
HuGE: An Entropy-driven Approach to Efficient
and Scalable Graph Embeddings

Peng Fang, Fang Wang†, Zhan Shi, Hong Jiang∗, Dan Feng, and Lei Yang
Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System,

Engineering Research Center of data storage systems and Technology, Ministry of Education of China,
School of Computer Science and Technology, Huazhong University of Science and Technology, China

∗ Department of Computer Science and Engineering, University of Texas at Arlington, USA
{fangpeng, wangfang, zshi, dfeng, leiyang}@hust.edu.cn; ∗hong.jiang@uta.edu; †Corresponding author

Abstract—Graph embedding is becoming widely adopted as
an efficient way to learn graph representations required to
solve graph analytics problems. However, most existing graph
embedding methods, owing to computation-efficiency challenges
for large-scale graphs, generally employ a one-size-fits-all strategy
to extract information, resulting in a large amount of redundant
or inaccurate representations. In this work, we propose HuGE,
an efficient and scalable graph embedding method enabled
by an entropy-driven mechanism. Specifically, HuGE leverages
hybrid-property heuristic random walk to capture node features,
which considers both node degree and the number of common
neighbors in each walking step. More importantly, to guarantee
information effectiveness of sampling, HuGE adopts two heuristic
methods to decide the random walk length and the number of
walks per node, respectively. Extensive experiments on real-world
graphs demonstrate that HuGE achieves both efficiency and
performance advantages over recent popular graph embedding
approaches. For link prediction and multi-label classification,
our approach not only offers >10% average gains, but also
exhibits 22×–126× speedup compared with existing sampling-
based methods.

Index Terms—Graph embedding, Efficiency, Scalability,
Entropy-driven

I. INTRODUCTION

Graph is an important data structure for representing con-
nected entities and relationships existing in a wide variety
of real-world scenarios, such as social networks, biological
graphs, traffic networks, semantic graphs, etc. Over the last
few years, graph analytics has received significant attention
for its ability to extract meaningful insights from large-scale
graphs representing the above real-world scenarios. Graph
embedding (a.k.a. network embedding), as an effective tech-
nique of graph analytics, has become a key method to learn
node representations from a graph [1]. Specifically, it aims
to embed the nodes of a graph into a low-dimensional vector
space, while preserving the inherent structural properties of the
graph, and the representation vectors can serve a wide range
of downstream graph tasks through machine learning methods.

In the current literature, existing approaches in graph em-
bedding roughly fall into three categories: sampling-based
techniques such as Deepwalk [2], Node2vec [3], LINE
[4], Struc2vec [5], VERSE [6], and DiaRW [7]; matrix
factorization-based (MF-based) techniques such as HOPE [8],
NetMF [9], STRAP [10], ProNE [11], and NRP [12]; and

graph neural networks-based (GNN-based) techniques such as
GraphSage [13], Graph Attention [14], and GraphGAN [15].
However, most of the existing methods face efficiency and
scalability challenges in the embedding process, especially for
large-scale graphs that are increasingly common nowadays.
For example, sampling-based techniques, such as node2vec,
need to sample a large number of node pairs to ensure the
quality of embedding, and thus require substantial compu-
tational resources, taking months to learn embeddings for a
graph with 100 million nodes and 500 million edges by 20
threads on a modern server [11]. For MF-based techniques, the
performance of embedding depends heavily on the DRAM size
due to expensive matrix factorization operations, some recent
works [10]–[12] attempt to address this challenge, especially
NRP [12] efficiently handle a billion-edge Twitter graph on
100GB level RAM. NRP also reveals that the random walk
based methods are restricted by the sheering number of pos-
sible walks while increasing the walk length, so is it possible
to efficiently reduce the redundant walk by a heuristic random
walk? For GNN-based techniques, training a neural network
also incurs very high computational overhead and inevitably
limits their scalability [1], [12]. Therefore, it is critically
important to generate high-efficiency graph embeddings on
large-scale graphs.

Furthermore, current graph embedding techniques adopt a
one-size-fits-all strategy for all nodes and fail to meet the
unique requirements of different individual real-world graphs
[6]. For the sampling-based approach, which generally sam-
ples node pairs from an input graph, defining the proximity
of pairwise nodes is the key to achieving effectiveness for
various downstream tasks in diverse graphs. Deepwalk is
a pioneer work extending word2vec [21] to graph feature
learning, it generates sequences of nodes from a graph by
uniform random walk but limited in preserving properties
for complex graph structures. Considering the diversity of
connectivity patterns, Node2vec attempts to ameliorate the
flexibility in bias walk via two hyperparameters (p and q),
but at the cost of increased space complexity due to repetitive
search for the optimal configuration on a large-scale graph.
DiaRW is recently proposed as a scalable graph embedding
method based on a degree-biased random walk with variable
length, yet the random walk length is only determined by

the degree of a source node, ignoring the rich information of
proximity nodes. Consequently, the flexibility and effective-
ness of strategy should be fully considered in the generated
graph embeddings.

To address the above challenges, we propose HuGE, an
entropy-driven approach to efficient and scalable graph embed-
dings. Specifically, HuGE leverages hybrid-property heuristic
random walk, which takes into consideration both node degree
and the number of common neighbors to exploit the proximity
of pairwise nodes. Moreover, from the perspective of infor-
mation effectiveness, we present heuristic methods based on
information theory, primarily referring to information entropy
and relative entropy in this case, for the random walk length
and number of walks per node, improving the computing and
memory efficiency without sacrificing precision.

II. MOTIVATION

Sampling-based techniques inspired by the well-known nat-
ural language processing model word2vec [21], transform a
graph into a set of random walk paths through sampling and
then adopt word2vec (Skip-Gram) to generate graph embed-
dings from the sampling paths. However, random walk length
(L) and the number of walks per node (r) in existing sampling-
based techniques heavily rely upon an empirical value set
(usually, L = 80 and r = 10). These static configurations for
the sampling procedure may introduce an excessive amount of
low-quality information, limiting the efficiency and scalability
on large-scale graphs. To better understand the impact of
random walk length and the number of walks per node on
learning node representations, we quantitatively examine the
relationship between information entropy and the walk length,
in Fig. 1, and between relative entropy and number of walks
per node, in Fig. 2.

0 10 20 30 40 50 60 70 80
Walk length

0

0.5

1

1.5

2

2.5

3

In
fo

rm
at

io
n

En
tro

py

Node2Vec
Karate

Deepwalk
Karate

Struc2Vec
Karate

Node2Vec
email-Eu-core

Deepwalk
email-Eu-core

Struc2Vec
email-Eu-core

Node2Vec
Wiki-Vote

Deepwalk
Wiki-Vote

Struc2Vec
Wiki-Vote

Fig. 1. Information entropy as a function of walk length L for short
random walks on three real graphs, Karate, email-Eu-core and Wiki-Vote, with
sampling procedures of Node2vec, Deepwalk and Struc2vec, respectively. To
ensure comprehensiveness, the mean of information entropy for each short
random walk is visualized.

As mentioned in previous approaches, information entropy
can be used to measure global or local information in random
walk process on graphs [16] and quantify effectiveness of text
data [17]. Consider a path WL

u generated by the walker with
length L from source node u, suppose that the path WL

u passes
through the nodes V 1

u , V
2
u , V

3
u , ..., V

i
u , then the probability

of V iu occurring in path WL
u is p(Vi) = n(Vi)∑

V∈WL
u
n(V) , the

information entropy of all paths is HWL
u

= −
∑
p(Vi)logp(Vi),

indicating that the more evenly distributed the nodes in a path,
the larger the H value will be. Fig. 1 shows how information
entropy changes with an increasing L on three real graphs.

For clarity of display, each curve plots the average H of
paths starting from all nodes in the corresponding graph and
sampling procedure. Since each path of short random walks
corresponds to a sentence from corpus [2], we can find that
the commonly used L value of 80 in existing models cannot
support a concise and comprehensive representation due to
the fact that H is already in a stable state, and will inevitably
introduce a great amount of redundant information.

Fig. 2. For the Wiki-Vote graph, Kernel density distributions of node degree
(red shaded area) and node occurrence in random walks based on Node2vec
(blue shaded area), respectively. Kullback-Leibler divergence (KL) for the
two distributions is labeled into subplots. The x axis represents the degree of
nodes in graph and the counts of node occurrence in walks.

From a macro perspective, the corpus is generated by
multiple rounds (r) of walk paths for each node, and the
study in [2] reveals that the distribution of frequency with
which nodes appear in corpus (q(Vi)) is similar to the node
degree distribution of a graph (p(Vi)) because they both follow
a power-law distribution. Inspired by this observation, we first
leverage kernel density distribution [18] to estimate the two
distributions and then use Kullback-Leibler divergence (a.k.a.
relative entropy) [19] to quantify the discrepancy between
q(Vi) and p(Vi), denoted as KL =

∑
p(Vi)log

p(Vi)
q(Vi)

. Visually
indicated in Fig. 2, as r increases, the first peak of the blue
shade (i.e., the tallest on the left in q(Vi)) becomes more
leptokurtic, and its density distribution more similar to that
of the red shade (p(Vi)). It also can be found that the KL
value labeled in Fig. 2 has a slight variation after r = 7,
which is less than the empirical value for r = 10.

Note that the low-quality corpus will adversely affect the
effectiveness of embedding training and ultimately interfere
with the accuracy of downstream tasks [20]. Motivated by
these insights, we propose in this paper an entropy-driven
graph embedding approach, called HuGE that sheds new
light on improving performance via efficient and scalable
embedding.

III. DESIGN AND ANALYSIS OF HUGE
A. Sampling strategy

(1) Hybrid-Property Heuristic Random Walks
Sampling-based graph embedding techniques extract node

features through random walks, which have capability of
automatically capturing useful representations from complex
graph structures [1]. As popularly used in graph statistics,
common neighbors can identify the similarity between nodes
in graph, besides, most real-world graphs are reported to be
scale-free, so as to high-degree nodes in random walks tend
to be revisited more and walks starting from them are likely
to obtain richer information by traveling around the local

neighbors [7], [23]. Based on these considerations, we propose
a hybrid-property heuristic random walk (HRW) for next-hop
node selection. HRW differentiates the candidates by taking
into account both the number of common neighbors and the
degree of candidate nodes. Specifically, if a candidate node v
(v ∈ N(v0)) has more common neighbors with v0 and a higher
degree, then the walker moves to v with a higher probability.
As shown in Fig. 3, the number of common neighbors between
v0 and {v1, v2, v3, v4} is {1, 2, 1, 0}, and the degrees of
{v1, v2, v3, v4} are respectively {7, 4, 4, 4}. Intuitively, since
v2 has the most common neighbors with v0, it has the
highest similarity to v0 among nodes in the candidate set.
Nevertheless, the walker may have a high chance of walking
back to previously visited nodes through common neighbors
due to v2’s lower degree than v1’s. On the other hand, since
v1 and v3 have the same number of common neighbors with
v0, the walker will more likely choose v1, leading to a higher
probability of walking to unvisited nodes. Since the transition
probability from v0 to v4 will be the lowest due to the minimal
similarity with the current node v0, the proximity of v0 and
v4 in the graph will likely be minimal. Therefore, by jointly
considering common neighbors and degree skewness, HRW
is arguably capable of both identifying similar properties and
ensuring the exploration of richer information in the random
walking.

1

3

2

11

10

12

4

6

0

7

8

9

13

14

5

15

Fig. 3. An example for random walk.

To implement HRW, the key issue is to formulate the
selection of the next-hop node with a mathematical model.
Let G = (V,E), u, v ∈ V , we first define the node similarity
between u and v by the number of distinctive neighbors as:

Sim(u, v) =
1

deg(u)− Cm(u, v)
, if(u, v) ∈ E (1)

where deg(u) is the degree of u. From the above equation, it
is obvious that Sim(u, v) grows with the number of common
neighbors Cm(u, v) since deg(u) is fixed. Instead of the single
property biased random walk, HRW also considers weights
in node transition probabilities based on degrees of nodes as
follows. Suppose the source node is u, the weight of transition
probability from u to v is:

α(u,v) =
1

deg(u)− Cm(u, v)
×max

{
deg(u)

deg(v)
,
deg(v)

deg(u)

}
(2)

the function max is able to exert influence of high de-
gree nodes to obtain richer information by traveling around
the local neighbors, reducing the redundancy in the future
walking. Take Fig. 3 as an example to illustrate the walking
process in one step. Suppose that the walker is current at v0,
N(v0)={v1, v2, v3, v4}, the weights of transition probabilities
are α(0,1) = 7/12, α(0,2) = 1/2, α(0,3) = 1/3, α(0,4) = 1/4,

suggesting that v1 has a higher probability than other candidate
nodes as the next-hop node, which is consistent with the
intuition.

To limit the computation overhead, HRW leverages a
commonly used strategy, walking-backtracking [7], [23], to
determine the next-hop in each walking step. Specifically, at
a source node u in each step, HRW randomly chooses v from
N(u) as a candidate node, the acceptance probability for v as
the next-hop node is P(u,v), and if v is rejected, which will
happen with probability 1− P(u,v), the walker will backtrack
to u and repeat a random selection again from N(u). Formally,
the transition probability from u to v can be written as:

P(u,v) =

{
Z
(
α(u,v)

)
, if(u, v) ∈ E

0, other
(3)

here we do a normalization on α(u,v) by Z = ex−e−x

ex+e−x ,
which is widely applied in machine learning and satisfies the
walking-backtracking strategy.

(2) Heuristic walk length
In the current literature, most sampling-based graph embed-

ding techniques adopt a one-size-fits-all strategy for all nodes,
setting as a fixed walk length that relies on an empirical value
set (usually, L = 80). As mentioned above, each path of short
random walks corresponds to a sentence from the corpus in
the Skip-Gram model. The representation of sentences needs
to be concise and have good coverage. If L is too large, it
will introduce significant redundancy; otherwise, too small an
L will make it difficult to guarantee the quality of information.
Moreover, an over-sized L would directly increase the sam-
pling overhead and the storage and computation overheads in
the learning phase, thereby limiting the scalability to large-
scale graphs. Fortunately, information entropy can be used as
a measure of how much information is contained in a given
source, and thus we propose a heuristic walk length strategy
(HWL) to measure the effectiveness of information during
walking based on information entropy (H).

The main idea of HWL is to observe the variation of H
for short random walks as a node is selected to the path,
and if it becomes stable, the random walk is simply stopped.
In other words, as shown in Fig. 1, a stable H means that
the newly added node has little contribution to representation.
HWL characterizes the correlation between the variations of
H and L by linear regression and calculates the coefficient of
determination (R2) to determine the termination of a random
walk process in the heuristic method. Mathematically, for any
u, v ∈ G, the random walk process of the source node u is
defined as:

W
L
u = {v1u, v

2
u, v

3
u, ..., v

k
u}, L = 1, 2, 3, · · · , k (4)

where vku denotes k-th node of the path, L is the walk length.
With the L variation, the probability of vi occurrence in the
path is pvi = n(vi)∑

v∈WL
u
n(v) . Accordingly, information entropy

for the random walk is given as follows:

HWL
u

= −
n∑
i

n(vi)∑
v∈WL

u

n(v)
log

n(vi)∑
v∈WL

u

n(v)
(5)

Based on the above equation, the Pearson correlation coeffi-
cient for HWL

u
and L is computed by

r(H,L) =

n∑
i=1

(Hi
WL

u
−HWL

u
)(Li − L)√

n∑
i=1

(Hi
WL

u
−HWL

u
)2

√
n∑

i=1
(Li − L)2

(6)

where HWL
u

and HWL
u

are the mean of the series Hi
WL

u
and

Li, respectively. In the case of a linear model for H and L,
R2

(H,L) is simply the square of r(H,L). The closer R2
(H,L)

is to 1, the better linear relation between H and L. Here
we set R2

(H,L) ≥ µ as the judgment condition to determine
whether the walk stops. To guarantee a linear relationship for
two datasets in a linear model, usually, we let µ ≥ 0.99.

(3) Heuristic number of walks per node
Sampling-based techniques usually perform multiple walks

for each node to guarantee the quality of training. The number
of walks per node determines the size of corpus formed by
walk paths. As with the fixed walk length that depends on an
empirical value set, the number of walks per node (usually
set r = 10) is also an urgent problem that needs to be
solved. The conciseness of corpus can not only ensure the
effectiveness of information but also reduce the overhead of
the sampling phase and improve efficiency in the learning
phase. Based on the observation in Fig. 2, we try to quantify
the quality of corpus through the difference between the node
occurrence distribution in corpus and the degree distribution
in graph. One of the most popular means of measuring the
discrepancy between two distributions is to use relative entropy
[22]. Accordingly, we present the heuristic number of walks
per node (HWN) strategy, focusing on heuristically exploring
the number of walks based on relative entropy (D(p‖q)). For
a given graph G, where any vi ∈ G, the degree of a node
is denoted as deg(vi), i = 1, 2, 3, · · · , n, and thus the degree
distribution is given by:

p(vi) =
deg(vi)

n∑
i=1

deg(vi)

(7)

The occurrence counts of vi in the generated corpus is
ocn(vi), i = 1, 2, 3, · · · , n, and the probability for ocn(vi)
is defined as:

q(vi) =
ocn(vi)

n∑
i=1

ocn(vi)

(8)

Then the relative entropy for p(vi) and q(vi) is denoted as:

D(q(vi)‖p(vi)) =

n∑
i=1

deg(vi)∑
deg(vi)

log
deg(vi)

∑
ocn(vi)

ocn(vi)
∑
deg(vi)

(9)

With r increasing, we can calculate the difference of D(q‖p)
as:

∆Dr(q‖p) = |Dr(q(vi)‖p(vi))−Dr−1(q(vi)‖p(vi))|, r > 1 (10)

HWN leverages ∆Dr(q‖p) ≤ δ as the termination condition
for the sampling phase, utilizing a heuristic method to explore
the number of walks per node. Taking as an example for the
link prediction on Wiki-Vote graph, where δ = 0.001, while
the sampling phase needs 7 iterations per node, less than the

traditional scheme r = 10, it does not reduce the accuracy
of tasks. In other cases, HWN will introduce r that is greater
than 10 for some graphs, such as CA-AstroPh.

B. Feature learning strategy

Feature learning in graphs can be treated as a maximum
likelihood optimization problem [2], [3]. In general, feature
learning can be modeled as a mapping function ϕ : V → Rd

from nodes to feature representations, where d is the number of
dimensions for feature representations and ϕ(u) is the embed-
ding vector of node u. For each source node u ∈ V , we define
NS(u) as the neighbors of node u generated by a sampling
strategy S. Since our scheme captures node representations
based on the Skip-Gram model [21], the optimization for the
objective function is given as:

max
ϕ

∑
u∈V

logPr(NS(u) | ϕ(u)) (11)

Assuming that the predicting nodes in a context are indepen-
dent of one another, the conditional probability in Eq.(11) can
be approximated by:

Pr(NS(u) | ϕ(u)) =
∏

ni∈NS(u)

Pr(ni | ϕ(u)) (12)

Since neighboring nodes are symmetrical to each other in the
feature space, we use the softmax unit to model the conditional
likelihood for each source-neighbor node pair as:

Pr(ni | ϕ(u)) =
exp(ϕ(ni) · ϕ(u))∑
v∈V exp(ϕ(v) · ϕ(u)

(13)

The function
∑
v∈V exp(ϕ(v) ·ϕ(u) is expensive to compute

for large graphs. To reduce this overhead, we speed up the
training by approximating it via negative sampling [24].

IV. EVALUATION

A. Experimental Setup

Experiment Environment. We conduct evaluations on a
2.10 GHz Intel Xeon E7-4830 server equipped with 1T RAM
and 4.5 T disk, running Ubuntu 18.04 and Linux 3.13.0-160-
generic kernel. HuGE is implemented by Python 2.7.6.
Datasets. Eight widely-used real-world graph datasets are
employed in our experiments. Table I lists the key properties
of these datasets. According to the requirements of evaluation
tasks, four graphs are selected for the multi-label classification
task: PPI 1, Wiki 2, Flickr 3 and Youtube 3, and five graphs are
chosen for the link prediction task: Wiki-Vote 4, CA-AstroPh
4, Youtube 3, LiveJournal 3, and Twitter 3. Further more, we
also generate a set of synthetic graphs [25] for evaluating the
scalability of HuGE.
Baselines. We compare HuGE against eight state-of-the-
art graph embedding methods, including five sampling-based
techniques (Deepwalk [2], Node2vec [3], LINE [4], VERSE
[6] and DiaRW [7]), two matrix factorization-based techniques

1http://www.thebiogrid.org
2https://cs.fit.edu/ mmahoney/compression/text.html
3http://socialcomputing.asu.edu
4http://snap.stanford.edu/

TABLE I
THE REAL-WORLD GRAPH DATASETS USED IN EXPERIMENTS

(K = 103,M = 106, B = 109)

Graph |V | |E| Type |Label| Density

PPI 3.89K 76.6K undirected 50 5.0×10−4

Wiki 4.78K 185K directed 40 1.6×10−2

Flickr 80.5K 5.90M undirected 195 1.8×10−3

Youtube 1.14M 2.99M undirected 47 4.6×10−6

Wiki-Vote 7.12K 104K directed − 2.9×10−3

CA-AstroPh 18.72K 198K undirected − 1.2×10−3

LiveJournal 2.24M 14.6M directed − 5.1×10−6

Twitter 11.3M 85.3M directed − 9.9×10−7

TABLE II
AUC OF HUGE AND BASELINES FOR LINK PREDICTION ON FIVE GRAPHS, WHERE A

“−” SIGNIFIES THE FAILURE OF THE CORRESPONDING METHOD DUE TO

COMPUTE-RESOURCE OR RUNNING-TIME (>5 DAYS) CONSTRAINS.

Method Wiki-
Vote

CA-Ast
roPh Youtube Live

Journal Twitter

Deepwalk 0.801 0.887 0.707 0.867 −
Node2vec 0.794 0.876 0.728 0.870 −

LINE 0.788 0.872 0.805 0.861 −
HOPE 0.854 0.924 − − −

VERSE 0.867 0.937 0.827 0.859 −
ProNE 0.853 0.949 0.766 0.881 0.881
DiaRW 0.902 0.913 0.772 0.891 −

GraphGAN 0.767 0.866 − − −
HuGE 0.938 0.951 0.812 0.901 0.897

(HOPE [8] and ProNE [11]), and a recent graph neural
networks-based technique (GraphGAN [15]). In all the exper-
iments, we choose the best embedding by parameter tuning
for each method.

B. Link Prediction

Link prediction refers to the task of predicting the existence
of a link between two nodes in a graph. To perform the link
prediction task for a given graph G, we first randomly remove
50% of its edges as a positive edge set, and the rest as a
training set. We also provide a negative edge set where the
randomly selected edges are not in G. It should be noted that
the size of the negative set is the same as that of the positive
set, and thus the two sets form the task testing set. For a pair
of nodes (u, v), ϕ(u) and ϕ(v) are the node representation
vectors learned by embedding methods. Here the similarity
score for u and v is measured in terms of the inner product
ϕ(u) ·ϕ(v), along with the AUC (Area Under Curve) metric,
a value that is the higher the better, to evaluate the task
performance. We repeat this procedure 50 times to offset the
randomness of edge removal and report the estimated AUC.

Table II shows AUC for all the methods on five real-
world graphs, respectively, where a “−” indicates that the
method fails due to the limitation of computing resources or
because its running time exceeds 5 days. HuGE outperforms
all baselines on all graph datasets, except for VERSE on
the Youtube dataset where HuGE comes in the second, by
a clear margin from 3.1% to 13.7%. We note that VERSE is
the best competitor on Youtube and achieves a considerable
gain on CA-AstroPh; nevertheless it is mediocre on directed
graphs, such as Wiki-Vote and LiveJournal. The study in

[12] reveals that VERSE fails to capture the asymmetric
transitivity (i.e., direction of edges) in directed graphs because
it generates only one embedding vector per node. Among
the recently proposed scalable methods ProNE and DiaRW,
although ProNE can efficiently handle the large-scale graph
Twitter, HuGE outperforms ProNE by an average of 5% on
the evaluated graphs.

C. Multi-label Classification

Multi label classification task aims to predict one or more
labels for each graph node and has been widely applied
in modern applications ranging from text categorization to
Bioinformatics. To perform this task, we use embedding
vector and a one-vs-rest logistic regression classifier with L2
regularization (using the LIBLINEAR library), and evaluate
accuracy by micro-averaged F1 (Micro − F1) and micro-
averaged F1 (Macro− F1).

0.0 0.2 0.4 0.6 0.8 1.0
8%

12%

16%

20%

0.0 0.2 0.4 0.6 0.8 1.0
4%

6%

8%

10%

12%

0.00 0.02 0.04 0.06 0.08 0.10

24%

26%

28%

30%

0.0 0.2 0.4 0.6 0.8 1.0

15%

20%

25%

30%

0.0 0.2 0.4 0.6 0.8 1.0
12%

16%

20%

24%

0.0 0.2 0.4 0.6 0.8 1.0
40%

45%

50%

55%

0.0 0.2 0.4 0.6 0.8 1.0
32%

36%

40%

0.00 0.02 0.04 0.06 0.08 0.10

36%

38%

40%

42%

Flickr

 DeepWlk Node2Vec LINE HOPE VERSE ProNE DiaRW GraphGAN HuGE

Youtube

M
ac

ro
-F
1(
%
)

Wiki

M
ic
ro
-F
1(
%
)

PPI

Fig. 4. Performance evaluation of benchmarks for multi-label classification.
The x axis is the fraction of labeled data and y axis in the top and bottom
rows denote the Macro− F1 and Micro− F1 scores respectively.

To train a classifier, nodes are randomly split into a training
set and a test set, respectively. In the experiments, for each
input graph G, we select 10%-90% training ratio on PPI, Wiki
and Flickr, and 1%-9% training ratio on Youtube, and the re-
maining nodes for testing. We report the averaged Macro−F1
and Micro − F1 scores from 50 trials. Figures 4 show the
Macro−F1 and Micro−F1 scores achieved by each method
as a function of the training ratio variation, respectively. We
observe that HuGE is comparable to and, in most cases, better
than existing popular methods on four real-world graphs. In
particular, thanks to its effective heuristic sampling strategies,
HuGE consistently outperforms the sampling-based models on
all graphs in Macro − F1 and Micro − F1 scores, gaining
22.1% and 7.3% average improvements, respectively. Note that
on the large graph Youtube, HOPE and GraphGAN cannot
efficiently handle this graph due to their complex compu-
tation operations. On directed graph Wiki, VERSE achieves
unsatisfactory performance relative to the comparable gains on
undirected graphs, which is consistent with the observation in
the evaluation of the link prediction task. ProNE outperforms
all competitors in Micro − F1 score, but the performance
in Macro−F1 score is less than impressive. This is because
ProNE is specifically designed for node classification by lever-
aging the spectral propagation technique, and its effectiveness
is lower for other tasks, such as the link prediction task.

 HuGE-P

Ti
m

e
(s

ec
on

d)

Graphs

118x

22x
68x

31x

29x

126x
76x

Fig. 5. Node embedding learning time required for each method on eight
real-world graphs, where the y axis is in log-scale.

102 103 104 105 106 107 108 109
10-1

100

101

102

103

104

105

106

107

 Sampling
 Sampling+Learning

Tim
e (

se
co

nd
)

Number of Nodes

Wiki-Vote

CA-AstroPh Youtube

LiveJournal

Twitter

Fig. 6. Scalability of HuGE on synthetic graphs. The lines depict the running
time required for sampling (blue line) and both sampling and feature learning
(red line), respectively. Pentagrams show the time cost of five real graphs.

D. Efficiency and Scalability

Fig. 5 shows the time required by each method to generate
node embedding. We observe that HuGE strikes the best
balance between effectiveness and efficiency, and significantly
outperforms the sampling-based methods on all graphs, by
an average acceleration of 12.8×, and the parallel version–
HuGE-P is up to 22×–126× faster than all competitors except
ProNE. As illustrated in Table II and Fig. 4, ProNE is less
effective compared to HuGE for the AUC and Macro− F1
score. While ProNE optimizes matrix factorization operation
by graph partition techniques to meet the scalability for large-
scale graphs, it still exerts a serious burden to DRAM, e.g.,
it consumes 135GB DRAM on Twitter. Note that Graph-
GAN and HOPE cannot efficiently handle large graphs, i.e.,
Youtube, LiveJournal, and Twitter. In particular, GraphGAN
is up to 2–3 orders of magnitude slower than HuGE. We
also note that in all methods, only HuGE and ProNE can
successfully execute on the largest graph Twitter. To further
test the scalability of HuGE, we generate synthetic graphs [25]
with a fixed node degree of 10 and the number of nodes from
102 to 109. Fig. 6 presents the running time for sampling
and feature learning on the randomly generated graphs with
different sizes, suggesting that the running time increases
linearly with the size of a graph, and HuGE has the capability
of handling billion-node-scale graphs. Moreover, the running
time for five real-world graphs is inserted into the plot, which
is consistent with the trend of synthetic data.

V. CONCLUSION

In this work, we proposed HuGE, an entropy-driven graph
embedding approach with improved efficiency and scalability,
which takes into account both the degree of node and the
number of common neighbors to measure the proximity of
pairwise nodes, and adopts heuristic methods to provide con-

cise and comprehensive representation in the sampling proce-
dure. HuGE is experimentally shown to be more efficient and
effective than recent popular graph embedding benchmarks,
especially exhibits dozens of times faster for node embedding
learning compared with sampling-based models.

ACKNOWLEDGMENT
This work is supported in part by National Defense Prelimi-

nary Research Project No. 31511010202, NSFC No. 61772216, No.
61821003, No. U1705261, National Science and Technology Major Project
No.2017ZX01032-101, and National Key R&D Program of China No.
2018YFB1003305.

REFERENCES

[1] H. Cai, V. W. Zheng, K. C. Chang. A Comprehensive Survey of Graph
Embedding: Problems, Techniques, and Applications. IEEE TKDE.
30(9): 1616-1637. 2018.

[2] B. Perozzi, R. Al-Rfou, S. Skiena. Deepwalk: Online learning of social
representations. KDD. 701-710. 2014.

[3] A. Grover, J, Leskovec. node2vec: Scalable feature learning for net-
works. KDD. 855-864. 2016.

[4] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei. Line: Large-scale
information network embedding. WWW. 1067-1077. 2015.

[5] L. F. Ribeiro, P. H. Saverese, D. R. Figueiredo, Struc2vec: Learning
Node Representations from Structural Identity. KDD. 385-394. 2017.

[6] A. Tsitsulin, D. Mottin, P. Karras, E. Müller. VERSE: Versatile Graph
Embeddings from Similarity Measures. WWW. 539-548. 2018.

[7] Y. Zhang, Z. Shi, D. Feng, X. Zhan. Degree-biased random walk for
large-scale network embedding. Future Generation Computer Systems.
100: 198-209. 2019.

[8] M. Ou, P. Cui, Jian Pei, Z. Zhang, W. Zhu. Asymmetric Transitivity
Preserving Graph Embedding. KDD. 1105-1114. 2016.

[9] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, J. Tang. Network Embedding as
Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec.
WSDM. 459-467. 2018.

[10] Y. Yin, Z. Wei. Scalable Graph Embeddings via Sparse Transpose
Proximities. KDD. 1429-1437. 2019.

[11] J. Zhang, Y. Dong, Y. Wang, J. Tang, M. Ding. ProNE: fast and scalable
network representation learning. IJCAI. 4278-4284. 2019.

[12] R. Yang, J. Shi, X. Xiao, Y. Yang, S. S. Bhowmick. Homogeneous
network embedding for massive graphs via reweighted personalized
PageRank. VLDB. 13(5). 670-683. 2020.

[13] W. L. Hamilton, R. Ying, J. Leskovec.Inductive representation learning
on large graphs. NIPS. 1024-1034. 2017.

[14] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, et al. Graph attention networks. ICLR. 2018.

[15] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xing,
M. Guo. Graphgan: Graph representation learning with generative
adversarial nets. AAAI. 2508-2515. 2018.

[16] R. H. Li, J. X. Yu, J. Liu. Link prediction: the power of maximal
entropy random walk. CIKM. 2011.

[17] J. Li, Y. Rao, F. Jin, H. Chen, X. Xiang. Multi-label maximum entropy
model for social emotion classification over short text. Neurocomput-
ing. 247-25, 2016

[18] B. J. Worton. Kernel methods for estimating the utilization distribution
in home-range studies. Ecology. 70(1): 164-168. 1989.

[19] S. Kullback, R. A. Leibler. On Information and Sufficiency. Annals of
Mathematical Statistics. 22(1):79-86. 1951.

[20] Çano E., M. Morisio. Quality of Word Embeddings on Sentiment
Analysis Tasks. NLDB. 2017.

[21] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean. Distributed
representations of words and phrases and their compositionality. NIPS.
3111-3119. 2013.

[22] P. Fang, J. Gao, F. Fan and L. Yang. Identifying Political “hot” Spots
Through Massive Media Data Analysis. SBP-BRiMS. 282-290. 2016.

[23] Y. Li, Z. Wu, S. Lin, H. Xie, M. Lv, Y. Xu, J. C. Lui. Walking with
Perception: Efficient Random Walk Sampling via Common Neighbor
Awareness. ICDE. 962-973. 2019.

[24] T. Mikolov, K. Chen, G. S. Corrado, J. Dean. Efficient estimation of
word representations in vector space. ICLR. 2013.

[25] D. Chakrabarti, Y. Zhan, C. Faloutsos. R-MAT: A recursive model for
graph mining. SDM. 442-446. 2004.

	INTRODUCTION
	Motivation
	Design and analysis of HuGE
	Sampling strategy
	Feature learning strategy

	EVALUATION
	Experimental Setup
	Link Prediction
	Multi-label Classification
	Efficiency and Scalability

	CONCLUSION
	References

