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Abstract
The emergence of Intel’s Optane DC persistent memory
(Optane Pmem) draws much interest in building persistent
key-value (KV) stores to take advantage of its high through-
put and low latency. A major challenge in the efforts stems
from the fact that Optane Pmem is essentially a hybrid stor-
age device with two distinct properties. On one hand, it is
a high-speed byte-addressable device similar to DRAM. On
the other hand, the write to the Optane media is conducted
at the unit of 256 bytes, much like a block storage device.
Existing KV store designs for persistent memory do not take
into account of the latter property, leading to high write
amplification and constraining both write and read through-
put. In the meantime, a direct re-use of a KV store design
intended for block devices, such as LSM-based ones, would
cause much higher read latency due to the former property.
In this paper, we propose ChameleonDB, a KV store de-

sign specifically for this important hybrid memory/storage
device by considering and exploiting these two properties
in one design. It uses LSM tree structure to efficiently admit
writes with low write amplification. It uses an in-DRAM
hash table to bypass LSM-tree’s multiple levels for fast reads.
In the meantime, ChameleonDB may choose to opportunis-
tically maintain the LSM multi-level structure in the back-
ground to achieve short recovery time after a system crash.
ChameleonDB’s hybrid structure is designed to be able to
absorb sudden bursts of a write workload, which helps avoid
long-tail read latency.
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Our experiment results show that ChameleonDB improves
write throughput by 3.3× and reduces read latency by around
60% compared with a legacy LSM-tree based KV store design.
ChameleonDB provides performance competitive even with
KV stores using fully in-DRAM index by using much less
DRAM space. Compared with CCEH, a persistent hash table
design, ChameleonDB provides 6.4× higher write through-
put.
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1 Introduction
Intel Optane DC persistent memory, or Optane Pmem for
short, is the first commercially available persistent byte-
addressable memory [37]. Compared with traditional storage
devices, it has higher write throughput, much lower read
latency, and can be accessed by processors directly. With the
emergence of Optane Pmem, it becomes possible to build a
key-value (KV) store with high write throughput, low read
latency, low DRAM footprint, and rapid recovery and restart
after a system crash. However, existing KV store designs face
three key challenges in their exploitation of opportunities
enabled by the Optane Pmem to build such a KV store.

1.1 Challenge 1: Optane Pmem is a Block Device
Researchers had proposed a number of KV store designs for
persistentmemory before the release of the Optane Pmem [6]
in 2019. These designs are based on the assumption that per-
sistent memory is just a "slower, persistent DRAM" [37].
Accordingly, such a design usually builds a persistent hash
table or a persistent tree to index KV items in a storage log.
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Figure 1. Random write performance on one Optane Pmem
using different access size. For writes, we use ntstore fol-
lowed with a sfence instruction to ensure data persistency.
Performance degradation with a larger number of threads
and larger access sizes is due to contention in the iMC (inte-
grated Memory Controller).

While new KV items are written to the log in batches accord-
ing to their arrival order, corresponding updates on the index
are individually made at (usually) non-contiguous memory
locations (determined by hash functions or tree structures).
Examples include Level hashing [40] and CCEH [28] that
use hash tables, and wB+-Trees [1] and FAST&FAIR [15] that
use tree-structured indexes on the persistent memory with
proper schemes to guarantee data consistency. Unfortunately,
the aforementioned assumption on persistent memory is not
consistent with findings from studies on performance char-
acteristics of the first commercial persistent memory – the
Intel Optane Pmem.
It has been reported that Optane Pmem has a write unit

size of 256B [37]. To understand the implication of this per-
formance characteristic, we write data of a particular size to
randomly selected addresses that are aligned with the 256B
unit size. In the experiment, we vary the write size from 8B
to 128KB and use different numbers of threads so that the
memory’s peak bandwidth can be reached. Details of the
system configuration are described in Section 3. As shown in
Figure 1, when the write size is much smaller than 256B (the
unit size), the write throughput is much lower than that with
large writes (256B or larger). More interestingly, through-
put of 256B-writes roughly doubles that of the 128B-writes,
which further doubles that of the 64B-writes. This strongly
confirms the existence of the 256B access unit in the device.
Any non-contiguous writes of data smaller than the unit size
requires a read-modify-write operation to generate a 256B
write to the memory media, leading to write amplification
and reduced effective memory bandwidth.
This property causes KV-store designs assuming Optane

Pmem to be a DRAM with persistence to suffer from perfor-
mance loss on writes [3], in principle similar to that experi-
enced with small writes to other block devices such as hard

disks and SSDs [33]. In particular, in the KV stores that em-
ploy persistent hash table or tree-based indexes, each update
to an index structure is usually much smaller (e.g., 16 bytes)
than Optane’s 256B unit size during key insertion, rehash-
ing, or tree re-balancing, leading to large write amplification
(e.g, 16). Failing to adequately take the device’s write unit
into account, these designs are unable to provide high write
performance.

1.2 Challenge 2: Optane Pmem is of High Speed
Major efforts have been made to address the issue of small
writes in a KV store on block storage devices, such as hard
disks and SSDs. Among them, LSM (Log-Structured Merge)-
tree based designs, such as LevelDB [13], RocksDB [11], Cas-
sandra [23], LSM-trie [34], and PebblesDB [31], are examples
in the research community and industry deployments. They
aggregate recent updates and batch-write them to the disk se-
quentially in an order determined either by key comparison
or by a hash function. As it is too expensive to maintain one
big sorted list, multiple and exponentially longer sorted lists
are maintained. Each list is in its dedicated level, starting at
level 0 (𝐿0) for the shortest one. Each lower level (e.g.,𝐿(𝑘+1))
has a capacity 𝑟 times larger than its immediate higher level
(𝐿(𝑘)), where 𝑘 ≥ 0. The 𝑟 value varies in different KV stores.
For example, in LevelDB and RocksDB 𝑟 = 10 [11, 13], while
in LSM-trie 𝑟 = 8 [34]. After KV items are written into the
store, they are initially in 𝐿0, and move through the hierar-
chy level by level in a sequence of compaction operations
until reaching the last level.

There are twomajor compaction schemes for the LSM-tree
structure with different implications on write amplification
and read performance, which are leveled [11, 13, 25] and
size-tiered [4, 11, 23, 27, 31, 34]. For the leveled compaction,
KV items in two adjacent levels are merge-sorted and then
re-inserted into the lower level. As the number of keys in the
lower level can be multiple times more than that in the upper
level, write amplification for each of such compactions can
be as large as 10 (in LevelDB as an example)1. In the size-
tiered compaction, each level consists of multiple sub-levels
with overlapping key range. Key merge-sort operation is
conducted among the sub-levels and the result KV items are
written as a new sub-level of its lower level. In this way, write
amplification in a compaction is always 1 1. While size-tiered
can significantly reduce extra writes, it also significantly
increases the number of (sub-)levels and potentially increases
cost to search a key in the store.
While an LSM-based design seems to be a good candi-

date for deployment at the Optane Pmem with its built-in
multi-level structure designed for block devices [21, 38], it
is unfortunately incompatible with Optane’s high read per-
formance. With its multi-level design, reading a key in an
LSM tree requires searching a sequence of levels, starting
1For the total write amplification, we should multiply this number with the
number of levels.

195



ChameleonDB: a Key-value Store for Optane Persistent Memory EuroSys ’21, April 26–28, 2021, Online, United Kingdom

(a) SATA SSD (b) PCIe SSD (c) Optane Pmem

Figure 2. Average read latency of a multi-level hash table design on various devices.

from 𝐿0, until the key is found or the last level is reached.
Aiming to have only one disk read per key search, it main-
tains in-DRAM Bloom filters for each block of KV items to
know if a key is likely to exist in the block at a level before
actually reading on-disk data from the level. Compared to
the millisecond-level disk access time, the nanosecond-level
cost of operations on the filters is negligible. As long as only
one disk read actually occurs, such a design achieves the
best possible read latency on KV items on the disk. How-
ever, the situation becomes vastly different when the storage
device is the Optane Pmem, whose read latency itself is at
the nanosecond level and is only about 3× of DRAM’s read
latency [37].

To understand the implication of Optane’s high-speed ac-
cess, we choose to build a hash-based KV store, LSM-trie [34],
with 7 levels on an SSD connected with a SATA interface,
a second one on an SSD with a PCIe interface, and a third
one on the Optane Pmem. We read keys at different levels
and report their read latency in Figure 2. As shown, the time
to read items from tables (denoted as "Table Read" in the
figures) is highly consistent no matter which level the keys
reside as only one disk (or Pmem) read is required. As shown
by Figures 2(a) and 2(b), the time spent on the filters (denoted
as "Filter Check" in the figures) occupies a tiny portion when
the store is running on the SSDs. Therefore, with the help of
Bloom filters on an on-disk KV store, using the multi-level
structure doesn’t compromise read performance. However,
as Figure 2(c) shows, when the Optane Pmem is used, the
time spent on the filters becomes significant (relative to the
Pmem’s read time). It keeps increasing with KV items at
lower levels and finally becomes unacceptable. This obser-
vation indicates that multi-level structure becomes a major
barrier to achieving consistently low read latency. Mean-
while, the very same structure is also essential for enabling
batched writes to accommodate block devices.

1.3 Challenge 3: Optane Pmem is Non-volatile
To avoid the two aforementioned challenges, researchers
have proposed to move the index structure to the DRAM
while using the Pmem only for storing KV items as a storage
log [2, 22, 24]. As KV items are batch-written to the log
without write amplification, and all reads and updates of the

index take place in the DRAM, such a design provides high
write throughput and low read latency.

However, leaving the entire or a majority of the index in
the volatile memory cancels an essential benefit of Optane
Pmem as a persistent memory that promises an instant re-
covery and restart after an incident such as power failure or
system crash. For a KV store storing multi-billion KV items,
the index in the DRAM can grow as large as over 100GB,
which is a considerable demand on limited DRAM space
shared by many systems and application functionalities [10].
Once the index is lost with an unexpected shutdown, rebuild-
ing such a large index from the storage log, which may take
an unacceptably long time, is required to resume the store’s
service. In the meantime, a speedy recovery and restart is
important, especially in a virtualized environment where a
KV store service is hosted in virtual machines or containers
whose own launch time can be as little as a few seconds
or even in the sub-second level. It is noted that the idea of
periodically saving the latest updates on the index to the
Optane Pmem and making the index on the Pmem organized
and ready to use is actually the one motivating the LSM-
tree-based design, whose drawback has been elaborated in
Subsection 1.2.

1.4 Our Solution
While existing KV store designs cannot simultaneously achieve
the multiple objectives expected on an Optane Pmem (high
write throughput, low read latency, well-bounded read tail
latency for highly dynamic workloads, small DRAM foot-
print, and speedy recovery and restart), we propose a KV
store design, named ChameleonDB, that can achieve all of
the objectives in one system. To illustrate ChameleonDB’s
strengths, in Figure 3we compare it with a store with its hash-
based index in the Pmem, named Pmem-Hash, a store with
its LSM-tree-based index in the Pmem, named Pmem-LSM,
and a store with its hash-based index in the DRAM, named
Dram-Hash on four performance measures, namely, write
amplification, which is highly correlated to write throughput,
read latency, memory footprint size, and recovery time.

In summary, this paper makes three major contributions:

1. We analyze the shortcomings of existing KV store de-
signs on the Optane Pmem, demonstrating that none
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Figure 3. Comparison of KV store designs on the Optane
Pmem in four measures, where smaller values indicate more
desired readings in each of the four measures. Among them,
Pmem-LSM corresponds to legacy LSM-tree-like KV store de-
sign with Bloom filters. It has long read latency. Dram-Hash
corresponds to the in-DRAM index design with in-Pmem log.
It has a large DRAM footprint and a long restart time. Pmem-
Hash corresponds to the persistent hash table design. It has
large write amplification, leading to low write throughput.
In contrast, ChameleonDB receives better result in every of
the four measures. At each measure, all measurements are
normalized to the one of the largest (worst) value.

of them can achieve high write throughput, low read
latency, low DRAM footprint, and fast restart at the
same time. In particular, we reveal the dilemma of de-
ploying an LSM-based KV store on the Optane Pmem,
which has not yet been discussed in the open literature
to the best of our knowledge.

2. We propose ChameleonDB, a novel KV store designed
for the Optane Pmem. To some extent it is a hybrid
design – it leverages respective strength of one of the
stores (Pmem-Hash, Pmem-LSM, and Dram-Hash) to
address the weakness of the others. Specifically, it uses
a multi-level structure to efficiently persist updates on
the index. It uses an in-DRAM hash table to speed up
read of a small set of recently updated index. And it
uses an in-Pmem hash table to retrieve a majority of
the keys in the store. It also has an operation mode for
opportunistically curtailing long read tail latency.

3. We implement ChameleonDB and evaluate it in com-
parison with other state-of-the-art designs represent-
ing Pmem-Hash, Pmem-LSM, and Dram-Hash. Our ex-
periment results show that ChameleonDB successfully
achieves the aforementioned list of objectives simul-
taneously, outperforming each of the other stores on
one or more of the objectives, as shown by Figure 3.

Figure 4. Structure of ChameleonDB.

2 The Design of ChameleonDB
ChameleonDB is a KV store where values are stored in a
storage log, while keys (or their hash values) and the lo-
cations of their corresponding values in the log are stored
in a persistent index, as illustrated in Figure 4. KV items
are written to the storage log in batches according to their
arrival order. The persistent index is a highly parallel struc-
ture with multiple shards, in which each shard has its own
multi-level structure with its compaction operations. Keys
are distributed evenly across these shards according to their
hash values.

2.1 A Multi-shard Structure
The index of ChameleonDB is organized as a multi-shard
structure, where each shard covers an equal range of hashed-
key space. A shard is a multi-level LSM-like structure, as
shown in Figure 4. Each level has multiple sub-levels, named
tables, each of which is organized as a fixed-size hash ta-
ble with linear probing as key collision resolution. Like
other LSM-tree based KV stores, each shard has an in-DRAM
MemTable to aggregate KV items. When the MemTable is
full (i.e., its load factor exceeds a threshold), it is flushed to
the Optane Pmem as a persistent and immutable table in the
𝐿0 level. The maximum number of tables that can be held in
each level is specified by a between-level ratio, 𝑟 , except for
the last level that contains only one table. For the instance
depicted in Figure 4, the ratio 𝑟 is 4. Thus, the 𝐿0 level is
full after four MemTables have been flushed to the Pmem.
Compaction will be triggered when a level is full.

As each of the two compaction schemes, leveled and size-
tiered, has its advantage and disadvantage, ChameleonDB
uses both compaction schemes at different LSM levels to
provide low write amplification and low read latency. In
each shard, the size-tiered compaction is used to compact
tables in upper levels (all levels in the Pmem except the
last one), while the leveled compaction is used to compact
tables to the last level. This hybrid compaction scheme is
also adopted in [8] as Lazy Leveling, which strikes a balance
between write amplification and read latency, and performs
better than using either of the two schemes alone.
A compaction in the LSM-tree based KV stores usually

involves only two adjacent levels. For the instance depicted in
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Figure 5. ChameleonDB uses Direct Compaction scheme to
reduce compaction overhead.

Figure 5(a), 𝐿0 is full and triggers a compaction to 𝐿1, which
makes 𝐿1 full and triggers another compaction from 𝐿1 to
𝐿2. In ChameleonDB, we introduce a Direct Compaction
scheme that can reduce compaction overhead by allowing
a compaction to involve multiple levels. To complete the
sequence of compactions shown in Figure 5(a), with Direct
Compaction ChameleonDB triggers only one compaction
covering 𝐿0 and 𝐿1 to 𝐿2, as shown in Figure 5(b). Likewise,
last level compaction takes place when 𝐿0 is full and each of
the upper levels has (𝑟 − 1) tables, where 𝑟 is the maximum
number of tables that can be held in each level. After a last
level compaction in a shard, all tables in the upper levels of
the shard are cleared as their items are all moved to the last
level table.
As the size of each table (including MemTable in the

DRAM) in a shard is (often much) larger than 256B (the
access unit size of the Optane Pmem), and is aligned to
256B, flushing/compacting tables can fully utilize the write
bandwidth of Optane Pmem, which addresses Challenge 1
detailed in Subsection 1.1. Furthermore, as ChameleonDB
persists changes on the LSM structure after each flushing
of MemTable, a restart only needs to recover MemTables
that have not been persisted, which addresses Challenge 3
detailed in Subsection 1.3.

2.2 The Auxiliary Bypass Index (ABI ) in a Shard
As each shard is a multi-level structure, a get operation2 may
have long latency as it needs to check the tables level-by-
level until it finds the target key or reaches the last level,
as illustrated by Figure 6(a). Because ChameleonDB uses
size-tiered compaction in the upper levels for reduced write
amplification, the number of (sub-)levels has been signifi-
cantly increased. As we have indicated in Section 1.2, Bloom
filter, which is usually used in an LSM tree structure, does
not provide an efficient solution to this long get latency issue
because checking filters accounts for 50% or more of Optane
Pmem read latency. That’s why we need a new solution to
2In this paper, the terms of get/put and read/write regarding KV stores have
the same meaning and are used interchangeably.

(a) The get operation with-
out an ABI needs to check
the tables one-by-one, lead-
ing to long get latency.

(b) The get operation with
an ABI checks at most three
tables, leading to short and
more consistent get latency.

Figure 6. ChameleonDB uses Auxiliary Bypass Index to
provide short and stable get latency.

Figure 7. Flush operation in a shard.

reduce the get latency, which is ChameleonDB’s Auxiliary
Bypass Index (ABI for short).

Each shard in ChameleonDB has its own ABI, which is an
in-DRAM hash table that indexes the keys in all upper levels.
By using ABI, at most three tables need to be checked when
searching keys in ChameleonDB, which are the MemTable,
ABI, and the last level table, as depicted in Figure 6(b).

ABI contains and only contains KV items that exist in the
upper levels. When keys are persisted to 𝐿0, they should
also be inserted to ABI. After items have been merged to the
last level, they should be removed from ABI. To make this
happen, ChameleonDB adds items to ABI during flushing
MemTable to 𝐿0, as shown in Figure 7. It removes all items in
ABI after the last level compaction as all tables in the upper
levels are going to be cleared after a last level compaction
(detailed in Subsection 2.1). PinK [16] also tries to pin the
upper levels in the DRAM to reduce the get latency. However,
it pins the upper levels as a multi-level LSM structure while
ABI organizes keys in the upper levels as a hash table with
O(1) access time in the DRAM.

In addition to reducing the get latency, ABI can also help
accelerate the last level compaction. ABI contains all the
items in the upper levels in a shard. A Direct Compaction
in ChameleonDB compacts all upper level tables to the last
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Figure 8. Efficient last level compaction with ABI.

level table (detailed in Subsection 2.1). Instead of reading
and merging all persistent tables in the upper levels to the
last level, ChameleonDB merges items that have been in the
DRAM into the last level table, as shown in Figure 8, so as
to reduce the overhead of last level compaction. By using
ABI, we avoid checking multiple levels in ChameleonDB so
as to address Challenge 2 specified in Subsection 1.2.

2.3 Trade Restart Time for the Put Performance
The multi-level structure of shards in ChameleonDB helps
to reduce the restart time as only MemTable needs to be
recovered upon restart, where MemTable contains a very
small portion of the total items in the store (e.g., 1/256 for
a 4-level shard with a between-level ratio of 𝑟 = 4). How-
ever, maintaining the multi-level LSM structure consumes
read bandwidth, CPU cycles, and write bandwidth as com-
pactions need to be constantly conducted along with put
requests, which decreases the put performance. For tradi-
tional LSM-tree based KV store designs like LevelDB [13]
and RocksDB [11], the multi-level structure has to be always
maintained. Otherwise, get latency would be seriously com-
promised (as more and more MemTables are flushed to 𝐿0
without being compacted producing numerous levels) or the
DRAM footprint would increase rapidly (as MemTable grows
bigger and bigger to hold more KV items). In contrast, the
structure of ChameleonDB, whose upper levels are used only
for fast recovering, offers an opportunity to not maintain the
multi-level structure without compromising get latency and
DRAM footprint.
In scenarios where the systems are mostly reliable and

the system rarely crashes, ChameleonDB can trade the risk
for longer restart time upon a system crash for higher put
performance by suspending maintenance of the multi-level
structure temporarily without upper level compactions dur-
ing intensive put workload. This execution choice is named
Write-Intensive Mode in ChameleonDB.
During Write-Intensive Mode, MemTables are no longer

flushed to 𝐿0 when they are full and, as such, compaction
from 𝐿0 to 𝐿1 will not be triggered, and likewise, all com-
pactions to other upper levels will not be conducted either.
Only when ABI is full is the last level compaction triggered
to clear ABI. If a system crash happens during the Write-
IntensiveMode, the restart time can be long as all items in the

Figure 9. The Get-Protect Mode to suspend merging ABI
with last level during the read-intensive periods.

ABI must be recovered from the storage log before the store
can resume its service. Our experiment results show that
the restart time of ChameleonDB during the Write-Intensive
Mode is still much lower than Dram-Hash, whose entire in-
dex needs to be recovered upon a restart. Besides, the impact
for such a long recovery time of ChameleonDB can be con-
trolled by considering the Write-Intensive Mode as a user
option.

2.4 Handling Put Bursts
Tail get latency (the 99th Percentile latency) is usually used
to measure the quality of service (QoS) in a storage system.
Background compactions have high impacts on the tail get
latency as they consume read and write bandwidth of the
Optane Pmem. During a put burst period, get latency can
increase significantly when background compactions are
triggered (check experiment results in Subsection 3.6).

To provide better quality of service, in ChameleonDB we
introduce a dynamic Get-Protect Mode that monitors the
tail get latency and adjusts compaction timing accordingly.
Specifically, when the tail get latency reaches a threshold,
ChameleonDB suspends all upper level compactions (includ-
ing flushing MemTables to 𝐿0) and postpones the last level
compactions. A side effect of suspending upper level com-
pactions is that the restart time can be longer as we need
to recover not only the MemTable but also the ABI by scan-
ning the storage log, similar to the side effect of the Write-
Intensive Mode. When the ABI is full, its items need to be
compacted to the last level, assuming the DRAM space is
limited and cannot hold a second ABI. However, compaction
of the items to the last level entails reading existing last level
items, merging them with items in the ABI, and writing it
back to the Optane Pmem. This can be very expensive and
may affect tail get latency significantly. Therefore, in the
Get-Protect Mode ChameleonDB only dumps the content of
ABI to the Optane Pmem as a new level without merging it
with the last level table, as illustrated by Figure 9. This will
increase the number of levels that a get request has to be
checked. However, this side effect is modest relative to the
cost of last level compaction according to our experiment re-
sults. Furthermore, we limit the number of ABIs that can be
dumped to the Optane Pmem (one by default). The dumped
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tables will gradually be merged with the last level table after
the put burst subsides. The Get-Protect Mode is canceled
when the tail latency subsides below a predefined threshold.

2.5 Implementation Details
Randomized Load Factors.Hash tables are usually used as
an extendable structure whose size scales along with items
being inserted. Once a table is regarded as full, it will be
expanded and items in it will be rehashed to new positions.
The rehashing is a time-consuming process. Therefore, in a
shard of ChameleonDB, we use a fixed-size hash table for
keys in the upper levels to avoid rehashing, which can be
frequent as the hash table’s size is highly variable.
Each table (or a sub-level) in a ChameleonDB’s shard is

also a hash table. It resolves collision by linear probing [12].
A common way to determine whether such a hash table is
full is the number of times it has been probed when inserting
a new item. However, using probe count to determine if a
table is full can be in conflict with the compaction operation
in ChameleonDB. For instance, the items in the four tables
in a level may not be able to be inserted to a new table
four times larger due to insertion of one item that has a
probing number larger than the threshold. On the other
hand, allowing unlimited probe times is neither an acceptable
choice, as in the worst case a get request may need to scan
the whole table, resulting in too-long get latency.
In ChameleonDB, we limit the load factor of MemTable

and thus control the load factors of all persistent tables (as
all their items are from MemTable). For instance, when we
limit the load factor of MemTable to no more than 75%, one
in four slots of the table are empty. MemTable is regarded as
full when its load factor reaches the predefined threshold. As
a scan of a hash table stops when an empty slot is reached,
lowering the load factor to increase empty slots in tables
can improve get latency at the cost of lower space efficiency
and more frequent compactions. Using a unified load factor
threshold for all shards will result in compaction bursts as in-
sertions are usually evenly distributed to the shards. During
a compaction burst, all the shards are required to do upper
level compactions or even worse, last level compactions. The
KV store would experience a significant performance degra-
dation period. To mitigate compaction bursts, ChameleonDB
uses randomized load factors for the shards so as to stagger
the timings of compactions of different shards.
DRAM footprint. A major concern about using the ABI to
improve get latency is its DRAM footprint. It is known that
the level size in each shard increases exponentially. Though
theABI contains items in all upper levels, it has only a moder-
ate portion (e.g., 1/𝑟 for a between-level ratio of 𝑟 ) of the total
index. Detail DRAM footprint for ChameleonDB is discussed
in Section 3.
Write Amplification. The write amplification (excluding
writes to the storage log) in ChameleonDB is related to the

number of levels (denoted as 𝑙), the between-level ratio 𝑟

and the load factor (denoted as 𝑓 ). The write amplification
of writing a hash table is 1/𝑓 . For instance, a hash table of
1MB size with a load factor of 75% has only 0.75MB user data,
so writing the table has a write amplification of 1/0.75. As
ChameleonDB uses size-tiered for middle-level compactions
and uses leveled for last level compaction, the write amplifi-
cation of ChameleonDB is (𝑙 − 1 + 𝑟 )/𝑓 .
KV items in the storage log. Each entry in the storage log
has the form of {𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒_𝑠𝑖𝑧𝑒, 𝑣𝑎𝑙𝑢𝑒}, where the sizes of
the 𝑘𝑒𝑦 and 𝑣𝑎𝑙𝑢𝑒_𝑠𝑖𝑧𝑒 fields are fixed at 8 bytes while the
size of 𝑣𝑎𝑙𝑢𝑒 is variable (the 𝑣𝑎𝑙𝑢𝑒_𝑠𝑖𝑧𝑒 number). Log items
are first buffered in the DRAM to form a batch. The batch
is then appended to the tail of log when its size reaches a
predefined threshold (e.g., 4KB).

3 Evaluation
To observe and understand ChameleonDB’s performance
behaviors in a real system and know whether it achieves
all of its design objectives (high write throughput, low read
latency, resilience to impact of request spikes on read tail
latency, and speedy recovery and restart), we developed
a ChameleonDB prototype on the Intel Optane persistent
memory (Pmem).

3.1 The System Setup
Intel Optane Pmem has two operating modes (MemoryMode
and App Direct Mode). In the Memory Mode, Optane Pmem
is treated as a volatile device and becomes the only memory
space visible to programmers with DRAM as its L4 cache.
In the App Direct Mode, Optane Pmem is used as a non-
volatile storage device. In this mode, it can be either accessed
via standard file system APIs as a traditional storage de-
vice or accessed directly via load and store instructions [35].
ChameleonDB runs in its App Direct Mode and accesses
the memory with load and store instructions through call-
ing functions in the open-sourced libraries of the Persistent
Memory Development Kit (PMDK) [30].

All the experiments were conducted on a server with two
8-core Intel Xeon Silver 4215 processors, 64GB DRAM, and
two 128GBOptane Pmem. The twoOptane PmemDIMMs are
connected to the same socket and operated in an interleaved
mode. In our experiments, KV stores are running on the
processor with local access to the Optane Pmem for higher
access efficiency.

3.2 The KV Stores in Comparison
In addition to ChameleonDB, we include three other rep-
resentative design strategies, or the KV stores built out of
them, in the evaluation. In the KV stores, KV items are stored
in a storage log in the Optane Pmem in the order of their
arrivals. The difference is on where their index structures
are located and how the structures are organized. The KV
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Table 1. Configuration of ChameleonDB

Parameter Value
# of Shards 16384

MemTable Size 8KB per shard (128MB in total)
# of Levels 4 (including last level)

Between-level Ratio 4
Load Factor randomly from 0.65 to 0.85

Auxiliary Bypass Index Size 512KB per shard (8GB in total)

stores in comparison are Pmem-Hash, which maintains a
persistent hash table in the Pmem as an index, Pmem-LSM,
which maintains an LSM-based KV stores in the Pmem, and
Dram-Hash, which maintains a hash table in DRAM.

For Pmem-LSM,we develop a KV store using hash-keys for
the placement of items in the LSM tree. To reveal the impact
of using Bloom filter on the performance, we include two
Pmem-LSM’s variants: Pmem-LSM-F with Bloom filters and
Pmem-LSM-NF without using Bloom filters. Inspired by the
PinK KV store [16] that pins upper levels of an LSM-tree in
the DRAM so as to improve read and compaction efficiency,
we introduce Pmem-LSM-PinK, which pins all of its LSM lev-
els except the last level in the DRAM, in the experiments for
comparison. As construction of Bloom filters is expensive, it
may become a performance bottleneck and more than offset
the benefit of a larger DRAM, Pmem-LSM-PinK doesn’t use
Bloom filters, the same as Pmem-LSM-NF. Furthermore, to
retain Pmem-LSM’s advantage on persistency of the LSM
structure for faster recovery, Pmem-LSM-PinK writes each
level of KV items to the Pmem once it is produced in a com-
paction while a copy of the levels stays in the DRAM for
faster read. In this way, Pmem-LSM-PinK represents a more
comparable counterpart to ChameleonDB. Both include the
LSM structure in their designs and use the same amount of
DRAM. A comparison between these two designs help reveal
the critical weakness with the LSM-tree structure itself.
For Dram-Hash, we use an open-source implementation

of the high-performance robin-hood hash table [26] as its
in-DRAM index. The Pmem-Hash is actually CCEH, a state-
of-the-art persistent hash table [28]. We use CCEH source
code provided by its designers with its default configuration.
All the KV stores in comparison are developed with C/C++.

We list detailed configuration of ChameleonDB in Ta-
ble 1. In all experiments, we use 8B keys and 8B values
and Write-Intensive Mode is not enabled if not otherwise
specified. In the following, we first present overall perfor-
mance of ChameleonDB compared to its counterparts in Sub-
section 3.3, then present results on the YCSB workloads in
Subsection 3.4. Finally, we will experimentally demonstrate
benefit of Write-Intensive Mode and Get-Protect Mode in
ChameleonDB in Subsections 3.5 and 3.6, respectively. We
also compare ChameleonDB with two state-of-the-art LSM-
tree key-value store designs in Subsection 3.7.

Figure 10. Put throughput.

3.3 Overall Performance
Put Throughput.We first evaluate the put throughput with
different number of threads. Each put thread in ChameleonDB,
Pmem-LSM-NF, Pmem-LSM-F, and Pmem-LSM-PinK is paired
with a compaction thread to do compaction, while there is
no compaction threads for Pmem-Hash and Dram-Hash. For
fairness, we let the compaction threads and their correspond-
ing put threads share the same core. As shown in Figure 10,
we see that ChameleonDB outperforms Pmem-Hash con-
sistently by about a factor of 5×. And among all the stores,
Pmem-Hash shows the lowest put performance. Pmem-Hash
allows small random writes to take place directly in the Op-
tane persistent memory, which is not compatible with the
Pmem’s 256B block access constraint and results in a large
write amplification.

ChameleonDB, Pmem-LSM-NF, and Pmem-LSM-PinK have
similar put throughput, and they also show 2-3× higher put
throughput than Pmem-LSM-F. The put throughput gap be-
tween Pmem-LSM-NF and Pmem-LSM-F highlights the im-
pact of constructing Bloom filters with intensive use of CPU
cycles on the I/O performance. As LSM structure enables effi-
cient sequential Pmem access and Pmem has a much higher
bandwidth than the SSD, CPU-intensive operations become
much more impactful than previously believed and must
be carefully considered in the design to avoid any potential
CPU performance bottleneck.

ChameleonDB, Pmem-LSM-NF, and Pmem-LSM-PinK share
some common performance advantages. Their writes are al-
ways large sequential ones thanks to the LSM structure. They
remove Bloom filters to prevent CPU from becoming a per-
formance bottleneck against high-performance Pmem access.
Among the KV stores, ChameleonDB and Pmem-LSM-PinK
replace some Pmem reads with DRAM reads during com-
pactions. In the last level compaction ChameleonDB reads
the upper level KV items from its in-DRAMAuxiliary Bypass
Index(ABI ). In Pmem-LSM-PinK any reads of upper levels for
compactions are from the DRAM. Accordingly, as shown in
Figure 10, Pmem-LSM-NF’s put throughput is mostly lower
than the other two stores. However, their performance gaps
are small. When the high Pmem bandwidth enabled by se-
quential reads in the compactions has been in place (around
12GB/s), the performance impact of reads is substantially
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Table 2. Tail Put Latency (ns)

KV Stores p99 p99.9 p99.99
ChameleonDB 572 9950 31136
Pmem-LSM-PinK 638 10734 39084
Pmem-LSM-NF 622 10314 40740
Pmem-LSM-F 624 10522 41920
Pmem-Hash 10764 225998 929868
Dram-Hash 710 1472 31280

Figure 11. Put latency CDF.

reduced in comparison to more expensive CPU use and ran-
dom in-DRAM access for hash operations during admission
of KV items and compactions.

Dram-Hash shows 2× higher put performance than that of
ChameleonDB (as well as Pmem-LSM-NF and Pmem-LSM-
PinK). It completely avoids the LSM structure as well as
its compaction operations, and leaves all hash index in the
DRAM. While ChameleonDB keeps an in-DRAM hash in-
dex (the ABI ) only for KV items in the LSM’s upper levels,
which are heavily involved in the compactions, Dram-Hash
occupies about 3× larger DRAM space than ChameleonDB.
Considering exponential growth of LSM level size, the gap
on DRAM demand between them will keep increasing with
the store size. A more serious consequence of keeping the
index only in the DRAM is that it will take a long time to
reconstruct it to resume its service after a system crash.
Put Latency. The cumulative distribution function (CDF)
curves of put latency are shown in Figure 11. As can be
seen, all curves except that for Pmem-Hash are clustered
together in the left side of the figure, indicating that the
medium latency and even the 99th percentile latency of
these stores except Pmem-Hash are similarly low. Table 2
lists the precise tail latency measurements at the (very) high
percentiles. The reason why Pmem-Hash has significantly
higher put latency is that it persists KV items with small
writes to persistent memory in individual put operations.
The medium put latency of Pmem-Hash is around 12× that
of ChameleonDB. The tail put latency of Pmem-Hash is
around 18-29× that of ChameleonDB, as shown in Table
2. Pmem-LSM-F’s medium and 99th percentile put laten-
cies are close to those of ChameleonDB. However, its put
throughput is much lower than that of ChameleonDB as
shown in Figure 10. The reason is that some put operations

Figure 12. Get Throughput.

of Pmem-LSM-F have very long latency due to their concur-
rence with more expensive compactions requiring construc-
tion of Bloom filters. Pmem-LSM-F’s largest put latency is
up to 1.25sec in the experiments, which is 6× larger than
those of ChameleonDB, Pmem-LSM-PinK, and Pmem-LSM-
NF. Dram-Hash has lower p99.9 put latency than other stores,
including ChameleonDB, with its in-DRAM index operations.
However, its largest put latency is up to 3.23sec (13× of that
of ChameleonDB) due to rehashing.
Get Throughput. Figure 12 shows the random get through-
put of the stores with different number of threads. Among
them, Pmem-LSM-NF exhibits the lowest get throughput
as it needs to check multiple levels in the Pmem to find a
KV item. Dram-hash shows the highest get throughput as
a get operation requires only one check into the in-DRAM
hash table and one Pmem read in the log. Except Dram-Hash,
ChameleonDB shows the highest get throughput, which is
4.26×, 2.76×, 1.76×, and 1.53× of those for Pmem-LSM-NF,
Pmem-LSM-F, Pmem-LSM-PinK, and Pmem-Hash, respec-
tively. By using in-DRAM Bloom filters to avoid unnecessary
Pmem reads, Pmem-LSM-F has higher get throughput than
Pmem-LSM-NF. By pinning all levels except the last level
in the DRAM, Pmem-LSM-PinK also receives higher get
throughput than Pmem-LSM-NF. However, different from
ChameleonDB which uses in-DRAM hash table (the ABI )
to directly reach the target KV item in the upper levels (if
exists), Pmem-LSM-PinK still has to take multiple checks in
the DRAM as it retains the multi-level LSM structure in the
DRAM, which makes its get throughput lower than that of
ChameleonDB by 43% to 60%.
Get Latency. Figure 13 shows the get latency CDF curves
for reading existing keyswith one thread. As expected, Pmem-
LSM-NF shows the largest get latency. Its medium get latency
is 1.7× of that of Pmem-Hash. By using Bloom filters, Pmem-
LSM-F reduces the get latency. However, its medium get
latency is still 20% higher than that of Pmem-hash, which
doesn’t need a multi-level search. Without using Bloom fil-
ters, Pmem-LSM-PinK also needs to search multiple levels.
However, the search in the LSM’s upper levels is conducted
in the DRAM, and the corresponding reads don’t have the
read amplification as that in the Pmem. Therefore, its get
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Table 3. Tail Get Latency (ns)

KV Stores p99 p99.9 p99.99
ChameleonDB 1506 2270 5560
Pmem-LSM-PinK 2544 3434 7774
Pmem-LSM-NF 4786 6082 17376
Pmem-LSM-F 4068 5554 18000
Pmem-Hash 2508 2994 11790
Dram-Hash 1608 2154 4000

Figure 13. Get Latency CDF.

latency is better than Pmem-LSM-F. And its medium get
latency is close to that of Pmem-Hash.

The CDF plot of ChameleonDB shows a two-stage curve,
where the first stage corresponds to those get requests hitting
in the ABI while the second stage corresponds to those for
KV items in the LSM’s last level. ChameleonDB shows 39%,
40%, 51%, and 64% lower medium get latency than Pmem-
Hash, Pmem-LSM-PinK, Pmem-LSM-F, and Pmem-LSM-NF,
respectively, highlighting the benefit of its use of ABI on
reducing get latency. In particular, Pmem-LSM-PinK uses
the same amount of DRAM space for improving its get per-
formance. But still its get latency is significantly worse than
that of ChameleonDB, indicating that not only amount of
DRAM space but also the way to use the space matters in
the effort of improving the stores’ performance. Dram-Hash
has the lowest medium get latency, which is 36% lower than
that of ChameleonDB. However, without the in-Pmem LSM
structure Dram-Hash loses all of its index on a system crash.

Table 3 shows the tail get latency at high percentile num-
bers. For the p99.9 get latency, ChameleonDB’s latency is 24%,
33%, 59%, and 62% lower than those of Pmem-Hash, Pmem-
LSM-PinK, Pmem-LSM-F, and Pmem-LSM-NF, respectively.
And it is only 5% higher than that of Dram-hash.
DRAM Footprint and Restart Time.We show the DRAM
footprint and restart time of the stores in Table 4. We record
the DRAM footprint after inserting 1 billion unique keys to
a store. A restart is considered complete when the KV store
is ready to serve put/get requests.
Dram-Hash places a full index in the DRAM. It uses the

largest DRAM space. It also has the longest restart time as
it needs to scan the entire log to reconstruct its index. For
Pmem-Hash, all the user data and the hash table are imme-
diately persisted in the Optane Pmem. It uses the DRAM to

maintain some additional index components such as directo-
ries and segments in the CCEH hash table design. It needs to
recover these structures upon restart. As shown in Table 4, its
DRAM footprint and restart time are low. Pmem-LSM-NF’s
DRAM footprint and restart time are even lower, as it only
keeps its MemTables (128MB) in the DRAM and recovers
them upon a restart. Pmem-LSM-PinK has the same DRAM
footprint as ChameleonDB but with lower get performance.

ChameleonDB has a higher DRAM footprint compared to
Pmem-LSM-NF as it needs to keep the ABI in the DRAM to
quickly reach KV items in the LSM’s upper levels. But the
DRAM footprint of ChameleonDB is only 26% of that used
by Dram-Hash. Besides, the restart time of ChameleonDB
is two orders of magnitude lower than that of Dram-Hash
as ChameleonDB retains the advantage of LSM on short
restart time, though its get performance will degrade to that
of Pmem-LSM-NF until the ABI is fully rebuilt. The ABI is
recovered along with serving front-end requests.
A Summary.We compare all the store designs in four mea-
sures, i.e., put throughput, get throughput, DRAM footprint,
and restart time, in Table 4. In the table, we highlight the mea-
surements that are significantly worse than their respective
peers in the comparison. As shown, all of the stores, except
ChameleonDB, have at least one "bad" performance measure.
For instance, Dram-Hash has the best put throughput and get
throughput. But it occupies the most DRAM space and has
the longest restart time. Pmem-Hash requires a small amount
of DRAM and can restart quickly. But its put throughput is
the worst. Pmem-LSM-PinK, Pmem-LSM-NF, and Pmem-
LSM-F have poor get throughput, among which Pmem-LSM-
F also has poor put performance. The put and get throughput
of ChameleonDB is only worse than that of Dram-Hash. But
the DRAM footprint of ChameleonDB is much smaller than
that of Dram-Hash. Furthermore, ChameleonDB can restart
as quickly as the LSM-based stores. Also, the get latency of
ChameleonDB is lower than all the other stores except Dram-
hash, as shown in Figure 13. In summary, ChameleonDB is
the only store that can achieve high put throughput, low get
latency, small DRAM footprint, and speedy recovery/restart.

3.4 Experiments with the YCSB Workload
Yahoo Cloud Services Benchmark (YCSB)[5] is often used
to comprehensively evaluate performance of KV stores. In
this subsection, we evaluate ChameleonDB with six YCSB
workloads. The workloads are detailed in Table 5. We do not
include YCSB_E as it is for evaluation of the performance
of range scan, which is not supported by the stores orga-
nized with hashed keys. For each of the workloads other
than YCSB_LOAD and YCSB_D, we first run YCSB_LOAD
to warm up the KV store with 1 billion puts, and then run
the corresponding workload with 1 million requests. For
YCSB_D, we issue 10K get requests for keys that are written
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Table 4. Overall Comparison
Metrics ChameleonDB Pmem-LSM-Pink Pmem-LSM-NF Pmem-LSM-F Pmem-Hash Dram-Hash

Put Throughput (Mops/s) 27.40 27.19 26.00 8.14 4.28 46.96
Get Throughput (Mops/s) 15.60 8.86 3.66 5.64 10.19 46.71
DRAM Footprint (MB) 8325 8325 150 3277 729 31744
Restart Time (sec) 1 1 1 1 2 102

Table 5. YCSB Workloads
Workload Description
YCSB_LOAD 100% put
YCSB_A 50% get / 50% update
YCSB_B 95% get / 5% update
YCSB_C 100% get
YCSB_D Get most recently inserted keys
YCSB_F 50% get / 50% read-modify-write

Figure 14. YCSB test results.

most recently right after YCSB_LOAD. In all the experiments
16 threads are used.

In Figure 14, the YCSB experiment results are shown in
terms of normalized throughput, where the throughput of
Pmem-Hash is normalized to 1. Pmem-Hash’s actual through-
put is displayed above the bar for the corresponding Pmem-
Hash measurement. For all the workloads except YCSB_D,
ChameleonDB outperforms any other stores except Dram-
Hash. For YCSB_D, ChameleonDB, Pmem-LSM-PinK, and
Pmem-LSM-NF show the similarly highest performance, be-
cause the most recently written keys are hit in MemTable. As
expected, for the twowrite-intensiveworkloads (YCSB_LOAD
and YCSB_A), Pmem-Hash shows the lowest throughput. On
the other side, for the read-intensive workloads, Pmem-LSM-
NF, which is known to have poor get performance, shows the
lowest throughput. Dram-Hash shows the highest through-
put for all workloads except YCSB_D, because checking the
most recently written keys in a robin-hood hash table usually
needs to probe more times due to collision resolution.

3.5 Impacts of Direct Compaction and
Write-Intensive Mode

We introduced theDirect Compaction scheme in ChameleonDB
that can reduce compaction overhead as detailed in Fig-
ure 5. Further, we also designed the Write-Intensive Mode
for ChameleonDB, which is detailed in Subsection 2.3. Both
Direct Compaction scheme and Write-Intensive Mode help
to further improve the put performance of ChameleonDB.

Figure 15. Impacts of different mode.

In this subsection, we experimentally assess how much they
help to improve the put performance.
In the experiments we issue one billion put requests of

unique keys to each of the stores. In Figure 15 we present
the put throughput during service of the requests while
using Level-by-Level Compaction, Direct Compaction, and
Direct Compaction with theWrite-IntensiveMode. Using the
Direct Compaction scheme helps improve put throughput
by about 7% on average over that using the Level-by-Level
Compaction. By suspending maintenance of the multi-level
structure (for LSM-tree’s upper levels) in response to inten-
sive writes, enablingWrite-Intensive Mode of ChameleonDB
with Direct Compaction further improves put throughput by
38% on average3. If the system crashes when ChameleonDB
is running on the Write-Intensive mode, the restart time can
be long as ChameleonDB has to recover the items in the
ABI instead of only those in the MemTables. Restarting a
ChameleonDB with one billion items that crashes during
the Write-Intensive Mode takes about 30 seconds, which is
longer than a standard restart of ChameleonDB but shorter
than a restart of Dram-hash (102 seconds).

3.6 Benefit of Dynamic Get-Protect Mode
Tail latency of get requests is a critical QoS metric in many
production systems. We conduct experiments to understand
the impact of a burst of put requests on tail get latency
(for the 99th percentile). In the experiments, we run Pmem-
Hash and ChameleonDB with two 10-minute phases. In each
phase’s initial 30 seconds, only get requests are sent to the
KV stores, and then a put burst with 100 million requests are
sent to the stores to see how they impact the get operations.
As shown in the upper figure of Figure 16, the tail get la-

tency of Pmem-Hash is around 2000ns when there are no put
bursts, and then increases by a factor of 2.9× to 5800ns during

3Note that experiment results reported elsewhere about ChameleonDB are
those on the store using only Direct Compaction
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Figure 16. Get tail latency and overall throughput with two
bursts put requests. In the experiment, ChameleonDB can be
either without or with Dynamic Get-Protect Mode (GPM).

the put bursts. Similar trend is observed in ChameleonDB
without dynamic GPM (Get-Protect Mode) where get tail
latency increases from 1300ns to 2900ns. Though the impact
of the put bursts in ChameleonDB without GPM is less than
that of Pmem-Hash, the tail get latency still increases by
2.23×. A burst of put requests compete the Pmem’s limited
bandwidth and CPU cycles with get requests, resulting in
a jump of get latency. In Pmem-Hash when a put request
updates the hash table with multiple small writes, the small
writes incur read-modify-writes in the Optane Pmem. In
ChameleonDB, a burst of put requests lead to intensive LSM
compactions which place high demand on Pmem bandwidth
and CPU cycles. In the ChameleonDB’s GPM mode, when
a spike of read latency is detected, all compactions, which
are induced by put requests, are temporarily suspended until
the spike is weakened. The spike is defined by a pre-defined
latency threshold, which is 2000ns in this experiment. The
suspension includes pausing upper level compactions (the
action taken in the Write-Intensive Mode) and postponing
last level compactions. By applying the dynamic Get-Protect
Mode, the peek tail latency of ChameleonDB is reduced to
2200ns, which is 24% lower than that without the mode4.
However, as the postponed last level compactions are gradu-
ally carried out after the put burst period, the tail get latency
takes some time to reduce to the pre-burst level. As shown in
Figure 16, the tail latency during the reduction time period
stays below 2000ns, which is even lower than the tail latency
of Pmem-Hash during the get-only period.

In contrast, the impact of a burst of put requests on Pmem-
Hash’s tail get latency is much larger in terms of the spike’s
height and the length of the time period for it to reduce to
the pre-spike level. During the put bursts, the throughput
of Pmem-Hash is reduced by 55% because its put through-
put is much lower than its get throughput. Due to the high
put throughput of ChameleonDB and suspension of its com-
pactions in the GPM, its overall throughput during the bursts
is much higher and the duration of the bursts is much shorter.

4Note that experiment results reported elsewhere about ChameleonDB are
those on the store without applying the GPM mode.

3.7 Comparison with NoveLSM and MatrixKV on
the Pmem use

With emergence of Pmem, there have been some recent
studies on leveraging this fast and byte-addressable device
to improve performance of LSM-based KV store designs. Two
representatives in this direction of efforts are NoveLSM [21]
and MatrixKV [38]. NoveLSM and MatrixKV are designed
as hybrid KV stores on both Pmem and SSD. For NoveLSM,
all levels are placed in the SSD. And it uses two in-Pmem
MemTables to persist arriving KV items and sort them there.
For MatrixKV, all levels except Level 0 (𝐿0) are placed in
the SSD. It allows the 𝐿0 levels in the Pmem to enable finer-
grained compactions to the SSD to avoid write stalls. For
the sake of fairness, we place all of their LSM levels in the
persistent memory in the experiments.
In this subsection we compare ChameleonDB with Nov-

eLSM and MatrixKV in terms of put and get throughput.
All of them are configured with 128MB MemTables just like
ChameleonDB. As ChameleonDB’s ABI additionally uses
8GB DRAM, we configure NoveLSM and MatrixKV each
with 8GB data cache in the DRAM. Note that both ABI and
the data cache are used to improve get performance. By using
the same amount of DRAM space, these stores can be com-
pared in a fair manner. We use source code of NoveLSM [20]
and MatrixKV [29] provided by their respective designers.
As NoveLSM was developed based on LevelDB and supports
only one background thread for compaction, we run the
three stores with one thread to perform compaction for fair
comparison. The key size is 16B while the value size varies.

In the put experiment, we write a total of 64GB data using
put requests whose value size ranges from 64B to 64KB. The
results are shown in Figure 17(a) (Note that the y axis is
shown in the logarithmic scale). As shown, ChameleonDB
outperforms NoveLSM and MatrixKV by up to 44× and
19×, respectively. This large performance gap comes from
two aspects. First, the amount of data written by NoveLSM
and MatrixKV to the Pmem are 8.8× and 15.4× higher than
that by ChameleonDB, as shown in Figure 17(b). These data
amounts are collected by intel’s ipmwatch about raw data
written to the Pmem’s media, including amplified writes due
to its 256B block access. There are several reasons why Nov-
eLSM and MatrixKV write much more data to the Pmem.
Both MatrixKV and NoveLSM use leveled compaction that
is known to have very high write amplification [7, 8, 27],
while ChameleonDB uses size-tiered compaction of lowwrite
amplification for all upper LSM levels. Furthermore, for Nov-
eLSM, building mutable MemTable in the Pmem requires
direct insertion of small KV items into its skip lists, result-
ing in a large write amplification, an issue similar to that
with Pmem-Hash(CCEH). This is one of the major issues
addressed by ChameleonDB. For MatrixKV, the size of its
metadata in its RowTable for acceleration of get performance
is significant, especially when the value size is small (e.g., 45%
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Figure 17. Comparison with two state-of-the-art Pmem LSM-tree designs.

of the KV data size when the value is 64 bytes). As the RowTa-
bles are in the Pmem, writing these metadata increases traffic
to the Pmem. Second, the throughput of NoveLSM and Ma-
trixKV’s writes to the Pmem are 77% and 5% lower than that
of ChameleonDB, respectively, as shown in Figure 17(c). This
is because they have more intensive use of CPU cycles, often
making CPU become performance bottleneck, with more
expensive key sorting and construction of Bloom filters. In
particular, NoveLSM uses the filters in all of the LSM levels,
and MatrixKV uses the filters in all of the levels except 𝐿0.
For the get experiment, we read 16GB data using get re-

quests on random keys. The get throughput with various
value size is presented in Figure 17(d). ChameleonDB outper-
forms NoveLSM and MatrixKV by up to 29× and 17×, respec-
tively. The much higher get performance of ChameleonDB
is attributed to its hash table and its ABI design. For Nov-
eLSM, as it has a mutable MemTable in Pmem, a get op-
eration requires checking its in-Pmem MemTable, which
results in many random Pmem reads. For any random ac-
cess, Pmem’s performance is especially worse than that of
DRAM. MatrixKV holds a big 𝐿0 level with multiple sub-
levels without Bloom filters. Though it conducts its search
using so-called cross-row hints to eliminate binary search at
each sub-level, it cannot avoid checking the sub-levels in a
one-by-one manner. As shown in Figure 17(e), the amount
of data read from Pmem for NoveLSM and MatrixKV are
much larger than that of ChameleonDB. Furthermore, as a
get operation in NoveLSM and MatrixKV involves searching
MemTable, checking Bloom filters, binary searching index,
and scanning data block, which are computationally inten-
sive compared with checking a hash table in ChameleonDB,
NoveLSM and MatrixKV have substantially lower Pmem
read bandwidth compared with ChameleonDB, as shown in
Figure 17(f). In the experiments, the data cache in the DRAM
is only about 12% of the entire data set (8GB vs. 64GB), its im-
pact on NoveLSM andMatrixKV’s get performance is limited

with random access. In a real-world use, we expect the Pmem
and data set will be (much) larger and the ratio between the
cache and the data set will be (much) smaller. Therefore, a
data cache cannot fundamentally address the performance
issue except when there exits very strong access locality. In
Figure 17(e) we can find that the amount of data read from
Pmem by ChameleonDB with 64B value size is much larger
than that with 256B value size. With a 256B value size, there
is a smaller number of keys with a fixed data set (64GB) in the
experiments. ChameleonDB’s ABI, a hash table whose size
is capped, can accommodate most keys for fast key access.
However, with a 64B value size there are much more keys,
and the ABI is quickly filled up leading to more frequent
compaction of keys to the LSM’s last level in the Pmem.With
more keys that have to be searched in the last level without
help of the ABI, ChameleonDB’s get throughput with the
64B value is even lower than that with 256B value size.

4 Related Works
Persistent Hashing. Existing works on persistent hashing
mostly focus on building a hash index by directly updating
the index in-place on persistent memory, such as PFHT [9],
level hashing [40], and CCEH [28]. PFHT is a cuckoo hashing
variant that is optimized to reduce memory writes during
serving write requests by allowing at most one displacement
in a write. Level hashing applies a two-level hash scheme
so that each key can have three buckets as the candidates
for insertion, which helps improve the load factor. Instead
of double hashing, CCEH is an extendable hashing that uses
a linear probing strategy so that a successful insertion only
requires one memory write. All of these works try to reduce
persistent memory writes during insertion in order to de-
sign a write-optimized hashing. However, for the existing
persistent-memory device, Optane Pmem, the in-place up-
date designs still cause large write amplifications as Optane
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Pmem’s physical media access granularity is 256B [37]. Un-
like these works, ChameleonDB aggregates insertion in a
small DRAM hash table, and flushes the hash table to the
Optane Pmem, so as to leverage the high write bandwidth
of Optane Pmem.
Key-value stores for Persistent Memory. SLM-DB [19]
presents a single-level KV store by applying a global per-
sistent B+-tree index. The KV data are appended to a log
while each record is indexed by a B+-tree to speed up the
search. As the B+-tree indexes all keys in the store, it is large
and has to stay in the Pmem, which causes small updates
on the tree with a large write amplification. ChameleonDB
uses a hash table to speed up search. Its hash table indexes
a much smaller number of keys. So it is much smaller and
can reside in the DRAM to make small updates occur only
in the DRAM. FlatStore [2] maintains a volatile global index
to serve read requests while maintaining a data log on the
persistent memory. Because the volatile index does not sur-
vive a system crash, FlatStore suffers from a long recovery
time (40 seconds to recover a store with one billion records
according to results in [2]). ChameleonDB does not have
the long recovery issue because it only needs to rebuild the
in-DRAM hash tables that contain a small portion of KV
items (e.g., 1/256 for a four-level design).
It’s critical to accurately understand a storage device’s

performance characteristics for an effective KV-store design
on the device. Xia et al. [36] had assumed a Pmem with its
writes slower than DRAM and reads of comparable latency
with DRAM in their design of a hybrid KV store on the
Pmem and SSD. However, after an extensive study of the
Intel Optane Pmem, Yang et al. [37] found that this Pmem has
write latency similar to that of DRAM. It’s the small writes,
which are incompatible with the Pmem’s 256B access unit
leading to write amplification, that seriously compromise its
write performance. They also report that Optane Pmem’s
read latency is 2× to 3× lower than DRAM. ChameleonDB’s
design accommodates these real performance characteristics
with its small writes only in the DRAM and reduced reads
using an in-DRAM hash-table-based bypass index.

Bullet addresses the performance gap between optimized
persistent memory and DRAM resident KV stores using a
Cross-Referencing Logs (CRLs) technique to move persis-
tent memory writes off the critical path [14]. ChameleonDB
closes the gap as well with a different approach, which is
reducing the access on the Optane Pmem with an in-DRAM
hash table and batching small writes. NoveLSM [21] and
MatrixKV [38] are LSM-tree KV stores exploiting persistent
memory to improve write performance. NoveLSM proposes
to maintain large mutable MemTables in persistent memory
to enable direct small updates, while MatrixKV proposes to
maintain 𝐿0 in the persistent memory to enable finer-grained
compactions. We compared ChameleonDB with NoveLSM

and MatrixKV. The results reveal that ChameleonDB outper-
forms them in both put and get performance because (1) it
avoids use of small writes in the Pmem to accommodate its
256B access unit, (2) it uses a sharded structure to reduce
LSM level count for fine-grained compaction and low write
amplification, and (3) it uses both size-tiering and leveling
compactions to reduce write amplification and also retain
low read latency.
Key-Value Stores for Fast SSD. 3D-Xpoint is the non-volatile
memory technology developed by Intel and Micron [18] and
is also used to build some of the fastest SSDs, such as Intel
Optane SSD 9 Series [17], which is much faster than the
preceding SSDs. Meanwhile, Samsung also develops ultra-
low latency SSD (Z-SSD [32]) to compete with Intel. With
emergence of the new SSD technology, many works have
been conducted to improve the efficiency of KV store as the
bottleneck shifts from the storage to the CPU. KVell [24]
applies shared-nothing and asynchronous I/O solutions to
improve the performance and exploit full disk I/O bandwidth
by avoiding a CPU bottleneck. Zhang et al. [39] proposes
an FPGA-accelerated compaction for LSM-based KV store
to reduce the CPU bottleneck for storing small KV items.
PinK [16] eliminates upper layer bloom filters and removes
the CPU cost for compaction by using FPGA-based SSD.

5 Conclusion
In this study, we present challenges of building KV stores
with high put throughput, low get latency, low DRAM foot-
print, and rapid restart on the Intel Optane Pmem, and reveal
shortcomings of existing KV store designs. As none of the
existing designs can achieve all the above objectives, we pro-
pose ChameleonDB, a KV store design that leverages respec-
tive strengths of existing designs while addresses their draw-
backs. By leveraging a multi-level structure, ChameleonDB
aggregates writes to exploit the 256B write unit property
of the Optane Pmem. By using an in-DRAM hash table to
avoid multi-level checking, ChameleonDB provides com-
petitive get latency with in-Pmem hash table designs. By
introducing the dynamic Get-Protect Mode, ChameleonDB
can reduce the tail get latency during put bursts. Our ex-
periment results show that it outperforms state-of-the-art
persistent hash table KV store designs by up to 8.5× in put
throughput and 2.5× in get throughput. We also compared
ChameleonDB with two state-of-the-art LSM-tree designs
on Optane Pmem (NoveLSM and MatrixKV), demonstrating
that ChameleonDB significantly outperforms them in both
put and get throughput.
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