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Abstract—Data deduplication has become a standard feature
in most storage backup systems to reduce storage costs. In
real-world deduplication-based backup products, small files are
grouped into larger packed files prior to deduplication. For each
file, the grouping entails a backup product inserting a metadata
block immediately before the file contents. Since the contents of
these metadata blocks vary with every backup, different backup
streams of the packed files from the same or highly similar small
files will contain chunks that are considered mostly unique by
conventional deduplication. That is, most of the contents among
these unique chunks in different backups are identical, except
for metadata blocks. Delta compression is able to remove those
redundancy but cannot be applied to backup storage because
the extra I/Os required to retrieve the base chunks significantly
decrease backup throughput. If there are many grouped small
files in the backup datasets, some duplicate chunks, called persis-
tent fragmented chunks (PFCs), may be rewritten repeatedly. We
observe that PFCs are often surrounded by substantial unique
chunks containing metadata blocks. In this paper, we propose
a PFC-inspired delta compression scheme to efficiently perform
delta compression for unique chunks surrounding identical PFCs.

In the process of deduplication, containers holding previous
copies of the chunks being considered for storage will be accessed
for prefetching metadata to accelerate the detection of duplicates.
The main idea behind our scheme is to identify containers holding
PFCs and prefetch chunks in those containers by piggybacking
on the reads for prefetching metadata when they are accessed
during deduplication. Base chunks for delta compression are then
detected from the prefetched chunks, thus eliminating extra I/Os
for retrieving the base chunks. Experimental results show that
PFC-inspired delta compression attains additional data reduction
by about 2x on top of data deduplications and accelerates the
restore speed by 8.6%-49.3%, while moderately sacrificing the
backup throughput by 1.2%-11.9%.

Index Terms—delta compression, data deduplication, rewriting
algorithm, backup storage

I. INTRODUCTION

The amount of digital data in the world is growing explo-
sively. A study from International Data Corporation (IDC)
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indicates that the total amount of digital data in the world
would reach 175 ZB in 2025 [1]. As a result, data storage
efficiency has become a challenging task in computer systems
in the big data era. Recent work reveals the wide existence
of a huge amount of redundancy in backup storage systems
[2], [3]. Thus, data deduplication has become a standard
functionality in most backup systems to prevent redundant
data from being stored in storage devices [4], [5]. Generally,
data deduplication schemes split each input backup stream into
chunks and calculate a cryptographically secure hash signa-
ture (also called fingerprint) for each chunk. By comparing
fingerprints, duplicate chunks can be identified and removed
from storage. Unique chunks are aggregated into a container,
a fixed-size (e.g., 4 MB) structure, which is written to the disk
when it is fully packed [6], [7]. When a backup completes, a
recipe recording the fingerprint sequence of the backup stream
is generated for future data restoration. During the restore
process, required chunks are accessed according to the order
of their fingerprints in the recipe to reconstruct the original
backup stream [5].

In deduplication-based backup systems, multiple backups
share identical chunks, rendering the logically contiguous
chunks in the subsequent backups physically scattered in
different containers, which is known as chunk fragmentation.
During the restore process, time-consuming disk accesses
for required chunks are the performance bottleneck. Chunk
fragmentation increases the number of disk accesses during the
restore process, and thus decreases restore speed. To address
this problem, researchers propose rewriting algorithms that
store (rewrite) some duplicate but fragmented chunks along
with unique chunks to trade deduplication efficiency for restore
performance.

In real-world backup products, before backup, files are
grouped into larger packed files to increase the locality of
the backup stream [2], [4], [8]. The format of a packed file
resembles UNIX “tar” file. For each file grouped in the packed
file, a backup product inserts a metadata block immediately
before the file contents. Hence, files’ metadata blocks are
scattered in the packed file. Some contents in the matadata
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Fig. 1. Assuming that each backup contains 4 files that are grouped into
a packed file and the 4 files in 3 backups are unchanged. After chunking,
each backup is divided into 5 chunks. Since inserted metadata change in
every backup, chunks C1, C1′ and C1′′ respectively in three backups share
most of contents. After backup 1, five chunks are stored in container I. When
the system ingests backup 2, C3 is identified as a fragmented chunk and is
rewritten since only one chunk (i.e., C3) in the container (i.e., container I)
holding it is duplicate. After being rewritten, C3 is still stored along with
unique chunks holding changed metadata in container II. Thus, when the
system ingests backup 3, C3 is considered fragmented and rewritten again.
Duplicate chunks that are repeatedly considered fragmented and rewritten are
referred to as persistent fragmented chunks (PFCs), such as C3.

block, such as modification time, change every time when
files are packed. As a result, during the deduplication process,
chunks that contain files’ metadata will be identified as unique
chunks even though file contents in them are unchanged.

If there are too many small files in the backup dataset, the
following phenomenon may appear for chunks in a backup
stream: a small number of duplicate chunks are surrounded
by a substantial number of unique chunks holding (unique)
metadata. In the storage devices, these duplicate chunks would
always be stored along with those unique chunks, even after
being rewritten [9]. As a result, the aforementioned duplicates
would repeatedly be identified as fragmented chunks and
rewritten. We refer to such duplicate chunks as persistent
fragmented chunks (PFCs). Note that rewriting algorithms
are designed to rewrite as few duplicates as possible. Thus,
duplicate chunks stored in the containers that contain only
a few duplicate chunks will be considered fragmented and
rewritten. A simplified example is given in Fig. 1 to show
how PFCs arise.

We observe that unique chunks in different backup streams
surrounding identical PFCs are similar to each other since
most of their contents are identical, expected for the metadata
blocks. Taking chunks in Fig. 1 as an example. C3 is a
PFC, chunks surrounding it in backup 2, i.e., C1′, C2′, C4′,
and C5′, are respectively similar to corresponding chunks in
backup 3, i.e., C1′′, C2′′, C4′′ and C5′′. Repeated strings
among them cannot be removed by data deduplication, but
can be eliminated by delta compression.

Delta compression is used to compress a data chunk relative
to another. Given a target chunk B and a similar chunk A,
delta compression encodes B relative to A and generates a

delta file which consists of the contents existing in B but
not in A. A is called the base of B. The delta file, which
is expected to be much smaller than B, is then stored or
transferred instead of B to obtain a space- or bandwidth-
saving. When the chunk B is required, the delta file and its
base, i.e., the chunk A, are retrieved and delta decoded to
reconstruct it. Since it is orthogonal to data deduplication,
delta compression can be used as a complementary technique
for data deduplication. A main challenge facing the application
of delta compression to the deduplication-based backup system
is the I/O overheads required by reading base chunks, which
decrease backup throughput to an unacceptable level [10],
[11].

In some deduplication-based backup systems that preserve
chunk locality in containers, such as EMC’s backup products
[6], [10], containers referenced by chunks of the on-going
backup stream would be accessed for prefetching fingerprints
to accelerate the process of duplicate detection by leveraging
the locality. Here the locality refers to the fact that duplicate
chunks in consecutive backup streams appear in the same order
with a high probability. Since PFCs identified in a backup
stream will appear as duplicate chunks in the following backup
streams, the containers holding them will be accessed for
prefetching fingerprints. During this process, if all chunks in
these containers can be prefetched, i.e., piggybacked on the
retrieval of the fingerprints, to serve as the potential base
chunks, we can perform delta compression for unique chunks
surrounding those PFCs, thus avoiding extra disk accesses for
reading base chunks.

Motivated by above observations and analysis, we propose
a PFC-inspired post-deduplication delta compression scheme,
called PFC-delta, for deduplication-based backup systems. The
main idea behind our scheme is to identify the container-
s holding PFCs and prefetch potential base chunks along
with fingerprints when the system accesses these containers
during the duplicate detection process. Then, PFC-delta de-
tects similar chunks for unique chunks from the prefetched
potential base chunks and performs delta compression for
them if possible. Since base chunks are prefetched along with
fingerprints, our scheme does not require extra disk accesses.
Experimental results based on real-world datasets demonstrate
that our scheme improves both compression ratio and restore
performance on top of the traditional deduplication-based
backup system, at the cost of a slight decrease of backup
throughput.

The rest of the paper is organized as follows. In Section II,
we present the background and related work. In Section III,
we present our observations that motivate our work. In Section
IV, we present the detailed design of our scheme. We present
the experimental results in Section V and conclude the paper
in Section VI.

II. BACKGROUND AND MOTIVATIONS

A. Rewriting Algorithms

In a deduplication-based backup system that preserves the
locality in containers, a restore cache is maintained in memory



during the restore process. To restore the original backup
stream, referenced containers are loaded into the restore cache
to provide requested chunks [7]. Restore performance is
mainly decided by the number of disk reads for referenced
containers. Fewer referenced containers equal fewer disk reads
and higher restore performance. Chunk fragmentation signif-
icantly decreases restore speed since it increases the number
of referenced containers. A chunk is considered fragmented if
it is stored in a container that contains only a few duplicate
chunks [12]. To improve restore performance, researchers
propose rewriting algorithms that rewrite (duplicate) some
fragmented chunks to remove references to the containers
holding those fragmented chunks, so that the number of read-
out containers during the restore process can be capped.

A container’s utilization is defined as the fraction of its valid
chunks, i.e., the size of valid chunks

the container size . Rewriting algorithms
calculate utilizations of containers. Duplicate chunks stored in
containers whose utilizations are smaller than a pre-defined
threshold are considered fragmented. CBR [13], Capping
[14], and HAR [12] are state-of-the-art rewriting algorithms.
CBR and Capping buffer a portion of consecutive chunks
in the on-going backup stream and calculate utilizations of
containers using the information of buffered chunks. Instead
of calculating containers’ utilizations using the information of
a portion of chunks during the backup process as in CBR and
Capping, HAR calculates them using the information of all
chunks when a backup completes.

Some schemes built upon the aforementioned three rewrit-
ing algorithms are also proposed. Based on the Capping
design, Cao et al. [15] propose a container-flexible referenced-
count scheme and a sliding look-back window to increase
the accuracy of fragmented-chunks identifications. They also
propose a combined chunk caching and forward assembly
scheme to accelerate restore speed [16]. The scheme is able
to adapt to different workloads with a fixed-size memory.

B. Inefficiency of Packed Datasets for Deduplication

Backup storage datasets are tied to the software that gener-
ates them, such as EMC NetWorker or Symantec NetBackup
[17]. The software packs small files into large files and copies
them to the storage system [2], [8]. Packed files are similar to
UNIX “tar” files. Packing smaller files into large files increases
the backup stream locality, contributing to higher caching
efficiency for writing and thus higher write throughput.

tar (tape archives) was originally designed for storing files
conveniently on magnetic tape, but has been widely used for
decades and thus is difficult to be replaced for compatibility
reasons. A study on data deduplication for HPC storage
suggests that tar-type files account for about 38% of the
total storage space [18]. Therefore, in this paper, we take
tar-type files as an example to show the efficiency of our
approach in improving compression benefits as well as the
restore performance on datasets including such packed files.

A tar-type file consists of a sequence of entries, one per
file, each containing a metadata block and a sequence of data
blocks. The metadata block includes metadata for that file,

Fig. 2. An example of a tar-type file consisting of n files.

including its name, path, size, ownership, modification time,
etc. The contents of the file are stored in one or more data
blocks. To avoid extra “seeks” during extracting a single file,
data blocks are placed immediately after the metadata block.
As a result, in a tar-type file, metadata blocks are interspersed
with data blocks, as shown in Fig. 2. Data deduplication
identifies redundant data at the granularity of chunks. Metadata
in a metadata block, such as modification time, change with
every backup, producing many unique chunks that adversely
impact deduplication efficiency.

Assuming that the contents of files packed into larger
files are unchanged in multiple consecutive backup streams
which is normal for backup datasets, duplicate chunks will
be interspersed with unique chunks. If the files packed in the
tar-type files are small, a small number of duplicate chunks in
the backup stream will be surrounded by a large number of
unique chunks containing metadata. After data deduplication,
these duplicate chunks will be stored in the containers with
low utilization, even after being rewritten, and thus will be
repeatedly identified as fragmented chunks and rewritten. We
refer to such duplicate chunks as persistent fragmented chunks
(PFCs). PFCs reduce the efficiency of rewriting algorithms,
as well as decreasing restore performance. In some datasets,
PFCs account for more than 80% of rewritten chunks [9].

To solve the problem, Lin et al. [17] propose mtar that
transforms tar-type files into a more deduplication-friendly
format by separating metadata blocks from data blocks [17].
However, mtar suffers from two major drawbacks. First, by
physically separating a files data from its metadata, mtar
changes file restoration I/Os from sequential to random and
complicates both write and read processes. Second, it is only
designed for tar-type files, thus needing to track changes
to file format, a moving target. Changes to the file format
cause the metadata blocks to change (e.g., length) and result
in reduced deduplication efficiency, requiring engineers to
address the change. Zhang et al. [9], [19] observe that the
existence of PFCs is due to the common strategy of existing
rewriting algorithms that stores rewritten chunks along with
unique chunks to preserve the locality, rendering PFCs to be
always stored in the containers with low utilizations. They
propose DePFC that identifies and groups PFCs to increase
the utilization of containers storing PFCs, making grouped
PFCs no longer fragmented. However, DePFC fails to remove
redundant data among similar chunks holding metadata blocks.

C. Post-deduplication Delta Compression

Recently, delta compression has gained increasing popu-
larity due to its ability to eliminate redundant data among



similar chunks whose redundancy eludes the detection of data
deduplication. Since it is orthogonal and complementary to
data deduplication, delta compression can be used to compress
post-deduplication chunks in storage and file-transfer systems.
A study on workloads of EMC shows that delta compression
attains additional compression benefits between 1.4x-3.5x on
top of data deduplications [11]. Researchers in EMC suggest
that I/O overheads required by the retrieval of base chunks
decrease the backup throughput to an unacceptable level [10].
We also confirm this conclusion in our evaluation in Section
V-D. As a result, delta compression cannot be applied to
high-performance backup systems [10], [11]. Our proposed
technique, PFC-inspired delta compression (PFC-delta), aims
to reduce I/O overheads of reading base chunks to make post-
deduplication delta compression feasible for backup storage.

PFC-delta is essentially a technique to prefetch potential
base chunks with high accuracy. Thus, it is orthogonal to any
similarity-detection and delta-encoding based approaches. The
traditional post-deduplication delta compression approaches
either try to detect similar chunks among all stored chunks
such as TAPER [20], Neptune [21], and QuickSync [22],
or detect similar chunks with strong locality such as SIDC
[10]. In contrast, our scheme only considers and prefetches
similar chunks surrounding identical PFCs as potential base
chunks. Moreover, traditional approaches detect base chunks
before reading them from the storage device, while our scheme
prefetches potential base chunks before detecting them.

III. OBSERVATIONS AND MOTIVATIONS

Lots of real-world workloads contain substantial small files.
In typical file systems, more than 80% of the total number
of files are smaller than 64 KB [23], [24]. Moreover, in
specific workloads such as source code and website snapshot,
small files dominate the whole workloads. After ingested such
datasets that have been preprocessed for larger packed files
(Section 1), the backup storage will contain substantial unique
chunks resulting from the interspersed unique metadata blocks
that each describe an original small file. We observe that
most of the contents of such chunks (i.e., the data portions
of the pre-packing small files) among different backups are
identical, except for the metadata portions. These identical
contents cannot be removed by data deduplication but can be
eliminated by delta compression. However, delta compression
cannot be applied to high-performance backup systems due to
the disk bottleneck introduced by reading the base chunks.

We also observe that the aforementioned similar chunks
among different backup streams often surround identical PFCs.
For deduplication-based backup systems adopting the strate-
gy of grouping consecutive chunks into containers, such as
EMC’s backup products, containers holding duplicates will be
accessed during the duplicate detection stage for prefetching
fingerprints to accelerate the duplicate detection [6], [10]. A
salient feature of PFCs is that if they appear in one backup
stream they would also appear in the subsequent backup
streams. This means that containers, which hold PFCs and
would be accessed for prefetching fingerprints in the following

backups, are predictable. This, combined with the fact that
unique chunks surrounding identical PFCs contain substantial
redundancy, motivates us to propose a PFC-inspired delta com-
pression scheme, called PFC-delta. When the system accesses
containers holding PFCs for prefetching fingerprints during the
duplicate detection stage, PFC-delta prefetches chunks along
with fingerprints to serve as the potential base chunks, thus
eliminating extra disk accesses for base chunks.

IV. DESIGN AND IMPLEMENTATION OF PFC-INSPIRED
DELTA COMPRESSION

A. System Architecture

The goal of PFC-delta is to perform delta compression for
unique chunks surrounding identical PFCs after data dedu-
plication, without dramatically decreasing backup throughput.
There are five basic data structures in the system, namely,
container, segment, fingerprint cache, PCIDrecent, and base
chunk cache, which are detailed below:

• A container is a fixed-sized storage unit consisting of
two sections: a data section containing chunks and deltas
and a metadata section storing the descriptors for these
chunks and deltas including fingerprints, super-features,
and positions of the corresponding chunks and deltas in
the container. Super-features are used to detect similar
chunks [25], [26].

• A segment consists of a number (e.g., 2048) of consec-
utive chunks in the backup stream. The data reduction
workflow of the system includes multiple stages, i.e.,
deduplication, rewriting, similarity detection, and delta
compression, each requiring a buffer to enable pipelining
of these stages for high backup throughput. Segments are
processed one by one in each buffer.

• A fingerprint cache contains fingerprints in the accessed
containers. It is used to accelerate duplicate detection by
leveraging the locality preserved in containers. When a
fingerprint is matched in the on-disk fingerprint index,
fingerprints in the corresponding container is loaded into
the fingerprint cache. The subsequent fingerprints are
likely to be matched in the cache due to the locality.
When an eviction occurs, based on an LRU policy, all
fingerprints from a container are evicted as a group.

• The PCIDrecent is a list containing ids of containers
housing PFCs identified in the last backup.

• A base chunk cache contains chunks and their super-
features in the recently accessed containers that contain
PFCs. During the similarity detection process, PFC-delta
detects similar chunks from the chunks in the cache to
serve as the base chunks for delta compression. When
eviction occurs, based on the LRU policy, all chunks
and their super-features from a container are evicted as a
group.

For convenience, we use acronym FC for fragmented chunk.
Fig. 3 illustrates the architecture of PFC-delta. In the system, a
backup stream is chunked, fingerprinted, and then grouped into
segments. Segments are processed in each buffer one by one.



Fig. 3. The architecture of PFC-delta. Highlighted areas or words indicate newly added data structures or processes for PFC-delta.

In the deduplication buffer, duplicate chunks will be identified.
Then, duplicate but fragmented chunks will be identified in
the rewriting buffer. In the similarity detection buffer, the
system computes super-features for unique chunks and FCs
and detects their similar chunks. In the delta compression
buffer, the system performs delta compression for unique
chunks and FCs if their base chunks exist.

During the backup process, the system maintains one open
container for each backup stream. After the input data are
deduplicated and delta compressed, unique chunks, rewritten
chunks, deltas, and their metadata are inserted to the currently
open container. When fully packed, this container is sealed
and written to the disk and a new (empty) container is opened
for subsequent data. Meanwhile, files’ recipes are stored in
the disk for future restorations, and fingerprints of stored
chunks and deltas are updated in the on-disk fingerprint index.
Besides, fingerprints of FCs are written to the disk, which will
be used for identifying PFCs in the subsequent backups.

B. PFC-inspired Base Prefetching

1) PFC Identification: Identified PFCs are likely to appear
in the subsequent backups. Thus, they can be identified by
checking the FCs in the on-going backup to see whether they
have been rewritten in recent backups. If true, those FCs
are PFCs. Existing rewriting algorithms vary in identifying
FCs, leading to different patterns of PFCs being repeatedly
identified as FCs. For CBR and Capping, PFCs identified in
a backup would be identified as FCs in all the subsequent
backups. Different from CBR and Capping, HAR identifies
FCs in a backup and rewrites them in the next backup. Thus,
for HAR, PFCs identified in a backup would appear in the
third backup, namely, PFCs appear in every two backups.

When a backup completes, fingerprints of all rewritten
chunks are written to the disk. At the beginning of a backup,
fingerprints of rewritten chunks in the last backup (or the
last but one backup if the rewriting algorithm is HAR) are
loaded into the memory to construct an index, called FCrecent.
When an FC is declared, the system further checks whether
its fingerprint exists in FCrecent. If true, the FC is a PFC.

2) Base Chunk Prefetching: The process of our scheme
to identify duplicates is the same as that of a typical
deduplication-based backup system. When a chunk is pre-
sented for storage, its fingerprint is first compared against the
fingerprint cache. If it exists in the cache (cache hit), the chunk
is duplicate. Otherwise, the system checks a Bloom filter to
determine whether the chunk is likely to exist in the on-
disk fingerprint index. If so, the fingerprint index is checked,
and the corresponding container is accessed for prefetching
fingerprints it holds. Otherwise, the chunks is unique.

In order to support high-performance post-deduplication
delta compression, before accessing a container for prefetch-
ing fingerprinits, our scheme checks whether this container
contains PFCs identified in the last backup (or in the last
but one backup if the rewriting algorithm is HAR). If so, the
container may contain substantial potential similar chunks for
the on-going backup stream, because those PFCs would appear
in the on-going backup with a high probability and unique
chunks surrounding them would be similar. Thus, chunks and
super-features in the container should be prefetched along with
fingerprints for both deduplication and delta compression. It
is worth noting that super-features are stored in the metadata
section of the container which has been introduced in Section
IV-A.

Specifically, our scheme records ids of containers holding
identified PFCs when a backup completes. At the beginning of



a backup, container ids recorded in the last backup (or the last
but one backup if the rewriting algorithm is HAR) are loaded
into memory to construct a structure, called PCIDrecent.
For a container to be accessed for prefetching fingerprints,
PCIDrecent is checked. If id of this container exists in
PCIDrecent, fingerprints, super-features, and chunks in this
container are read. Fingerprints are inserted into the fingerprint
cache for deduplication, while chunks and super-features are
inserted into the base chunk cache for similarity detection and
delta compression. Otherwise, if the id of the container does
not exist in PCIDrecent, only fingerprints are read.

C. Memory Footprints

Compared with the traditional deduplication-based backup
systems, our scheme introduces three data structures to sup-
port high-performance post-deduplication delta compression,
namely, FCrecent, PCIDrecent, and the base chunk cache.
Assume that the minimal and expected chunk sizes are 2 KB
and 8 KB, respectively, the same as LBFS [27]. Then the real
average chunk size is about 10 KB. We also assume that the
rewrite limit for the rewriting algorithm is 5%, suggested by
CBR [13] and HAR [12]. Given a backup size of 20 GB, the
FCrecent requires about 2 MB. The memory footprint required
by PCIDrecent is negligible, because the id of a container
only takes 8 bytes.

The size of the base chunk cache will be discussed in
Section V-B. Note that our scheme is designed to compress
unique chunks surrounding identical PFCs. For datasets with-
out PFCs, the base chunk cache does not require extra RAM
space because prefetching operations for base chunks would
not be triggered.

V. PERFORMANCE EVALUATION

A. Evaluation Setup

Experimental Platform. We implement PFC-delta prototype in
an open-source deduplication prototype system called Destor
[28], on the Ubuntu 16.04.1 operating system running on an
Intel Xeon W-2155 processor at 3.3 GHz. Destor only supports
data deduplication, we modify its duplicate detection process
to make it support PFC-inspired prefetching, and add two
stages, i.e., similarity detection and delta compression, to make
it support post-deduplication delta compression. The PFC-
delta scheme is essentially a base-chunk-prefetching technique
for packed datasets. It is thus orthogonal to any similarity de-
tection and delta encoding approaches. We adopt Finesse [26]
for similarity detection and Xdelta [29] for delta encoding.
System Configurations. In the prototype system, deduplication
is configured with the Rabin-based chunking algorithm of
which the minimal, average, and maximum chunk sizes are
2KB, 8KB, and 64KB respectively, the same as LBFS [27].
We index all fingerprints in the indexing stage, as used in
EMC’s backup products [6]. The container size is set to 4
MB. The settings of rewriting algorithms used in our evalua-
tions, namely, CBR, Capping, and HAR, faithfully follow the
recommended parameters of their original publications. For
example, CBR’s rewrite utility is set to 70%. For Capping,

TABLE I
WORKLOAD CHARACTERISTICS OF THE TWO DATASETS USED IN THE

PERFORMANCE EVALUATION.

Name Size Workload descriptions

Webs 365 GB 133 days’ snapshots of the website:news.
sina.com [31], which are collected by wget.

Homes dirs 1817 GB
72 versions of software engineers’ home
directories containing source code, office
documents, etc [9].
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Fig. 4. Compression ratio of the deduplication-based backup system adopting
PFC-delta as base container cache size varies on the two datasets.

the capping level is set to 14. HAR’s utilization threshold is
set to 50%.

For similarity detection, Finesse is configured to extract
12 features from each chunk, which are then grouped into 3
super-features for matching similar chunks. We use the LRU
replacement scheme for the restore cache and set the restore
cache size to 256 containers (i.e., 1 GB).
Performance Metrics. We use three metrics to evaluate the
performance of our scheme. Compression Ratio is used to
measure the total space-saving from data deduplication and
delta compression, i.e., the size of input data stream

the size of stored data . Speed
Factor [14], which is defined as the mean data size restored
per container read, is used to measure the restore performance.
Higher speed factors mean better restore performance. It is
worth noting that each speed factor presented in our evalua-
tions is the average of the last 20 backups, which is the same
as [14] and [30].

Backup Throughput is measured by the throughput with
which the input data stream is processed by both deduplication
and delta compression. Backup throughput in our evaluations
is tested on the last backup. We run each experiment six times
to get the stable and average results.
Evaluated Datasets. Two datasets are used for evaluation as
shown in Table I. These two datasets contain substantial small
files, thus can be used to evaluate the efficiency of our scheme.

B. Compression Ratio

First, we study the sensitivity of the compression ratio to the
base chunk cache size. For unique chunks surrounding PFCs
in the on-going backup stream, the best candidates for delta
compression are the corresponding unique chunks surrounding
identical PFCs in the recent backup streams. Theoretically, a
small-sized base chunk cache can detect substantial similar
chunks containing identical PFCs because PFCs and the u-
nique chunks surrounding them in consecutive backups appear
in approximately the same order. However, a single backup
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Fig. 5. Compression ratio of backup systems with and without PFC-delta,
i.e., dedup and dedup w/ PFC-delta, for different rewriting schemes on the
two datasets.

TABLE II
SPEED FACTORS OF DEDUPLICATION-BASED BACKUP SYSTEMS WITH AND

WITHOUT PFC-DELTA, I.E. DEDUP AND DEDUP W/ PFC-DELTA, FOR
DIFFERENT REWRITING SCHEMES ON THE TWO DATASETS.

Webs

CBR Dedup 1.57
Dedup w/ PFC-delta 1.99 (+26.8%)

Capping Dedup 1.86
Dedup w/ PFC-delta 2.02 (+8.6%)

HAR Dedup 1.38
Dedup w/ PFC-delta 2.06 (+49.3%)

Homes dirs

CBR Dedup 1.54
Dedup w/ PFC-delta 2.03 (+31.8%)

Capping Dedup 1.65
Dedup w/ PFC-delta 2.13 (+29.1%)

HAR Dedup 1.52
Dedup w/ PFC-delta 2.07 (+36.2%)

may contain duplicate chunks itself. Such duplicate chunks
are referred to as self-referenced chunks. Existence of self-
referenced chunks may cause containers holding chunks of
the on-going backup stream to be prefetched, instead of the
containers stored in the recent backup streams, leading to a
decrease number of detected base chunks. Increasing the size
of the base chunk cache offers the opportunity to increase
the number of detected base chunks. Fig. 4 presents the
compression ratio of PFC-delta as the base container cache
size increases on the two datasets. Results in the figure suggest
that the compression ratios hit their maximum when the base
chunk cache sizes are 20- and 8-container respectively. In what
follows, the base chunk cache size is set to 20-container, i.e.,
80 MB.

Next, we evaluate the impact of PFC-delta on compression
ratio. Fig. 5 presents the compression ratio of deduplication-
based backup systems with and without PFC-delta (i.e., dedup
and dedup w/ PFC-delta) with three state-of-the-art rewriting
algorithms, namely, CBR, Capping, and HAR, on the two
datasets. Note that the compression ratio of dedup is achieved
only by data deduplication. As shown in the figure, PFC-
delta achieves 2× additional compression ratio on top of data
deduplication. Specifically, on the Webs dataset, it improves
the compression ratio of dedup with CBR, Capping, and HAR
by 2.03×, 2.39×, and 2.06×, respectively. On the Homes
dirs dataset, the improvements are 2.06×, 2.11×, and 2.19×,
respectively.

C. Restore Performance

In this subsection, we evaluate the impact of PFC-delta on
the restore performance. Table II indicates that our scheme
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Fig. 6. Backup throughput of dedup, dedup w/ PFC-delta, and dedup w/
greedy-delta, with different rewriting schemes on the two datasets. Here dedup
w/ greedy-delta represents a deduplication-based backup system greedily
performing delta compression for unique chunks if their base chunks exist.

improves the restore performance of dedup by 8.6%-49.3%.
Our scheme improves restore performance of dedup since
it decreases the number of stored containers on top of data
deduplication. Fewer stored containers indicates fewer disk
reads for them during the restore process and thus greater
speed factor. It should be noted that base chunks are also
required during the restore process for decoding to reconstruct
the original chunks, but our scheme does not require extra I/Os
for reading them from the disk. Base chunks are stored in the
containers selected for data deduplication, and those containers
would be accessed even if our scheme is not applied. That
is, when base chunks are required for decoding, they can be
directly found in restore cache.

D. Backup Throughput

In this subsection, we evaluate the impact of our scheme
on backup throughput by comparing the backup throughput
of the deduplication-based backup systems with and without
PFC-delta. In order to validate the impact of I/O overheads
for reading base chunks in the traditional delta compression
approach, we implement a deduplication-based backup sys-
tem performing delta compression for all post-deduplication
chunks of which base chunks exist, which we refer to as
dedup w/ greedy-delta, and evaluate its backup throughput. As
shown in Fig. 6, our scheme moderately decreases the backup
throughput because it introduces two extra data reduction
stages, i.e., similarity detection and delta compression. Specif-
ically, on the Webs dataset, the decreases are 3.5%, 11.9%,
and 7.9% respectively with three rewriting algorithms, namely,
CBR, Capping, and HAR. On the Homes dirs dataset, the
decreases are 11.4%, 1.2%, and 10.2% respectively. Besides,
dedup w/ greedy-delta achieves much less backup throughput
than the other two approaches, since it requires too many time-
consuming random disk I/Os for reading back base chunks.

In summary, PFC-delta improves the compression ratio of
dedup by about 2×, accelerates its restore performance by
8.6%-49.3%, while moderately decreasing the backup through-
put.

VI. CONCLUSION

In deduplication-based backup storage, there are substantial
redundant data among unique chunks of packed files, where
the data blocks rarely change but metadata blocks change



with every backup. We observe that such chunks in different
backup streams surrounding identical persistent fragmented
chunks (PFCs) are similar to one another. We propose PFC-
delta, a high-performance post-deduplication delta compres-
sion scheme for unique chunks containing metadata blocks
surrounding identical PFCs. In the duplicate detection process,
containers holding previous copies of the chunks being consid-
ered for storage will be accessed by prefetching fingerprints.
Our scheme determines whether the containers to be accessed
contain PFCs and prefetch potential base chunks along with
fingerprints to avoid extra I/Os for reading the base chunks.
Experimental results based on real-world datasets demonstrate
that our scheme improves both compression ratio and restore
performance of a typical deduplication-based backup system,
without unacceptable backup throughput penalty.
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