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Abstract—Big data applications increasingly rely on the anal-
ysis of large graphs. In order to analyze and process the large
graphs with high cost efficiency, researchers have developed a
number of out-of-core graph processing systems in recent years
based on just one commodity computer. On the other hand, with
the rapidly growing need of analyzing graphs in the real-world,
graph processing systems have to efficiently handle massive
concurrent graph processing (CGP) jobs. Unfortunately, due to
the inherent design for single graph processing job, existing out-
of-core graph processing systems usually incur redundant data
accesses and storage and severe competition of I/O bandwidth
when handling the CGP jobs, thus leading to very long waiting
time experienced by users for the computing results. In this paper,
we propose an I/O-efficient out-of-core graph processing system,
GraphCP, to support the processing of CGP jobs. GraphCP
proposes a benefit-aware sharing execution model that shares the
I/O access and processing of graph data among the CGP jobs and
adaptively schedules the loading of graph data, which efficiently
overcomes above challenges faced by existing out-of-core graph
processing systems. In addition, GraphCP organizes the graph
data with a Source-Sorted Sub-Block graph representation for
better processing capacity and I/O access locality. Extensive
evaluation results show that GraphCP is 10.3x and 4.6x faster
than two state-of-the-art out-of-core graph processing systems
GridGraph and GraphZ respectively, and 2.1x faster than a CGP-
oriented graph processing system Seraph.

Index Terms—graph processing, I/O, concurrent processing

I. INTRODUCTION

Graph is a powerful data structure to model and solve
many real-world problems. There are various modern big
data applications relying on graph computing, including social
networks, Internet of things, and neural networks. However,
with the real-world graphs growing in size and complexity,
processing these large and complex graphs in a scalable way
has become increasingly more challenging. While a distributed
system (e.g., Pregel [1], GraphLab [2], PowerGraph [3] and
Gemini [4]) is a natural choice for handling these large
graphs, a recent trend initiated by GraphChi [5] advocates
developing out-of-core support to process large graphs on a
single commodity PC.

Out-of-core graph processing systems (e.g., GraphChi [5],
X-Stream [6], GridGraph [7], LUMOS [8] and HUS-Graph
[9]) efficiently use the secondary storage (e.g., hard disk, SSD)
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to process large graphs in a single compute node. As we know,
the secondary storage has much larger capacity and lower price
than the DRAM. Therefore, the out-of-core graph processing
systems can scale to very large graphs without expensive
hardware, serving as a promising alternative to distributed
solutions. Furthermore, they overcome the challenges faced by
distributed systems, such as load imbalance problem [10] and
significant communication overheads [11]. For an input graph,
out-of-core graph processing systems divide the vertices of the
graph into disjoint intervals and break the large edge list into
smaller blocks containing edges with source or destination
vertices in corresponding vertex intervals so that each edge
block can fit in memory. When processing the graph, they
load and process each vertex interval and its associated edge
block from disk at a time.

On the other hand, with the increasing demand for graph
analytics, many iterative graph algorithms run as concurrent
services on a common platform. These concurrent iterative
graph processing (CGP) jobs are usually executed on the
same graph simultaneously so as to analyze it for various
information. For example, Facebook [12] uses Apache Giraph
[13] that runs different graph algorithms (e.g., label propaga-
tion, variants of Pagerank, k-means clustering) simultaneously
to provide various information for their many products and
services. Some graph processing systems such as Seraph [14],
[15] are proposed to support the execution of CGP jobs.
However, these systems usually rely on a distributed or shared-
memory system, which incurs significant communication over-
heads among compute nodes or poor scalability when process-
ing large-scale graphs due to the limited memory capacity.
The enormous amount of intermediate messages produced by
the CGP jobs significantly exacerbate these problems. This
motivates us to use the cost-effective out-of-core systems that
have better scalability to handle these CGP jobs.

Unfortunately, although existing out-of-core graph process-
ing systems can efficiently process a single graph processing
job, they suffer from poor performance when handling the
CGP jobs. As the CGP jobs iteratively traverse the graph
along different paths for their own purposes, there are a large
number of intersections among the graph data being accessed
by these jobs in each iteration, which produces redundant
disk I/O and memory storage overheads. Moreover, since each
individual job initiates the I/O request to the disk separately,978-0-7381-3207-5/21/$31.00 c©2021 IEEE



it incurs severe competition for the limited I/O bandwidth,
which greatly reduces the I/O throughput and leads to very
long waiting time experienced by users for the computing
results, significantly reducing the quality of service. Some
CGP-oriented graph processing systems like CGraph [16]
and GraphM [17] can solve above problems and support
disk-based processing. However, they mainly focus on in-
memory processing and improving cache performance and
ignore improving the disk I/O performance. For example, they
can not skip loading the useless data when the number of
active edges is very small. In addition, they maintain many
copies of vertex values (for different CGP jobs) in memory,
which limits the processing capacity and scalability as the size
of graph dataset continues to grow.

Based on the above analysis, we present GraphCP, an I/O-
efficient graph processing system to handle the CGP jobs. The
main contributions of GraphCP are summarized as follows.
• GraphCP proposes a benefit-aware sharing execution

model that shares the I/O accesses of CGP jobs by loading
and processing a graph partition in a common order for all
CGP jobs, which greatly reduces the redundant accesses
and avoids the competition of I/O bandwidth. In addition,
this model adaptively schedules the loading of graph data
by skipping loading and processing inactive edges in each
iteration whenever such skipping can bring performance
benefit, to further improve the disk I/O performance.

• GraphCP proposes a Source-Sorted Sub-Block graph
representation that adopts a 2-dimensional partitioning
method to partition the graph into several sub-blocks. By
restricting data access to each sub-block and correspond-
ing source and destination vertices, GraphCP can improve
the processing capacity for very large graphs and ensure
good I/O access locality.

• We evaluate the performance of GraphCP by compar-
ing with state-of-art graph processing systems including
GridGraph, GraphZ and Seraph. Extensive evaluation re-
sults show that GraphCP outperforms GridGraph, GraphZ
and Seraph by 10.3x, 4.6x and 2.1x on average thanks to
a great improvement of I/O performance.

The rest of the paper is organized as follows. Section
II presents the background and related works. Section III
describes the detailed system designs of GraphCP. Section IV
presents extensive performance evaluations. We conclude this
paper in Section V.

II. BACKGROUND AND RELATED WORK

A. Out-of-Core Graph Processing

Recently, many out-of-core (disk-based) graph processing
systems have been proposed to enable users to analyze, process
and mine large graphs in a single PC by efficiently using sec-
ondary storage. GraphChi [5] is a pioneering single-PC-based
out-of-core graph processing system that supports vertex-
centric computation model [1] and is able to express many
graph algorithms. By using a novel parallel sliding windows
method to reduce random I/O accesses, GraphChi is able

to process large-scale graphs in reasonable time. Following
GraphChi, a number of out-of-core graph processing systems
are proposed to improve the I/O performance. X-Stream [6]
uses an edge-centric approach in order to minimize random
disk accesses. In each iteration, it streams and processes the
entire unordered list of edges during the scatter phase and
applies updates to vertices in the gather phase. GridGraph [7]
combines the scatter and gather phases into one streaming-
apply phase and uses a 2-Level hierarchical partition method
to break graph into 1D-partitioned vertex chunks and 2D-
partitioned edge blocks. It avoids writing updates to disk and
enables selective scheduling to skip the inactive edge blocks.
Dynamic Shards [18] removes unnecessary I/O of out-of-
core graph processing by employing dynamic partitions whose
layouts are dynamically adjustable. GraphZ [19] supports out-
of-core graph analytics by adopting two innovations. One is
degree-ordered storage, a new storage format that dramatically
lowers book-keeping overhead when graphs are larger than
memory. The other is ordered dynamic messages which update
their destination immediately, reducing both the memory re-
quired for intermediate storage and IO pressure. CLIP [20] and
Lumos [8] adopt an out-of-order execution model to make full
use of the loaded blocks to avoid loading the corresponding
graph portions in future iterations. Their cross-iteration value
propagation method can significantly speedup the convergence
of graph algorithms and reduce disk I/O.

Although these out-of-core graph processing systems can
efficiently process a single graph processing job, they are
faced with two key challenges when handling the CGP jobs.
First, since the CGP jobs iteratively traverse the graph along
different paths, there are a large number of intersections among
the graph data being accessed by these jobs in each iteration,
which means some portions of the graph are usually accessed
many times in each iteration. This causes redundant data
accesses and storage overheads. Second, since each individual
job initiates the I/O request to the disk separately, it incurs
severe competition for the limited I/O bandwidth, which
greatly reduces the I/O throughput and performance.

B. Concurrent Graph Processing

With the increasing demand for graph analytics, many itera-
tive graph algorithms run as concurrent services on a common
platform. These concurrent iterative graph processing (CGP)
jobs are usually executed on the same graph simultaneously
so as to analyze it for various information. For example,
Facebook [12] uses Apache Giraph [13] to process various
graph algorithms across their many products, including typical
algorithms such as label propagation, variants of Pagerank, k-
means clustering, etc. Figure 1 depicts the number of CGP
jobs over a large Chinese social network [16]. The stable
distribution shows that more than 83.4% of the time has at least
two CGP jobs executed simultaneously. The average number
of concurrent jobs is 8.7. At the peak time, over 20 CGP jobs
are submitted to the same platform. This indicates that the
need of concurrent graph processing is increasingly growing
in the real world.



Fig. 1: The number of CGP jobs

To handle multiple concurrent graph processing and queries,
several CGP-oriented graph processing and querying systems
are developed in recent years. Seraph [14], [15] decouples
graph data into graph structure data and application-specific
data, and enables massive CGP jobs to correctly share one
copy of the in-memory graph structure data. Congara [21]
schedules a group of concurrent queries to fully utilize the
memory bandwidth while preventing contention between dif-
ferent queries. It relies upon off-line profiling with different
number of threads to determine the scalability and memo-
ry bandwidth consumption of different graph algorithms on
different input graphs. C-Graph [22] is an edge-set based
concurrent graph traversal framework that achieves both high
concurrency and efficiency for k-hop reachability queries.
Unfortunately, these systems usually rely on a distributed or
shared-memory system, which suffers from the problems such
as significant communication overheads and poor scalability.
The enormous amount of update messages produced by the
CGP jobs significantly exacerbate these problems.

CGraph [16] proposes a correlations-aware execution model
together with a core-subgraph based scheduling algorithm to
efficiently share the graph structure data in memory and their
accesses by fully exploiting such correlations. GraphM [17] is
an efficient storage system that can be integrated into the exist-
ing graph processing systems to efficiently support concurrent
iterative graph processing jobs for higher throughput by fully
exploiting the similarities of the data accesses between these
concurrent jobs. Although they can process CGP jobs from
secondary storage, they mainly focus on in-memory processing
and improving cache performance and ignore improving the
disk I/O performance. For example, they do not consider the
usability of loaded graph data. In addition, they maintain many
copies of vertex values for different CGP jobs in memory,
which limits the processing capacity and scalability when the
graph is very large.

III. SYSTEM DESIGN

In this section, we first present the system overview of
GraphCP. Then, we introduce the detail designs such as the
Source-Sorted Sub-Block graph representation and benefit-
aware sharing execution model. Finally, we present the pro-
gramming model of GraphCP.

Benefit-aware Sharing Executing Model

Source-sorted Sub-block Representation

Graph Algorithms

Storage Devices

Work Stealing Strategy

GraphCP

Sub-blocks Disk

Job 1

Shared Graph

DRAM

CPU CPU CPU

Job 2 Job 3

Fig. 2: The GraphCP Architecture

A. System Overview

A graph problem is usually encoded as a directed graph
G = (V,E), where V is the set of vertices and E is the
set of edges. For a directed edge e = (u, v), we refer to
e as v’s in-edge, and u’s out-edge. Additionally, u is an in-
neighbor of v, v is an out-neighbor of u. The computation of
a graph G is usually organized in several iterations where V
and E are read and updated. Updating messages are propagated
from source vertices to destination vertices through the edges.
The computation terminates after a given number of iterations
or when it converges. Like previous works [23], [24], we
treat all vertices as mutable data and edges as read-only data.
Furthermore, this optimization does not result in any loss of
expressiveness as mutable data associated with edge e = (u, v)
can be stored in vertex u [23]. Therefore, only the vertex values
are updated during the computation.

GraphCP is a novel out-of-core graph processing system
that can efficiently execute CGP jobs. Figure 2 presents the
system architecture of GraphCP. GraphCP aims to solve two
key problems faced by existing works when handling CGP
jobs. One is the redundant accesses and I/O competition
problem. The other is the limited processing capacity and
scalability problem. For the former, GraphCP proposes a
benefit-aware sharing execution model that shares the I/O
accesses of CGP jobs by loading the graph in a common order
for all CGP jobs. In addition, this model adaptively schedules
the loading of graph data to further improve the disk I/O
performance. For the latter, GraphCP uses a Source-Sorted
Sub-Block graph representation that adopts a 2-dimensional
partitioning method that partitions the graph into several sub-
blocks. This graph representation can improve the processing
capacity and scalability as well as ensure the I/O access
locality. In addition, a work stealing strategy is utilized to
address the loads imbalance problem that stems from the
skewed computation loads of different CGP jobs.

B. Graph Representation

In order to efficiently support the processing of CGP job-
s under a limited memory capacity, GraphCP adopts a 2-
dimensional partitioning method and implements a Source-
Sorted Sub-Block (SSSB) graph representation. Like many
out-of-core graph processing systems, GraphCP first splits the
vertices V of graph G into P disjoint vertex intervals. Then,
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Fig. 3: Illustration of the dual-block representation

each vertex interval associates an edge block to store the out-
edges of the vertices within the interval. Furthermore, each
edge block is further divided into P sub-blocks according to
their destination vertices. Inside each sub-block, edges are
sorted by their source vertices. In this graph representation,
the edges are partitioned into P × P sub-blocks. Each sub-
block (i, j) contains edges that start from vertices in interval i
and end in vertices in interval j. By selecting P such that each
sub-block and the corresponding vertices can fit in memory,
the SSSB representation can improve the processing capacity
for very large graphs and ensure good I/O access locality when
processing each sub-block.

Figure 3 shows the SSSB representation of an example
graph. The vertices are divided into two intervals (1, 5) and (6,
10), the edges are partitioned into four sub-blocks according to
the two intervals. For example, the out-edge (1, 6) is assigned
to sub-block (1, 2) since vertex 1 belongs to interval 1 and
vertex 6 belongs to interval 2. When processing sub-block (1,
2), edges in sub-block (1, 2) and vertices values in interval
1 will be read and used to calculate new values for interval
2. Here, interval 1 is called the source interval as all source
vertices reside in it and interval 2 is called the destination
interval. In addition, SSSB representation also maintains the
index to the edges for each vertex in each sub-block. We refer
to index (i, j) as the vertex index of sub-block (i, j). This
enables selective data access as shown in Section III-C.

Note that, some systems like GridGraph [7] also use a 2-
dimensional partitioning method and present a grid-like format
to improve the I/O performance, which is similar to SSSB
representation. However, the SSSB representation is different
from GridGraph’s grid format from the following aspects.
First, the SSSB representation sorts the out-edges by the
source vertices, so that out-edges with the same source vertex
are stored contiguously. This is beneficial to the compression
of edges and efficient parallel processing. While GridGraph
can not fully utilize the parallelism without sorted edges. Sec-
ond, the SSSB representation creates a vertex index structure
to enable the selective loading of edges.

C. Benefit-aware Sharing Execution Model

In order to overcome the challenges faced by existing out-
of-core graph processing systems when handling CGP jobs

as well as improve disk I/O performance, GraphCP adopts
a benefit-aware sharing execution model. In this model, the
graph data is decoupled as graph structure data (i.e., sub-block)
and application-specific vertex attributes (i.e., PageRank val-
ues) like previous works [14], [16]. Graph structure data is
shared by different CGP jobs. Each CGP job has its own vertex
attributes that are repeatedly updated until the job converges.
When processing CGP jobs, the sub-blocks are loaded into
memory in sequence and in a common order for all CGP jobs,
where each edge block is concurrently handled by the related
CGP jobs. In this way, the accessing and storing of most edge
blocks can be shared by the CGP jobs, which greatly reduces
the redundant accesses and storage and avoids the competition
of I/O bandwidth. During the processing, GraphCP dynami-
cally schedules the loading of edges, i.e., skipping loading
and processing inactive edges in each iteration whenever such
skipping can bring performance benefit. In the benefit-aware
sharing execution model, GraphCP processes the input graph
one vertex interval at a time. For each vertex interval, GraphCP
processes each sub-block at a time. The processing of each
sub-block can be divided into two steps: benefit-aware sub-
block loading, concurrent processing of the sub-block.

1) Benefit-aware Sub-block Loading: Current out-of-core
graph processing systems [5], [6], [7] are usually optimized
for the sequential performance of disk drives and eliminate
random I/Os by scanning the entire graph data in all iterations
of graph algorithms. However, for many graph algorithms
(e.g., Breadth-first Search, Weak Connected Components, S-
ingle Source Shortest Path) that only access small portions of
data during each iteration, this full I/O access model can be
wasteful. For example, Breadth-first Search only visits vertices
in a frontier in each iteration. For concurrent graph processing,
there may exist some sub-blocks that have very few or no
active edges for all CGP jobs. In this case, sequentially loading
all sub-blocks will lead to suboptimal I/O performance. On
the other hand, the on-demand I/O access model that is
based on the active edges can avoid loading the useless data.
Unfortunately, it incurs a large amount of small random disk
accesses due to the randomness of the active vertices. As
we know, random accesses to disk drives deliver much less
bandwidth than sequential accesses. Therefore, only accessing
the useful data for out-of-core graph processing is an overkill



when the number of active vertices is large. To address this
dilemma and improve disk I/O performance, GraphCP adopts a
benefit-aware scheduling scheme when loading each sub-block
to skip loading and processing inactive edges in each iteration
whenever such skipping can bring performance benefit.

GraphCP adaptively schedules the edge loading based on
the number of active edges. When the number of active edges
is small, the system only traverses the active edges to avoid
the loading of useless data, which improves I/O efficiency.
When the number of the active edges is large, the system
loads the whole sub-block to eliminate random disk accesses.
To achieve this, GraphCP incorporates the designs of bitmap
operation and I/O-based benefit evaluation model.

Bitmap operation. Selective scheduling of the active edges
needs to scan all vertices to identify the active vertices.
To efficiently support concurrent graph processing, GraphCP
maintains a job-specific state bitmap whose storage size is
|V |/8 bytes for each CGP job to record whether a vertex is
active or not for the job. In each iteration, GraphCP scans all
job-specific state bitmaps and generates a shared state bitmap
that records whether a vertex is active or not for any job in all
CGP jobs. Specifically, a vertex is marked as active whenever
it will be processed by any CGP job in current iteration. By
identifying the number of active vertices of each sub-block,
GraphCP can compute the I/O loads (active edges) when
processing the sub-block and decides whether sequentially
load the whole sub-block or only load the active edges of
the sub-block.

I/O-based benefit evaluation model. To evaluate the per-
formance benefit of loading the active edges, the key is to
compare the I/O costs between sequentially loading all edges
and randomly loading the active edges. The I/O cost can be
calculated by the total size of data accessed divided by the
random/sequential throughput of disk access. Let M, N, W
respectively be the size of an edge structure value, the size of
a vertex value record and the size of an edge weight value.
In addition, Trr, Trw, Tsr and Tsw represent random read,
random write, sequential read and sequential write throughput
(MB/s) respectively. For the ease of expression, we assume
the number of vertices in each interval is equal to |V |/P .

For easy reference, we list the notations in Table I. When
sequentially loading the whole sub-block, GraphCP loads all
edges and vertex values of all CGP jobs into memory. In
addition, only vertex values are updated since we store mutable
data in vertices. Therefore, the I/O costs of GraphCP Cs when
processing sub-block(i, j) can be stated constantly as:

Cs =
|V |
P ×N × J + Si,j

Tsr
+
|V |
P ×N × J

Tsw

When selectively (randomly) loading the active edges, we
suppose that the active vertex set in current iteration is A,
so the I/O amount of the active edges is equal to the size
of all edges of vertices in A. Moreover, GraphCP also loads
the vertex index so as to locate the active edges and compute
the number of active edges, in addition to the vertex values.
Therefore, the I/O cost Cr can be stated as:

TABLE I: Notations

Notation Definition
G the graph G = (V,E)

V vertices in G
E edges in G
P number of intervals
J number of CGP jobs
A active vertex set in current iteration
M size of an edge structure value
N size of a vertex value
W size of an edge weight value
Si,j size of an sub-block(i,j)
Trr random read throughput
Trw random write throughput
Tsr sequential read throughput
Tsw sequential write throughput

Cr =

∑
v∈A(index(i, j)[v + 1]− index(i, j)[v])× (M +W )

Trr

+
|V |
P ×N × (J + 1)

Tsr
+
|V |
P ×N × J

Tsw

If Cr ≤ Cs, the system selectively loads the active edges to
avoid the loading of useless data. Otherwise, the system just
loads all in-edges and out-edges to eliminate random disk ac-
cesses. The disk access throughput Trr, Trw, Tsr and Tsw can
be measured by using several measurement tools such as fio
[6] before we conduct the experiments. And other parameters
such as A and Si,j can be directly collected and computed in
the runtime. This provides an accurate performance prediction
that enables efficient scheduling.

2) Concurrent Processing of the Sub-block: After loading
a sub-block, the related CGP jobs that have unprocessed ver-
tices and edges in the sub-block will concurrently access the
sub-block and update their application-specific vertex values.
When the processing of the sub-block is finished for all related
jobs, the next sub-block then can be loaded. The CPU cores are
assigned to the CGP jobs evenly when the processing starts.
When the number of jobs is larger than the number of CPU
cores, these CGP jobs are assigned to be processed as different
batches. During the processing, there may exist some jobs that
have fewer computation loads in the sub-block and finish more
quickly than other jobs, leaving some worker threads idle. To
tackle this problem, GraphCP adopts a work stealing strategy
that enables the worker threads whose jobs have been finished
to process the unfinished jobs (Section III-D).

For the processing of each sub-block, each CGP job access-
es the edges in the sub-block and pushes updates from the
source to the destination vertices with a user-defined update
function. Once a CGP job has processed all sub-blocks in
current iteration, it synchronizes its own vertex values with
the latest updated values in the iteration.

3) Workflow Example: Figure 4 illustrates an example of
the workflow of the benefit-aware sharing execution mod-
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Fig. 4: Illustration of Benefit-aware Sharing Execution Model

el with the graph in Figure 3(a). In this example, system
processes vertex interval 1 and its associated sub-blocks,
i.e., sub-block (1, 1) and sub-block (1, 2). The graph needs
to be handled by three CGP jobs, i.e., a PageRank job, a
Connected Components (CC) job and a Single-Source Shortest
Path (SSSP) job. Supposing there is only one active vertex
1 when processing sub-block (1, 1) (Figure 4(a)), only the
out-edges of vertex 1 are loaded into memory. Then the CGP
jobs concurrently access and process these edges as the shared
subgraph. Each job updates its own application-specific vertex
values using its own update function. After processing sub-
block (1, 1), vertex 4 and 5 are activated since their values are
updated. Therefore, there are 5 active edges (i.e., out-edges
of vertex 1 and 5) when processing sub-block (1, 2) (Figure
4(b)). According to the I/O-based benefit evaluation model,
the whole sub-block should be loaded into memory. After the
three jobs finish the processing of sub-block (1, 2), system
starts to process vertex interval 2 and their associated sub-
blocks (i.e., sub-block (2, 1) and sub-block (2, 2)). When all
sub-blocks are processed by all CGP jobs, the CGP jobs move
to the next iteration of processing.

D. Work Stealing Strategy

Due to the different computation features of different graph
applications, the computation loads (active edges) of each
CGP job are usually skewed when processing each sub-block.

In this case, some jobs may finish much more quickly than
other jobs, which causes some worker threads idle after some
jobs are finished and reduces the utilization ratio of hardware.
For example, BFS may only need to process a few edges
when processing a sub-block, while PageRank may have to
go through all edges to complete the processing.

In order to address this load imbalance problem, GraphCP
adopts a work stealing strategy that reassigns the threads
whose jobs have been finished to process the unfinished jobs.
To this end, GraphCP first calculates the computation loads
of each job, which can be easily computed based on the
number of newly activated vertices. Then, it identifies several
”straggler jobs” whose computation loads are larger than a
user-defined threshold. For these jobs, the sub-blocks are
logically divided to several shards according to the source
vertices of the edges and are processed from the beginning to
the end. For threads whose jobs have been finished (assisting
threads), they will check the number of unprocessed shards for
all straggler jobs and assist to process the straggler job with
most number of unprocessed shards. When handling straggler
jobs, the assisting threads process the unfinished shards from
the last shard until all unfinished shards are processed.

E. Programming Model

We have fully implemented GraphCP in C++. The main
execution procedure of GraphCP is described in Algorithm



1. When processing each vertex interval, GraphCP identifies
the shared active vertices by merging the active vertices set
of all CGP jobs in the interval (Line 8 ∼ 13). For the
processing of each sub-block, GraphCP adaptively selects the
I/O access model based on the I/O-based benefit evaluation
model, to selectively load the active edges in the sub-block or
sequentially load the whole sub-block (Line 15 ∼ 21). Then,
each CGP job concurrently accesses the edges and executes
the vertices updating for its own purposes (Line 22 ∼ 26).

Algorithm 1 Pseudo code of GraphCP execution

1: procedure Executor
2: for each CGP job j in J do
3: Aj ← ActiveV erticesSet
4: Sj ← V ertexV alues
5: Outj ← NewActiveV erticesSet
6: end for
7: for each interval i do
8: for each j in J do
9: /* Identify the active vertices in interval i*/

10: Ai
j ← GetActiveV ertices(i, Sj)

11: /* Identify the shared active vertices set of all CGP
jobs*/

12: As ←
⋃
Ai

j

13: end for
14: for each sub− block in interval i do
15: /* Select the I/O access model*/
16: IOModel← Selection(sub− block,As)
17: if IOModel = selective then
18: edges← SelectiveLoad(sub− block,As)
19: else
20: edges← SequentialLoad(sub− block)
21: end if
22: for each CGP job j in J do
23: if Ai

j ← NotEmpty then
24: ParallelUpdate(edges, j, Ai

j , Sj , Outj)
25: end if
26: end for
27: end for
28: end for
29: end procedure

In our programming model, only function ParallelUpdate
is user-defined, while the others are provided by runtime.
Users can modify the ParallelUpdate function to write their
own graph algorithms for the CGP jobs. Algorithm 2 shows
the implementation of ParallelUpdate with the example of
Connected Components (CC) algorithm. In this algorithm, the
vertex values and the active vertex set of the CC job are
updated for the subsequence computation.

IV. EVALUATION

In this section, we first introduce our evaluation envi-
ronment and graph algorithms. Then, we compare GraphCP
with state-of-art graph processing systems in terms of overall

Algorithm 2 ParallelUpdate(edges, j, Ai
j , Sj , Outj): CC

1: procedure CC
2: for each edge e in edges do
3: if e.src ∈ Ai

j then
4: if Sj(e.src) < Sj(e.dst) then
5: Sj(e.dst)← Sj(e.src)
6: Outj .add(e.dst)
7: end if
8: end if
9: end for

10: end procedure

TABLE II: Datasets used in evaluation

Dataset Vertices Edges
LiveJournal [25] 4.8 million 69 million
Twitter2010 [26] 42 million 1.5 billion
SK2005 [27] 51 million 1.9 billion
UK2007 [28] 106 million 3.7 billion
Kron30 [29] 1 billion 32 billion

performance, I/O traffic and scalability. Finally, we evaluate
the effects of different system optimizations.

A. Experiment Setup

The hardware platform used in our experiments is a com-
modity server equipped with two 8-core 2.10 GHz Intel Xeon
CPU E5-2620, 16GB main memory and 600GB 7200RPM
HDD, running Ubuntu 16.04 LTS. In addition, a 128GB
SATA2 SSD is installed to evaluate the scalability.

We use different types of graphs for the evaluation as
summarized in Table II. LiveJournal, Twitter2010 and SK2005
are social graphs, showing the relationship between users
within each online social network. UK2007 is a web graph that
consists of hyperlink relationships between web pages. Kron30
is a synthetic graph generated with the Graph500 generator
[29]. The small graph LiveJournal is chosen to evaluate the in-
memory processing performance of GraphCP. The other four
graphs are respectively larger than memory capacity by 1.6x,
1.9x, 3.9x and 16.0x.

Note that, although our hardware platform is not a very
powerful platform, it is sufficient to show the problem we
focus on and evaluate the efficiency and benefit of our system,
since most graphs used in the evaluation are larger than the
memory capacity. When deploying our system in a more pow-
erful platform and using much larger graphs for evaluation,
the problem still remains as the large graphs may not fit in
memory, and our evaluation results will not be changed.

We run four graph algorithms as concurrent jobs: PageR-
ank (PR), Breadth-first search (BFS), Weak Connected Com-
ponents (WCC), and Single Source Shortest Path (SSSP).
These algorithms exhibit different I/O access and computation
characteristics, which provides a comprehensive evaluation of
GraphCP. For PageRank, we run five iterations on each graph.
For BFS, WCC and SSSP, we run them until convergence.



TABLE III: Execution time (in seconds)

System GridGraph GraphZ Seraph GraphCP
liveJournal 16.9 9.4 9.6 6.3
Twitter2010 3115.4 1639.6 328.2 205.1
SK2005 3807.1 1586.3 768.4 349.3
UK2007 6911.2 2303.7 1573.3 561.9
Kron30 - - 130944.5 56932.4

”-” indicates that the system failed to finish execution in 48
hours.

We compare GraphCP with three baseline systems. Two
of them are state-of-art out-of-core graph processing systems,
GridGraph [7] and GraphZ [19]. The other is Seraph [14],
[15], which is a state-of-art graph processing system optimized
for efficient execution of CGP jobs, implemented by us on
GridGraph.

B. Overall Performance

To compare the overall performance, we run all the CGP
jobs (PageRank, BFS, WCC, and SSSP) simultaneously for
each of these four systems. Note that, for GraphCP and Seraph,
we only need to run a single GraphCP and Seraph instance
to execute these CGP jobs thanks to their sharing access of
the graph. While for GridGraph and GraphZ, each CGP job
needs to initiate a GridGraph or GraphZ instance for parallel
execution. Table III shows the total execution time of the CGP
jobs for different systems. We can see that GraphCP finishes
the CGP jobs much more quickly than other three systems.
On average, GraphCP outperforms GridGraph, GraphZ and
Seraph by 10.3x, 4.6x and 2.1x respectively.

GridGraph uses a 2-Level hierarchical partition scheme
and a streaming-apply model to reduce the amount of data
transfer, enable streamlined disk access, and maintain locality.
However, it is optimized for the processing of individual
graph processing job. When handling CGP jobs, it exhibits
poor performance due to the reasons shown in Section II-
A. GraphZ can greatly reduce the I/O costs and improve
performance by using the degree-ordered storage and dynamic
messages. Unfortunately, it also suffers from the problems as
other out-of-core graph processing systems when processing
concurrent jobs. While for GraphCP, it shares the accesses
of sub-blocks among the CGP jobs with the benefit-aware
sharing execution model, which leads to high performance
when executing the CGP jobs. Note that, when executing
the CGP jobs on LiveJournal, GraphCP only outperforms
GridGraph and GraphZ by 2.7x and 1.5x. This is because
GridGraph and GraphZ can avoid the I/O conflicts when
processing the in-memory graph.

For Seraph, although it is also able to spare the data accesses
via shared in-memory graph structure, it has not efficient-
ly scheduled the computation loads of different CGP jobs,
which causes load imbalance and significant synchronization
overheads for the iterative processing. GraphCP alleviates
these issues by adopting a work stealing strategy. Moreover,
GraphCP dynamically schedules the loading of edges, which
further improves the I/O performance.
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To further demonstrate the efficiency of GraphCP, we also
report the runtime breakdowns of the executions on SK2005
for all compared systems, as shown in Figure 5. From the
results, we can see that GraphCP outperforms other systems
in both disk I/O performance and computational performance.

C. I/O Traffic

Then we compare the total volume of I/O traffic for different
systems. Figure 6 shows the results. From the results, the
volume of I/O traffic of GraphCP is 5.3x, 4.1x and 2.7x
less than that of GridGraph, GraphZ and Seraph respectively.
This is mainly attributed to GraphCP’s benefit-aware loading
scheme that avoids loading the useless data when there are
very few active edges for the CGP jobs to access. On the other
hand, GridGraph and GraphZ load more data than Seraph. This
is because they suffer from many repeated data accesses due
to ignoring the data access correlations among the CGP jobs.
While Seraph can share the accesses among the CGP jobs.

To further demonstrate GraphCP can adaptively schedule
the I/O access according to the number of active edges, we
report the I/O traffic and percentage of active vertices in each
iteration on Twitter, as shown in Figure 7. When the number
of active edges is large, GraphCP traverses all graph data for
sequential access performance, so the amount of I/O traffic
is large. When the number of active edges decreases to the



0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

S
p
e
e
d
u
p

threads

 GridGraph

 GraphZ

 Seraph

 GraphCP

(a) Scalability with threads
GridGraph GraphZ Seraph GraphCP

0

600

1200

1800

2400

3000

3600

ru
n
ti
m

e
(s

)

 HDD  SSD

(b) Scalability with I/O

Fig. 8: Evaluation of scalability

1 2 3 4
0

500

1000

1500

2000

2500

3000

3500

R
un

tim
e 

(s
)

Number of Jobs

 GridGraph

 GraphZ

 Seraph

 GraphCP

Fig. 9: Performance variation with different number of jobs

extent that selectively accessing the active edges outperforms
sequentially accessing all edges, GraphCP only loads the
active edges.

D. Scalability

The scalability of GraphCP is evaluated by observing the
performance improvement when more hardware resource is
added. Figure 8(a) shows the effect of the thread number
on execution time when executing CGP jobs on LiveJournal.
We observe that GraphCP and Seraph achieve better scala-
bility than GridGraph and GraphZ. This stems from efficient
share of data accesses. Figure 8(b) shows the performance
improvement of CGP jobs on SK2005 when using different
I/O devices. Compared with disk performance, GridGraph,
GraphZ, Seraph and GraphCP respectively achieve a speedup
of 1.4x, 1.6x, 1.6x and 1.9x when using SSD. This indicates
that GraphCP can benefit more from the utilization of SSD,
since GraphCP enables selective (random) data access to load
the active edges, which works well on SSD.

We also evaluate the performance variation when increasing
the number of CGP jobs, as shown in Figure 9. The number of
CGP jobs is increased in the order of PageRank, BFS, WCC
and SSSP. When the number of CGP jobs is increased from
1 to 4, the execution time of GridGraph, GraphZ, Seraph and
GraphCP increases by 6.9x, 10.6x, 1.4x and 1.6x respectively.
Obviously, Seraph and GraphCP achieve a better scalability
than the other two systems. The worse scalability of GridGraph
and GraphZ is attributed to the severe competition for the
limited I/O bandwidth, which significantly reduces the system
throughput and performance.

E. Effects of System Optimizations

To analyze the performance gains obtained by using differ-
ent system optimizations, we compare the system performance
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by disabling each optimization to GraphCP. The system op-
timizations include the sharing access model, benefit-aware
scheduling scheme and working stealing strategy.

We first evaluate the effect of the sharing access model.
We compare GraphCP with two baseline implementations.
The first baseline implementation (GraphCP-b1) handles the
CGP jobs by initiating the I/O request of each job to the
disk separately like current out-of-core systems. The second
baseline implementation (GraphCP-b2) executes the CGP jobs
by running one after another. As shown in Figure 10(a), thanks
to the efficient sharing accesses, the performance of GraphCP
can be accelerated by up to 5.2x. On the other hand, GraphCP-
b1 has a worse performance than GraphCP-b2 even though it
enables parallel execution. This is because GraphCP-b1 incurs
severe competitions for I/O bandwidth, which greatly reduces
system performance.

Then we evaluate the effect of the benefit-aware scheduling
scheme as shown in Figure 10(b). There are also two baseline
implementations. The first baseline implementation (GraphCP-
b3) sequentially loads the whole sub-block into memory when
processing each sub-block. The second baseline implemen-
tation (GraphCP-b4) selectively loads the active edges when
processing each sub-block. The results show that the benefit-
aware scheduling scheme can improve the performance by
up to 3.0x, due to adaptively scheduling the edge loading
according to the number of active edges.

Finally, we evaluate the effect of the work stealing strategy
by comparing with the baseline implementation that disables
the work stealing strategy (GraphCP-b5). Through achieving
better load balance among CGP jobs, the work stealing strat-
egy can improve the performance by up to 1.27x, as shown
in Figure 10(c). We can find that the work stealing strategy
brings fewer performance improvements than the other two



optimizations. This is because the vertex updating phase has
relatively less impact on the overall performance for an out-
of-core system, compared with the disk I/O phase.

V. CONCLUSION

In this paper, we present a new out-of-core graph processing
system called GraphCP that aims to efficiently handle concur-
rent graph processing jobs. GraphCP proposes a benefit-aware
sharing execution model that shares the accesses of graph data
among the CGP jobs and enables selective disk I/O accesses.
Moreover, GraphCP adopts a Source-Sorted Sub-Block graph
representation to improve processing capacity and ensure I/O
access locality. Our evaluation results show that GraphCP can
be much faster than GridGraph, GraphZ and Seraph, three
state-of-the-art graph processing systems. In future works, we
will research how to extend our system to process evolving
graphs whose vertices and edges are constantly changing. In
addition, we will exploit emerging hardware such as GPU,
FPGA, NVM to accelerate data accesses of concurrent jobs
for higher throughput.
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