercomput-

ing, and clouds. Enterprise servers are expected to rapidly

persist production data in time, such as business databases.

Burst buffer [3, 28] in supercomputing systems also deploy

high-performance SSDs to temporarily store instantaneous

highly-intensive write data.

More commonly, many backend storage servers in cloud

must accommodate write-dominated workloads, as observed

in Alibaba Pangu [9]. Pangu is a distributed large-scale stor-

age platform and provides cost-effective and unified storage

services for Alibaba Cloud [22, 30] and Ant Financial [9]. As

such, Pangu needs to minimize the total cost of ownership

while meeting strict QoS requirements like tail latency [5,15].

As an observation made through our analysis of produc-

tion trace data from Pangu in Table 1, some storage nodes

(servers) in Pangu rarely serve reads from the frontend and

instead must handle amounts of highly-intensive writes. For

Alibaba Cloud, because the upper-level latency-critical online

services generally build their own application-aware caches to

ensure service responsiveness and reserve local fast-storage

to cache hot data for user reads, the backend storage nodes

are thus required to persist new and updated data from fron-

tend nodes as soon as possible. To better understand this

write-dominated workload behavior, we analyze four typical

workloads on Pangu storage nodes A (Cloud Computing), B

(Cloud Storage), C and D (Structured Storage). We count the

workloads from one SSD and one HDD in each node because

the workload behavior of all storage devices is basically the

same in one node. Observations are drawn as follows. A com-

prehensive workload analysis of Pangu can be found in the

previous study [31].

• Most requests are writes. As shown in Table 1, more than

77% and up to 95% of requests are writes in these nodes,

and the amount of data written is 1-2 orders of magnitude

Table 1: The workload characteristics of Pangu traces

recorded from one SSD and one HDD in four different nodes,

A B C and D, that support online services.
Node
Type

Duration
(min)

Writes
(GB)

Reads
(GB)

Avg. Req.
Size(KB)

Peak
KRPS

Avg.
KRPS

Avg. HDD
IO Uti.(%)

Avg. SSD
IO Uti.(%)

A 45 18.5 1.4 56.0 3.4 0.23 7.6 11.9

B 30 74.4 2 17.7 9.3 2.5 9.8 28.5

C 30 10.7 2.1 4.2 9.6 2.7 4.1 24.6

D 26 10.1 1.7 4.1 11.1 3 4.8 25

(a) Latency (b) Queue Length (c) IO size

(d) Node A (e) Node B (f) Node C (g) Node D

Figure 2: Behaviors of production workloads on four repre-

sentative hybrid storage nodes in Pangu in terms of latency,

queue length, request size and IO intensity.

larger than that of data read from them. Actually, nearly 3

TB data are written to every SSD each day, which is close

to DWPD (Drive Writes Per Day) that strictly limits the

amount of SSD data written daily for reliability.

• The IO intensity distribution has bursty patterns. As

shown in Figure 2(d) through Figure 2(g), SSDs experi-

ence bursty intensive write workloads (e.g., 11K request

per second in workload D).

• The amount of data written to SSDs and HDDs differ

dramatically. For instance, the average SSD IO utiliza-

tion is up to 28.5% in load B while it is less than 10% in

HDD. Even so, most of the HDD utilization is used in

dumping SSD data, rarely servicing user requests.

• There exists long tail latency. As shown in Figure 2(a),

SSDs with high IOPS suffer from heavy-tail IO latency

(e.g., the 99th percentile latency is 10ms) due to queue

blocking in Figure 2(b). This is caused in part by (1)

large writes (e.g., 1MB), and (2) frequent garbage col-

lections induced by high write intensity.

• Small size IOs account for a large proportion of all IOs.

As shown in Figure 2(c), more than 75% of write re-

quests are of 10KB or smaller, and the average request

size is nearly 4KB in C and D.

2.4 Challenge
To relieve the SSD pressure from write-dominate work-

loads, a simple solution is to increase the number of SSDs

in the hybrid nodes. However, this is a costly solution as it

increases the total cost of ownership. An alternative is to ex-

ploit the severely underutilized HDD IO capacity in hybrid

storage nodes when SSDs are overused. The state-of-art so-

lution SSD-Write-Redirect (SWR) [31] redirects large SSD

USENIX Association 18th USENIX Conference on File and Storage Technologies 255

(a) 4TB West Digital HDD (b) 4TB Seagate HDD

(c) 8TB West Digital HDD (d) 8TB Seagate HDD

Figure 3: Sequential writing on four types of HDDs.

writes to idle HDDs. This approach can alleviate the SSD

queue blocking issue to some extent. However, the IO delays

experienced by requests redirected to HDDs are shown to be

3-12 times higher than those experienced on SSDs. This is

clearly undesirable, if not unacceptable, for most small writes

that demand μs-level latency. The key challenge is how to

reduce HDD IO delay to the μs-level that is close to SSDs, a

seemingly impossible task at a first glance. Fortunately, as we

look closer into the write behaviors of HDDs, this is indeed a

possible task, which we elaborate next.

3 HDD Write Behaviors
To have a comprehensive understanding HDD write be-

haviors, so as to assess the possibility of achieving μs-level

write latency on HDDs, we perform continuous and sequential

writes, which is the most friendly write pattern for HDDs.

3.1 Buffered Writes
We conduct a “Profiling” process to observe detailed HDD

behaviors, a series of continuous and sequential writes with

the same IO size are written to an HDD. We select five repre-

sentative HDD products: West Digital 10TB (WD100EFAX

[13]), 8TB (WD8004FRYZ [12]), 4TB (WD40EZRZ [13]),

Seagate 8TB (ST8000DM0004 [44]), 4TB (ST4000DM004

[45]). The 4TB Seagate HDD is SMR (Shingled Magnetic

Recording) and the other four HDDs are PMR (Perpendicular

Magnetic Recording). We draw three interestng observations

from the profiling results shown in Figure 1 and Figure 3.

• For each tested HDD, the series of continuous sequential

write requests experience a similar sequence of three-

level write latency, i.e., low, mid, and high latencies,

forming a staircase-shaped time series. For example, in

the 10TB HDD, the three levels of write latency of 16KB

writes are about 66μs, 135μs, and 12ms respectively.

• The observed HDD write behavior is periodic. At the

beginning (right after the buffer becomes empty) low-

latency writes last for a period (e.g., 60ms in 10TB),

which is followed by a spike (high-latency writes) and

then mid-latency writes. If the write pattern is contin-

M M M M M M SS

Time

Write
Latency

F

S

Fast write

Slow write
M Mid write

F F F F

Buffered Write Sequence

M M M M M M SS
F F F F

Sync Sync

...

fW mW sW

Figure 4: The HDD Buffered-Write Model with two complete

Buffered Write Sequences.

uous, high-latency writes and mid-latency writes will

appear alternately.

• The number of low-latency continuous writes in a se-

quence relies on their I/O size. Smaller write size leads

to a larger number of writes. For example, the number

of 16KB and 64KB writes is about 1200 and 240 on the

10TB HDD, respectively.

The reasons behind these observed HDD write behaviors

are as follows. Modern HDDs deploy a built-in DRAM (e.g.,

256MB for the 10TB and 8TB HDDs, and 64MB for the two

4TB HDDs). However, only a part of the DRAM (e.g., 16MB

for 10TB WD and 8TB Seagate HDD, 4MB for 8TB WD

HDD and 4TB Seagate HDD, 2MB for 4TB WD HDD) can

be used to buffer incoming write IOs based on external obser-

vation. The remaining capacity of the HDD built-in DRAM

can be used as read-ahead cache, ECC buffer [10], sector

remapping buffer, or prefetching buffer [18,43]. However, the

exact mechanism by which this built-in DRAM in HDD is

used, which varies with the HDD model, is generally propri-

etary to the HDD manufactures only. Fortunately, the actual

size of write buffer can be measured externally by profiling.

Upon successful buffering of a write, HDD immediately

informs the host of request completion. When the buffered

data exceed a threshold, the HDD must force a flushing of the

buffered data into their locations in the disk media. During

this period, incoming writes must be blocked until the buffer

is freed up again. It is worth noting that, after an idle period,

the HDD buffer may become empty implicitly as a course of

flushing data to the disk. However, to explicitly empty the

buffer, we can actively invoke sync() to force flushing.

3.2 An HDD Buffered-Write Model
To formally characterize the HDD write behavior, we

build an HDD buffered-write model. Figure 4 illustrates the

schematic diagram of the HDD buffered-write model in the

time dimension (runtime). The x axis represents the time se-

quences of transitions among the three write levels, with each

sequence being started by “Sync” event.

A Buffered-Write Sequence consists of three aforemen-

tioned types of HDD buffered writes, i.e., Fast (low-latency),

Mid (mid-latency) and Slow (high-latency) writes, which de-

notes as F , M, and S, respectively. In the model, F , M, and

S can be thought of as the states a write request can be in

(i.e., experiencing the fast, mid or slow write process). As

described in Table 2, these IO delays are denoted as L f , Lm
and Ls, respectively. The F state means that an incoming write

256 18th USENIX Conference on File and Storage Technologies USENIX Association

Table 2: The list of descriptions about all the parameters in

the HDD Buffered-Write Model.
Parameters Description

L f/m/s The IO delays of write requests in the F/M/S write states

Wf/m/s The cumulative amount of written data for the Fast/Mid/Slow Stages

Tf/m/s The time duration of the Fast/Mid/Slow Stages

si The IO size of write request i

request wi with the size of si can be buffered completely in

the built-in DRAM buffer of HDD. The M state means that

the write buffer is close to be full. The S state means that the

write buffer is full and any incoming write request is blocked.

A Buffered Write Sequence lasts a Fast stage, followed by

one or more Slow-and-Mid stage-pairs. The sequence begins

when there is sufficient buffer available for Fast stage (e.g.,

close to empty). It ends when current series of continuous

writes ends. The Fast, Mid, and Slow Stage last for Tf , Tm,

and Ts respectively, which are determined by the cumulative

amount of written data Wf , Wm, and Ws in the respective states.

Actually, Wf = Tf ∗ si/L f and it is applied to Wm.

We can profile the HDDs to identify such key parameters.

For example, in the 10TB HDD with 64KB write requests

shown in Figure 1, the value of L f is 180μs, Lm is 280μs and

Ls is 12ms. The value of Tf is 60 ms, Tm is 37ms and Ts
is 12ms. Wf is 16MB and Wm is 8MB. Ws depends on the

IO size si. According to the HDD buffered-write model, the

Fast and Mid writes of HDD have 100-μs-level latency, which

can approach the write latency of SSDs. This motivates us to

design a controllable buffer write strategy for HDDs to reduce

writes on SSDs in hybrid storage systems without sacrificing

the overall performance.

Note that the buffering and flushing mechanisms are com-

pletely hidden from the host and heavily depend on the spe-

cific HDD models. Fortunately, we can measure the buffered

write feature of an HDD externally and experimentally based

on the aforementioned experiments.

4 Design
To fully exploit HDD buffered writes, two critical chal-

lenges must be addressed. The first is how to determine which

write state that a write request will be Fast (F), Mid (M), or

Slow (S), in order to properly schedule the write request. The

second is how to steer an incoming write request to HDD

without performance degradation.

For the first problem, we build a Write-state Predictor to

pre-determine the next write state based on the current write

state and buffer state. The ability to determine the subsequent

write state of HDD is critical to scheduling incoming write

requests. Based on that, we propose Buffer-Controlled Writes,

shortly for BCW, a writing approach to proactively activate

continuous and sequential write patterns that the predictor

relied on, as well as effectively controls the IO behavior ac-

cording to the predictor and runtime IO monitoring. To avoid

performance degradation caused by S writes, we propose a

proactive padding-write approach to “skip” the S state by

F M

Sync

Write
S

Sync

A

U

Sync

A U

Figure 5: The State Predication Diagram. Each write request

can only be one of the three write states, F , M, and S. Letter

"A" means that the current data written in the F and M states

are less than the Wf and Wm values, respectively. Otherwise,

the write buffer is "U". The Sync operation takes the next

write state back to F .

executing slow writes with padded non-user data.

To overcome the second issue, we propose the SSD-HDD

Mixed IO scheduler (MIOS) that adaptively controls queue

lengths of SSDs and HDDs in hybrid storage nodes, and de-

termines where to steer a user write request.

4.1 Write-state Predictor
The next write state could be predicted according to write

buffer’s free space and the write state of the current request.

In HDD buffered write, each write request state should be one

of F , M, and S state. The HDD write buffer state is considered

by buffered-write model to be in either A (available) or U (un-

available). The "A" state means that the current Accumulative

Data Written (ADW) in the F and M states are less than Wf
and Wm, respectively. Otherwise, the write buffer is in the "U"

state. Figure 5 shows how the next write state is determined

based on the current buffer state and write state in a State

Predication Diagram, which is described as follows:

• F/A : The current write state is F and the buffer is avail-

able. Next write state is most likely to be F .

• F/U : Although the current write state is F , the buffer

is unavailable. Next write state is likely to change to S.

• M/A : The current write state is M and the buffer is

available. Next write state is most likely to remain M.

• M/U : Although the current write state is M, the buffer

is unavailable. Next write state should be S.

• S : The current write state is S. Next write state will be

M with a high probability.

• The Sync operation will force the next write state and

buffer state back to be F/A in all cases.

Based on that, we design a Write-state Predictor described

in Algorithm 1. It identifies what the current write state is, F ,

M or S, by monitoring the IO request size and latency, and

calculating the free space in the write buffer. That is, the ADW

in the current write state (F or M) is recorded and compared

with Wf or Wm, for predicting the next write state.

Next, we assess the prediction accuracy of the write-state

predictor. We write 100GB data with an IO size of 128KB to

the 10TB WD HDD and invoke sync() after each 1GB data

written. The results show that the predictor correctly identifies

99.5% of the F state, 98.1% of the M state and 60.3% of the

S state. The low prediction accuracy for the S write-state is

USENIX Association 18th USENIX Conference on File and Storage Technologies 257

Algorithm 1 The algorithm of Write-state Predictor

Input: Current write request size: size; The last write state: state; Current

accumulative amount of data written: ADW ;

The amounts of data written in the F state and M state: WF and WM
Output: Write-state prediction for the next request (F , M or S)

1: function Predictor()

2: if state == F then
3: if (ADW + size) < Wf then : return F
4: else: return S
5: end if
6: else if state == M then
7: if (ADW + size) < Wm then : return M
8: else: return S
9: end if

10: else: return M
11: end if

due to the prediction policy that tends to favor the S write-

state to reduce the performance degradation, when an actual

S write-state is mis-predicted as a different state.

4.2 Buffer-Controlled Writes
Buffer-Controlled Writes (BCW) is an HDD writing ap-

proach that ensures user writes using F or M write state, and

avoids allocating Slow writes. The key idea of BCW is to

make buffered write controllable. Based on the Write-state

predictor, we design BCW, as described in Algorithm 2.

Upon activating BCW, a sync() operation is invoked to

force synchronization to empty the buffer actively. BCW dis-

patches sequential user writes to HDD if it is predicted to be

in F or M state, otherwise pads non-user data to HDD, until it

reach to the max setting loop (or unlimited) of Buffered Write

Sequence. If there are user requests in the queue, BCW writes

them serially. After a write is completed, BCW adds its write

size to ADW, and updates the write-state accordingly.

During light or idle workload periods with sparse requests,

the HDD request queue will be empty from time to time,

making the write stream discontinuous. To ensure the stability

and certainty of buffered writes in a sequential and continuous

pattern, BCW will proactively pad non-user data to write to

the disk. The padding data are of two types, PF and PS. The

former is used to fill the F and M states with 4KB non-user

data; the latter is to fill the S state with larger block size,

e.g., 64KB of non-user data. A small PF can minimize the

waiting time of user requests. A large PS helps trigger Slow

write quickly. Note that even for each padded write, BCW

still executes the write-state predictor algorithm.

More specifically, BCW continuously calculates ADW in

the current state (F or M). When ADW is close to Wf or Wm,

it means that the HDD buffered write is at the tail of the Fast

or Mid stage. The S write state may occur after several writes.

At this point, BCW notifies the scheduler and proactively

triggers the Slow write with PS.

To avoid long latency for user writes, at this period, all

incoming user requests have to be steered to other storage

devices, such as SSDs. When an S write completed, the next

Algorithm 2 The algorithm of Buffer-Controlled Write

Input: The max loop of Buffered Write Sequence: Loopmax
Request Ri size: sizei; Current written amount: ADW ;

The state of last write: state;

Active padded writes and their size: PS,PF and sizePS,sizePF

1: sync()
2: while loop < Loopmax do
3: if request Ri in the HDD write queue then
4: write Ri to HDD, update ADW and state
5: else
6: if Predictor() == S then
7: f lagHDD = False // Stop receiving

8: while state == S do
9: write PS to HDD, update ADW and state

10: end while
11: f lagHDD = True // Start receiving

12: reset ADW ; loop++

13: end if
14: if Predictor() == M then
15: write PF to HDD; update ADW and state
16: end if
17: end if
18: end while

write will be M according to the write-state predictor. Then

BCW resets the ADW and accepts user requests again.

We also find it unnecessary to proactively fill padded writes

in the Fast state before ADW exceeds Wf . When ADW does

not reach Wf , the physical disk operation is not yet triggered

and the buffer can absorb user requests for this period. When

ADW exceeds Wf in a short time of period, it means that the

buffer will begin to flush the data to the disk and the next write

state will be changed to S. On the other hand, when ADW is

less than Wf for a long time of period, the disk can flush the

buffered data automatically so that the next write state may

be F . However, it does not affect performance. We apply this

observation to the scheduler design in the next section.

In most cases, the sequential and continuous write pattern

induced by BCW is reasonably stable. However, this pattern

can be broken, e.g., HDD reads. Besides, slow writes may be

triggered in advance by user requests or PF writes. To regain

the control of buffered writes, BCW continuously executes

PS until a S write state is detected. As a result, the write-state

predictor will be recalibrated. The cost of this strategy is that

BCW wastes IO and storage of HDD to perform PS writes.

In addition, we also can issue sync() to reset the buffered

write state in BCW. Howerver, a sync() can take several hun-

dred milliseconds, during which the HDD cannot accept any

writes. Fortunately, in the experiment, we found that the BCW

interrupted cases are rare.

BCW stores incoming data to HDD in log-append man-

ner. This differs with traditional logging mode in existing file

systems like ext4 [33]. The latter allocates writes to the tail

logical address of the log, ensuring address continuity. How-

ever, it doesn’t ensure IO continuity and does not determine

the next write state. In contrast, BCW maintains both address

and IO continuity, make the buffer writing be controllable.

258 18th USENIX Conference on File and Storage Technologies USENIX Association

Scheduling
Strategy

User writes

SSD HDDSSD

...

...
HDD

...

...
Log file in HDDilfi i

Request
queue

MIOS
HDDflag()l t

Figure 6: Architecture of the Mixed IO scheduler. It moni-

tors all request queues of SSDs and HDDs. The user writes

meeting the conditions are redirected to appropriate HDDs.

4.3 Mixed IO scheduler
BCW provides a proactive and controllable buffer writing

approach. In this section, we further propose a Mixed IO
scheduler (MIOS) for SSD-HDD hybrid storage to leverage

BCW effectively. The scheduler decides whether or not to

steer user writes to a HDD request queue according to the

results of the Write-state Predictor and current queue status.

Architecture The architecture of MIOS is shown in Figure

6. MIOS monitors all request queues of SSDs and HDDs

at runtime, judiciously triggers the BCW process, and deter-

mines whether a user write should be directed to a selected

HDD or SSD. MIOS creates a device file in each HDD in the

configuration process. The device file stores BCW writes in

an append-only manner. Before MIOS scheduling, a Profiling

is performed to determine the key parameters (Wf , Wm, etc.)

for the write-state predictor.

Scheduling Strategy In algorithm 3, the SSD request

queue length l(t) at time t is a key parameter in MIOS. When

l(t) is larger than a predefined threshold L, the scheduler steers

user writes to an HDD with the prediction of it being F or M
write state. The threshold L is pre-determined according to the

actual performance measurements on SSD. Specifically, we

measure the write latency under different SSD queue lengths.

If the request with queue length l has latency larger than the

IO delay of HDD in the M state, we simply set the threshold

L to the minimum l. The rationale is that when the SSD queue

length is larger than L, the SSD writes’ latencies will be at the

same level as their latencies on an HDD in the F or M write

state with BCW. L can be determined and adjusted experi-

mentally according to workload behaviors and storage device

configurations at runtime. This strategy mitigates, though not

avoids, the long-tail latency upon workload bursts or heavy

Garbage Collections on SSD [37,48]. In these cases, the SSD

request queue length can be 8-10 times longer than its aver-

age. Therefore, redirected HDD writes not only relieve SSD

pressure imposed by bursty requests and heavy GCs, curbing

the long-tail latency, but also lower the average latency.

Additionally, when the queue length of SSD is less than L,

triggering BCW is optional. Enabling or disabling BCW in

this case is denoted as MIOS_E or MIOS_D, respectively. In

other words, MIOS_E strategy allows redirection with BCW

when the queue length of SSD is lower than L. MIOS_D strat-

Algorithm 3 The algorithm of Mixed IO Scheduler

Input: SSD queue length at time t: l(t);
Queue length threshold: L; HDD available flag: f lagHDD;

Schedule Strategy: MIOS_D or MIOS_E
1: if (f lagHDD == True) then
2: if l(t) > L && Predictor() == F or M then
3: Send to HDD queue

4: else if MIOS_E && Predictor() == F then
5: Send to HDD queue

6: else: Send to SSD queue

7: end if
8: else: Send to SSD queue

9: end if

egy, by contrast, disables redirection when the SSD queue

length is lower than L. Note that the write latency of an HDD

in the M write state is still much higher than that of an SSD.

The request latency after redirection may be increased. There-

fore, when the l(t) is lower than L, we only redirect user

requests to leverage the F write state of HDD in MIOS_E. We

will experimentally analyze the positive and negative effects

of MIOS_D and MIOS_E in Section 5.

Generally, a typical hybrid storage node contains multi-

ple SSDs and HDDs. We divide all disks into independent

SSD/HDD pairs, each of which contains an SSD and one or

more HDDs. Each SSD/HDD pair is managed by an indepen-

dent MIOS scheduler instance.

Finally, MIOS requires the complete control over HDDs.

It means that the HDDs in BCW cannot be interfered by

other IO operations. When an HDD is executing BCW and a

read request arrives, MIOS immediately suspends BCW and

serves this read. It will try to redirect all writes to other idle

disks at this time. For read-dominated workloads, BCW can

be disabled to avoid interfering with reads.

4.3.1 Implementation

MIOS can be implemented in either file-level or volume-

level to jointly manage SSDs and HDDs in a hybrid storage.

In this work, MIOS provides a simple yet flexible file-level

request scheduling scheme atop of existing file systems to

leverage their mature file-to-storage mapping mechanism. A

user request is identified with the corresponding filename and

file internal offset. To reduce overhead of the underlying file

system, MIOS employs direct IO mode to access the log by

calling Linux kernel functions such as open, close, read, and

write. Data of each write request is stored as a chunk in the

log. We design a metadata structure that records and tracks

chunks in the log. We choose a hash table and use the file ID

field of a request as the hash key.

When an HDD is idle, all user data stored in the log will be

written to their own original files, after which the log will be

recycled, called as HDD Garbage Collection. HDD GC should

be triggered when the log size exceeds a predefined threshold

(e.g., 70% capacity of HDD). HDD GC first sequentially and

continuously reads user data chunks that are interspersed with

USENIX Association 18th USENIX Conference on File and Storage Technologies 259

Table 3: The amount of redirected writes data and requests

with the MIOS_D and the MIOS_E strategies.
Workload Type A B C D
Writing Method Baseline / MIOS_D / MIOS_E

SSD Writes
(GB) 14.7 / 13.9 / 1.2 61.2 / 57.1 / 48.1 7.2 / 6.1 / 2.1 7.5 / 6.3 / 2.1

HDD Writes
(GB) - / 4.1 / 61.6 - / 18.4 / 56 - / 4.5 / 22.3 - / 4.4 / 25.6

SSD Requests
(millions) 0.43 / 0.36 / 0.04 4.4 / 3.7 / 1.3 4.8 / 3.7 / 1.6 4.7 / 3.8 / 1.3

Figure 7: The average, 99th and 99.9th-percentile latency un-

der four Pangu production workloads, comparing Baseline
with MIOS_D (a logscale is used for the y-axis).

padded data in the log to reduce seeks. And then it extracts

and merges the user data to update their correspond files.

These file updates can be performed in batch [53].

5 Evaluation

5.1 Experiment Setup
We run experiments for performance evaluation on a server

with two Intel Xeon E5-2696 v4 processors (2.20 GHz, 22

CPUs) and 128 GB of DDR3 DRAM. To understand the

impact of different storage configurations on the performance,

we choose two types of SSDs, a 256GB Intel 660p SSD [11]

and a 256GB Samsung 960EVO SSD [16]. Their peak write

throughputs are 0.6 GB/s and 1.5GB/s, respectively. Three

types of HDDs are WD 10TB, WD 4TB, and Seagate 4TB,

as described in Section 3.1.

The 10TB WD HDD has a Wf of 16MB and Wm of 8MB.

Using the process to pre-determine the queue length threshold

L explained in Section 4, we set L to 1 for workload of node

A, 3 for node B, 2 for node C and D, where the workloads

of nodes A, B, C and D are described in Table 1 of Section

2. As discussed earlier, MIOS has two schemes, MIOS_D
and MIOS_E. When the SSD queue length is less than L,

the former conservatively disables request redirection; the

latter allows request redirection but only redirects user write

requests to the F write state. The Baseline for the evaluation

is writing all user data into the SSDs. In addition, a com-

plete BCW sequence consists a series of 1 Fast stage and 10

Mid/Slow stage-pairs (Figure 4).

5.2 MIOS under Production Workloads
We first evaluate the effectiveness of MIOS_D under four

Pangu production workloads on the WD 10TB HDD.

Write Performance Figure 7 shows that the average and

tail latency (99th and 99.9th) of all four workloads are sig-

nificantly reduced by MIOS_D. Among four workloads, B

gains the most benefit. Its average, 99th and 99.9th-precentile

Figure 8: The CDF of SSD queue length.

Figure 9: The average request latency in six request-size

groups that are classified by IO size with MIOS_D.

latencies are reduced by 65%, 85%, and 95% respectively.

On the contrary, these three latencies in A are only reduced

by about 2%, 3.5% and 30%, respectively, which is far less

than the other workloads. The reason is that the redirection

in MIOS_D is only triggered when the queue length is high,

but A has the least intensity and thus the least queue blocking,

which renders MIOS much less useful.

To better understand the root causes for the above experi-

mental results, the cumulative distribution functions (CDFs)

of SSD queue lengths for four workloads are shown in Figure

8. MIOS_D significantly shorten queue lengths compared to

Baseline. B and A have the maximum (95%) and minimum

(15%) reduction in their queue lengths. Therefore, MIOS_D
reduces the overall queueing delay significantly.

Request size To deeply understand impact of write size in

MIOS_D and BCW, we break down all redirected requests

into six groups with different ranges of IO sizes, and measure

the average latency in each group.

Figure 9 shows that, in all four workloads, MIOS_D reduces

the average write latency of size below 64KB. The B workload

benefits the most. The average latencies of three groups of

small-sized requests (<4KB; 4KB-16KB; 16KB-64KB) are

reduced by 61%, 85%, and 59%, respectively. The other three

workloads also reduce their latencies differently. In Baseline,

small and intensive requests result in queue blocking more

frequently (Figure 2) than in MIOS_D. Therefore, MIOS_D
is the most effective in reducing latency in such cases.

However, in groups of requests larger than 256KB, the

average latency is increased in all workloads except B. The

latency is increased by up to 31.7% in the >1MB group, and

12.1% in the 256KB-1MB group for the D workload. The

average latency of the 256KB-1MB group in C is increased

by 20.1%. The reason is twofold. First, large SSD writes

under light load have better performance than HDDs because

260 18th USENIX Conference on File and Storage Technologies USENIX Association

(a) The average and 99th tail latency

with different L values

(b) The redirected written data with

different L value

Figure 10: MIOS_D with different queue length threshold L.

(a) The average and tail latency with

MIOS_D and MIOS_E
(b) The redirected written data for

different request-size group

Figure 11: MIOS_D vs MIOS_E.

SSDs have high internal-parallelism that favors large requests.

Second, large writes are relatively sparse and not easy to be

completely blocked. For example, the average latency of the

>256KB request-size groups in Baseline is very close to the

raw SSD write performance.

Queue Length Threshold L To evaluate the effect of L
selection, we compare the pre-defined L value (Def), deter-

mined by the process described Section 4.2, with L+1 (Inc).

Note that the process for pre-defining the queue length thresh-

old is designed to tradeoff between reducing the write latency

and reducing the write traffic to SSD.

Figure 10(a) shows that, Inc slightly reduces average, 99th

and 99.9th-percentile latency compared to Def. Among the

four workloads, the maximum reduction in average latency

is less than 10%. This is because the higher queue length

is, the longer waiting delay a request experiences. Therefore,

Inc can acquire more latency gains by redirection than Def.
However, the choice of L value can greatly affect the amount

of redirected data. In Figure 10(b), the number of redirected

requests is much smaller in Inc than in Def. The amount of

redirected data for workloads A∼D are decreased by 94%,

64%, 52% and 62%, respectively. These results are consistent

with the implications of Figure 8 that longer queue length in

SSD triggers much fewer SSD overuse alerts, significantly

reducing chances for request redirecting to HDD.

MIOS_D vs MIOS_E We compare MIOS_D with

MIOS_E in terms of the amount of data written to SSD and

HDD, and the number of redirected write requests, as shown

in Table 3. Workload A has the highest percentage of data

and requests redirected with MIOS_E, reducing the SSD writ-

ten data by up to 93.3% compared with Baseline, which is

significantly higher than MIOS_D. Since workload A has

lower IO intensity, MIOS_E has more chances to redirect

even when the queue length is low. Note that we also counted

the padded data in BCW as the amount of data written in

HDD. In such a case the total amount of data written can vary

(a) Average and tail latency (b) SSD write reduction

Figure 12: Latency and SSD written data reduction with

only F write-state by actively issuing sync() (Normalized

to MIOS_D).

Table 4: Amount of data written to and number of requests

processed in SSD with different HDDs under workload B.
Baseline WD-10TB WD-4TB SE-4TB

SSD written data (GB) 61.2 4.1 4.2 4.4

SSD write requests (thousands) 4453 720 724 769

a great deal. Workload B has the lowest percentage of redirec-

tion with MIOS_E, which reduces SSD written data by 30%.

Nevertheless, the absolute amount of redirected data is very

large because the SSD written data in Baseline is larger than

any of the other three workloads. Compared with MIOS_D,

MIOS_E can greatly decrease the amount of data written to

SSD. Therefore, it is beneficial to alleviate SSD wear-out.

However, the negative effect of MIOS_E is the increase of

average and tail latency. In Figure 11(a), MIOS_E leads to

generally higher average latency than MIOS_D by up to 40%

under workload A. Although for the other three workloads,

the average latency remains basically unchanged. This is

because for workload A much more writes (i.e., >90%) are

redirected by MIOS_E than by MIOS_D, and in HDD requests

experience longer latency than in SSD. Moreover, the 99.9th-

percentile latency of MIOS_E is increased by 70% in A, 55%

in B, 31% in C, and 8% in D compared to MIOS_D. The

results can be explained by Figure 11(b). MIOS_E increases

the average latency for nearly all the IO size groups, especially

for the groups with requests of size larger than 256KB.

Moreover, we only use the F write state by proactively

issuing sync() when the ADW reaches Wf . In Figure 12, we

measure the average, 99th, 99.9th-percentile latency and the

SSD written data reduction with this strategy. We take the

MIOS_D as the baseline and present the performance normal-

ized to MIOS_D. The 99.9th-percentile latency is increased

by 12.8x over MIOS_D in the B node. The 99th-percentile

latency in the B, C and D nodes also be increased by 3x,

1.65x and 1.56x, respectively. This means that this strategy

is less efficiency for reducing tail latency when the workload

becomes heavier. This is because it redirects less SSD write

data than MIOS_D when SSD suffers queue blockage. As

mentioned in Section 4.2, sync() is a high cost operation (e.g.,

several hundreds of milliseconds) to flush the HDD buffer

and cannot serve any requests during the operation.

Experiment with other HDDs We use the 4TB WD, 4TB

Seagate and the 10TB WD HDD to replay workload B, com-

paring MIOS_D (with the default L value) with the Baseline
in terms of the amount of data written to and the number of

write requests processed in SSD. Workload B is chosen for

USENIX Association 18th USENIX Conference on File and Storage Technologies 261

(a) Average, 99th and 99.9th-

percentile latency

(b) Average latency of requests with

different request-size group

Figure 13: MIOS_D performance with three different types

of HDDs under workload B.

(a) Queue length CDF (b) Average and tail latency

Figure 14: Queue length CDF and latency under Pangu work-

load A, with the 660p SSD for three scheduling strategies.

this experiment, since it has the most SSD written data and

the most severe SSD queue blockage, clearly reflecting the

effect of IO scheduling.

Figure 13 shows that different types of HDDs do not have a

significant impact on the effect of MIOS_D. First, the average

and tail latencies for all the three HDDs are virtually identical,

with a maximum difference of less than 3%. In addition, of

the six request-size groups, only the >1MB group exhibits

a large difference among the different HDDs. The average

latency of 10TB HDD is 14% lower than that of the other

two 4TB HDDs. This is because the native write performance

gap between the HDDs. It can be found from Table 4 that

different types of HDDs do not notably affect the amount of

data redirected, with little difference of less than 5%.

Experiment with lower-performing 660p SSD Next, to

further explore the effect of MIOS with different SSDs, we

deploy the lower-performance 660p SSD. We replay the same

workload A that has the lowest pressure on SSD, and employ

the MIOS_D and MIOS_E strategies, respectively.

From the latency CDF Figure 14(a), when using SSDs with

the low performance SSD, more than 7% of the requests are

severely affected by long queuing delay and the maximum

queue length reaches up to 2700. It surpass the experiment

result with 960EVO SSD (e.g., 23 shown in Figure 8(B)). This

is because when the IO intensity exceeds the ability of 660p

SSD to accommodate, the SSD queue length builds up quickly.

As a result in Figure 14(b), the average and tail latencies in

Baseline rise sharply compared with 960EVO SSD shown in

previous Figure 7. The average latency in Baseline is 90ms

and the 99th-percentile latency exceeds 5 second.

With such a high workload pressure on a lower-

performance SSD, MIOS can help reduce some of the pres-

sure on SSD by redirecting some of the queued requests to

HDDs. As seen from Figure 14, MIOS_D decreases the queue

blockage with a maximum 45% queue length reduction. At

Table 5: The HDD utilization with MIOS_E and MIOS_D.
Node
Type

Duration
(s) Baseline Net Util.

MIOS_D
Net Util.
MIOS_E

Gross Util.
MIOS_E

A 2700 7.6% 7.9% 11.9% 27.9%

B 1800 9.8% 18.2% 26.8% 56.9%

C 1800 4.1% 10.7% 16.2% 35.8%

D 1560 4.8% 12.3% 17.3% 39.5%

same time, the average latency in MIOS_E returns to μs-level

(e.g., 521μs), and the 99th and 99.9th-percentile latencies are

reduced to an acceptable range of 2.4ms and 87ms, respec-

tively. Because MIOS_E redirects much more SSD requests

with low queue length, it prevents queue blockage in SSD,

particularly for a lower-performance one. By comparing this

experiment on a lower-performance SSD with an earlier one

on a high-performance SSD, we believe that when the perfor-

mance of SSD in hybrid storage cannot support the intensity

of a write-dominated workload, MIOS and BCW can pro-

vide an effective way to improve the overall IO capacity by

offloading much of the workload pressure on SSD to HDD.

In addition, we compare BCW to a system that simply adds

an extra SSD. We equally distribute the workloads to two

SSDs. The system can achieve the same or even better latency

than MIOS_E, but at a significantly increased hardware cost.

5.3 BCW
We further analyze and evaluate the wasted storage-space

of BCW, due to the padded data to help keep continuous HDD

written pattern and skip the S write state.

Amount of padded data We first analyze the amount of

padded data written to HDD. In Table 3, we measure the data

amount with MIOS_D and MIOS_E when a BCW sequence

contains one Fast state and 10 Mid/Slow stage-pairs. The

stats in the table clearly indicates that MIOS_E generates

substantially more HDD write data than MIOS_D. When more

requests are redirected, the amount of padded data increases

proportionally. For example, the padded data with MIOS_E is

15x that with MIOS_D in workload A, 3x in workload B, 4x

in workloads C and D. Frequently triggering BCW increases

the occurrences and thus amount of padded data. Furthermore,

when the amount of redirected data increases, the Fast stage

without padded data will be used up faster and more Mid/Slow

stage-pairs with padded data will be executed.

HDD utilization The original Pangu traces exhibit low

HDD utilization, which is defined by the percentage of time

an HDD is actually working on processing IO requests. More

specifically, Table 1 and 5 shows that HDDs are generally

keeps very low utilization (e.g., <10%) in all four workloads.

Using MIOS, the HDD utilization has been increased with

different degrees. The gross utilization is defined to be the per-

centage of the total execution time when the HDD is working

on IO requests (including sync() operation), which is the real

usage of the disk. The highest gross utilization is 56.9% under

workload B. This means that the disk still has enough free

time for HDD garbage collection. To analyze the amount of

262 18th USENIX Conference on File and Storage Technologies USENIX Association

Figure 15: FIO benchmark to experiment with three strategies.

The IO transmission interval is set to 20-320us.
time HDD is effectively working for user requests, we define

net utilization as the percentage of the total execution time that

the HDD spends exclusively serving user requests, excluding

the time HDD spends on padding data in BCW. Thus, the

net utilization is positively correlated to the amount of redi-

rected data. The net utilization of HDD in MIOS_E is higher

than that in MIOS_D. Under workload B and MIOS_E, HDD

has the highest net utilization improvement over Baseline, by

2.7x, while the same is enhanced to 1.8x under MIOS_D.

5.4 Write Intensity
The effectiveness of BCW heavily depends on the write

intensity. To better understand this relationship, we test the

average and tail latency of three scheduling strategies as a

function of write intensity (in terms of IO transmission in-

terval), Baseline (_B), MIOS_D (_D) and MIOS_E (_E). We

initialize the IO size to 32KB, and continuously issue write

requests using FIO [4]. Since FIO cannot adjust IO intensity,

we set the generated IOs with a fixed transmission interval

from 20 to 320μs. We use 960EVO SSD and 10TB HDD, and

set the L value to 1.

Figure 15 shows that, when the interval is between 20-60μs,

the requests written to SSD are severely blocked and the 99th

tail latency reaches as high as 5.2 second. In this case, both

MIOS_D and MIOS_E can significantly reduce the request

latency. And MIOS_E is slightly better than MIOS_D because

the former handles burst writes better. When the interval is

60-80μs, Baseline still exhibits very high latency in SSD.

However, the latency has returned to an acceptable μs-level

after scheduling by MIOS. When the interval exceeds 100μs,

the average and 99th-percentile latencies are stable, because

there is very little SSD queue blockage with this level of

request intensity. In this case, MIOS_D and Baseline have the

lowest average latency and remain the same as the interval

grows. However, the average and tail latency of MIOS_E is

higher than others. This is because even if there is no queue in

SSD, MIOS_E will still redirect requests, and the performance

gap between SSD and HDD can lead to high latency.

6 Related Works
IO scheduler The IO scheduling on HDD had been ad-

equately studied as CFQ, Anticipatory, Deadline [7], and

NCQ [54]. With wide adoption of SSDs, more recent re-

searches address flash IO characteristics as read/write per-

formance asymmetry and internal parallelism. FIOS [39] em-

ploys a fair IO timeslice management to attains fairness and

high efficiency of SSD. HIOS [23] gives GC-aware and QoS-

aware scheduler in host. PIQ [19] and ParDispatcher [46]

minimize access conflicts between IO requests. A large body

of research further offer finer scheduling inside of SSD to

reduce interference between IO flows [42], write amplifica-

tion [27], and GC overhead [17,21,24]. SWAN [26] partitions

SSDs into multiple zones to separately serve write requests

and perform GC. These works focus on homogeneous-device

block-level scheduling. In contrast, MIOS schedules writes

upon SSD-HDD hybrid storage.

Hybrid storage For SSD-HDD hybrid storage, most works

use SSDs as a read cache or/and write buffer [2, 25, 41], and

HDDs as the secondary or backup storage [29], due to the

large performance gap between SSD and HDD. Prior works

also employ HDDs as a write cache for SSDs to reduce the

amount of data written to the latter [41, 52]. Besides, SSD-

HDD mixed RAID [32] also has been studied to comple-

ment their disadvantages with advantages. Ziggurat [55] as

a tiered file system across NVMM and disks steers larger

asynchronous writes into disks. SWR [31] merely redirects

synchronous large writes to HDDs at highly queueing. BCW

further exploits HDD buffer to redirect synchronous small

writes while avoiding performance degradation.

7 Conclusion

Some hybrid storage servers serve write-dominate work-

loads, which leads to SSD overuse and long-tail latency while

HDDs are underutilized. However, our extensive experimen-

tal study reveals that HDDs are capable of μs-level write IO

latency with appropriate buffered writes. This motivated us to

use HDDs to offload write requests from overused SSDs by re-

quest redirection. To this end, we present a Buffer-Controlled

Write approach to proactively control buffered writes, by se-

lecting fast writes for user requests and padding non-user data

for slow writes. Then, we proposed a mixed IO scheduler to

automatically steer incoming data to SSDs or HDDs based

on runtime monitoring of request queues. Our extensive eval-

uation of MIOS and BCW, driven by real-world production

workloads and benchmarks, demonstrated their efficacy.

Acknowledgments

We would like to thank our shepherd, Jian Huang, and the

anonymous reviewers for their valuable feedback and sugges-

tion. This work is supported in part by NSFC No.61821003,

NSFC No.61872156, National key research and development

program of China (No.2018YFA0701804), the US NSF under

Grant No.CCF-1704504 and No.CCF-1629625, and Alibaba

Group through Alibaba Innovative Research (AIR) Program.

USENIX Association 18th USENIX Conference on File and Storage Technologies 263

References
[1] David G Andersen and Steven Swanson. Rethinking

flash in the data center. IEEE micro, 30(4):52–54, 2010.

[2] Manos Athanassoulis, Shimin Chen, Anastasia Aila-

maki, Phillip B. Gibbons, and Radu Stoica. Masm:

efficient online updates in data warehouses. In Proceed-
ings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2011, Athens, Greece,
June 12-16, 2011, pages 865–876, 2011.

[3] Guillaume Aupy, Olivier Beaumont, and Lionel Eyraud-

Dubois. What size should your buffers to disks be?

In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 660–669. IEEE,

2018.

[4] AXBOE. Fio: Flexible i/o tester. https://github.
com/axboe/fio.

[5] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan

Gupta, Ravishankar Chandhiramoorthi, and Diego Di-

dona. SILK: Preventing latency spikes in log-structured

merge key-value stores. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19), pages 753–766,

Renton, WA, July 2019. USENIX Association.

[6] Simona Boboila and Peter Desnoyers. Write endurance

in flash drives: Measurements and analysis. In FAST,

pages 115–128, 2010.

[7] Daniel P Bovet and Marco Cesati. Understanding the
Linux Kernel: from I/O ports to process management. "

O’Reilly Media, Inc.", 2005.

[8] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-

tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shash-

wat Srivastav, Jiesheng Wu, Huseyin Simitci, et al. Win-

dows azure storage: a highly available cloud storage

service with strong consistency. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, pages 143–157. ACM, 2011.

[9] Alibaba Clouder. Pangu – the high performance

distributed file system by alibaba cloud. 2018.

https://www.alibabacloud.com/blog/pangu_
the_high_performance_distributed_file_
system_by_alibaba_cloud_594059.

[10] Intel Corporation. Enterprise-class versus

desktop-class hard drives. pages 6–7, 2016.

https://www.intel.com/content/dam/support/
us/en/documents/server-products/Enterprise_
vs_Desktop_HDDs_2.0.pdf.

[11] Intel Corporation. Product brief of intel 660p se-

ries. pages 2–2, 2019. https://www.intel.com/

content/dam/www/public/us/en/documents/
product-briefs/660p-series-brief.pdf.

[12] Western Digital Corporation. Product brief: Wd gold

enterprise class sata hdd. pages 2–3, 2019. https:
//documents.westerndigital.com/content/
dam/doc-library/en_us/assets/public/
western-digital/product/internal-drives/
wd-gold/product-brief-wd-gold-2579-810192.
pdf.

[13] Western Digital Corporation. Wd red nas hard drives

data sheet. pages 2–3, 2019. http://products.wdc.
com/library/SpecSheet/ENG/2879-800002.pdf.

[14] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,

Gunavardhan Kakulapati, Avinash Lakshman, Alex

Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. Dynamo: amazon’s highly available

key-value store. In ACM SIGOPS operating systems
review, volume 41, pages 205–220. ACM, 2007.

[15] Diego Didona and Willy Zwaenepoel. Size-aware shard-

ing for improving tail latencies in in-memory key-value

stores. In NSDI, pages 79–94, 2019.

[16] Samsung Electronics. Samsung ssd 960 evo m.2

data sheet. pages 2–4, 2017. https://www.intel.
com/content/dam/www/public/us/en/documents/
product-briefs/660p-series-brief.pdf.

[17] Nima Elyasi, Mohammad Arjomand, Anand Sivasubra-

maniam, Mahmut T Kandemir, Chita R Das, and My-

oungsoo Jung. Exploiting intra-request slack to improve

ssd performance. ACM SIGARCH Computer Architec-
ture News, 45(1):375–388, 2017.

[18] FUJITSU. Mbc2073rc mbc2036rc hard disk

drives product manual. pages 60–62, 2007.

https://www.fujitsu.com/downloads/COMP/fel/
support/disk/manuals/c141-e266-01en.pdf.

[19] Congming Gao, Liang Shi, Mengying Zhao, Chun Ja-

son Xue, Kaijie Wu, and Edwin H-M Sha. Exploiting

parallelism in i/o scheduling for access conflict mini-

mization in flash-based solid state drives. In 2014 30th
Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–11. IEEE, 2014.

[20] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-

ung. The google file system. 2003.

[21] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar.

Dftl: a flash translation layer employing demand-based

selective caching of page-level address mappings. vol-

ume 44. ACM, 2009.

264 18th USENIX Conference on File and Storage Technologies USENIX Association

[22] Congfeng Jiang, Guangjie Han, Jiangbin Lin, Gangyong

Jia, Weisong Shi, and Jian Wan. Characteristics of co-

allocated online services and batch jobs in internet data

centers: A case study from alibaba cloud. IEEE Access,

7:22495–22508, 2019.

[23] Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah,

Joonhyuk Yoo, and Mahmut T Kandemir. Hios: a host

interface i/o scheduler for solid state disks. In ACM
SIGARCH Computer Architecture News, volume 42,

pages 289–300. IEEE Press, 2014.

[24] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and

Sangyeun Cho. The multi-streamed solid-state drive. In

6th {USENIX} Workshop on Hot Topics in Storage and
File Systems (HotStorage 14), 2014.

[25] Taeho Kgil and Trevor Mudge. Flashcache: a nand flash

memory file cache for low power web servers. In Pro-
ceedings of the 2006 international conference on Com-
pilers, architecture and synthesis for embedded systems,

pages 103–112. ACM, 2006.

[26] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin

Lee, Changwoo Min, and Sam H Noh. Alleviating

garbage collection interference through spatial separa-

tion in all flash arrays. In 2019 {USENIX} Annual Tech-
nical Conference ({USENIX}{ATC} 19), pages 799–

812, 2019.

[27] Jaeho Kim, Yongseok Oh, Eunsam Kim, Jongmoo Choi,

Donghee Lee, and Sam H Noh. Disk schedulers for

solid state drivers. In Proceedings of the seventh ACM
international conference on Embedded software, pages

295–304. ACM, 2009.

[28] Anthony Kougkas, Hariharan Devarajan, and Xian-He

Sun. Hermes: a heterogeneous-aware multi-tiered dis-

tributed i/o buffering system. In Proceedings of the 27th
International Symposium on High-Performance Paral-
lel and Distributed Computing, pages 219–230. ACM,

2018.

[29] Huiba Li, Yiming Zhang, Dongsheng Li, Zhiming

Zhang, Shengyun Liu, Peng Huang, Zheng Qin, Kai

Chen, and Yongqiang Xiong. Ursa: Hybrid block stor-

age for cloud-scale virtual disks. In Proceedings of the
Fourteenth EuroSys Conference 2019, page 15. ACM,

2019.

[30] Qixiao Liu and Zhibin Yu. The elasticity and plasticity

in semi-containerized co-locating cloud workload: A

view from alibaba trace. In Proceedings of the ACM
Symposium on Cloud Computing, pages 347–360. ACM,

2018.

[31] Shuyang Liu, Shucheng Wang, Qiang Cao, Ziyi Lu,

Hong Jiang, Jie Yao, Yuanyuan Dong, and Puyuan Yang.

Analysis of and optimization for write-dominated hy-

brid storage nodes in cloud. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC 2019, Santa
Cruz, CA, USA, November 20-23, 2019, pages 403–415,

2019.

[32] Bo Mao, Hong Jiang, Suzhen Wu, Lei Tian, Dan Feng,

Jianxi Chen, and Lingfang Zeng. Hpda: A hybrid parity-

based disk array for enhanced performance and reliabil-

ity. ACM Transactions on Storage (TOS), 8(1):4, 2012.

[33] Avantika Mathur, Mingming Cao, Suparna Bhat-

tacharya, Andreas Dilger, Alex Tomas, and Laurent

Vivier. The new ext4 filesystem: current status and

future plans. In Proceedings of the Linux symposium,

volume 2, pages 21–33, 2007.

[34] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-

Won Lee, and Young Ik Eom. Sfs: random write consid-

ered harmful in solid state drives. In FAST, volume 12,

pages 1–16, 2012.

[35] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy,

Cory Hill, Ernest Lin, Weiwen Liu, Satadru Pan, Shiva

Shankar, Viswanath Sivakumar, Linpeng Tang, et al. f4:

Facebook’s warm {BLOB} storage system. In 11th
{USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 14), pages 383–398, 2014.

[36] Muthukumar Murugan and David HC Du. Rejuve-

nator: A static wear leveling algorithm for nand flash

memory with minimized overhead. In 2011 IEEE 27th
Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–12. IEEE, 2011.

[37] J. Ou, J. Shu, Y. Lu, L. Yi, and W. Wang. Edm: An

endurance-aware data migration scheme for load balanc-

ing in ssd storage clusters. In 2014 IEEE 28th Interna-
tional Parallel and Distributed Processing Symposium,

pages 787–796, May 2014.

[38] Mayur R Palankar, Adriana Iamnitchi, Matei Ripeanu,

and Simson Garfinkel. Amazon s3 for science grids:

a viable solution? In Proceedings of the 2008 interna-
tional workshop on Data-aware distributed computing,

pages 55–64. ACM, 2008.

[39] Stan Park and Kai Shen. Fios: a fair, efficient flash i/o

scheduler. In FAST, volume 12, pages 13–13, 2012.

[40] Raghu Ramakrishnan, Baskar Sridharan, John R

Douceur, Pavan Kasturi, Balaji Krishnamachari-

Sampath, Karthick Krishnamoorthy, Peng Li, Mitica

Manu, Spiro Michaylov, Rogério Ramos, et al. Azure

data lake store: a hyperscale distributed file service for

USENIX Association 18th USENIX Conference on File and Storage Technologies 265

big data analytics. In Proceedings of the 2017 ACM
International Conference on Management of Data,

pages 51–63. ACM, 2017.

[41] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh

Balakrishnan, and Ted Wobber. Extending ssd lifetimes

with disk-based write caches. In FAST, volume 10, pages

101–114, 2010.

[42] Arash Tavakkol, Mohammad Sadrosadati, Saugata

Ghose, Jeremie Kim, Yixin Luo, Yaohua Wang,

Nika Mansouri Ghiasi, Lois Orosa, Juan Gómez-Luna,

and Onur Mutlu. Flin: Enabling fairness and enhancing

performance in modern nvme solid state drives. In 2018
ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pages 397–410. IEEE,

2018.

[43] Seagate Technology. Enhanced caching advan-

tage—turboboost and advanced write caching.

pages 2–3, 2016. https://www.seagate.
com/files/www-content/product-content/
enterprise-performance-savvio-fam/
enterprise-performance-15k-hdd/
_cross-product/_shared/doc/
enchanced-cache-advantage-tp691.1-1610us.
pdf.

[44] Seagate Technology. Barracuda pro compute sata

hdd data sheet. pages 2–3, 2018. https://www.
seagate.com/www-content/datasheets/pdfs/
barracuda-pro-14-tb-DS1901-9-1810US-en_US.
pdf.

[45] Seagate Technology. Barracuda compute sata

product manual. pages 7–8, 2019. https://www.
seagate.com/www-content/product-content/
desktop-hdd-fam/en-us/docs/100799391e.pdf.

[46] Hua Wang, Ping Huang, Shuang He, Ke Zhou, Chunhua

Li, and Xubin He. A novel i/o scheduler for ssd with

improved performance and lifetime. In 2013 IEEE 29th
Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–5. IEEE, 2013.

[47] Hui Wang and Peter Varman. Balancing fairness and ef-

ficiency in tiered storage systems with bottleneck-aware

allocation. In Proceedings of the 12th {USENIX} Con-
ference on File and Storage Technologies ({FAST} 14),
pages 229–242, 2014.

[48] Yeong-Jae Woo and Jin-Soo Kim. Diversifying wear in-

dex for mlc nand flash memory to extend the lifetime of

ssds. In Proceedings of the Eleventh ACM International
Conference on Embedded Software, page 6. IEEE Press,

2013.
[49] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng

Wu. Lessons and actions: What we learned from 10k

ssd-related storage system failures. In 2019 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 19),
pages 961–976, 2019.

[50] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao

Tong, Swaminathan Sundararaman, Andrew A Chien,

and Haryadi S Gunawi. Tiny-tail flash: Near-perfect

elimination of garbage collection tail latencies in nand

ssds. ACM Transactions on Storage (TOS), 13(3):22,

2017.

[51] Pan Yang, Ni Xue, Yuqi Zhang, Yangxu Zhou, Li Sun,

Wenwen Chen, Zhonggang Chen, Wei Xia, Junke Li,

and Kihyoun Kwon. Reducing garbage collection over-

head in {SSD} based on workload prediction. In 11th
{USENIX} Workshop on Hot Topics in Storage and File
Systems (HotStorage 19), 2019.

[52] Puyuan Yang, Peiquan Jin, Shouhong Wan, and Lihua

Yue. Hb-storage: Optimizing ssds with a HDD write

buffer. In Web-Age Information Management - WAIM
2013 International Workshops: HardBD, MDSP, BigEM,
TMSN, LQPM, BDMS, Beidaihe, China, June 14-16,
2013. Proceedings, pages 28–39, 2013.

[53] Yang Yang, Qiang Cao, Hong Jiang, Li Yang, Jie Yao,

Yuanyuan Dong, and Puyuan Yang. Bfo: Batch-file

operations on massive files for consistent performance

improvement. In 35th International Conference on Mas-
sive Storage Systems and Technology (MSST’19), 2019.

[54] Young Jin Yu, Dong In Shin, Hyeonsang Eom, and

Heon Young Yeom. Ncq vs. i/o scheduler: Prevent-

ing unexpected misbehaviors. ACM Transactions on
Storage (TOS), 6(1):2, 2010.

[55] Shengan Zheng, Morteza Hoseinzadeh, and Steven

Swanson. Ziggurat: a tiered file system for non-volatile

main memories and disks. In 17th {USENIX} Confer-
ence on File and Storage Technologies ({FAST} 19),

pages 207–219, 2019.

266 18th USENIX Conference on File and Storage Technologies USENIX Association

