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Abstract—With the advent of new flash-based memory tech-
nologies with ultra-low latency, directly applying inline data
deduplication in flash-based storage devices can degrade the
system performance since key deduplication operations lie on
the shortened critical write path of such devices. To address
the problem, we propose a Content-Aware Garbage Collection
scheme (CAGC), which embeds the data deduplication into
the data movement workflow of the Garbage Collection (GC)
process in ultra-low latency flash-based SSDs. By parallelizing
the operations of valid data pages migration, hash computing
and flash block erase, the deduplication-induced performance
overhead is alleviated and redundant page writes during the
GC period are eliminated. To further reduce data writes and
write amplification during GC, CAGC separates and stores data
pages in different regions based on their reference counts. The
performance evaluation of our CAGC prototype implemented in
FlashSim shows that CAGC significantly reduces the number of
flash blocks erased and data pages migrated during GC, leading
to improved user I/O performance and reliability of ultra-low
latency flash-based SSDs.

Index Terms—Ultra-Low Latency Flash-based SSDs, Garbage
Collection, Data Deduplication, Reference Count, Data Placement

I. INTRODUCTION

Flash memory technology is disrupting the storage media

market, leading to a significant evolutionary investment and

innovation in the storage systems market [7]. Flash-based

Solid State Disks (SSDs) have emerged as attractive alterna-

tives to Hard Disk Drives (HDDs), increasingly replacing or

coexisting with HDDs in smartphones, personal laptops, enter-

prise storage systems and large-scale data centers [14], [28].

However, due to the unique features of flash memory, such

as asymmetric read-write performance, limited erase cycles,

and garbage collection, data writing has an important impact

on the performance and reliability of flash-based SSDs [1],

[27], [30], [31]. Due to its ability to identify and reduce the

writing of redundant data pages, the inline data deduplication

technology can obviously improve the storage efficiency and

reliability of flash-based memory systems, attracting extensive

attention from both academia and industry [2], [11]. While

inline data deduplication effectively reduces the amount of

redundant write data to a flash storage device, it also increases

the write response times due to the additional and expensive

overhead of fingerprint calculations and lookup operations on

the critical write path [37].

In order to address the aforementioned problems, re-

searchers have proposed to use hardware coprocessors and

sampling techniques to reduce the latency overhead caused by

hash fingerprint calculations. For example, both CA-SSD [11]

and paper [18] use on-chip hash calculation coprocessors to

speed up the hash fingerprint calculation. CA-FTL [2] uses

sampling and pre-hash techniques to reduce the number of

data blocks that need expensive fingerprint calculation, thus

reducing the latency overhead of fingerprint processing. How-

ever, the hash-coprocessor schemes introduce extra hardware

overhead, and the sampling technique also needs to perform

the hash fingerprint calculation on other data blocks. None

of them can eliminate the latency overhead caused by the

fingerprint calculation and lookup operations along the write

I/O path.

With the rapid development and application of new flash

storage technologies, such as Z-NAND and XL-Flash [4],

[42], the performance of solid-state disks based on these flash

medias has been improved so vastly that they are now referred

to as ultra-low latency flash-based SSDs [13], [21]. However,

directly applying the inline data deduplication technology

to ultra-low latency flash-based SSDs will notably increase

the response latency of user requests because the ultra-low

latency on the critical path makes the deduplication-induced

latency overhead much more pronounced, thus reducing the

performance of deduplication-based flash storage devices. Pre-

liminary experimental results show that a direct application of

the inline data deduplication technology on Samsung Z-NAND

SSDs increases the response latency by up to 71.9%, with an

average increase of 43.1%.

In addition to the user’s read and write requests, the flash-

based SSDs also need to perform GC operations to reclaim

the invalid data pages, and perform block erase operations to

free up space for subsequent new user write data. Generally

speaking, the GC procedure includes selecting the victim flash

block, migrating the valid data pages in the victim flash block

to other free flash blocks, erasing the victim flash block and

marking it as free. The basic unit of erase operation is a flash

block consisting multiple (hundreds of) pages, while the basic

unit of a read and write request is a page. The latency of a

block erase operation is an order of magnitude higher than that

of a read or write request [1]. Thus, GC operations are very

time-consuming background tasks inside flash-based SSDs

that directly affect the foreground user read and write requests,
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which significantly increases the user request response times

and causes serious performance variability.

In view of the above challenges facing the direct application

of the data deduplication technology in ultra-low latency flash-

based SSDs, this paper proposes a two-pronged approach

called Content-Aware Garbage Collection scheme (CAGC).

On one hand, CAGC embeds the data deduplication technol-

ogy into the GC process, which not only hides the overhead of

fingerprint calculation, but also eliminates the write operations

of redundant data pages. On the other hand, by exploiting the

reference count feature of the data deduplication technology

and grouping flash blocks into hot and cold regions, data pages

with similar reference counts (larger than a threshold) are

stored together in flash blocks of the cold region, and data

pages with reference count of exactly 1 are stored together

in flash blocks of the hot region. The overhead of moving

data pages with high reference counts during GC is reduced

because these data pages with high reference counts are

usually much less likely to become invalid (as elaborated in

Section III-C), which further improves the GC efficiency of

ultra-low latency flash-based SSDs. The performance results

show that the CAGC scheme significantly reduces the number

of flash blocks erased and data pages migrated during GC,

thus improving the performance and reliability of ultra-low

latency flash-based SSDs. This paper makes the following

contributions:

(1) From our preliminary experiments, we find that inline

data deduplication significantly degrades the perfor-

mance of ultra-low latency flash-based SSDs.

(2) To address the above challenge when directly apply-

ing data deduplication for ultra-low latency SSDs, we

propose a content-aware GC scheme by exploiting the

features of both GC and data deduplication.

(3) We conduct extensive experiments on a lightweight

CAGC prototype and the evaluation results show that

CAGC significantly improves the GC efficiency for

ultra-low latency SSDs.

The rest of this paper is organized as follows. Background

and motivation are presented in Section II. We describe

the design details of the Content-Aware Garbage Collection

scheme in Section III. The performance evaluation is presented

in Section IV. The related work is presented in Section V. We

conclude this paper in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we first describe the development of ultra-

low latency flash-based SSDs. Then we elaborate on why

inline data deduplication is not suitable for ultra-low la-

tency flash-based SSDs. Finally, we present the GC workflow

in flash-based SSDs to motivate our new Content-Aware

Garbage Collection optimization for ultra-low latency flash-

based SSDs.

A. Ultra-low latency flash-based SSDs

With the advent of Samsung’s Z-NAND and Toshiba’s XL-

Flash technologies, the I/O latency of Ultra-Low Latency
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Fig. 1. An example of how data deduplication works.

(ULL) SSDs can be up to 10 times shorter than that of a

high-performance NVMe SSD [13], [21], [42]. For example,

Samsung’s Z-NAND completes a 4KB-sized read service

within 3us [4] while a general high-performance NVMe SSD

completes an I/O service within 47-52us, including data trans-

fer and FTL execution latencies [42]. In addition, other flash

memory vendors also develop and promote low-latency flash

memory chips, such as Toshiba’s XL-Flash technology [42].

Although ultra-low latency SSDs have low read and write

latency, they are very sensitive to the amount of write data due

to the asymmetric read and write performance and the limited

endurance (erase cycles) of flash memory. The amount of data

written to the flash memory directly affects the performance

and reliability of flash-based SSDs. Therefore, reducing the

amount of write data helps improve the performance and

reliability of flash-based SSDs and extend their life.

B. Inline data deduplication for flash storage

Inline data deduplication means that data deduplication

process is performed on the user write path before the data

is written to the storage devices. Data deduplication is a

specific type of data compression. It splits files into multiple

data chunks that are uniquely identified by a fingerprint

(i.e., a hash signature) of each individual data chunk. The

redundant data chunks in a file are replaced by pointers to

their stored unique copies. Figure 1 shows an example of how

data deduplication works. The data deduplication technology

has been demonstrated to be very effective in shortening the

backup window and saving the network bandwidth and storage

space in cloud backup, archiving and primary storage systems

(e.g. flash-based storage systems).

Recent studies have shown that the ability of data dedu-

plication to reduce the write traffic can significantly improve

the performance and reliability of the flash storage systems. In

fact, inline data deduplication has become a commodity feature

in flash-based storage products for many leading companies,

such as HPE Nimble Storage [34] and Pure Storage [5], [6],

for the purpose of enhancing system performance, reliability

and space efficiency.

However, despite of its great benefits, data deduplication has

two important drawbacks, namely, expensive calculation and

memory overheads on the critical I/O path, which adversely

affects the performance of systems, especially for ultra-low

latency flash-based SSDs. With the Z-NAND and XL-Flash

technologies, the I/O latency of next-generation flash storage is

significantly lower than earlier generations. On the other hand,
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Fig. 2. The performance results of an ultra-low latency flash-based SSD with
(Inline-Dedup) and without (Baseline) inline data deduplication, normalized
to Baseline.

the hash computing latencies of SHA-1/256 in deduplication-

based systems remain largely unchanged, especially for the

limited computing capability in flash-based SSDs. As a result,

the performance bottleneck has been shifted from the flash

storage to the deduplication process in such ultra-low latency

flash storage systems [37].

Figure 2 shows the normalized performance results of an

ultra-low latency flash-based SSD with and without inline data

deduplication, driven by three FIU workloads [9]. We can see

that inline data deduplication degrades the system performance

for all the three workloads, even for the Mail workload with

a 93% deduplication ratio. The reason is that all the incoming

data blocks must go through the expensive hash computing

and search processes whose latency is much larger than the

I/O latency of the ultra-low latency flash storage.

C. Garbage collection and motivation

Due to the unique physical features of NAND flash, write

requests are serviced out-of-place rather than in-place. In flash-

based SSDs, data can only be written to erased pages (a.k.a.,
free pages), where the in-place (before-write) pages become

invalid (stale) after out-of-place write operations. After that,

the invalid pages in a block, called a victim flash block,

must be freed by copying (reads followed by writes) the

data of the valid pages in the victim block into a free block

before the victim block is erased, which makes free block

available for subsequent write data. This process is known as

garbage collection process that significantly affects the user

I/O performance of SSD-based storage systems [15], [23],

[39].

Reclaiming space used by invalid data without losing valid

data is a major performance bottleneck in GC for flash storage

devices. Thus, a typical victim flash block selection algorithm

usually chooses the flash blocks that contain the maximum

invalid data pages while simultaneously considering the block

erase count and age information [33], [17], [10]. There are

three main approaches that existing victim-block selection

algorithms taking for garbage collection in flash-based SSDs.

The first one, referred to as random approach, randomly

selects the victim blocks with invalid pages for erasing, for

ease of wear leveling and low selection overhead [29]. The

second one selects the victim blocks with the most invalid
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Fig. 3. 3 steps of a typical garbage collection process in SSDs.

pages, thus called greedy approach [10]. However, since the

cold data pages of the CAGC system are stored together and

the cold data pages are less likely to be invalidated, the use

of greedy algorithms may lead to an uneven wear-leveling

problem. To address this problem, a third approach, cost-
benefit approach, is proposed to comprehensively consider

both the number of invalid pages in the victim flash block

and the erasing history of the flash block to decide which

flash block is selected to be erased [16].

Equally important, since each memory cell in a flash block

has a limited number of erase cycles (before the cell becomes

unusable), GC also significantly affects the reliability (i.e.,

endurance) of SSD-based storage systems. Therefore, how to

address the performance and reliability issues caused by GC

of SSDs has become a critically important challenge when

deploying flash-based SSDs in HPC and enterprise storage

systems [19], [41].

Figure 3 shows the 3 steps of a typical GC process in SSDs,

that is: (1) select the victim flash block to be erased; (2) read

the valid data pages in the victim flash block and write them

to other free flash blocks; (3) erase the victim flash block to

mark it a free and available one for subsequent write data.

Among the 3 steps, the erase latency of the flash block is the

largest, usually at the ms level, which is much greater than

the read and write latency of the flash page, usually at the us
level.

With the development and application of the ultra-low

latency Z-NAND and XL-Flash technologies that greatly am-

plifies the hash compute latency of the data deduplication

process as it lies on the write critical path, it is no longer

advisable to directly apply data deduplication to flash-based

SSDs based on such technologies. To address the problem,

we propose a Content-Aware Garbage Collection scheme,

called CAGC, to embed the data deduplication into the data

movement workflow of the GC process in ultra-low latency

flash-based SSDs. The main idea behind CAGC is to hide

the hash compute overhead by computing hash values of data

chunks in parallel with the relatively long-latency operations

of valid-page copying and flash block erase, thus alleviat-

ing the performance degradation induced by the inline data

deduplication operations. To further reduce data writes, CAGC

divides and writes data pages into hot or cold region based on
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Fig. 4. Systems architecture of CAGC.

their reference counts, which improves the GC efficiency and

reduces the write amplification.

III. DESIGN OF CAGC

In this section, we first present a system overview of the pro-

posed Content-Aware Garbage Collection (CAGC), followed

by a description of workflow in CAGC. The reference count-

based data page placement strategy of CAGC is illustrated at

the end of this section.

A. System overview

The main idea behind the CAGC scheme is to remove

the data deduplication operation from the foreground critical

I/O path and embed it into the background GC process in

ultra-low latency flash-based SSDs. CAGC not only hides the

entire deduplication-induced overheads, but also avoids the

negative impact of inline data deduplication on the user I/O

performance. Meanwhile, CAGC leverages the characteristics

of data page reference counts to separate the data pages with

different reference counts into cold or hot region, which further

reduces the number of valid data pages copied and the number

of flash blocks erased during the GC period, thus improving

both the performance and reliability of ultra-low latency flash-

based SSDs.

Figure 4 shows the system architecture overview of CAGC,

which mainly consists of three modules, i.e., Garbage Collec-

tion module, Data Deduplication module and Page Placement

module. The Garbage Collection module is mainly responsible

for selecting the victim flash blocks to be freed, migrating the

valid data pages in the victim flash blocks, and then erasing

these victim flash blocks. The Data Deduplication module is

mainly responsible for conducting data deduplication and the

valid data page migrations during the GC period to eliminate

the write operations of redundant data pages, and passing the

reference count information of the data pages to the Page

Placement module. The Page Placement module is responsible

for organizing and managing the data pages in the flash blocks

according to the reference count. As shown in Figure 4, CAGC
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Fig. 5. The workflow of content-aware garbage collection.

is located in the Flash Translation Layer (FTL) of SSDs.

Although CAGC takes garbage collection as the one of its

central component, it does not change the internal SSD GC

workflow and algorithm. Therefore, CAGC is orthogonal to

and easily incorporated with any existing GC algorithms, to

further improve the GC efficiency.

As shown in Figure 4, the Hot Region refers to the group

of flash blocks whose data pages are frequently updated to

become invalid, and the Cold Region refers to the group of

flash blocks whose data pages are rarely updated or deleted.

When a file is deleted, the reference count of the pages

related the file will only be decremented by 1 from its current

reference counts. A page becomes invalid only when its

reference count is reduced to 0, meaning that a data page with

a high reference count will not likely be invalidated. Therefore,

as shown in Figure 4, those data pages with a reference count

of 1 are stored in the Hot Region, and those data pages with

a higher reference count are stored in the Cold Region.

B. Workflow of content-aware garbage collection

In addition to serving user read and write requests, flash-

based SSDs also need to conduct GC internally to release those

flash blocks occupied by invalid data pages, so that those flash

blocks can be reused for subsequent write data. Generally,

flash-based SSDs utilize the system idle periods to conduct

GC in the background to reclaim invalid data pages to obtain

free space. However, when the free space in the SSD is lower

than a preset threshold, the GC process is triggered to select

the victim flash blocks that meet certain conditions specified

by a given GC algorithm.

Figure 5 shows the workflow of content-aware garbage

collection. When a victim flash block to be erased is selected,

the valid data pages are read and the hash fingerprints of these

data pages are calculated. Then CAGC searches the fingerprint

in the fingerprint index to determine whether it is redundant
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(hit/matched) or not (missed/unmatched). If the data page is

not redundant, CAGC writes the data page into the hot region

and updates the fingerprint index. Otherwise, CAGC does not

write the data page but simply updates the corresponding

metadata, including increasing the reference count.

At the same time, when the reference count of the redundant

data page is equal to the preset threshold, the data page will

be migrated to the Cold Region before the victim flash block

is erased. After all valid pages in the victim flash block have

been migrated, the victim flash block is erased.

The flash-block erase time is generally at the millisecond

level, which is much higher than the microsecond-level calcu-

lation and search overhead of the hash fingerprint. This indi-

cates that embedding the data deduplication process into the

GC process does not cause significant performance overhead.

On the contrary, by using the CAGC scheme, redundant data

pages will not be repeatedly written, thus improving the GC

efficiency for ultra-low latency flash-based SSDs.

C. Reference count-based data page placement

The reference count of a given data page in data dedupli-

cation indicates how many different files share this data page.

Intuitively, the higher the reference count for a page is, the

smaller the possibility of this data page being deleted (i.e.,

that of all files sharing this page being deleted). It will also

be verified empirically next.

Figure 6 shows the distribution of invalid data pages gen-

erated from pages of different reference count for the three

FIU traces. More than 80% of invalid data pages come from

flash pages with a reference count of 1, while the percentage

of invalid data pages from a reference count of 3 or more is

less than 1%. The analysis on these workloads shows that data

pages with higher reference count have a much longer lifetime

than data pages with lower reference count, and are less likely

to become invalid. Therefore, data pages with high reference

counts can be considered as cold data pages and stored in

the Cold Region. In addition, the data pages with a reference

count equal to or lower than a preset threshold (e.g., 1) can

be considered as hot data pages and stored in the Hot Region.

The data pages in the Hot Region have higher update

frequency and higher probability of being invalid than those in

the Cold Region. Therefore, the flash blocks in the Hot Region
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Fig. 7. An example of reference count-based data page placement.

are desirable candidates for victim blocks since they are likely

to contain very few valid pages that need to be migrated.

Besides, each deletion or update operation on a flash data

page in the Cold Region will only cause its reference count

to be decremented by 1, rather than invalidating the page,

meaning that the corresponding flash block will not likely have

any invalid data pages. Thus, CAGC can reduce the number

of valid data pages migrated and the number of flash blocks

erased during GC.

Figure 7 shows an example of reference count-based data

page placement, and the Set refers to an area composed of

multiple flash blocks. In the traditional deduplication-based

flash storage, data pages with different reference count are

mixed and stored together. CAGC embeds the reference count-

based data page placement along with the migration process

of valid data pages during the GC period, thus eliminating

the additional data page read and write operations from flash

storage.

As shown in Figure 7, the reference count information of

each data page can be obtained from the fingerprint index in

deduplication-based storage systems. Then the reference count

will be compared with a preset reference count threshold (e.g.,

1). If it is larger than the threshold, the data page will be

stored in the Cold Region. Otherwise, it will be stored in the

Hot Region. By exploiting the reference count feature of data

deduplication to guide the data page placement and leveraging

the capacity optimization advantages of the data deduplication

technology, the performance and reliability of the ultra-low

latency flash-based SSDs can be further improved.

Figure 8 shows an example of the comparison between the

traditional GC scheme and the CAGC scheme of writing 4 files

and then deleting 2 of them. In the traditional SSD GC scheme,

since the content redundancy of data pages is not known, data

pages with the same content are redundantly stored. After

some files are deleted or updated, invalid data pages appear

in many different flash blocks. Therefore, it needs to migrate

many more valid data pages and erase many more flash blocks

than CAGC during the GC period.

As shown in Figure 8(a), the traditional GC process requires

12 valid data page write operations and 2 flash block erase

operations, but only 6 flash data pages are freed. By contrast,

CAGC can conduct data deduplication for the migrated data

pages during the GC period, thus eliminating redundant flash

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 09,2021 at 19:25:58 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE I
THE CONFIGURATION OF SSD

Type Value Type Value

Page Size 4KB Read 12us

Block Size 256KB Write 16us

OP Space 7% Erase Delay 1.5ms

Capacity 80GB Hash 14us

Workloads FIU [9] GC Watermark 20%

page write operations. As shown in Figure 8(b), CAGC only

needs 7 valid data page write operations and 1 flash block erase

operation in the GC process, and 11 flash data pages can be

freed. Compared with the traditional SSD garbage collection

scheme, CAGC can significantly improve the GC efficiency.

IV. PERFORMANCE EVALUATIONS

In this section, we first describe the experimental setup and

methodology. Then we evaluate the performance and effective-

ness of our proposed CAGC scheme driven by deduplicating

workloads (i.e., workload traces collected from real production

systems but instrumented to enable content identification as

explained later), including the comparison in the number of

flash blocks erased and the number of pages written during

GC. We present the testing and analysis of sensitivity study at

the end of this section.

A. Experimental setup and methodology

We implement a prototype system of CAGC, which is

extended on the basis of an event-driven simulator for flash-

based SSDs, FlashSim [20]. It has built in various FTL

management strategies and can generate response time, num-

ber of flash blocks erased and many additional performance

statistics. Based on the performance parameters of Samsung’s

commercially available Z-NAND flash memory, the specific

parameter settings of the ultra-low latency flash-based SSD in

the experiment are shown in Table I.

We replay the deduplicating workloads to evaluate the

performance of the CAGC prototype system. In the trace-

driven experiments, the three traces were obtained from the

TABLE II
THE WORKLOAD CHARACTERISTICS

Traces Write Ratio Dedup. Ratio Aver. Req. Size

Mail 69.8% 89.3% 14.8KB

Homes 80.5% 30.0% 13.1KB

Web-vm 78.5% 49.3% 40.8KB

SyLab of FIU [22] and cover a duration of three weeks.

They were collected from a virtual machine running a file

server (Homes), two web-servers (Web-vm) and an email

server (Mail), respectively. Each request in the traces includes

the hash value of the requested data. The characteristics of

the three traces are shown in Table II [9], [22]. The FIU

workloads with fingerprints have been widely used in the

storage community to study the performance of deduplication-

based storage systems.

In the experiments, we compare CAGC with the ultra-low

latency flash-based SSDs without embedding the inline data

deduplication during the GC process (Baseline), and the ultra-

low latency flash-based SSDs with inline data deduplication

embedded on the foreground user write path (Inline-Dedupe).

By default, almost all the experiments in this paper are based

on the greedy algorithm to select the victim flash block for

all the schemes. The sensitivity study on different victim

flash block selecting algorithms is presented and analyzed in

Section IV-C.

B. Performance result and analysis

Figure 9 compares CAGC with the Baseline system in terms

of the number of flash blocks erased, driven by the three

deduplicating workloads. CAGC erases significantly smaller

numbers of flash blocks than the non-deduplication Baseline

system, by 23.3%, 48.3%, and 86.6%, under the Homes, Web-

vm, and Mail workloads, respectively. CAGC performs data

deduplication during the data page migration process of the

SSD GC periods, which reduces the writing of redundant data

pages and further reduces the number of erased flash blocks.

For the Mail workload with highest deduplication ratio, CAGC

reduces the largest number of erased flash blocks.
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Fig. 10. The number of data pages migrated during GC.

Moreover, CAGC separates the flash data pages based on

different reference counts and stores them in different regions,

i.e., hot region and cold region. The greedy algorithm always

selects the victim flash block that contains the most invalid

data pages, thus CAGC further reduces the number of valid

data page migrations during GC periods and greatly reduces

the number of erased flash blocks.

CAGC reduces the number of flash blocks erased during GC

because of the following two reasons. First, CAGC is based

on data deduplication that significantly reduces the redundant

data page write operations during GC periods. Figure 10

shows a comparison of the number of data pages migrated

during GC periods driven by the three workloads. As shown

in Figure 10, compared with the Baseline system, CAGC

reduces the number of data pages migrated by 35.1%, 47.9%,

and 85.9%, under the Homes, Web-vm, and Mail workloads,

respectively. Figure 10 shows that for the Mail workload,

CAGC greatly reduces the number of data pages migrated.

The reason is that the data deduplication ratio of the Mail

workload is over 90%, which indicates that CAGC can avoid

a large number of data pages migrated during GC.

Second, the reference count-based data page placement in

CAGC can effectively separate the hot and cold data pages

and store them in different flash regions, thus significantly

reducing the number of data pages migrated and the number

of flash blocks erased during GC periods.

It is worth noting that CAGC’s notable improvement on

the GC efficiency, by reducing the numbers of blocks erased
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Fig. 11. A comparison of the normalized average response times.

and data pages migrated, can greatly minimize GC’s negative

impact to application’s request response time [38]. This is

because GC operations in flash-based SSDs, including flash

blocks erase and migration of valid pages, are very time-

consuming background tasks that content for SSD internal

bandwidth and directly interfere with the foreground user I/O

requests.

In order to study the performance impact of different GC

schemes on the average response times, Figure 11 shows a

comparison of the normalized average response times during

the SSD GC periods driven by the three deduplicating work-

loads. Compared with the Baseline system, CAGC reduces

the average user response times during GC periods by 33.6%,

29.6%, and 70.1%, under the Homes, Web-vm, and Mail

workload, respectively.

The main reasons are twofold. First, CAGC improves the

GC efficiency by applying data deduplication during the

migration of valid data pages to eliminate the write operations

of redundant data pages. Thus, fewer but invalid-page-filled

flash blocks are erased, meaning that the same amount of

free space is claimed by a smaller number of erased blocks.

Moreover, resource contention among user requests is also

alleviated. User read and write requests can occupy more SSD

internal resources (bandwidth). Therefore, CAGC effectively

reduces the performance impact of GC operations on user read

and write requests during GC periods.

Second, by improving the GC efficiency, CAGC also sig-

nificantly shortens the GC duration. Since the migration of

valid data pages and the erasing of flash blocks take a long

time during GC periods, user read and write requests are

significantly affected by the GC operations. By using data

deduplication technology and reference count-based data page

placement, CAGC significantly reduces the number of data

pages migrated and flash blocks erased, thus speeding up

the GC process. Meanwhile, CAGC also reduces the time

length when user performance is degraded. In general, by both

reducing the user request response time during GC periods and

shortening the GC duration, CAGC significantly improves the

user performance.

As shown in Figure 11, for the Mail workload, CAGC

has the lowest user response time. Figure 11 also shows that

inline data deduplication degrades the user performance for

ultra-low latency flash-based SSDs. Especially for the Homes
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Fig. 12. Cumulative distribution function (CDF) of the response times for the Baseline system and CAGC schemes driven by the three deduplicating workloads,
where the X-axis indicates the request response time and the Y-axis indicates the sum of the distribution up to a given corresponding value on the X-axis.

and Web-vm workloads with moderate data redundancy, the

response times have increased by more than 50%. Ultra-low

latency flash-based SSDs are generally used in primary storage

systems, such as the enterprise-level and data center servers

where the data deduplication ratio is moderate.

Therefore, although applying inline data deduplication on

these ultra-low latency flash-based SSDs can save storage

capacity and reduce the write traffic, it also significantly

increases the user response time and thus reducing the storage

system performance. This is counter to the purpose of using

ultra-low latency flash-based SSDs in these environments, and

users cannot tolerate it. Different from inline data deduplica-

tion, CAGC applies data deduplication in the GC process for

ultra-low latency flash-based SSDs, which can not only reduce

the impact of data deduplication on the SSD performance, but

also improve the GC efficiency and storage efficiency.

In modern large-scale storage systems, such as Google,

Facebook and Amazon, the long tails of the service latency

have received particular attention [8]. With the wide deploy-

ment of flash-based storage devices in large-scale storage

systems, the tail latency of flash-based SSDs caused by GC

operations ought to be a very important consideration for the

design of flash-based storage systems [12], [39].

To investigate the impact of CAGC on tail latency under

different workloads, we plot the Cumulative distribution func-

tion (CDF) of the response times for the Baseline system and

CAGC scheme in Figure 12 driven by the three workloads.

CAGC consistently and significantly outperforms the Baseline

system in terms of the tail latency performance. Especially,

the response time efficiency under the mail workload is signif-

icantly higher than the other two workloads. The main reason

is that under the other two workloads, the number of data

pages migrated and blocks erased are relatively small and the

difference is not much, leading the improvement of GC per-

formance weak comparing the mail workloads. For example,

Figure 12(c) shows that CAGC completes 80% user requests

within 0.02us, while the Baseline system completes 80% user

requests between 0.08us to 0.1us. Meanwhile, Since the tail

latency is mainly caused by the GC operations of flash-based

storage devices [39], improving the GC efficiency directly

reduces the tail latency. By embedding the data deduplication

process into the GC process, CAGC not only reduces flash

block erase count during GC periods, but also significantly

reduces the GC length, which directly alleviates the user

I/O performance degradations. As a result, CAGC reduces

the percentage of requests with long latency, especially for

deduplicating workloads with high data deduplication ratios,

such as the Mail workload.

C. Sensitivity testing and analysis

The performance of CAGC will be affected by several

design parameters, such as the selection algorithm (i.e., Ran-

dom, Greedy, and Cost-Benefit algorithm) for victim flash

blocks. Figure 13 shows a comparison of CAGC’s optimization

results under different victim flash block selection algorithms

in terms of number of flash blocks erase count, number of

pages migrated during GC, and the average response time.

Compared with the Baseline system, under all the three

flash block selection algorithms, CAGC effectively reduces

the number of flash blocks erased and the number of valid

data pages migrated during GC period. At the same time,

CAGC effectively reduces the average user response time.

The reason is that CAGC uses data deduplication to exploit

data redundancy in primary storage systems, and uses the data

reference count characteristics to effectively separate the hot

and cold flash data pages, which greatly improves the GC

efficiency of ultra-low latency flash-based SSDs. Moreover,

CAGC can be easily applied to different SSD GC algorithms,

such as different selection algorithms for victim flash blocks.

V. RELATED WORK

GC is very time-consuming and thus a key performance

bottleneck of flash-based SSDs. For traditional flash mem-

ory to flash-based SSDs, many studies have been conducted

to optimize the GC efficiency or alleviate the GC-induced

performance degradation [3], [19], [24], [31], [36], [38],

[39], [41]. Generally speaking, existing studies addressing the

GC-induced problems in flash-based SSDs can be classified

into three categories, namely, optimizing the GC algorithms,

optimizing the GC workflow and reducing the write traffic to

flash.

First, optimizing the GC algorithms can directly improve the

GC efficiency of flash memory. These optimizations usually

focus on different steps of GC algorithms [10], [40]: when to

trigger the GC process, which flash block is selected to be
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Fig. 13. A comparison of the optimization results under different victim flash block selection algorithms in terms of the number of flash blocks erased, the
number of data pages migrated during GC, and the average response times.

erased, and how to merge the valid data pages, etc. Among

these proposed schemes, how to identify and store the hot

and cold data pages in different flash blocks is the key to

improve the GC efficiency. Different from the previous studies

that exploit the spatial locality based on logic block addresses,

CAGC exploits the content locality, expressed by the reference

counts in deduplicaiton-based memory systems, to identify the

hot and cold data pages. Thus, CAGC effectively reduces the

number of valid data pages migrated, which directly improves

the GC efficiency [24].

Second, due to the long tail latencies of GC operations,

user read and write requests are significantly affected by

the on-going flash block erase operations. To alleviate the

GC-induced user performance degradation, schemes such as

semi-preemption GC [23], erase suspension [35] and partial-

erase [24] are proposed to give higher priority to serve user

I/O requests. By suspending the on-going flash block erase

operations, internal flash resources can be allocated to serve

user I/O requests much more efficiently. However, all these

schemes only change the GC workflow to alleviate the user

performance degradation but do not improve the GC efficiency.

Third, GC operations are also affected by the write data

volume. Reducing the write data can directly reduce GC op-

erations. Thus, schemes such as write buffer with hard drive or

non-volatile memory [32], [36], inline data compression [25]

and inline data deduplication [2], [11], [26] are applied to

reduce the write traffic of flash-based SSDs. However, with

the emergence of ultra-low latency flash-based SSDs, inline

data reduction with its operations lying on the critical I/O path

will introduce significant performance overhead for ultra-low

latency flash-based SSDs. By contrast, CAGC embeds the data

deduplication into the GC process to hide the deduplication-

induced performance overhead by exploiting parallelism, while

reaping the benefits of deduplication-introduced data reduc-

tion.

VI. CONCLUSION

With the advent of Samsung’s Z-NAND and Toshiba’s

XL-Flash technologies, directly applying inline data dedu-

plication in these ultra-low latency flash-based SSDs can

degrade the storage performance. To address the problem,

this paper proposes a Content-Aware Garbage Collection tech-

nology (CAGC) that embeds the data deduplication into the

GC process to hide the performance overhead. Meanwhile,

CAGC uses the reference count-based data page placement to

exploit the reference count feature in deduplicating storage

systems, which effectively separates the hot and cold data

pages. Thus, CAGC can further reduce the number of data

page write operations and the block erase count during the

SSD garbage collection period. The performance results on a

CAGC prototype implemented in FlashSim show that CAGC

effectively reduces the numbers of flash blocks erased and

valid pages migrated during the SSD GC period, thus further

improving the user I/O performance and reliability for ultra-

low latency flash-based SSDs.
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