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Abstract—In recent years, the design of green datacenters
and their enabling technologies, including renewable power
managements, have gained a lot of attraction in both industry
and academia. However, the maintenance and upgrade of the
underlying server system over time (e.g., server replacement
due to failures, capacity increases, or migrations), which make
datacenters increasingly more heterogeneous in their key pro-
cessing components (e.g., capacity and variety of processors,
memory and storage devices), present a great challenge to optimal
allocation of renewable power supply. In other words, the current
heterogeneity-unaware power allocation policies have failed to
achieve optimal performance given a limited and time varying
renewable power supply.

In this paper, we propose a dynamic power allocation
framework called GreenHetero, which enables adaptive power
allocation among heterogeneous servers in green datacenters
to achieve the optimal performance when the renewable pow-
er varies. Specifically, the GreenHetero scheduler dynamically
maintains and updates a performance-power database for each
server configuration and workload type through lightweight
profiling method. Based on the database and power prediction,
the scheduler leverages a well-designed solver to determine the
optimal power allocation ratio among heterogeneous servers at
runtime. Finally, the power enforcer is used to implement the
power source selections and the power allocation decisions. We
build an experimental prototype to evaluate GreenHetero. The
evaluation shows that our solution can improve the average
performance by 1.2x-2.2x and the renewable power utilization
by up to 2.7x under tens of representative datacenter workloads
compared with the heterogeneity-unaware baseline scheduler.

I. INTRODUCTION

Modern datacenters are consuming increasing amounts of
electricity. According to a 2015 NRDC report [4], datacenter
electricity consumption is projected to reach roughly 140
billion kilowatt-hours annually by 2020. This is the equivalent
annual output of 50 power plants, costing U.S. businesses
$13 billion annually in electricity bills. Such huge IT energy
consumption not only increases the total cost of ownership
(TCO) but also leaves profound impact on the environment.
According to another report, the annual CO2 emissions of
computing systems will reach 1.54 metric gigatons within
eight years, which could make IT companies the biggest
greenhouse gas emitters by 2020 [16]. To this end, many
cloud service providers, such as Apple [36] and McGraw-
Hill [38], have built their datacenter power systems using
on-site generation of renewable energy from sources such as

wind and solar. Such green design can significantly reduce the
environmental footprint and TCO of datacenters.
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Fig. 1: Numbers of server configurations in ten different
Google datacenters [22].

In many prior studies, researchers have built green power
systems [21], [11] and proposed relevant power management
schemes [35], [10], [9], [17], [32]. However, these studies are,
by and large, based on the assumption that the computing
environments are homogeneous in modern datacenters. In
practice, on contrary, these datacenters are typically composed
of replaceable commodity components [23]. To pursue a
higher performance target, datacenter managers will gradually
deploy new generations of hardware while parts of the older-
generation hardware remain and continue to operate. As a
result, a typical datacenter evolves to be a mixture of server
platforms and indeed becomes a heterogeneous datacenter.
Figure 1 presents the server diversity found in ten randomly
selected Google datacenters in operation in terms of the
number of different configurations in each of these datacenters
[22]. According to this figure, these datacenters are deployed
a number of microarchitectural configurations ranging from
2 to 5, including both Intel and AMD servers from several
generations. As the requirements of big data processing and
AI computation are growing exponentially, the owners of
datacenters also deploy high-performance computing (HPC)
platforms (e.g., GPUs) and domain-specific accelerators (e.g.
TPU and FPGA-based). Therefore, heterogeneous servers have
been prevalently deployed in modern datacenters.

However, existing studies on provisioning of renewable
energy largely ignore such configuration heterogeneity in
green datacenters. Considering the time-varying and intermit-
tent nature of renewable power supply, an important research



question is how to allocate appropriate amount of power
to each heterogeneous server, especially when the power
supply is insufficient. Specifically, the uniform power allo-
cation strategy used in ’homogeneous’ datacenters by default
will distribute unbalanced power to the actual heterogeneous
servers, leading to power wastage and performance degrada-
tion. Compounding the challenges posed by the time-varying
and intermittent nature of renewable power supply, the various
workload types and server configurations in datacenters make
it ever more difficult for power management in a green
datacenter to determine an optimal power allocation scheme
to achieve the best performance.

In this work, we propose GreenHetero, a dynamic power
allocation framework that aims at exploring the optimal power
allocation schemes and improving overall performance in
heterogeneous green datacenters. Specifically, we design a
new adaptive scheduler to determine the appropriate power
sources (e.g., renewable power, battery energy and grid power)
and power allocation schemes. First, based on renewable
power and server rack power predictions, the scheduler divides
the solution into three cases and chooses the power sources
accordingly. When the renewable power supply can fully
satisfy the power demand of server racks, it will independently
sustain the power load and the surplus renewable power will
be charged into energy storage devices. When the renewable
power supply is insufficient or shows great fluctuation, the
batteries, strategically charged either by renewable source or
grid source, discharge to make up for the power shortage.
When the renewable power is unavailable, the batteries indi-
vidually supply the load power. Second, after power source
selections have been determined, the scheduler will choose a
specific power allocation management. To tackle the server
and workload heterogeneity challenge, we introduce a solver
to find the optimal power allocation ratio based on a well-
constructed profiling database.

This paper makes the following contributions:
• We introduce a new metric called Effective Power U-

tilization (EPU) and analyze the impact of different
renewable power allocation schemes on performance and
EPU for heterogeneous datacenter servers. We find that
an appropriate power allocation scheme can lead to a 1.5x
performance gain and 100% EPU when compared with
the uniform power allocation strategy routinely used by
the homogeneous datacenters.

• We propose GreenHetero, a dynamic power allocation
framework that enables adaptive power allocation among
heterogeneous datacenter servers to achieve the best per-
formance when the renewable power varies. Specifically,
GreenHetero builds a performance-power database for
each server configuration and workload type through
lightweight online profiling method. Also, the database
will be updated at runtime. Based on the database and
power prediction, a well-designed Solver can find the
optimal power allocation ratio.

• We develop an experimental prototype consisting of sev-
eral types of servers in racks, a simulated solar power

generator, and a rack-level battery provision to evaluate
our GreenHetero approach. Based experiments driven by
tens of representative datacenter workloads, the evalu-
ation shows that our solution can improve the average
performance by 1.2x to 2.2x. The performance gain can
reach as much as 4.6x for some server configurations.
Also, GreenHetero can achieve up to 2.7x more EPU than
the baseline policy.

II. BACKGROUND

In this section, we first present the typical architecture of
modern green datacenters. Then we describe the heterogeneity
in green datacenters.

A. Green datacenters

To alleviate the carbon emission, datacenters are usually
provisioned with clean renewable energy. Figure 2 presents the
architectural overview of a typical green datacenters. In this
design, the server racks are partially powered by renewable
power. Specifically, the on-site renewable power supplies such
as photovoltaic (PV) and wind are connected to the power
distribution unit (PDU) level to provide a dual-power supply
of the grid and renewable power rather than integrating the
renewable energy into the utility power. This can help decrease
the impacts of voltage transients, frequency distortions and
harmonics. Compared with the centralized power integration,
the distributed integration prevents PDUs from becoming a
power delivery bottleneck.

However, the intermittent and time-varying nature of
renewable energy is one of the greatest challenges facing
its integration into datacenters. For example, photovoltaic
(PV) solar energy is only available during the day and the
amount produced depends on the weather and season. When
the green power supply is sufficient, it can fully satisfy the
power requirement and sustain the server power demand inde-
pendently. When the green power generation is insufficient,
batteries are deployed to supplement the additional power
demand as shown in Figure 2. Different from the conventional
centralized Uninterrupted Power Supply (UPS) design, for
example, Google and Facebook have employed distributed
energy storage system [31]. Such decentralized design can
avoid single point of failure and increase overall datacenter
power availability. Moreover, the centralized UPS battery
system lies on the critical power path between the Automatic
Transfer Switch (ATS) and the PDU. When UPS is required
to manage the power allocation, it supports power transfer
for the entire data center but it cannot deal with the power
allocation in a fine-grained way. Therefore, the distributed
battery can help regulate the power allocation, thus improving
the renewable power utilization.

B. Heterogeneity in green datacenters

Heterogeneity is prevalent in modern datacenters be-
cause servers are gradually provisioned and replaced over
the typical 15-year lifetime of a datacenter due to failures,
capacity increases, and migrations [28], [7]. Also, to meet
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Fig. 2: The architectural overview of a typical green datacenter

the requirement of data processing and computation in the
era of big data, users and Internet service providers usually
adopt high-performance computing (HPC) platforms, such as
FPGAs and GPUs [30]. Over time, this leads to datacenters
comprised of a range of heterogeneous platforms with different
technologies, power, performance and thermal characteristics,
and power management capabilities as shown in Figure 2.
When allocating power to these heterogeneous platforms, the
power utilization and performance can vary significantly based
on the particular allocation that is unaware of datacenter server
heterogeneity. However, the diversity across the underlying
microarchitectures in datacenters is not explicitly considered
by the current datacenter power management system.

III. HETEROGENEITY ANALYSIS IN GREEN DATACENTERS

The potential performance benefit of heterogeneity-
awareness in power allocation depends on diverse microar-
chitectural configurations and variable power supply in green
datacenters. In this section, we will analyze the impact of
server heterogeneity on green power allocation.

A. Effective Power Utilization

To evaluate the effectiveness of a power allocation strate-
gy, we introduce a new metric to measure the effective power
utilization, EPU, which can be defined as:

EPU =

∑
Pthroughput∑
Psupply

(1)

where Pthroughput represents the green power including
renewable power and battery energy directly used to generate
workload throughput and Psupply indicates the current power
supply. The value of EPU, between 0 and 1, measures to what
extend a power allocation strategy is able to run the servers
to their full capacities with the current power supply. Clearly,
the closer the EPU value of a power allocation strategy is to
1, the more effective this strategy is to fully utilize the power
supply. Different from the Power Usage Effectiveness (PUE)
metric that measures the ratio of total amount of energy used
by computing equipment, EPU describes how much power is

0% 

20% 

40% 

60% 

80% 

100% 

0
%

 

5
%

 

1
0

%
 

1
5

%
 

2
0

%
 

2
5

%
 

3
0

%
 

3
5

%
 

4
0

%
 

4
5

%
 

5
0

%
 

5
5

%
 

6
0

%
 

6
5

%
 

7
0

%
 

7
5

%
 

8
0

%
 

8
5

%
 

9
0

%
 

9
5

%
 

1
0

0
%

 

0% 5% 10% 

E
P

U
 

Power Allocation Ratio 

(a) EPU

0 

0.4 

0.8 

1.2 

1.6 

0
%

 

5
%

 

1
0

%
 

1
5

%
 

2
0

%
 

2
5

%
 

3
0

%
 

3
5

%
 

4
0

%
 

4
5

%
 

5
0

%
 

5
5

%
 

6
0

%
 

6
5

%
 

7
0

%
 

7
5

%
 

8
0

%
 

8
5

%
 

9
0

%
 

9
5

%
 

1
0

0
%

 

0% 5% 10% 15% 20% 

P
er

fo
rm

a
n

ce
 

Power Allocation Ratio 

(b) Performance

Fig. 3: The impact of server heterogeneity on effective power
utilization (EPU) and performance. The power allocation ratio
(X%) means that X% ((100-X)%) of total current renewable
power supply is allocated to Server A (Server B).

used to generate the computing throughput. EPU can be more
accurate to measure the power usage by the servers.

B. A case study

We now motivate the need for adaptive power allocation
with a case study. We adopt a testbed consisting of two
heterogeneous servers to evaluate the performance and EPU.
One server has two Intel Xeon E5-2620 processors (denoted
as Server A) and the other has an Intel Core-i5 processor
(denoted as Server B). The maximum powers measured for the
two servers are 81Watt and 147Watt respectively when running
the SPECjbb workload. We set a fixed power supply budget
of 220Watt, including renewable power and battery energy.
In this case, the power supply is insufficient to support the



maximal total server power demand.
Figure 3 shows the performance (i.e., throughput jops

for SPECjbb) and EPU results. The total current renewable
power supply is split between Servers A and B and the x-
axis indicates the percentage of the total (PAR) allocated to
Server A. To highlight the impact of power allocation on
performance, the results are normalized to the case of 50%
of PAR (i.e., orange bars in these figures). In this case, the
power system deploys a uniform power allocation strategy
with the assumption of homogeneous servers in datacenters. In
these two figures, we find that both EPU and performance can
achieve best results when the PAR is 65%. As shown in Figure
3(a), the EPU is about 86% using a fair power allocation
strategy, which leaves a great potential for improving power
utilization. When the PAR equals to 100%, all available power
is directed to Server A and the EPU is only about 37%. Figure
3(b) suggests that the performance gain under an appropriate
value of PAR is up to 1.5x more effective in power utilization
that the uniform strategy.

C. Challenges

The case above suggests several challenges facing the
design of an effectiveness of renewable power allocation for
heterogeneous green datacenters, which we summarize below.

Platform configurations: Although we only present two
types of servers in the above example, there are generally
more than two types of server configurations in datacenters as
indicated in Figure 1. Needless to say, different server config-
urations will have different power consumption implications,
leading to different optimal PAR values to achieve the best
performance.

Workload features: The workload intensity and type will
have great impacts on server power demand. For example, the
aggregate CPU utilization for a production cluster at Twitter is
consistently below 20% [8]. As a result, the power consump-
tion remains at a low level. At the same time, the servers
hosting batch workloads such as Mapreduce can consume
more power due to the full use of processors. Therefore, we
need to recognize different influences on power demand of
different workloads.

Intermittent and variable renewable power: The power
supply in the above case is fixed and stable. However, the
time-varying nature of renewable power supply indeed poses
one of the greatest challenges to achieving balanced power
allocations. The batteries can be a great supplement when
the renewable power is insufficient. However, the unbalanced
power discharging activities can also lead to a negative effect
on batteries lifetime. We should take both renewable power
generation and battery capacity into consideration to improve
the effectiveness of power allocation.

Obviously, the optimal power allocation ratio (PAR)
actually depends on all of the above factors. To this end, we
propose to dynamically identify the optimal operation point at
runtime to distribute appropriate power for each rack server.

IV. DESIGN OF GREENHETERO

In this section, we will introduce the design of Green-
Hetero, a framework that targets at improving application
performance and green power utilization through balanced
power allocation for heterogeneous green datacenters. First,
we will provide an overview of the GreenHetero controller.
Then, we present the details of the adaptive scheduler, which
is the key component of GreenHetero.
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Fig. 4: An overview of the GreenHetero Controller

A. Overview of GreenHetero

Figure 4 shows an overview of the GreenHetero Con-
troller architecture. The GreenHetero controller is a key
decision-maker that determines the power source selection
and the server power allocation. The controller consists of
three main functional modules, including Monitor, Adaptive
Scheduler, and Enforcer.

As shown in Figure 4, the Monitor module collects
the data on the renewable power generation and the battery
energy capacity. The measurements of discharge current of the
battery and the available power of renewable power system
are gathered by the distributed sensors. Also, it monitors
the server-level data, such as application performance and
power consumption and reports the data to the scheduler.
With the performance and power state feedback, the Scheduler
determines the appropriate power source of power supply
and the optimal power allocation ratio for the heterogeneous
servers (detailed in Section IV-B). With the decision from
the Scheduler, the Enforcer is responsible for implementation.
The Enforcer has two components: Power Source Controller
(PSC) and Server Power Controller (SPC). PSC carries out the
switching between power sources. Specifically, servers can be
powered by three kind of power sources: renewable power,
utility grid power, and battery. SPC controls server power
demand using server power state tuning techniques, such as
Dynamic Voltage and Frequency Scaling (DVFS).



The reasons for placing the GreenHetero Controller at
the rack level in a distributed deployment are threefold. First,
it matches the design of the rack-level energy storage system
and can explore the full potential of such design. However, the
disadvantage of this approach is that the renewable power and
energy storage systems for each rack of heterogeneous servers
are independent and cannot share their capacities. Second,
the distributed rack-level power controller can provide a fine-
grained way to track load variability and perform a precise
power allocation to guarantee the performance target because
the rack-level provisioning will face more load variations
than the cluster-level strategy. Third, in the case of power
imbalance, the distributed controllers can allow the hotter
nodes to be given a proportionally higher power allocation
levels to improve the performance while the vast majority of
the nodes will run at a lower power allocation level. It has a
much higher potential for improving effective power utilization
than the uniform cluster-level deployment.

B. GreenHetero Scheduler

In this section, we will present the design details of
GreenHetero Scheduler, which attempts to address several
research questions. First, how to become aware of datacenter
heterogeneity, in terms of both server configurations and work-
load types? Second, how to determine the power allocation
schemes for heterogeneous servers? Third, how to optimize
the scheduler? As shown in Figure 5, a power predictor
is designed to predict the renewable power supply and the
power demand. The objective of this component is to help
the scheduler determine the appropriate power sources. Also,
based on the profiling data on power and workload, we
create and maintain a database, which contains the relationship
between server power demand and its performance. Then,
the problem solver of this scheduler determines the power
source selections based on the prediction and the near-optimal
power allocation schemes based on the database. While the
output of the Solver is the ratio value of power allocation,
the final decision transferred to each server node is the power
tuning instructions, such as the exact frequency level using
DVFS. The Decision Output component is responsible for the
transformation from power value to frequency level.
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Fig. 5: An overview of the Scheduler

1) Prediction: To decide the power sources in each
scheduling epoch (e.g., 15 minutes), we employ a time series
prediction technique. Specifically, we leverage the double
exponential smoothing prediction (Holt exponential prediction
[37]) algorithm to periodically predict renewable power and
server rack power, which helps extract meaningful statistical
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Fig. 6: An illustration of power source selection

trends and predict future values. This algorithm involves two
smoothing equations (Equation 2 for the level and Equation 3
for the trend) and a prediction equation (Equation 4):

Level Equation: St = αOt + (1− α)(St−1 +Bt−1) (2)

Trend Equation: Bt = β(St − St−1) + (1− β)Bt−1 (3)

Prediction Equation: Pt+1 = St +Bt (4)

where St denotes an estimation of the level of the series at
time t, Bt denotes an estimation of the trend of the series at
time t, α is the smoothing parameter for the level, 0 ≤ α ≤
1, and β is the smoothing parameter for the trend, 0 ≤ β ≤ 1.
Ot is the observed data from the Monitor. Pt+1 represents the
predicted value for the time epoch t+1. We obtain α and β
by training the past renewable power generation records. The
optimization objective of this training process is to minimize
the square difference ∆D2 between the predicted and observed
values as:

Minimize: ∆D2 = f(α, β) (5)

in the range constraint of α and β. Note that we select a time
series prediction method that is effective for the data center
power consumption patterns, but any other proven prediction
approaches can be integrated into our prediction framework.

Based on the prediction results, the power source selec-
tion process must deal with three unique cases, A, B and C,
as shown in Figure 6 that illustrates a typical datacenter server
rack power pattern [13] and a 24-hour solar power trace. In
Case A, the renewable power is sufficient to independently
sustain the power demand of the server rack. Then the surplus
power can be used to charge the battery. However, the renew-
able power is by its own nature fluctuating and depends on
the weather conditions, a situation represented by Case B. In
this case, the green power supply temporarily drops below
the demand and needs the supplement from the batteries,
leading to a joint power supply from renewable power and
battery energy. Once the battery kicks in, an appropriate
power allocation strategy becomes more important because the
unbalanced power discharging activities can reduce the battery
lifetime and decrease the energy efficiency. If the renewable
power becomes completely unavailable, a scenario illustrated
by Case C, the battery independently sustains the power
demand. In all conditions, the grid power will be the last resort
only when the battery drains out. Note that, when the grid



is used to power all server racks, including utility-dependent
and renewable-power-dependent racks, the grid power budget
allocated to each server rack will be reduced. For the sake of
battery lifetime and energy efficiency, we make the following
assumptions. First, we set the depth of discharging (DoD) at
40% to mitigate the impact on battery lifetime. Second, when
the batteries reach the preset DoD, the grid or the renewable
power will charge the batteries to prepare for future power
shortages. Third, there is only one power source that can
charge the battery at any given time.
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Fig. 7: Populating and updating the database

2) Database: The adaptive power allocation is a tech-
nique to automatically find the near-optimal allocation ratio
from time-varying renewable power supply to the processing
servers for the given application and server configuration.
First, in order to effectively and timely adapt to the underlying
server heterogeneity and workload variability, we present a
performance-power database through lightweight on-line pro-
filing.

The Database is designed as a guideline for the Solver and
it provides the power consumption and throughput projection
for all workloads and server configurations it has ever execut-
ed. Instead of the exhaustive method that introduces a huge
amount of off-line profiling, we build the database using a
training run process, as depicted in Figure 7. The first time that
a workload arrives at the server system, it will be executed with
enough power supply to minimize the performance overhead.
Specifically, we use the system power governor as ondemand,
which can dynamically adjust the frequency level of processor
according to instantaneous CPU utilization, to guarantee the
workload performance. The battery and grid power will always
be ready to support the power demand during the training run
in case of the power shortages due to the renewable power
fluctuations. The duration of training run, typically 10 minutes,
is slightly shorter than the scheduling epoch of 15 minutes.
In the training run, the performance (Perf 1, ..., Perf X) and
power usage (Power 1, ..., Power X) data on each type of server
will be collected and then written into the database every 2
minutes. With the limited profiled data, GreenHetero then uses
curve fitting to construct relational equations Perf = f (Power)

as a performance projection for each workload on each server
platform.

3) Problem Solver: To achieve the optimization objec-
tive, we first formulate the optimization problem. For simplic-
ity, we continue to use two types of servers as an example,
Server A and Server B. Then the performance of each server
can be denoted as:

Server A: Perfa
t = f(la,ma, na, Power

a
t ) (6)

Server B: Perfb
t = f(lb,mb, nb, Power

b
t ) (7)

where PowerNt is the allocated power for Server N at time t
within the range of server peak power and idle power. When
the PowerNt is greater than the peak power, the performance
will stay constant. When it is less than the idle power,
the performance value will become zero. lN , mN , and nN
are constant real numbers for Server N derived from the
curve fitting process. Specifically, we adopt nonlinear curve
fitting (i.e., quadratic curve) here to extract the relationship
between power provision and performance for two reasons.
First, when the power supply exceeds the maximum server
power value, the performance will not increase any more.
Therefore, the linear curve projection is not suitable in such
cases. Second, we use a quadratic relational function within the
power demand range to reduce the complexity of the solver
compared with higher order functions while minimizing the
error compared with linear function.

The objective of the Solver is to maximize the overall
performance of rack servers by finding the optimal value
of power allocation ratio (PAR). The process of solving the
problem is similar to prior work [24]. We denote η as the PAR
of Server A and γ as the PAR of Server B, where 0 ≤ η + γ
≤ 1. As a result, we arrive at Equation 8:

Perft = maximize (Perfa
t + Perfb

t )

= maximize (f(la,ma, na, ηPowert)+

f(lb,mb, nb, γPowert))

(8)

where Powert is the predicted power supply for time t
derived from Equation 4. Note that, when there are more than
one Server A and Server B, we distribute the same amount
of power to the same type of servers by default. For example,
if the rack consists of x Server As and y Server Bs, then the
PAR of each Server A is η

x and Server B is γ
y . Further, when

there are more than two types of servers such as three types of
servers as we can find in Figure 1, in which 80% of datacenters
consist of two and three types of server configurations, we will
add another PAR variable δ in Equation 8. Note that, the extra
ratio (1−η−γ) of power supply will be charged into batteries
if the renewable power generation is sufficient. In this work,
we focus on the power allocation management at the rack
level, so we assume the server configurations in each PDU
racks can be up to three types and put more complex cases as
future work.

4) Output Decision: Once the PAR is determined, the
scheduler is able to allocate the power to each server. At the
server level, the power consumption can be controlled by the
power state such as DVFS and power saving state (e.g., Sleep
and Hibernation) [14], [33]. Obviously, when the power supply
exceeds the peak server power demand, we directly set the



frequency of all processor cores at the highest level. We create
a power state set for each kind of server SN , which consists
of all server frequency levels and low power states and is
ordered from low power state to high power state. We use a
mapping scheme that relates the power output and the server
power state. We set the minimum and maximum values of
the power range, and any value between the power limits is
linearly scaled to a position in the state set SN .

Algorithm 1 Optimization Algorithm
1: // At the beginning of each scheduling epoch t
2: Obtain current server configuration c and workload type w, then search

the database.
3: If ( c & w == 0) Then //Does not find a relational equation for

Server c running workload w in database
4: Step into Training run process
5: Add new relational projection into database
6: Else //Find the relational equation and update the existing database
7: Find the optimal PAR by the Solver
8: Continue the execution and collect the result data
9: Reconstruct the relational equation using curve fitting with both new

and old profiling data
10: Update the database
11: EndIf

5) Optimization on Power Allocation: Although we can
get a relational equation using the database as mentioned
above, the scheduler cannot always guarantee the optimal
power allocation results because the information from the
profiling data is limited in the training run and can be less
accurate. Therefore, the database needs to be dynamically
updated. Algorithm 1 shows the pseudo code of two key
optimization operations, i.e., adding new relational projections
(line 4-5) and updating existing database (line 7-10). At
the beginning of each scheduling epoch, the scheduler first
obtains current server configurations and workload types. If
the relational equation does not exist in the database when
searching the database, it will step into the training run
process and add the new projection into the database. If the
performance and power projections based on the current server
configuration and workload type can be found, then use the
Solver to find the optimal PAR. The feedback performance
and power consumption results will be used to reconstruct the
relational equation along with the old profiling data. Finally,
the new equation will be written into the database and the
updating process ends.

V. EVALUATION OF GREENHETERO

A. Methodology

1) Evaluation Workloads: To conduct a meaningful and
fair evaluation of GreenHetero, we choose various datacenter
workloads from Cloudsuite [25], PARSEC [6], SPEC [3], [2],
and Rodinia [29], summarized in Table I. Cloudsuite is a
benchmark suite for typical cloud services, such as Web-search
and Memcached. PARSEC focuses on emerging workloads,
such as computer vision, video encoding, financial analytics,
animation physics and image processing. SPECCPU represents
high performance computing (HPC) applications and Rodinia

Workloads Suite Performance Metric
SPECjbb SPEC [3] jops (99%-ile 500ms constrained)
Web-search, Cloudsuite [25] ops (90%-ile 500ms constrained)
Memcached rps (95%-ile 10ms constrained)
Streamcluster, Freqmine, PARSEC [6] ips (instructions per second),
Blackscholes, Bodytrack, execution time
Swaptions, Vips, X264,
Canneal
Mcf SPECCPU [2] ips, execution time
Srad v1, Particlefilter, Rodinia [29] ips, execution time
Cfd, Streamcluster

TABLE I: Workload Description

Server Type Frequency Socket Cores Peak Power Idle Power
Xeon E5-2620 2.0 GHz 2 12 178W 88W
Xeon E5-2650 2.0 GHz 1 8 112W 66W
Xeon E5-2603 1.8 GHz 1 4 79W 58W
Core i7-8700K 3.7 GHz 1 6 88W 39W
Core i5-4460 3.2 GHz 1 4 96W 47W
Nvidia Titan Xp 1582 MHz 1 3840 411W 149W

TABLE II: Server Description

is designed for GPU-CPU heterogeneous computing. Within
each experiment, a workload can be executed iteratively.

2) Evaluation Platform : The different workloads can
run on different server platforms. In our evaluation, we con-
sider 6 different configurations involving Intel CPUs and a
Nvidia GPU and each configuration consists of 5 servers in
racks. The specific configurations are presented in Table II.
Each server runs on the Ubuntu Linux OS with the kernel
version 3.0.13. To ensure the consistency, each server has 32
GB main memory. The server racks share the storage through a
network file system. The power consumption of each server is
monitored by an external power meter [1]. We use the cpufreq
and nvidia-smi command to scale CPU and GPU frequencies
respectively. Also, perf and nvprof command can be used to
obtain the performance data.

To simulate a data center with renewable energy provi-
sion, we choose two of the renewable power production traces
with one-week duration from NREL [5], including irradiation
every 15 minutes, and replay the chosen trace on our prototype.
Specifically, one of the solar traces, referred as High trace,
represents the high level renewable power generation and the
other one, Low trace, represents the low level renewable power
generation. We use 10 12V 100Ah lead-acid batteries for the
server racks, which can store the surplus renewable energy.
We also assume a DoD (depth of discharging) of 40% in our
setup, which translates to a lifetime of 1300 recharge cycles
[31]. The choice for energy capacity of the battery considers
both the renewable energy production and energy consumption
of the server racks. The energy efficiency of the battery is set
at 80% as detailed in [12].

3) Power Allocation Policies and Metrics : To be more
specific, we compare GreenHetero to four different power
management policies summarized in Table III. Uniform is
a heterogeneity-oblivious policy that always allocates power
to each server uniformly. Manual statically tries all possible



Policies Description
Uniform Allocate power to each server uniformly without

considering server heterogeneity and workload type
Manual Determine the near-optimal ratio by trying all

possible power allocations at a granularity of 10%
GreenHetero-p Allocate power to the server based on the order

of energy efficiency
GreenHetero-a Determine the power allocation ratio as GreenHetero

without optimizations
GreenHetero Determine the power allocation ratio adaptively

at runtime

TABLE III: Description of Power Allocation Policies
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Fig. 8: Runtime results of SPECjbb using High solar trace

power allocations at a granularity of 10%. GreenHetero-p
determines the power allocation based on the descending order
of the energy efficiency (i.e., throughput per watt), which is
derived from the Database of GreenHetero. GreenHetero-a is
a simplified version of GreenHetero without the optimization
of dynamically updating database. Uniform is regarded as the
baseline policy. The main metrics are workload performance,
i.e., runtime throughput such as jops for SPECjbb, and EPU.

B. Results and Discussions

In this section, we present the detailed performance
and utilization comparisons of GreenHetero with other four
baseline power management policies under different workload
conditions.

1) Runtime Results: We first show the results of a 24-
hour run of SPECjbb using typical datacenter workload pattern
(shown in Figure 6). Also, the High solar trace is used for the
evaluation. We initialize the battery capacity to its maximal
state at the starting time. When the grid power is used to
supply the power, the power budget is set at 1000W, which
is lower than the server power demand as aforementioned.

In the following part, we focus on two fixed server config-
urations, i.e., 10 total servers equipped with E5-2620 and
Core-i5 processors. The power allocation ratio (PAR) indicates
the percentage of power allocated to server with E5-2620.
Figure 8 presents the performance and power profile results
of the GreenHetero and Uniform policies. As shown in Figure
8(a), GreenHetero outperforms the Uniform policy for most
scheduling epochs. On an average, GreenHetero achieves up
to 1.5x performance gain when the renewable power supply is
insufficient (i.e., Case B and C denoted in Section IV-B). When
the renewable power supply is sufficient, the performance of
GreenHetero is similar to Uniform, suggesting that adaptive
power allocation has very little impact when the power supply
is abundant. With the power supply varying, the PAR changes
accordingly. The average value of PAR during the 24-hour
execution is about 58%. To achieve the best performance, the
scheduler has to dynamically adjust the ratio value based on
the power supply and server power demand.

Figure 8(b) shows the discharging and charging activities
of the batteries. In Case C, the batteries continuously discharge
to supplement the unavailable renewable power until their
DoD is reached, which lasted for about 4.2 hours. When the
batteries can no longer sustain the power demand, the grid
will take over and support the server power demand (Grid
Load), and charge the battery (Grid Charging). In Case A, the
renewable power can independently support the load and the
extra power will be charged into the batteries.

2) Impact of Workload types: To understand the impact
of different workloads, the evaluation results, in terms of
performance and effective power utilization (EPU), of 13
different workloads under five power allocation policies are
reported here. Specifically, to explore the importance of power
allocations, we focus on the analysis of the case when the
renewable power is insufficient.

Performance: Figure 9 shows the performance results
of 3 interactive datacenter workloads, 8 PARSEC workloads,
and 1 HPC workload. Overall, GreenHetero performs the
best among the five policies, achieving an average of 1.6x
performance gain over the baseline Uniform policy. The
Streamcluster and Memcached workloads show the best and
worst performance gains by up to 2.2x and 1.2x respectively.
Despite of the fact that the Manual policy allocates the power
by a 10% granularity and its PAR accuracy is very low, it
still performs better than the Uniform policy. GreenHetero-
p will always distribute power to the server with Core-i5
first due to its higher energy efficiency. This policy works
when compared with Uniform and some cases of Manual.
However, it depends on the specific power supply and server
configurations. For example, if the rest of the power supply
cannot support the other server to power on, then the power
allocation will be unbalanced, further wasting as evidenced
by the Streamcluster workload. GreenHetero-a uses limited
power and performance profile to construct the database with-
out updating. In some cases, GreenHetero-a underperforms
GreenHetero that has dynamically optimizations. Therefore,
the optimizations are also important and can provide additional
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Fig. 9: Performance of five power allocation policies for different workloads
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Fig. 10: Effective power utilization of five power allocation policies for different workloads

performance improvement. The HPC workload Mcf shows a
1.3x performance gain by GreenHetero, which is similar to
GreenHetero-a and GreenHetero-p.

EPU: Figure 10 shows the EPU results. The average
EPU achieved by GreenHetero is about 2.2x higher than
Uniform. In many cases, the other four policies introduce the
same EPU (normalized to Uniform). The Canneal workload
shows the best result by up to 2.7x improvement while the
Web-search workload demonstrates only 1.1x improvement.
We find that the EPU value does not have any specific
correlation with the performance value, other than an evident
trend indicating that an increasing EPU tends to correlate
to an improved overall performance and reduced inefficiency
power allocations. Therefore, EPU is a very important metric
to evaluate the effectiveness of the power allocation.

3) Impact of renewable power supply: In what follows,
we evaluate another renewable power generation pattern for
SPECjbb. Different from the High solar trace in Figure 8, we
use the Low solar trace here to analyze the impact of different
power generation patterns. Compared with the former, the
power supply in the latter becomes more fluctuated. As shown
in Figure 11(a), the performance of Uniform is consistently
lower than that of GreenHetero when the renewable power
supply is not in abundance. On an average, GreenHetero can
still achieve 1.2x performance gains over Uniform during those
epochs in Cases A and B. With its adaptive adjustment of the
PAR value, GreenHetero is able to fully explore the potentials
of the time-varying power supply. Figure 11(b) presents the
power profiles of GreenHetero. Obviously, compared with
High solar trace, Low solar trace shows more frequent dis-
charging/charging activities. In the evaluation, GreenHetero
discharge the batteries twice per day (to the maximum DoD),
so there is relatively very small impact on the lifetime.
However, the rest of renewable power after powering the server
racks may not fully charge the battery, leading to more grid
power cost (e.g., more grid power usage over a 4-hour period
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Fig. 11: Runtime results of SPECjbb using Low solar trace

than when High solar trace is used).
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Fig. 12: Performance of different grid power budget

4) Impact of grid power budget: Figure 12 presents
the effectiveness of GreenHetero under different grid power



Combinations Server Types Workloads
Comb1 E5-2620, i5-4460

SPECjbb
Comb2 E5-2603, i5-4460
Comb3 E5-2650, E5-2620
Comb4 i7-8700K, i5-4460
Comb5 E5-2620, E5-2603, i5-4460

Comb6 E5-2620, Titan Xp Streamcluster, Srad v1,
Particlefilter, Cfd

TABLE IV: Server Combinations

budgets when the batteries drain out. As the figure shows, the
performance gain for SPECjbb by GreenHetero becomes much
lower than Uniform when the power budget decreases. Howev-
er, due to the high utility charges for peak grid power (e.g., up
to $13.61/kW as mentioned in [21]), simply increasing the grid
power budget for higher performance can introduce enormous
cost. Especially for heterogeneous datacenters, GreenHetero
can achieve better effectiveness for power utilization. As a
result, GreenHetero is able to further help underprovision the
grid power infrastructure, which is orthogonal to prior works
[14], [33].

5) Impact of server heterogeneity: In this section, we
evaluate the impact of different combination of server con-
figurations (based on Table II), summarized in Table IV. We
show the results of several representative workloads.
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Fig. 13: Performance of different server combinations

Figure 13 presents the results of SPECjbb for different
server combinations. As we expect, the individual server
configuration has a great impact on the performance. Comb2
and Comb4 show similar results (only 3% improvement) for
all policies because these two pairs of servers have similar
power profiles. That is, these server configurations exhibit
behaviors consistent with those of homogeneous servers when
running the SPECjbb workload. In this case, the advantage of
GreenHetero is diminished. Meanwhile, Comb1 and Comb3
present up to 1.5x performance gains over Uniform. These
servers exhibit truly heterogeneous behaviors and show large
difference in energy efficiency. As a result, we believe that
GreenHetero can provide even greater benefits for datacenters
with higher level of heterogeneity in server configurations. We
also evaluate the combination for three server configuration,
i.e., Comb5. GreenHetero achieves 1.6x performance gains
over Uniform. This result also depends on the specific server
configurations.

We also conduct several experiments on a GPU-based
platform. The results are shown in Figure 14. Generally,
GreenHetero performs the best among all policies. Due to the
large difference in computing performance between GPU and
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Fig. 14: Performance of Comb6 for different workloads

CPU, the performance improvement by GreenHetero can be
up to 4.6x for the Srad v1 workload. The average performance
gain is 2.5x. For Cfd, the performances running on CPU
and GPU are similar. Therefore, the overall performance
gain is not as high as Srad v1. We can conclude that it is
extremely essential to design such heterogeneity-aware power
allocation policy for GPU-based server configurations in green
datacenters.

VI. RELATED WORK

Power Management in Datacenters: There have been
many recent studies on the power management in datacen-
ters [17], [9], [11], [10], [20], [19], [26], [21], [18], [27].
However, they all assume that the computing environments
are homogeneous and their proposals are not aware of server
heterogeneity. For example, green datacenter design of Oasis
uses Intel Core i7-2720QM 4-core CPU as processing engine
[11]. GreenSlot and GreenHadoop uses a 16-server cluster,
where each server is a 4-core Xeon [20], [19]. GreenPar uses
55 servers, where each server is equipped with a dual-core
1.6GHz Atom processor [26]. Different from these works,
GreenHetero conducts power management with an awareness
of the underlying heterogeneous servers. GreenGear incorpo-
rates wimpy servers into existing green datacenters to dynam-
ically deal with power mismatches [34]. GreenHetero differs
from GrearGear in the following important aspects. First, the
GreenGear design introduces extra capital cost by purchasing
new and better energy-efficient servers, while GreenHetero
tries to mitigate the side effect of datacenter upgrading that
leads to the increased server heterogeneity. Second, GreenGear
targets at solving the power mismatch problem, while Green-
Hetero aims to improve the server performance and renewable
power utilization by achieving effective and efficient power
allocations. Third, GreenGear adopts an on-off server strategy
and always turns on only one server in each composite hetero-
geneous node. Obviously, when the power supply is sufficient,
all-on strategy can be more effective. As a result, GreenHetero
is suitable for all cases and can adaptively adjust the power
allocation policy under different server configurations and
workloads.

Heterogeneity in Datacenters: There have also been
studies that explore the heterogeneity in datacenters [22],
[7], [15]. Whare-Map exposes and quantify the performance
impact of the heterogeneous datacenters and performs job-
to-machine mapping [22]. Paragon is an online and scalable
datacenter scheduler that is heterogeneity and interference-



aware to improve server utilization [7]. KnightShift is a server-
level heterogeneous architecture that introduces an active low
power mode, along with a high-power primary server, to
improve energy proportionality [15]. Different from these
works that emphasize on the impact of heterogenous servers on
server utilization and energy efficiency, GreenHetero focuses
on the impact of datacenter heterogeneity on renewable power
allocations and performance.

VII. CONCLUSION

In this paper, we propose GreenHetero, a dynamic power
allocation framework that enables adaptive power allocations
to achieve the best performance when the renewable power
supply varies in its availability. GreenHetero maintains a
database for each server configuration and workload type. A
well-designed Solver can find the optimal power allocation ra-
tio. Using representative datacenter workloads, the evaluation
shows that our solution can improve the average performance
by 1.2x to 2.2x.
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