
Characterizing the Performance of Intel Optane
Persistent Memory

– A Close Look at its On-DIMM Buffering

Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, Hong Jiang
The University of Texas at Arlington

Arlington, Texas, USA

Abstract

We present a comprehensive and in-depth study of Intel

Optane DC persistent memory (DCPMM). Our focus is on

exploring the internal design of Optane’s on-DIMM read-

write buffering and its impacts on application-perceived per-

formance, read and write amplifications, the overhead of

different types of persists, and the tradeoffs between persis-

tency models. While our measurements confirm the results

of the existing profiling studies, we have new discoveries

and offer new insights. Notably, we find that read and write

are managed differently in separate on-DIMM read and write

buffers. Comparable in size, the two buffers serve distinct

purposes. The read buffer offers higher concurrency and

effective on-DIMM prefetching, leading to high read band-

width and superior sequential performance. However, it does

not help hide media access latency. In contrast, the write

buffer offers limited concurrency but is a critical stage in

a pipeline that supports asynchronous write in the DDR-T

protocol. Surprisingly, in addition to write coalescing, the

write buffer delivers lower than read and consistent write

latency regardless of the working set size, the type of write,

the access pattern, or the persistency model. Furthermore,

we discover that the mismatch between cacheline access

granularity and the 3D-Xpoint media access granularity neg-

atively impacts the effectiveness of CPU cache prefetching

and leads to wasted persistent memory bandwidth.

Our proposition is to decouple read andwrite in the perfor-

mance analysis and optimization of persistent programs. We

present three case studies based on this insight and demon-

strate considerable performance improvements. We verify

the results on two generations of Optane DCPMM.

CCS Concepts: • Hardware → Memory and dense stor-

age.

EuroSys ’22, April 5–8, 2022, RENNES, France

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9162-7/22/04.

https://doi.org/10.1145/3492321.3519556

Keywords: Persistent memory, Optane DCPMM, perfor-

mance characterization

ACM Reference Format:

Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, Hong Jiang.

2022. Characterizing the Performance of Intel Optane Persistent

Memory: – A Close Look at its On-DIMM Buffering. In Seventeenth

European Conference on Computer Systems (EuroSys ’22), April 5–8,

2022, RENNES, France. ACM, New York, NY, USA, 18 pages. https:

//doi.org/10.1145/3492321.3519556

1 Introduction

As the first non-volatile memory DIMM becomes com-

mercially available with the release of Intel Optane DC

persistent memory (DCPMM), there is a growing inter-

est in characterizing its performance and understanding

the implications for programming persistent memory (PM)

and designing persistent data structures. Along with In-

tel’s latest processors, Optane DCPMM provides both byte-

addressability and persistence. It offers 8x capacity and sig-

nificant energy savings compared with dynamic random-

access memory (DRAM), though incurring higher access

latency and sustaining lower bandwidth. However, recent

studies [8, 13, 23, 26, 30, 32, 35, 36] have found that Optane

DCPMM should not simply be treated as slower, persistent

DRAM. Compared to DRAM, Optane DCPMM exhibits com-

plicated behaviors and drastically changing performance

depending on access size, access type and pattern.

Since documentation on Optane DCPMM’s internal ar-

chitecture is not yet publicly available, understanding its

performance is important to building high-performance and

efficient persistent applications. Optane DCPMM differs

from DRAM in several ways. First, there is a mismatch be-

tween CPU cacheline access granularity (64-byte) and the

3D-Xpoint media access granularity (256-byte XPLine) in

Optane DCPMM, which leads to write or read amplifica-

tions if data access size is smaller than 256 bytes. Second,

to bridge the gap in access granularity, Optane DCPMM

is equipped with complex on-DIMM buffering to support

read-modify-write operations and write combining for small

writes. Third, the new DDR-T protocol that connects Optane

DCPMM and the integrated memory controller (iMC) sup-

ports asynchronous stores to hide the long write latency to

488

EuroSys ’22, April 5–8, 2022, RENNES, France Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang and Hong Jiang

the physical media while the DDR4 protocol used by DRAM

is synchronous for both loads and stores.

These differences could lead to various performance im-

plications for persistent software designs, which have not

been thoroughly studied. This paper seeks to understand

the design of Optane’s on-DIMM read-write buffering and

its interactions with the CPU caches as well as the DDR-T

protocol. Most importantly, we aim to understand how on-

DIMM buffering affects application-perceived performance.

We evaluate the existing two generations of Optane DCPMM

with microbenchmarks and have the following findings that

were not previously reported.

• Optane DCPMM manages read and write separately with

dedicated on-DIMM buffer spaces. The read buffer is ex-

clusive to the CPU caches and has no significant impact

on the performance of random reads since CPU caches are

several orders of magnitude larger than the read buffer.

However, adjacent XPLine prefetching into the read buffer

due to CPU cache prefetching activities leads to improved

sequential read performance but may lead to wasted mem-

ory bandwidth for random access patterns. Most impor-

tantly, it helps hide write latency by allowing direct up-

dates to XPLines already in the read buffer, avoiding the

“read” in expensive read-modify-write operations.

• The write-combining (write) buffer is effective in merging

small writes and reducing write amplification. Given its

small size (16 KB), however, it is challenging for programs

to exploit locality and hit the write buffer. Notably, to-

gether with the asynchronous DDR-T protocol, the write

buffer helps absorb writes at a rate much faster than the

underlying media and effectively sustains write latency at

a low level comparable to that of DRAM. Write latency is

consistent across various working set sizes (WSS), even

when the WSS is an order of magnitude larger than the

capacity of the write buffer.

• Contrary to popular belief that write performance is worse

than read in Optane DCPMM, we find that for data stores

with weak or little locality that comprise of frequent ran-

dom reads (often in the form of pointer chasing) followed

by writes and persists, a typical access pattern found in

linked lists, hash tables, and balanced search trees, the

overall latency is bottlenecked by expensive random me-

dia reads.

• Due to the asynchronous DDR-T protocol, cacheline

flushes or ordinary writes return when they reach the

write pending queue in the iMC to hide the long media

write latency. Fence instructions, which order read and

write operations for crash-consistency, only guarantee

that flushes are globally visible but not necessarily com-

pleted. Thus, reading a recently flushed cacheline after

fence instructions return could experience almost an order

of magnitude longer latency as the read needs to wait for

the flush to complete.

Note that the latest Intel Xeon scalable processors and the

2nd generationOptane DCPMMpropose a significant change

tomake the CPU caches persistent upon a crash. If enabled by

the platform (e.g., the motherboard), no cacheline flushes are

needed for persistence. While this new feature is still being

evaluated by vendors, the new platform is not yet widely

available. We verify the aforementioned findings in the 2nd

generation Optane DCPMM without platform support for

cache persistence.

We present three optimizations inspired by the insights.

Unlike the existing work that mostly focuses on optimizing

write performance, we demonstrate that random reads could

become a major bottleneck in large data stores with weak

locality. Given that persistent writes are constrained by fence

instructions and cannot fully utilize memory bandwidth, we

devise a speculative helper thread approach to prefetch data

for a worker thread before a random access to the data occurs.

The helper thread, which is constructed by extracting load

instructions from a worker thread, has a 100% prefetching

accuracy and is independent of as well as faster than the

worker thread. Experiments with the cacheline-conscious

extensible hash table (CCEH) show significant improvements

in latency and throughput for write-intensive workloads.

B+-trees that store sorted keys in contiguous memory

spaces are susceptible to long read-after-persist delays. Key

insertions using in-place updates require on average half of

the keys in a node to be shifted and cause repeated reads and

writes to the same cacheline. Frequent cacheline flushes and

fences after key shifts are considered a major performance

bottleneck. We demonstrate that using out-of-place redo

logging can effectively improve the latency and throughput

of insertions in B+-tree despite the fact that logging leads to

doubled PM writes. This case study suggests that the trade-

off between packing data items for exploiting locality and

reducing the overhead of persistence should be examined

when designing persistent data structures.

The mismatch between cacheline access granularity and

3D-Xpoint media access granularity incurs a higher CPU

prefetching cost in DCPMM compared to that in prefetching

from DRAM. A misprediction on memory address pollutes

one cacheline in the CPU cache in both DRAM and DCPMM

but additionally requires an entire XPLine to be prefetched

into the read buffer. Moreover, existing studies [19, 21] have

suggested that data accesses in persistent programs should

be made sequential and XPLine-aligned to attain a high

bandwidth and reduce write amplification. This design al-

most certainly triggers CPU prefetching due to sequential ac-

cesses within an XPLine but results in misprefetching across

XPLines if cross-XPLine accesses are not essentially sequen-

tial. We demonstrate in a third case study that accessing

cachelines using the Advanced Vector Extensions (AVX) in

the x86 instruction set effectively avoids misprefetching and

reduces the amount of data loaded from the physical media.

489

Characterizing the Performance of Intel Optane Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

2 Background and Motivation

In this section, we provide background on Intel’s Optane per-

sistent memory and discuss the configurations of our testbed,

the tools used to profile Optane DCPMM’s performance, and

the methodology to design the benchmark programs.

2.1 Optane persistent memory

Intel Optane persistent memory is the first commercially

available non-volatile DIMM. Along with Intel’s latest

scalable processors, Optane DCPMM provides both byte-

addressability and persistence. Sitting on the memory bus,

Optane DCPMM connects to the integrated memory con-

troller (iMC) through a new DDR-T communication pro-

tocol. Similar to DRAM DIMMs, Optane DIMMs provide

the processor with cacheline (64-byte) access granularity,

but the physical 3D-Xpoint media access granularity is 256

bytes. The mismatch in access granularity causes write am-

plification because writes smaller than 256 bytes become

read-modify-write operations and result in 256-byte writes

to the physical media. To reduce write amplification, Op-

tane DCPMM employs an on-DIMM write-combining buffer

to merge adjacent small writes. Recent studies [30, 35] on

Optane DCPMM independently verified that the size of the

write buffer is 16 KB.

To ensure persistence, the iMCmaintains an asynchronous

DRAM refresh (ADR) domain. CPU stores that reach the ADR

domain will be persisted to Optane DCPMM upon a power

failure. The iMC also maintains separate read (RPQ) and

write pending queues (WPQ) for each Optane DIMM. Both

the WPQ and the write-combining buffer belong to the ADR

domain. In the 2nd generation (G2) Optane DCPMM, the

extended ADR (eADR) domain includes CPU caches.

To enforce crash consistency, stores to Optane DCPMM

must be properly ordered. Since evictions from the CPU

cache hierarchy may not follow store order, in the 1st gen-

eration (G1) Optane DCPMM, to persist a data object, store

instructions are followed by cacheline flushes1 (e.g., clflush,
clflushopt, or clwb) and a memory barrier (e.g., sfence
or mfence). The barrier ensures that cacheline flushes are
accepted to the WPQ and reach the ADR domain. The return

of a barrier instruction guarantees that all stores prior to the

barrier are persisted. The cacheline flush and the following

fence instruction together are usually referred as a persis-

tence barrier. In G2 Optane DCPMM, cacheline flushes are

not needed since CPU caches belong to the eADR domain and

are persistent. However, eADR requires platform support

and a much larger power reserve. As of the time of writ-

ing, platforms that support eADR are not widely available.

The G2 Optane DCPMM testbed we evaluated is equipped

with the 200 series Optane DIMMs and the latest Intel Xeon

scalable processors but with eADR disabled.

1Non-temporal stores can be used to bypass the cache and avoid cacheline

flushes.

2.2 Known performance characteristics

Previous studies found that the behavior of Optane DIMMs is

different from that of DRAMDIMMs in several ways: 1) Read

and write performance in Optane DIMMs are asymmetric,

and the performance gap is much larger than that in DRAM

DIMMs. Maximal read bandwidth is 3x of the maximal write

bandwidth, and write performance does not scale beyond a

small thread count. 2) Surprisingly, read latency on Optane

DIMMs is significantly higher than write latency because

writes commit once data reaches the ADR domain while

reads need to fetch data from the 3D-Xpointmedia. 3)Optane

DIMM performance is strongly dependent on access size.

Reads and writes smaller than the 256-byte physical media

access granularity are inefficient. Small writes cause write

amplification in which the amount of data written to the

media is larger than that issued by the iMC.

2.3 Motivation

As documentation on the architecture of Optane DCPMM is

scarce, it is important to study how the integration of Optane

DIMMs in the memory hierarchy, in addition to multi-level

CPU caches and the DRAM, affects application-perceived

performance. We seek to connect high-level performance,

such as throughput and latency, to low-level statistics on

Optane DCPMM in order to infer its internal design. No-

tably, three architectural characteristics of Optane DCPMM

deserve investigation.

• The mismatch between cacheline and 3D-Xpoint media

access granularity not only causes write amplifications

but also read amplifications. While write amplification

is an indication of inefficiency, read amplification opens

up opportunities for potential data reuse as the additional

data not demanded by the iMCmay be buffered on Optane

DIMMs and can be accessed at a lower cost. Read buffering

has a slew of implications for performance, including its

interactions with the CPU caches and prefetching, its im-

pact on clwb and nt-store as well as the potential benefit
of reducing the cost of read-modify-write operations.

• There are still unknowns about write buffering, including

its eviction and write-back policies. Since write ampli-

fication can have a salient impact on performance, un-

derstanding its internal management helps reason about

performance anomalies and fluctuations in write. Beyond

reducing write amplification, it is also important to investi-

gate how well write buffering, together with the asynchro-

nous DDR-T protocol, bridges the latency gap between

CPU caches and the physical media.

• The performance implications of persistence barriers are

not thoroughly studied. While store fences are exten-

sively used for weakly-ordered memory models in volatile

memory, they only guarantee global visibility of stores to

ensure memory consistency. Cacheline flushes and non-

temporal stores, however, still take substantial time to

490

EuroSys ’22, April 5–8, 2022, RENNES, France Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang and Hong Jiang

reach the physical media after fences return. The delay

can have a sizable impact on the performance of the fol-

lowing data accesses.

We are also interested in how these architectural character-

istics evolve in different generations of Optane DCPMM.

2.4 Methodology

We design micro-benchmarks to generate various controlled

access patterns in PM and measure the following metrics to

infer the internal working of Optane DIMMs.

Metrics. Write amplification (WA) is the ratio of the num-

ber of bytes written to the 3D-Xpoint media divided by the

bytes issued by the iMC. Similarly, read amplification (RA)

is the ratio of the actual data read from the media divided

by data requested by iMC. A WA or RA value larger than 1

indicates that more data is written to or read from the media

than requested due to the mismatch between CPU access

granularity (64B) and media access granularity (256B). On

the other hand, WA and RA can also be smaller than 1 when

repeated writes/reads hit the on-DIMM (write-combining)

buffer(s), avoiding accessing the physical media. In general,

WA and RA should be upper bounded by 4 (i.e., 256𝐵
64𝐵).

Platform. We have two test beds equipped with two gener-

ations of Optane DCPMM, respectively. The two machines

only differ in the processors and share the memory as well

as the software configurations. The server with the 1st gen-

eration (G1) Optane DCPMM had dual Intel Xeon Gold 6320

2.1GHz CPUs (20 cores) with 32KB L1i/L1d cache, 1MB L2

cache, and 27.5MB L3 cache, while the 2nd generation (G2)

Optane DCPMM server had dual Intel Xeon Gold 5317 3GHz

CPUs (12 cores) with 1.1MB L1d/768KB L1i cache, 30MB L2

cache, and 36MB L3 cache. Both were equipped with 192GB

DRAM and six 128GB Optane DCPMMs. All the DRAM and

Optane DIMMs were installed in one CPU socket to isolate

Optane performance from the non-uniform memory access

(NUMA) factor. We used Ubuntu 20.04 as the operating sys-

tem and the DAXmode in the ext4 file system tomount PM to

a program’s address space. We used ipmwatch from the Intel

VTune profiler to measure data accesses in the 3D-Xpoint

media and those issued by the iMC.

3 Read-Write Buffering in Optane DIMMs

This section seeks to understand the internal working of the

Optane DIMM by observing its behavior running carefully

crafted micro-benchmarks.

3.1 Read buffering

Existing studies [30, 35] have confirmed the existence of a

16KB read-modify-write (RMW) buffer in Optane DIMMs

where adjacent writes could be temporarily stored and

merged. In [35], experiments demonstrated that reads can

also be cached and compete for space in the RMW buffer.

In what follows, we demonstrate that there exists a 16 KB

read buffer along with a RMW buffer (Section 3.2) in Optane

DIMMs, and they are separated from each other (Section 3.6).

The read buffer is exclusivewith regard to the CPU caches, i.e.,

only containing data that is not present in the CPU caches.

Benchmark. To prove the existence of an on-DIMM read

buffer and estimate its size, we design a single-threaded

micro-benchmark that repeatedly reads from a contiguous

persistent memory region and measures read amplification

(RA). As shown in Figure 1, the benchmark uses strided read

aligned with the 256B 3D-Xpoint access granularity (referred

as anXPLine). Note that each XPLine contains four cachelines

which can be read from themedia in one transaction. A stride

of 256B ensures that two consecutive reads hit two separate

XPLines and require two media reads. The benchmark reads

one cacheline from each XPLine at a time until reaching the

end of the memory region and repeats this pattern by reading

another cacheline from each XPLine. The benchmark has

two configurable parameters: the number of Cache lines read

per XPLine (CpX) and the size of the memory region, i.e.,

the working set size (WSS).

Findings. To ensure data is actually read from the Optane

DIMM, cachelines are invalidated 2 using clflushopt im-

mediately after they are read from PM. Figure 2 shows RA

as CpX and WSS change. We made three observations: 1) It

is evident that there exists read buffering in Optane DIMMs,

otherwise RA should always be equal to 4 regardless of how

many cachelines are read in an XPLine. As shown in Fig-

ure 2, with a small WSS, RA is inversely proportional to CpX,

indicating that loading multiple cacheline in an XPLine only

requires one media load because later cacheline accesses hit

an on-DIMM read buffer. 2) RA jumps to 4 when the WSS

exceeds 16KB, suggesting that following cacheline accesses

miss the read buffer. Thus, the capacity of the read buffer is

16 KB. 3) RA never drops below 1 even when the WSS fits in

the read buffer (16 KB). It suggests that a cacheline is evicted

from the read buffer once it is loaded into the CPU caches.

Otherwise, RA would be 0, i.e., all recurring reads would hit

the read buffer instead of the media when the WSS is smaller

than 16 KB.G2 Optane DCPMM has similar results on read

amplification but a slightly larger 22 KB read buffer.

Performance implications. In Figure 2, RA jumps to 4 im-

mediately after the WSS exceeds the read buffer capacity.

Similar results are observed if the access pattern is changed.

This indicates that the read buffer likely employs a simple

first-in-first-out (FIFO) eviction policy. Since the read buffer

is exclusive to the CPU caches, which are at least two orders

of magnitude larger, there is not much locality to exploit in

the read buffer. However, as will be demonstrated in Sec-

tion 3.2 and Section 3.4, the read buffer is essential for reduc-

ing the cost of read-modify-write operations and improving

sequential access performance.

2Non-temporal load is not currently implemented in Intel scalable proces-

sors and cannot bypass the CPU caches.

491

Characterizing the Performance of Intel Optane Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ...1 2 3 41 2 3 4

XPLine (256B)

Persistent memory address space

Figure 1. Inferring read buffer capacity with strided read.

0 4 8 12 16 20 24 28 32 36
Working set size(KB)

0
1
2
3
4

Re
ad

 a
m

pl
ifi

ca
tio

n

read 4 cachelines
read 3 cachelines
read 2 cachelines
read 1 cacheline

Figure 2. Read amplification due to various access patterns

in a single Optane DIMM.

3.2 Write buffering

This section explores the design of the write-combining

buffer beyond capacity analysis. We investigate whether the

write buffer employs a write-back mechanism that flushes

XPLines down to the media as well as its eviction algorithm.

Benchmark. We performed both full (256B) and partial

writes in the Optane DIMM using non-temporal stores to

compare the write-back mechanism for different types of

writes. Full writes update all four cachelines in an XPLine,

while partial writes only update a subset of cachelines leav-

ing the remaining untouched. The benchmark sequentially

updates cachelines within an XPLine and can be configured

to either sequentially or randomly update across XPLines.

Note that the benchmark bypasses the CPU cache and per-

forms pure writes directly to Optane DCPMM.

Findings. Figure 3 shows write amplification due to differ-

ent types of write in G1 Optane DCPMM. Note that the

WA curves as well as write performance (i.e., latency and

throughput) are independent of the access pattern across

XPlines (i.e., sequential or random) and only depend on the

WSS. The figure suggests that the write buffer manages full

and partial writes differently in G1 Optane. For partial writes,

WA remains 0 until the WSS exceeds 12KB, indicating that

all writes are absorbed by the write buffer, and no data is

written to the media. WA jumps after the WSS goes beyond

12KB and gradually approaches the theoretical write ampli-

fication for each write pattern, e.g., a WA of 4 for writing

one cacheline out of four cachelines. In contrast, full writes

always lead to media write and write amplification rises to 1

even when the WSS is small (less than 4KB).

The results suggest that the size of the write buffer is be-

tween 12KB and 16KB, and there are two write-back mech-

anisms in G1 Optane DCPMM. 1) Fully modified XPLines

are written back to the media periodically, while 2) partially

modified XPLines are retained in the buffer until evicted. We

0 4 8 12 16 20 24 28 32
Working set size (KB)

0

1

2

3

W
rit

e
am

pl
ifi

ca
tio

n 100% Write
75%Write
50%Write
25%Write

Figure 3.Write amplification in G1 Optane DCPMM.

0 8 16 24 32
Working set size (KB)

0.0

0.3

0.6

0.9

1.2

Bu
ffe

r h
it

ra
tio

G1 Optane
G2 Optane

Figure 4.Write buffer hit ratio as WSS increases.

empirically determined that fully-written XPLines are peri-

odically written back to the media approximately every 5,000

cycles. However, in G2 Optane DCPMM, periodic XPLine

writeback is disabled for full writes.

To study the eviction algorithm used in the write buffer,

we issue random partial writes and measure the amount of

media write relative to program issued writes to infer the

ratio of writes that hit the buffer. Figure 4 shows that the

write buffer hit ratio drops gracefully as the WSS exceeds

buffer capacity. Contrary to the sharp climb of RA in Figure 2,

WA also gracefully increases beyond the read buffer capac-

ity. This suggests that the write buffer is managed using a

different eviction algorithm than the one used for the read

buffer. Since the access pattern is pure random, the write

buffer likely employs a random XPLine eviction algorithm.

Performance implications. Unlike reads whose perfor-

mance largely depends on the effectiveness of CPU caching,

writes such as cacheline flushes or non-temporal stores rely

heavily on write buffering in Optane DCPMM. Ideally, write

WSS should not exceed 16 KB to maximize write buffer hit

and eliminate media writes, which is quite challenging if

not impossible in realistic data stores. Practically, 1) pro-

grammers should coalesce small writes to form XPLine-

sized writes rather than exploiting temporal locality across

XPLines if the WSS cannot fit in the buffer since random

eviction is employed; 2) since access sequentiality does not

affect write performance or write buffer management, pro-

grammers do not need to particularly pursue sequentiality

and avoid random access for writes.

492

EuroSys ’22, April 5–8, 2022, RENNES, France Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang and Hong Jiang

Figure 5. Interleaved read and write operation to check the

relation between read and write buffer.

3.3 The relationship between read and write buffers

This section studies whether the read and write buffers share

a 16KB space or are separate. Our results show that they are

separate, each having a dedicated buffer space. XPLines can

be moved between the two, likely via a tagging mechanism.

Benchmark. To study if reads and writes compete for

shared buffer space, we set up two non-overlapping regions

on Optane DCPMM: a 16KB read and an 8KBwrite region. As

shown in Figure 5, the benchmark issues interleaved reads

and writes by jumping between the two regions. The num-

bers indicate the sequence cachelines are read or written. To

ensure data accesses reach Optane DCPMM and bypass the

CPU cache, cachelines are flushed/invalidated immediately

after read from Optane, and writes are non-temporal stores.

Findings. We compare the amount of data read from and

written to the iMC and the media, respectively, with those

in two baseline programs, which access the read and write

region separately. Since the individual read (16KB) and write

(8KB) working sets fit in the read (16KB) and write (12-16KB)

buffer, respectively, but the aggregate WSS (16KB + 8KB)

does not, reads and writes would compete for shared buffer

space and interfere with each other if the read and write

buffers were a shared space. However, our results show that

the benchmark with interleaved read/write accesses incurs

no read amplification (RA = 1), causes no data written to the

media, and behaves the same as the baseline programs. It

suggests that the read and write buffers are separate.

Next, we study if data can be moved between the read

and write buffers. We modify the benchmark to issue one

non-temporal store to the first cacheline of an XPLine, fol-

lowed by three reads to the remaining three cachelines in

the same XPLine. To bypass the CPU caches, all reads are

immediately flushed from the caches. We set the WSS to

8KB to guarantee that all data fits in the read or write buffer.

Our measurements show that the amount of data loaded

from and written to the media is far less than the amount

of data issued by the iMC, which indicates that most reads

and writes hit the buffers. Since reads and writes are inter-

leaved, read can directly load data from the write buffer, and

write can update XPLines in the read buffer, avoiding expen-

sive read-modify-write operations from the media. Further

experiments show that XPLines updated in the read buffer

are subject to the write-back policy in G1 Optane DCPMM,

thereby likely transitioned to become part of the write buffer.

The buffers in G2 Optane DCPMM behave similarly.

Performance implications. Hitting the read or write

buffer avoids expensive media read or write operations and

can lead to significant performance improvements. However,

it is difficult for programs to exploit locality in such small

buffers. The separation and XPLine transition between the

read and write buffers offer a different perspective. The ex-

pensive read-modify-write operation on PM can be broken

into separate read and write operations to the same address,

thereby allowing pipelining to hide media access latency.

Specifically, a write could hit the read buffer if the target

address is prefetched. Since the read and write buffers are in-

dependently managed, it allows for great flexibility to design

collaborative approaches to pipeline reads and writes.

3.4 Data prefetching to the on-DIMM buffers

Cache prefetching is an effective mechanism to reduce cache

miss rate and penalty, which makes sequential data access

much faster than random access. This section investigates

whether there exists on-DIMM prefetching and how the on-

DIMM buffering interacts with cache prefetching.

Benchmark. The trigger for CPU cache prefetching is usu-

ally a sequence of two or more cache misses in a certain

pattern or read requests that exhibit sequential or spatial

locality [6]. To study the effect of prefetching, we devise

a single-threaded benchmark that randomly accessed the

Optane DIMM with a granularity of 256B (referred as an

access block). Because access blocks align with the XPLines,

there is no read amplification. Within each access block,

the benchmark sequentially accessed all the cachelines 16

times, thereby invoking data prefetching at various levels.

After a block is accessed, it is flushed from the CPU cache

to ensure that the next visit to the same block always re-

quires access to the Optane DIMM. We measure the ratio of

data loaded from the 3D-Xpoint media and that actually de-

manded by the benchmark to infer the amount of additional

data loaded due to prefetching to the on-DIMM buffers. Sim-

ilarly, We also measure the read ratio for the CPU cache, i.e.,

the ratio of iMC loaded data over program demanded data.

Since accesses across blocks (i.e., XPLines) are random, data

prefetched beyond the boundary of an access block does not

result in a buffer hit and is thus regarded as wasted.

Findings. Our testbeds allow three CPU cache prefetchers

in the Intel scalable processors to be individually enabled/dis-

abled via BIOS configurations. We first disable all three CPU

prefetchers to study if there is an on-DIMM prefetching

mechanism separate from CPU prefetching. Figure 6 (a) and

(e) show that the read ratios for Optane DCPMM and the iMC

are both close to 1 in both G1 and G2 Optane DCPMM, sug-

gesting that no noticeable on-DIMM prefetching activities

are observed. In contrast, when individual CPU prefetchers

are enabled respectively, the read ratio of DCPMM deviates

from that of the iMC. There are three regions in each figure

according to the WSS.

• WSS smaller than read buffer (16KB). The WSS fits entirely

in the read buffer, and all data prefetched into the read

493

Characterizing the Performance of Intel Optane Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

1.0
1.1
1.2
1.3
1.4
1.5

Re
ad

 ra
tio

(a) No prefetch (G1)

PM (G1)
iMC (G1)

1.0

1.1

1.2

1.3

(b) Hardware prefetch (G1)

1.0

1.2

1.4

1.6

1.8

(c) Adjacent cacheline prefetch (G1)
1.0
1.2
1.4
1.6
1.8
2.0

(d) DCU streamer prefetch (G1)

4KB 256KB 16MB 1GB
Working set size

1.0
1.1
1.2
1.3
1.4
1.5

Re
ad

 ra
tio

(e) No prefetch (G2)

PM (G2)
iMC (G2)

4KB 256KB 16MB 1GB
Working set size

1.0

1.1

1.2

1.3

(f) Hardware prefetch (G2)

4KB 256KB 16MB 1GB
Working set size

1.0

1.2

1.4

1.6

1.8

(g) Adjacent cacheline prefetch (G2)

4KB 256KB 16MB 1GB
Working set size

1.0
1.2
1.4
1.6
1.8
2.0

(h) DCU streamer prefetch (G2)

Figure 6. Data prefetching in G1 and G2 Optane DCPMM.

buffer by the CPU prefetcher results in buffer hits in the

following accesses. Thus, no additional data other than

program demanded data is loaded from the media.

• WSS larger than read buffer but smaller than L3 cache. The

working set can no longer fit in the read buffer but still fits

in the last-level cache (LLC) (27.5MB on the G1 and 36MB

on the G2 server). While the read ratio for iMC remains

1 as all CPU prefetched data leads to LLC hits, the read

ratio for Optane DCPMM increases significantly. Since the

WSS is larger than the read buffer size, prefetched data

is evicted before it can be hit in the buffer, resulting in

wasted and repetitive loads from the media.

• WSS larger than L3 cache. LLC misses due to the large

WSS invoke frequent CPU prefetching and cause the read

ratios in both Optane DCPMM and the iMC to grow. One

notable observation is that DCPMM read ratio is signifi-

cantly higher than that of the iMC.With an access block of

256B (i.e., 4 cachelines), the iMC at most misprefetches one

additional cacheline at the boundary of the access block

while DCPMM loads an entire XPLine from the media.

Performance implications. While prefetching is impor-

tant to the performance of sequential access, it could be

detrimental to random access due to the cost of misprefetch-

ing. As we demonstrate that the prefetching activity in Op-

tane DIMMs is determined by CPU prefetching, the mis-

prefetching penalty is particularly high in DCPMM than

that in DRAM. The mismatch between the cacheline granu-

larity in CPU prefetching and the media access granularity

requires 4 cachelines or an XPLine to be loaded from the me-

dia upon a misprediction in prefetching. For workloads that

are optimized for XPLine-sized and aligned data access, CPU

prefetching could account for half of the DCPMM bandwidth.

Programmers are advised to carefully weigh the benefit and

cost of prefetching in such workloads.

Algorithm 1: Measure read-after-persist latency

input :char *addr (PM address), int distance, int wss

(working set size)

1 offset=0;

2 while offset < wss do

3 mov 0x00, [addr+offset];

4 clwb [addr+offset];

5 /* Line 3-4 can be changed to nt-store */

6 mfence or sfence;

7 mov [addr+(offset+wss-distance)%wss], register0;

8 offset+=64;

9 /* move to the next cacheline */

10 end

3.5 Read-after-persist Latency

To ensure crash consistency, persistence barriers need to

be placed between data accesses. A persistence barrier usu-

ally includes one or multiple clwb or nt-store followed

by a mfence or sfence instruction. While memory barriers

have been widely adopted for memory consistency, they may

behave differently under the Optane DCPMM’s DDR-T pro-

tocol, which supports asynchronous command and timing.

With DDR-T, memory barriers only ensure that cacheline

flushes are globally visible but not necessarily completed

by the time a fence instruction returns. Following accesses

to addresses that have been previously persisted (flushed)

may experience longer delays, and cross socket access may

make it even worse. As writes are asynchronous, we investi-

gate how reads, which are synchronous under DDR-T, are

affected by persistence barriers. Our primary metric is the

read-after-persist (RAP) latency, which is defined as the data

load time to a recently persisted address.

494

EuroSys ’22, April 5–8, 2022, RENNES, France Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang and Hong Jiang

0
6

12
18
24
30

La
te

nc
y

(X
10

0
CP

U
cy

cle
)

(a) RAP on local PM (G1)

PM+clwb+mfence
PM+clwb+sfence
PM+nt-store+mfence

1

3

5

7

(b) RAP on local DRAM (G1)

DRAM+clwb+mfence
DRAM+clwb+sfence

0
6

12
18
24
30

(c) RAP on remote PM (G1)

PM+clwb+mfence
PM+clwb+sfence
PM+nt-store+mfence

1

3

5

7

(d) RAP on remote DRAM (G1)

DRAM+clwb+mfence
DRAM+clwb+sfence

0 10 20 30 40
Distance(cacheline)

0
3
6
9

12
15
18
21

La
te

nc
y

(X
10

0
CP

U
cy

cle
)

(e) RAP on local PM (G2)

PM+clwb+mfence
PM+clwb+sfence
PM+nt-store+mfence

0 10 20 30 40
Distance(cacheline)

3.0

4.5

6.0

7.5

(f) RAP on local DRAM (G2)

DRAM+clwb+mfence
DRAM+clwb+sfence

0 10 20 30 40
Distance(cacheline)

0
3
6
9

12
15
18
21

(g) RAP on remote PM (G2)

PM+clwb+mfence
PM+clwb+sfence
PM+nt-store+mfence

0 10 20 30 40
Distance(cacheline)

3.0

4.5

6.0

7.5

(h) RAP on remote DRAM (G2)

DRAM+clwb+mfence
DRAM+clwb+sfence

Figure 7. Per-iteration latency in Algorithm 1 as the RAP distance increases. The distance is in the number of cachelines.

Benchmark. Algorithm 1 shows how we quantify the RAP

latency with respect to RAP distance. The benchmark ac-

cesses data on Optane DCPMM from low to high addresses in

the granularity of cachelines. In each iteration, it first flushes

one cacheline followed by a fence instruction and accesses a

cacheline at a lower address that was previously persisted.

The RAP distance is the distance of a cacheline the bench-

mark reads at a lower address relative to the current address

being persisted. A small RAP distance indicates the read and

persist occur in temporal proximity. The benchmark has a

4KB WSS that fits in the on-DIMM buffers. We place the

benchmark program and the working set in a single mem-

ory node and two memory nodes, respectively, to study the

impact of the non-uniform memory access (NUMA) factor.

Findings. Figure 7 plots the average CPU cycles spent on

one iteration of the benchmark as the RAP distance increases

inG1 andG2OptaneDCPMM, respectively.We investigate

clwb and nt-storewith different types of memory fences in

both Optane DCPMM and DRAM. In G1 Optane, as shown

in Figure 7 (a) and (c), clwb and nt-store cause significant

delays to following accesses to the same address. When the

RAP distance is small, i.e., accessing an address still being

persisted, the average per-iteration latency reaches up to

2,500 and 3,200 cycles when the benchmark accesses data

from local and remote Optane memory, respectively. As the

RAP distance increases, the latency quickly decreases and

eventually approaches that of the on-DIMM buffers. The

latency gap on Optane DCPMM is significant, by as much

as 10X, while the gap on DRAM is 2X.

Interestingly, the combination of clwb and sfence, a com-

mon implementation of a persistence barrier, presents a

different RAP latency profile. Reading recent persisted ad-

dresses (RAP distance ≤ 1) results in low latency comparable

to that in accessing more distant addresses. However, RAP

latency quickly jumps to 800/1,000 cycles on local/remote

memory node, from where it gradually converges to the ini-

tial latency as the read moves further away from the current

persisted address. Note that reads are not ordered with re-

spect to sfence nor the flush, thereby able to load directly

from the CPU caches. In G1 Optane DCPMM, clwb invali-

dates the flushed cacheline. Therefore, as the RAP distance

increases, reads have to wait for persists to complete if they

have been started, missing the opportunity to bypass the

flush and load from the caches.

As shown in Figure 7 (e) - (h), the long RAP delay for

nt-store still persists while the curves of RAP latency for

clwb approach those on DRAM on G2 Optane DCPMM. The

major difference between G1 and G2 Optane DCPMM is

that the latter does not invalidate and allows a cacheline to

remain in the cache after clwb. This effectively eliminates

the RAP issue for clwb as the following read can always

fetch the latest value of an address from the CPU caches.

However, the new clwb implementation in the latest Intel

processors does not come with no cost. There is a significant

increase in the latency of hitting the on-DIMM buffers in

DCPMM as well as that of loading data from DRAM. Re-

taining flushed cachelines in the cache avoids future cache

misses but increases the cost of maintaining coherence on

the cachelines [12].

Performance implications. Programs that repeatedly per-

sist and read adjacent cachelinesmay suffer long RAP latency,

typically in data structures that pack items in contiguous

memory spaces. While clwb only has the issue in G1 Op-

tane DCPMM, nt-store suffer from it in both generations of

Optane DCPMM. A similar problem could occur when read-

write sharing a cacheline on PM across CPU sockets, e.g.,

multiple threads on different sockets competing for a persis-

tent lock or a critical section. Handing over the lock between

threads requires a shared cacheline to be invalidated and

flushed back to PM, immediately followed by a read from an-

other thread. Optimizations should be devised to avoid such

contentious accesses to flushed cachelines. Even if there is no

contention across sockets and cachelines can be kept in CPU

caches, persisting data via remote CPUs should be avoided

due to the high overhead to maintain cache coherence.

495

Characterizing the Performance of Intel Optane Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

0
250
500
750

1000
(a) Write
with strict

persistency

0
250
500
750

1000

La
te

nc
y

(C
PU

 c
yc

le
 p

er
 e

le
m

en
t)

(b) Write with
relaxed

persistency

4KB 256KB 16MB 1GB
Working set size

0

250

500

750 (c) Latency
breakdown

of pure reads
and writes

seq_clwb
rand_clwb
seq_nt-store

rand_nt-store
seq_rd
rand_rd

Figure 8. User-perceived latency with various working set

sizes in G1 DCPMM. Results are similar on G2 DCPMM.

3.6 Interactions between CPU caches and on-DIMM

buffers

Previous sections focus on exploring the design of the on-

DIMM read-write buffers and use benchmarks that bypass

the CPU cache to measure read or write amplification. This

section evaluates the performance of the Optane DCPMM

considering the CPU caches. We are particularly interested

in the interactions between the caches and the on-DIMM

buffers.

Benchmark. Inspired by [6], we developed a benchmark

with the following building block called an element.
typedef struct working_set_unit

{

struct working_set_unit *next;

uint64_t pad[NPAD];

} working_set_unit_t;

The benchmark consists of a predefined number of ele-

ments, each containing a pointer to the next element and

a data area pad. We set the size of an element to 256B and

align it with XPLines. The working set is constructed by con-

necting elements either sequentially or randomly to form a

circular linked list. The benchmark updates one cacheline in

the pad area from each element and follows the next pointer
to traverse the entire working set. This pattern is repeated

a large number of times to obtain statistically significant

results. Throughout the tests, the structure of the linked list

remains unchanged. The accessed data and the pointer do

not belong to the same cacheline. This separation ensures

that only data changed in the pad area is persisted, avoiding

invalidating cached element pointers in the CPU cache.

The benchmark performs sequential/random reads and

writes and reports the average latency per element. We use

two types of writes (clwb and nt-store) and implement

strict and relaxed persistency. In strict persistency, eachwrite

is followed by a persistence barrier (e.g., flush + fence). We

adopt a simple implementation of relaxed persistency, in

which all writes are allowed to be reordered and occur in

parallel until the completion of the working set. A fence

instruction is inserted after finishing the last element to sep-

arate two passes to the linked list. While there are many

other relaxed persistency models, such as epoch and strand

persistency [24], our purpose is to compare write perfor-

mance with and without ordering constraints. Therefore, we

choose the most strict and relaxed models.

Findings. Figure 8 (a) and (b) show the latency per element

with different types of persists. Both figures show three levels

of latency: 1) Latency begins with a low level and gradually

ramps up as the WSS approaches 16KB – the size of the

read/write buffers; 2) latency plateaus at around 400 cycles

before 3) it starts to grow drastically when the WSS exceeds

16MB. The latency of random accesses is then up to more

than 1000 cycles for both clwb and nt-store, which is 10X

compared to that when the WSS fits in the on-DIMM buffers.

Note that the benchmark traverses the linked list via

pointer chasing. Therefore, data access to each element al-

ways begins with a read to the first cacheline. This is a com-

mon access pattern in many data structures such as trees and

hash tables. Even for write-intensive workloads, e.g., those

with frequent persists, the initial read could significantly

affect performance. To study how read and write contribute

to the overall latency, we separate reads from writes in the

original benchmark. Pure reads only perform pointer chasing

in the linked list without touching the pad data area. Pure

writes use an array in DRAM to store the addresses of ele-

ments and perform stores directly to the pad area without
reading any data from PM. The address array is randomized

for random access.

Figure 8 (c) shows the latency breakdown between pure

reads and writes. For WSS smaller than 16 MB, read latency

remains low at 6-40 cycles, comparable to the latency of L1-

L3 CPU caches. Latency climbs up to 400 and 800 cycles for

sequential and random reads, respectively, as the WSS grows

beyond 16 MB. A similar read latency increase at 16 MB

was also observed in [30] due to the overflow of the address

indirection translation (AIT) buffer in Optane DIMMs. We

conjecture that the overflow of the AIT buffer and the last-

level cache (27.5 MB L3 cache in our testbed) both contribute

to the drastic latency increase, though it is difficult to isolate

their respective effects. As the WSS exceeds cache capacity,

reads must be served from the physical media, incurring at

least an order of magnitude longer latency.

In contrast, write latency is consistent across different

WSSes except for small WSSes that fit in the write buffer.

Because the SRAM-based write buffer is able to bring write

496

EuroSys ’22, April 5–8, 2022, RENNES, France Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang and Hong Jiang

latency close to that of the CPU caches, the asynchronous

DDR-T protocol effectively hides write latency and keeps

it below 300 cycles regardless of the WSS. As Figure 8 sug-

gests, write outweighs read when the WSS is smaller than 16

MB while read latency dominates the overall performance

thereafter. Sequential access incurs much lower latency than

random access does mainly due to the reduction in read

latency thanks to data prefetching to the on-DIMM read

buffer. Another interesting observation is that the perfor-

mance trends for clwb and nt-store are similar, though

clwb requires one additional read in the pad area. It suggests
that the first read to an XPLine is especially expensive com-

pared to following reads to the same XPline, which would

certainly hit the read buffer.

In G2 Optane DCPMM, we observe similar performance

trends except that 1) the overall latency as well as the

pure read latency (in CPU cycles) beyond the L3 cache is

even higher due to a higher CPU frequency in the G2 Op-

tane DCPMM server, and 2) the performance of clwb and

nt-store converges when the WSS is smaller than the L3

cache size while diverging thereafter.

Performance implications. We have important takeaways

from the experiments. First and foremost, the latency to load

data from the media, regardless of the access pattern, out-

weighs write latency when the WSS exceeds the size of the

last-level cache. Given that write latency is consistent regard-

less of the access pattern and the WSS, optimizations should

be focused on reducing read latency for large workloads.

Second, the performance of different types of writes (i.e.,

clwb and nt-store) and different types of persistency mod-

els could converge – 1) when the WSS fits in the CPU caches,

the cost of clwb and nt-store are similar since reading

from the cache is almost negligible compared to media write;

when the WSS is larger than the L3 cache, the difference

of the two is overshadowed by the first read to an element.

2) Reads are not constrained by a store fence, thereby its

performance not affected by the persistency model; for clwb
and nt-store, the persistency model also has a limited im-

pact. Although the write buffer has sufficient capacity to

accept concurrent writes from a relaxed persistency model

than a strict persistency model, both are bottlenecked by the

limited concurrency of media write. Thus, it would be more

effective to employ relaxed persistency models to reduce

persists to the same XPLine than reducing the number of

XPLines persisted.

4 Case Studies

In this section, we present three cases studies of applying the

aforementioned insights to three representative workloads.

4.1 CCEH

Cacheline-Conscious Extendible Hashing (CCEH) is an ex-

tendible hash table designed for persistent memory [21].

Extendible hashing dynamically allocates memory space for

Figure 9.Workflow of accessing a bucket in CCEH.

Table 1. Time breakdown of key insertion in CCEH.

Thread/DIMM Segment metadata Persists Misc.

1T/1-DIMM 51.1% 22.56% 26.34%

5T/1-DIMM 51.6% 20.94% 27.46%

1T/6-DIMM 47.2% 25.13% 27.67%

5T/6-DIMM 42.8% 26.12% 31.08%

buckets on demand and allows the hash table to grow (or

shrink) incrementally. For this goal, extendible hashing man-

ages buckets in a hierarchical manner in which a top-level

directory stores bucket addresses. Buckets can be inserted or

deleted from the directory without affecting other buckets,

and re-hashing can be done by changing the size of the di-

rectory. CCEH adopts cacheline-sized buckets to minimize

cacheline accesses and introduces an intermediate level of

indexing, segments, to reduce the size of the directory.

As shown in Figure 9, CCEH consists of a global directory

and a large number of 16 KB segments. Each segment con-

tains 256 cacheline-sized buckets (64B) plus 16B metadata.

Key lookup in CCEH requires at least three cacheline ac-

cesses – 1) indexing a segment in the directory, 2) addressing

a bucket in a segment, and 3) accessing data in the bucket.

Since the three-level indexing is essentially a tree structure

covering a large memory region, key insertion in CCEH

likely entails three random reads followed by a write and a

persistence barrier. Table 1 lists the time breakdown of key

insertions in CCEH. We used YCSB [4] to insert 16 million

16B key-value pairs into the hash table and reported the time

breakdown using perf. We configured CCEH to use 1 or

5 threads and tested with a single non-interleaved Optane

DIMM or 6 interleaved DIMMs.

The results suggest that while persists (CCEH uses clwb
followed by a memory fence after each bucket update) are

expensive, the bottleneck is accessing segment metadata, one

of the three random reads. The access to segments accounts

for approximately 50% of key insertion time, regardless of

the number of threads or DIMMs. Among the three random

access locations, the global directory fits in the CPU caches

and has a strong temporal locality because it is frequently

queried. CCEH employs linear probing to prevent premature

segment split due to hash collision. It searches up to four

adjacent buckets upon a collision, thereby exhibiting spatial

497

Characterizing the Performance of Intel Optane Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

locality when accessing individual buckets. This amortizes

the per-bucket read latency as some likely hit the on-DIMM

read buffer. Therefore, the first access to a segment, i.e., read-

ing the metadata, is the most expensive random read among

the three and requires to load directly from the 3D-XPoint

media (around 800 cycles latency, as discussed in Section 3.6).

1.0

1.3

1.6

1.9

2.2

La
te

nc
y

(X
10

00
 C

PU
 c

yc
le

)

(a) Latency on PM 0

1

2

3

4

5

6
Th

ro
ug

hp
ut

 (M
op

s/
s)

(b) Throughput on PM

1 2 3 4 5 6 7 8 9 10
Number of workers

0.9

1.1

1.3

1.5

1.7

La
te

nc
y

(X
10

00
 C

PU
 c

yc
le

)

(c) Latency on DRAM

1 2 3 4 5 6 7 8 9 10
Number of workers

0
1
2
3
4
5
6
7
8

Th
ro

ug
hp

ut
 (M

op
s/

s)

(d) Throughput on DRAM

CCEH CCEH with prefetching

Figure 10. The effect of prefetching in CCEH on Optane

DCPMM and DRAM.

Optimization. As discussed in Section 3.6, random reads

could be a dominating bottleneck even in write-intensive

workloads. To hide the long latency of random read from

the media, we devise a general approach that uses a helper

thread to prefetch the needed data before the worker thread

actually accesses it. The prefetcher helps load the data and

its associated XPLine in the AIT buffer, the read buffer, and

CPU caches. Long media access latency can be avoided when

the following accesses hit these buffers. Unlike traditional

hardware and software prefetching that uses access history

or program analysis to predict future access patterns, the

helper thread speculatively visits the directory entries, seg-

ments, and buckets for key-value pairs that have not yet

been inserted to prefetch the associated XPLines. Specifi-

cally, we construct the helper thread by only retaining data

loads and instructions necessary for indexing the three-level

hash table, e.g., calculating the hash, from the worker thread.

All stores, computation, and synchronization are removed in

the helper. We currently manually modify the worker code

to create the helper thread and leave automatic construction

of the helper using compiler techniques for future work.

The rationale behind this design is that insertions in CCEH,

like many other persistent data structures, include expensive

cacheline flushes and memory barriers to ensure persistence

and crash-consistency. The CPU pipeline and the memory

bandwidth are both under-utilized due to the strict ordering

of stores. The helper thread, which is independent of the

worker thread, is not restricted by the memory barriers and

able to utilize the unused bandwidth. Since the helper only

contains a subset of the worker’s instructions, it is faster than

and always stays ahead of the worker. However, prefetch-

ing too aggressively leads to the overflow of the on-DIMM

buffers and CPU caches. We empirically determined that

a prefetch depth of 8 key-value pairs resulted in the best

performance. To avoid using additional CPU resources for

prefetching, we bound the helper thread to the sibling hy-

perthreads on the core where the worker runs.

Figure 10 shows the performance benefits of the specu-

lative helper thread in CCEH on Optane DCPMM as well

as a comparison with CCEH on DRAM. Optane DCPMM

results on a non-interleaved single DIMM and on 6 inter-

leaved DIMMs were similar, and thus we only present the

single-DIMM case. Prefetching from the helper thread helped

improve key insertion latency by up to 36% and achieved

consistent latency improvement across different numbers of

workers. A similar trend was observed in CCEH throughput

though the improvement was not as significant by up to

34%. In contrast, as shown in Figure 10 (c) and (d), the helper

threads led to no performance improvements but degrada-

tions in both latency and throughput when CCEH ran on

DRAM. Note that the DRAM version of CCEH retains the

persistence barriers and only differs in the underlying mem-

ory device. It suggests that the dominance of random reads

in the performance of write-intensive workloads is a unique

problem facing Optane DCPMM because 1) the 3D-Xpoint

media incurs a much higher latency than DRAM, and 2) write

latency can be effectively hidden in the DDR-T protocol. We

found that prefetching using helper threads is generally effec-

tive for workloads with large WSSes and weak or no spatial

locality. Since random media reads are also expensive on

G2 Optane DCPMM, the results on CCEH are similar. Note

that the optimization simultaneously improves latency and

throughput but at the cost of consuming more CPU cycles.

As long as the prefetcher and the worker does not saturate

the read or write bandwidth, both latency and throughput

would benefit from the optimization.

4.2 B+-Tree

B+-trees are balanced search trees that have high fanout

and store records only in the leaf nodes. The high fanout

allows for trees of low height and superior search perfor-

mance with fewer data accesses. Since keys must be stored in

internal nodes in a sorted order to exploit cacheline locality,

in-place key insertions are particularly challenging in per-

sistent B+-trees. While in-place insertion maintains sorted

keys in internal nodes and thus preserves data locality, it

requires on average half of the keys in a node to be shifted. A

persistent barrier is needed after each key shift to ensure per-

sistence and the proper ordering of stores. As a large number

of keys are packed in one node, shifting keys residing on the

same cacheline leads to repeated flushes and loads on the

cacheline, causing long read-after-persist delays.

498

EuroSys ’22, April 5–8, 2022, RENNES, France Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang and Hong Jiang

�

Figure 11. Out-of-place logging to update an internal node

in B+-tree.

The FAST & FAIR algorithm [11] relaxes the requirement

for cacheline flush andmemory fence after each key shift and

inserts persistence barriers only when the shift operation

crosses cacheline boundaries. Although key shifts within a

cacheline is not failure-atomic, FAST & FAIR can tolerate

transient duplicate pointers due to a crash because B+-tree

nodes do not allow duplicate pointers and can detect the

inconsistency during recovery. However, cacheline flushes

(64-byte stores) are not atomic on x86 processors, and one

flush may contain multiple updates to a cacheline. Therefore,

new updates flushed from volatile memory may over-write

old values on PM, which will be permanently lost in a crash.

Optimization. We demonstrate the performance benefit of

avoiding read-after-persist delays for in-place key insertion.

The baseline is a B+-tree that performs a cacheline flush

and store fence after each shift operation. We borrow the

node design in FAST & FAIR and add a persistence barrier

after each key shift to build the baseline. As shown in Fig-

ure 11, we employ redo logging to re-direct in-place updates

to a cacheline within a FAST & FAIR node to a logging area

on PM. Each log entry contains the address, the value, and

the length of a single update. Separate updates are recorded

in different cachelines with one entry per cacheline. For a

fair comparison with the baseline, we persist each log entry

immediately after it is written. Thus, the number of writes

in the redo log matches that in the baseline. The difference

is that updates to the cacheline are written out-of-place to

the redo log, avoiding read-after-persist delays when shift-

ing multiple keys within a cacheline. Once all updates for a

cacheline are logged, and before moving to the next cache-

line, the redo log for the cacheline is committed. We use

atomic write to an 8-byte flag to indicate the completion of

logging a cacheline. Upon a crash, committed redo logs can

be used to recover lost updates. In addition to logging on PM,

updates are also logged in the same format on DRAM. After

logging is committed on PM, the logged updates on DRAM

are written back to the original cacheline, after which the

flag on the corresponding PM log is cleared, and the log can

be reclaimed.

Note that our objective is not to design an efficient redo

logging scheme. Instead, we seek to demonstrate that an

intuitive implementation of redo logging, which is consid-

ered more expensive than in-place update due to duplicate

0.0
0.3
0.6
0.9
1.2

Th
ro

ug
hp

ut
(M

op
s/

s)

(a) G1 Optane Throughput (b) G2 Optane Throughput

1 3 5 7 9
of thread

10
15
20
25
30

La
te

nc
y

(X
10

00
 C

PU
 c

yc
le

s)

(c) G1 Optane Latency

1 3 5 7 9
of thread

(d) G2 Optane Latency

Out-of-place update In-place update

Figure 12. FAST & FAIR performance on a single DIMM.

PM writes to the log, leads to significant performance im-

provements due to avoiding read-after-persist on a single

cacheline. We use YCSB to insert 16 million key-value pairs

to the B+-tree on a single Optane DIMM and 6 interleaved

DIMMs, respectively. Figure 12 (a) and (c) show the latency

and throughput of insertions on a single DIMMonG1Optane

DCPMM, and the results on 6 DIMMs are similar. We can

observe that out-of-place write in redo logging consistently

improves latency and throughput compared to in-place shift

operations in the baseline by up to 38.8% and 60.8%, respec-

tively. Since redo logging introduces additional PM writes,

the performance benefits decline as the number of threads

increases due to contentions on the Optane bandwidth.

Figure 12 (b) and (d) compare in-place and out-of-place

update on G2 Optane DCPMM. As expected, multiple shift

operations on a single cacheline do not cause long RAP de-

lays in the baseline because reads can directly load data from

the caches rather than waiting for the persists to complete.

Consequently, out-of-place redo logging does not offer any

performance benefit. It is worth noting redo logging does

not cause noticeable slowdowns either except for slight per-

formance degradations with a large thread count.

4.3 XPLine-aligned workloads

Due to the mismatch between cacheline access granular-

ity and media access granularity in Optane DCPMM, small

writes become XPLine-sized (256B) stores in PM, causing

write amplification. Recent studies [19, 21] propose to merge

small writes into large, 256B stores and build data structures

on 256B, XPLine-aligned data blocks. As demonstrated in Sec-

tion 3.4, there also exists a mismatch between the prefetch

degree in DRAM and that in DCPMM – one cacheline is

prefetched at each time prefetching is triggered in DRAM

while an entire XPLine (4 cachelines) has to be loaded from

the media at each trigger. This results in a 4X misprediction

penalty. For XPLine-aligned workloads, especially for those

using 256B (one XPLine) data blocks, if there is not sufficient

sequentiality across blocks, misprefetching could consume

up to half of the PM bandwidth.

499

Characterizing the Performance of Intel Optane Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

Optimization. As CPU prefetchers are designed and op-

timized for DRAM and cacheline access granularity, it is

challenging to reduce misprefetching penalty in PM without

changing the prefetching hardware. We demonstrate via a

simple optimization that an additional data copy from PM

to DRAM can effectively avoid the misprefetching penalty

in DCPMM. Algorithm 2 shows how sequentially access-

ing an XPLine in DCPMM can be transformed to reduce

misprefetching penalty. Instead of loading an XPLine using

an ordinary load instruction, the optimization copies the

XPLine to 4 cacheline-sized DRAM buffers via streaming

single instruction multiple data (SIMD) instructions (e.g.,

AVX or SSE), from where CPU performs reads/writes on the

XPLine. This optimization effectively disables prefetching

for XPLines of interest without affecting other PM addresses

or DRAM accesses. Note that Algorithm 2 can be extended

to enforce crash-consistency using undo or redo logging.

Algorithm 2: Reduce misprefetching per XPLine

input :char *addr (XPLine address)

1 char buffer[64];

2 int cacheline = 0, offset = 0;

3 while cacheline < 4 do

4 512bit_mov [addr + cacheline * 64], [buffer];

5 while offset < 64 do

6 load [buffer + offset % 64];

7 offset += 1;

8 end

9 cacheline ++;

10 end

4KB 256KB 16MB 1GB
Working set size

1.00

1.25

1.50

1.75

Re
ad

 ra
tio

(a) G1 Opatne

4KB 256KB 16MB 1GB
Working set size
(b) G2 Opatne

iMC with prefetching PM with prefetching Optimized PM

Figure 13. Reducing misprefetching in DCPMM.

We applied this optimization to the benchmark used in

Section 3.4 and redirected accesses to each 256B block to

a DRAM buffer. Figure 13 shows the read ratios, i.e., the

amount of data actually loaded relative to program demanded

data through the iMC and from the 3D-Xpoint media. The ac-

cess redirection optimization effectively reduced the amount

of data read and prefetched from the media. However, as

shown in 14, the extra data copy from an XPLine in DCPMM

to the DRAM buffer indeed incurred significant performance

overhead at a small thread count. As the number of threads in-

creased, memory bandwidth contention due to misprefetch-

ing outweighed individual threads’ performance. Redirecting

1.5

2.0

2.5

La
te

nc
y

(X
10

00
CP

U
 c

yc
le

)

(a) Latency on G1 Opatne
1

2

3

4

(b) Latency on G2 Opatne

0 4 8 12 16
of thread

0.0

0.8

1.6

2.4

Th
ro

ug
hp

ut
(G

B/
s)

(c) Throughput on G1 Opatne

0 6 12 18 24
of thread

0.0

0.8

1.6

2.4

(d) Throughput on G2 Opatne

Latency with prefetching
Optimized latency

Throughput with prefetching
Optimized throughput

Figure 14. Performance tradeoff due to access redirection.

PM accesses to DRAM buffers outperformed direct PM access

in both latency and throughout with 12 or more threads.

5 Related work

In this section, we discuss the existing profiling studies of

Optane DCPMM. There have been studies focusing on the

performance of Optane DCPMM in the memory mode [7, 9,

26]. While they provide performance characterizations of

the whole system, these studies do not offer insights into the

internal design of Optane DCPMM.

With the app-direct mode, a slew of studies [10, 12, 13, 17,

27, 30, 35, 37] have used both microbenchmarks and realistic

applications to delve into the design of Optane DCPMM. Dis-

coveries include the asymmetric read/write performance, a

large gap between Optane DCPMM and DRAM performance,

sensitivity in access type, pattern and size. Some have of-

fered important insights that motivated this work. Yang et

al. [35] presented the first comprehensive empirical study

of Optane DCPMM and identified the mismatch between

cacheline access granularity and media access granularity

and the limited concurrency as culprits for low performance

in Optane DCPMM. Kim et al. [14] confirmed the excessive

metadata write due to the cache coherence protocol. Beyond

these discoveries, Wang et al. [30] developed the LENS profil-

ing framework and offered further insights into the internal

design of Optane DIMMs, including the multi-level buffer

structure and their access granularities and management

policies. Zhang et al. [37] used Optane DCPMM-based FPGA

to benchmark the DDR-T interface, the address translation

path and probe the queue organization in Optane DCPMM.

Their results confirmed that writes under DDR-T are asyn-

chronous. Gugnani et al. [8] focused on the idiosyncrasies

of Optane DCPMM and sought to identify common perfor-

mance characteristics of Optane DCPMM that may persist

in the future generations of persistent memory.

This work differs in several ways and offers new insights.

We have new discoveries that read-write buffering is man-

aged separately and differently in Optane DCPMM. We at-

tribute the asymmetric read/write performance, sensitivity

to access patterns, and the high cost of persistence barriers

500

EuroSys ’22, April 5–8, 2022, RENNES, France Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang and Hong Jiang

to the tangling of read and write in workloads. Instead, we

design benchmarks that isolate the effect of read and write in

order to pinpoint the bottlenecks in different types of work-

loads. Furthermore, we discuss the performance implications

and provide programming guidelines.

Prior to the release of Optane DCPMM, previous stud-

ies [1, 2, 15, 22, 28, 34, 39, 40] treated PM as a slower DRAM.

To emulate the higher access latency, lower bandwidth, and

asymmetric read/write performance in PM, various tech-

niques were employed, including adding additional latency

to read/write accesses via software [29, 34, 40], by BIOS

configurations [22], or throttling DRAM bandwidth [15].

Crash-consistent data structures were proposed by enforc-

ing cacheline-level failure-atomicity [1].Since the arrival

of DCPMM, there has been a large body of work focusing

on evaluating and optimizing data structures designed for

volatile memory on persistent memory [7, 16, 17, 25, 32],

and observed significant performance gaps and irregularities

between Optane DCPMM and DRAM. To adapt persistent

programs to Optane DCPMM, studies mainly focused on

improving write performance by aligning write to XPLines

and merging small writes to reduce RMW operations.

FlatStore [3] combined the issued write into full XPLines

as much as possible, and ChameleonDB [38] aligned the

buckets in the hash table to 256B. ArchTM [33] proposed a

PM transaction framework that avoids small writes (smaller

than 256B) and encourages sequential writes by coalescing

them. Sage [5] proposed graph algorithms in which persis-

tent memory only serves reads while write operations are

issued on DRAM because of the asymmetry between reads

and writes. AsymNVM [20] studied the placement of data

structures in Optane DCPMM and DRAM based on the asym-

metric read and write bandwidth. LB+Trees [18] reduced the

number of line writes rather than the number of written

words on persistent memory because the written words do

not impact the write performance while persisting lines do.

Wei et al. [31] proposed an intermediate layer to absorb ac-

cess to remote NUMA nodes.

In this work, we offer a new perspective on optimizing

persistent programs on Optane DCPMM. We propose to

leverage the separate read and write buffers to decouple and

pipeline the execution of read and write. We present three

case studies on two generations of Optane DCPMM and

demonstrate this general approach can lead to significant

performance improvements.

6 Discussions

While the existing work has provided valuable suggestions

on persistent programming, including coalescing smaller

writes and matching program data access granularity with

media access granularity to reduce write amplification, the

main takeaway in this paper is to separate read and write in

performance analysis and optimization. There is more con-

currency and bandwidth to reads but a lack of a mechanism

to hide read latency. In comparison, writes have consistent

latency as they are asynchronous but suffer low bandwidth

and concurrency. Given a specific workload, it is important

to determine whether read or write is the bottleneck.

The main obstacle to adopting byte-addressable persistent

memory is the need for programmers to ensure persistence

and crash-consistency, i.e., performing cacheline flushes and

properly ordering them. Not only do persistence barriers

make persistent programming error-prone, but they also

constitute a major performance bottleneck. Strictly ordered

load and store instructions limit the memory bandwidth can

be attained via a single thread. As demonstrated in the CCEH

study, there is ample memory bandwidth available to a single

core to perform data prefetching. This discovery suggests

that an increased degree of hardware-level parallelism in

processor design, i.e., more hyperthreads per core, may be

needed to fully exploit memory bandwidth in DCPMM.

The extended ADR (eADR) in the G2 Optane DCPMM is

a critical architectural support for persistent programming.

However, eADR requires significantly higher stored energy

(usually backed by batteries) than that in ADR to keep the

CPUs running in order to execute BIOS code that flushes the

CPU caches. It also requires a sophisticated power system

in the host machine to trigger eADR upon a power loss. At

the time of writing, there is only one platform that supports

eADR to Intel’s specification and a few other platforms for

testing only.

7 Conclusions

This paper presents an in-depth study of Optane persistent

memory with a focus on its on-DIMM buffering. Through

controlled, carefully crafted microbenchmarks, we discover

the existence of two separate and distinctly managed on-

DIMM buffers for reads and writes, respectively. The discov-

ery inspires us to treat data loads and persists differently

in performance analysis and optimization. It also leads to

three case studies that show how the decoupling of reads and

writes helps improve performance. However, we acknowl-

edge that the criticality of the on-DIMM buffers relies on the

fact that data has to be written back to Optane DCPMM for

persistence. Except for random media reads still being ex-

pensive, the read-after-persist delay does not seem to be an

issue on the 2nd generation of Optane DCPMM. It remains

to be seen if the eADR feature will flourish as a sophisticated

power system and changes in the platform design are needed

for flushing CPU caches upon a power loss.

8 Acknowledgments

We thank our shepherd, Naama Ben-David, and the anony-

mous reviewers for their insightful comments. This work

was supported by NSF under award CCF-1845706.

501

Characterizing the Performance of Intel Optane Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

References
[1] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake

Larson. 2018. Bztree: A High-Performance Latch-Free Range Index for

Non-Volatile Memory. Proc. VLDB Endow. 11, 5 (Jan. 2018), 553–565.

https://doi.org/10.1145/3164135.3164147

[2] Shimin Chen and Qin Jin. 2015. Persistent B⁺-Trees

in Non-Volatile Main Memory. Proc. VLDB Endow. 8, 7 (Feb. 2015),

786–797. https://doi.org/10.14778/2752939.2752947

[3] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and

Jiwu Shu. 2020. FlatStore: An Efficient Log-Structured Key-Value Stor-

age Engine for Persistent Memory. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20).

Association for ComputingMachinery, New York, NY, USA, 1077–1091.

https://doi.org/10.1145/3373376.3378515

[4] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking Cloud Serving Systems with

YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing

(Indianapolis, Indiana, USA) (SoCC ’10). Association for Computing

Machinery, New York, NY, USA, 143–154. https://doi.org/10.1145/

1807128.1807152

[5] Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy E.

Blelloch, Phillip B. Gibbons, and Julian Shun. 2020. Sage: Parallel Semi-

Asymmetric Graph Algorithms for NVRAMs. Proc. VLDB Endow. 13, 9

(May 2020), 1598–1613. https://doi.org/10.14778/3397230.3397251

[6] Ulrich Drepper. 2007. What every programmer should know about

memory. Red Hat, Inc 11 (2007), 2007.

[7] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Ke-

shav Pingali. 2020. Single Machine Graph Analytics on Massive

Datasets Using Intel Optane DC Persistent Memory. Proc. VLDB En-

dow. 13, 8 (April 2020), 1304–1318. https://doi.org/10.14778/3389133.

3389145

[8] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. 2020. Understand-

ing the Idiosyncrasies of Real Persistent Memory. Proc. VLDB Endow.

14, 4 (Dec. 2020), 626–639. https://doi.org/10.14778/3436905.3436921

[9] Mark Hildebrand, Julian T. Angeles, Jason Lowe-Power, and Venkatesh

Akella. 2021. A Case Against Hardware Managed DRAM Caches

for NVRAM Based Systems. In 2021 IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS). 194–204.

https://doi.org/10.1109/ISPASS51385.2021.00036

[10] Takahiro Hirofuchi and Ryousei Takano. 2020. A Prompt Report on

the Performance of Intel Optane DC Persistent Memory Module. IEICE

Trans. Inf. Syst. 103-D, 5 (2020), 1168–1172. https://doi.org/10.1587/

transinf.2019EDL8141

[11] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.

2018. Endurable Transient Inconsistency in Byte-Addressable Persis-

tent B+-Tree. In 16th USENIX Conference on File and Storage Technolo-

gies (FAST 18). USENIX Association, Oakland, CA, 187–200. https:

//www.usenix.org/conference/fast18/presentation/hwang

[12] Intel®. 2021. Intel® 64 and ia-32 architectures optimization reference

manual. URL:https://software.intel.com/content/dam/develop/external

/us/en/documents-tps/64-ia-32-architectures-optimization-manual.pdf

(2021).

[13] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-

saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subra-

manya R. Dulloor, Jishen Zhao, and Steven Swanson. 2019. Ba-

sic Performance Measurements of the Intel Optane DC Persistent

Memory Module. CoRR abs/1903.05714 (2019). arXiv:1903.05714

http://arxiv.org/abs/1903.05714

[14] Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap,

and Changwoo Min. 2021. PACTree: A High Performance Persistent

Range Index Using PAC Guidelines. In Proceedings of the ACM SIGOPS

28th Symposium on Operating Systems Principles (Virtual Event, Ger-

many) (SOSP ’21). Association for Computing Machinery, New York,

NY, USA, 424–439. https://doi.org/10.1145/3477132.3483589

[15] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and

Sam H. Noh. 2017. WORT: Write Optimal Radix Tree for Persis-

tent Memory Storage Systems. In 15th USENIX Conference on File

and Storage Technologies (FAST 17). USENIX Association, Santa Clara,

CA, 257–270. https://www.usenix.org/conference/fast17/technical-

sessions/presentation/lee-se-kwon

[16] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and

Vijay Chidambaram. 2019. Recipe: Converting Concurrent DRAM

Indexes to Persistent-Memory Indexes. In Proceedings of the 27th

ACM Symposium on Operating Systems Principles (Huntsville, Ontario,

Canada) (SOSP ’19). Association for Computing Machinery, New York,

NY, USA, 462–477. https://doi.org/10.1145/3341301.3359635

[17] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and

Thomas Willhalm. 2019. Evaluating Persistent Memory Range Indexes.

Proc. VLDB Endow. 13, 4 (2019), 574–587. https://doi.org/10.14778/

3372716.3372728

[18] Jihang Liu, Shimin Chen, and Lujun Wang. 2020. LB+Trees: Opti-

mizing Persistent Index Performance on 3DXPoint Memory. Proc.

VLDB Endow. 13, 7 (March 2020), 1078–1090. https://doi.org/10.14778/

3384345.3384355

[19] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020.

Dash: Scalable Hashing on Persistent Memory. Proc. VLDB Endow. 13,

8 (April 2020), 1147–1161. https://doi.org/10.14778/3389133.3389134

[20] Teng Ma, Mingxing Zhang, Kang Chen, Zhuo Song, Yongwei Wu,

and Xuehai Qian. 2020. AsymNVM: An Efficient Framework for

Implementing Persistent Data Structures on Asymmetric NVM Ar-

chitecture. In Proceedings of the Twenty-Fifth International Confer-

ence on Architectural Support for Programming Languages and Op-

erating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association

for Computing Machinery, New York, NY, USA, 757–773. https:

//doi.org/10.1145/3373376.3378511

[21] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H. Noh, and Beom-

seok Nam. 2019. Write-Optimized Dynamic Hashing for Persistent

Memory. In 17th USENIX Conference on File and Storage Technolo-

gies (FAST 19). USENIX Association, Boston, MA, 31–44. https:

//www.usenix.org/conference/fast19/presentation/nam

[22] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and

Wolfgang Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and

Concurrent B-Tree for Storage Class Memory. In Proceedings of the

2016 International Conference on Management of Data (San Francisco,

California, USA) (SIGMOD ’16). Association for Computing Machinery,

New York, NY, USA, 371–386. https://doi.org/10.1145/2882903.2915251

[23] Onkar Patil, Latchesar Ionkov, Jason Lee, Frank Mueller, and Michael

Lang. 2019. Performance Characterization of a DRAM-NVM Hybrid

Memory Architecture for HPC Applications Using Intel Optane DC

Persistent Memory Modules. In Proceedings of the International Sym-

posium on Memory Systems (Washington, District of Columbia, USA)

(MEMSYS ’19). Association for Computing Machinery, New York, NY,

USA, 288–303. https://doi.org/10.1145/3357526.3357541

[24] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory

persistency. In 2014 ACM/IEEE 41st International Symposium on Com-

puter Architecture (ISCA). 265–276. https://doi.org/10.1109/ISCA.2014.

6853222

[25] Ivy Peng, Kai Wu, Jie Ren, Dong Li, and Maya Gokhale. 2020. De-

mystifying the Performance of HPC Scientific Applications on NVM-

based Memory Systems. In 2020 IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS). 916–925. https://doi.org/10.

1109/IPDPS47924.2020.00098

[26] Ivy B. Peng, Maya B. Gokhale, and Eric W. Green. 2019. System Evalu-

ation of the Intel Optane Byte-Addressable NVM. In Proceedings of the

International Symposium on Memory Systems (Washington, District of

Columbia, USA) (MEMSYS ’19). Association for Computing Machinery,

New York, NY, USA, 304–315. https://doi.org/10.1145/3357526.3357568

502

EuroSys ’22, April 5–8, 2022, RENNES, France Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang and Hong Jiang

[27] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann,

and Alfons Kemper. 2019. Persistent Memory I/O Primitives. In Pro-

ceedings of the 15th International Workshop on Data Management on

New Hardware, DaMoN 2019, Amsterdam, The Netherlands, 1 July 2019,

Thomas Neumann and Ken Salem (Eds.). ACM, 12:1–12:7. https:

//doi.org/10.1145/3329785.3329930

[28] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan,

and Roy H. Campbell. 2011. Consistent and Durable Data Structures

for Non-Volatile Byte-Addressable Memory. In Proceedings of the 9th

USENIX Conference on File and Stroage Technologies (San Jose, Califor-

nia) (FAST’11). USENIX Association, USA, 5.

[29] Haris Volos, Guilherme Magalhaes, Ludmila Cherkasova, and Jun

Li. 2015. Quartz: A Lightweight Performance Emulator for Per-

sistent Memory Software. In Proceedings of the 16th Annual Mid-

dleware Conference (Vancouver, BC, Canada) (Middleware ’15). As-

sociation for Computing Machinery, New York, NY, USA, 37–49.

https://doi.org/10.1145/2814576.2814806

[30] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven

Swanson, and Jishen Zhao. 2020. Characterizing and Modeling Non-

Volatile Memory Systems. In 2020 53rd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO). 496–508. https:

//doi.org/10.1109/MICRO50266.2020.00049

[31] Xingda Wei, Xiating Xie, Rong Chen, Haibo Chen, and Binyu Zang.

2021. Characterizing and Optimizing Remote Persistent Memory

with RDMA and NVM. In 2021 USENIX Annual Technical Conference

(USENIX ATC 21). USENIX Association, 523–536. https://www.usenix.

org/conference/atc21/presentation/wei

[32] MichèleWeiland, Holger Brunst, Tiago Quintino, Nick Johnson, Olivier

Iffrig, Simon Smart, Christian Herold, Antonino Bonanni, Adrian Jack-

son, andMark Parsons. 2019. An Early Evaluation of Intel’s Optane DC

Persistent Memory Module and Its Impact on High-Performance Scien-

tific Applications. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (Denver,

Colorado) (SC ’19). Association for Computing Machinery, New York,

NY, USA, Article 76, 19 pages. https://doi.org/10.1145/3295500.3356159

[33] Kai Wu, Jie Ren, Ivy Peng, and Dong Li. 2021. ArchTM: Architecture-

Aware, High Performance Transaction for Persistent Memory. In 19th

USENIX Conference on File and Storage Technologies (FAST 21). USENIX

Association, 141–153. https://www.usenix.org/conference/fast21/

presentation/wu-kai

[34] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A Hy-

brid Index Key-Value Store for DRAM-NVM Memory Systems. In 2017

USENIX Annual Technical Conference (USENIX ATC 17). USENIXAssoci-

ation, Santa Clara, CA, 349–362. https://www.usenix.org/conference/

atc17/technical-sessions/presentation/xia

[35] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and

Steve Swanson. 2020. An Empirical Guide to the Behavior and Use

of Scalable Persistent Memory. In 18th USENIX Conference on File and

Storage Technologies (FAST 20). USENIX Association, Santa Clara, CA,

169–182. https://www.usenix.org/conference/fast20/presentation/

yang

[36] Vinson Young, Zeshan A. Chishti, and Moinuddin K. Qureshi. 2019.

TicToc: Enabling Bandwidth-Efficient DRAM Caching for Both Hits

and Misses in Hybrid Memory Systems. In 2019 IEEE 37th International

Conference on Computer Design (ICCD). 341–349. https://doi.org/10.

1109/ICCD46524.2019.00055

[37] Jialiang Zhang, Nicholas Beckwith, and Jing Jane Li. 2021. GORDON:

Benchmarking Optane DC Persistent Memory Modules on FPGAs. In

2021 IEEE 29th Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM). 97–105. https://doi.org/10.1109/

FCCM51124.2021.00019

[38] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong Jiang. 2021.

ChameleonDB: A Key-Value Store for Optane Persistent Memory. As-

sociation for Computing Machinery, New York, NY, USA, 194–209.
https://doi.org/10.1145/3447786.3456237

[39] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019.

DPTree: Differential Indexing for Persistent Memory. Proc. VLDB

Endow. 13, 4 (Dec. 2019), 421–434. https://doi.org/10.14778/3372716.

3372717

[40] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-Optimized and High-

Performance Hashing Index Scheme for Persistent Memory. In 13th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 18). USENIX Association, Carlsbad, CA, 461–476. https://www.

usenix.org/conference/osdi18/presentation/zuo

503

Characterizing the Performance of Intel Optane Persistent Memory EuroSys ’22, April 5–8, 2022, RENNES, France

A Artifact Appendix

A.1 Abstract

The artifact provides all the source code to reproduce

the graphs in the paper and could run on both G1 Op-

tane DCPMM and G2 Optane DCPMM. The operations are

wrapped in a python script "run.py" to simplify the artifact

evaluation. The script will automatically determine the path

of executable files, collect the results of the experiments and

generate the graphs in the paper. More details are included

in the file "README.md".

A.2 Description & Requirements

A.2.1 How to access.

• Artifact link: https://github.com/lingfenghsiang/

Persistent-Memory-Study.

• Artifact license: GNU GPL V3.0.

• Archived DOI: 10.5281/zenodo.6342303

• Archived version: v0.0

A.2.2 Dependencies. Both hardware and software de-

pendencies are included in the Section "Prerequisites" of

"README.md".

A.2.3 Benchmarks. YCSB is the only required third-party

benchmark in the case studies, and its execution is automated

in the "run.py" script.

A.3 Setup

To set up the machine, please follow instructions from the

Section "Usage"/"Before run" of file "README.md".

A.4 Evaluation workflow

A.4.1 Major Claims.

• (C1): Persistent memory DIMM has a read buffer that

evicts an XPLine once another is loaded into the CPU

cache. This is proven by experiment E1 described in Sec-

tion 3.1 whose results are illustrated in Figure 2.

• (C2): Optane DCPMMs prefetch data, but it is negligible

compared to that caused by CPU prefetcher. This is proved

by experiment E2 described in Section 3.4 whose results

are reported in Figure 6

• (C3): Persistent memory DIMM has a write buffer that

flushes back fully modified XPLines periodically and re-

tains partially modified XPLines until evicted on G1 Op-

tane DCPMM. This is proved by experiment E3 described

in Section 3.2 whose results are illustrated in Figure 3.

• (C4): The G2 Optane DCPMM has a different write buffer

size and eviction algorithm from the first generation. This

is proved by experiment E4 described in Section 3.2 whose

results are illustrated in Figure 4.

• (C5): Accessing recently persisted causes significantly

high latency on G1 Optane DCPMM, but G2 Optane

DCPMM fixes this issue. Further, reaching cache coher-

ence raises high latency overhead. It’s proven by experi-

ment E5 described in Section 3.5 whose results are illus-

trated in Figure 7.

• (C6): With smaller WSS than the write buffer size, write

operations for relaxed model have lower latency than

strict persistency model, but their performance converges

and plateaus as WSS grows. If the WSS overwhelms LLC,

the latency of load instructions overshadows the store in-

structions. This is proven by experiment E6 in Section 3.6

whose results are presented in Figure 8.

• (C7): With helper threads, CCEH achieves 36% lower la-

tency and 34% higher throughput for insert operations

on persistent memory while not improving performance

on DRAM. This is proven by experiment E7 described in

Section 4.1 whose results are illustrated in Figure 10.

• (C8): By employing a redo log, FAST & FAIR achieves

38.8% lower latency and 60.8% throughput on G1 Optane

DCPMM but no performance improvement on G2 Optane

DCPMM. This is proven by experiment E8 in Section 4.2

whose results are illustrated in Figure 12.

• (C9): Loading data to DRAM via SIMD instructions re-

duces wasted prefetched data when randomly accessing

XPlines and improves scalability for read operations on

XPline-aligned workloads. This is proven by experiment

E9 described in Section 4.3 whose results are illustrated

in Figure 13 and Figure 14.

A.4.2 Experiments. The execution of the code is sim-

plified into four steps. To reproduce the results from this

paper, please follow the steps in Section "Usage"/"Reproduce

results from the paper" of "README.md". Once all the four

steps are finished, the graphs presented in this paper are

generated, and the location of corresponding graphs can be

found in Section "Matching Paper Results".

Experiment (E1): Read buffer test

Expected outcome. Figure "read_amp.png" plots four lines,

among which "read 4 cachelines" is a flat line and the other

three have a step at a particular working set size, and the

four all end up at read amplification of 4.0. The working

set size corresponding to the step may vary on G1 Optane

DCPMM and G2 Optane DCPMM.

Experiment (E2): Prefetching test

Expected outcome. As the WSS exceeds the write buffer

size, the DIMM reads up to X1.06 data of the desired, while

excessively prefetched data by CPU may reach X2.

Experiment (E3): Write buffer amplification test

Expected outcome. The figure "write_buf.png" plots four

lines. On G1 Optane DCPMM, 100% write line goes up to 1

and then becomes a horizontal line, and the other three lines,

25%/50%/75%, will bump up near 12KB working set size and

gradually approach 4/2/1.33. On G2 Optane DCPMM, write

amplification of the four lines will gracefully increase once

504

EuroSys ’22, April 5–8, 2022, RENNES, France Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang and Hong Jiang

the working set size is above a threshold larger than 12KB.

Experiment (E4): Write buffer hit ratio test

Expected outcome. The write buffer hit ratio suddenly drops

at 12KB WSS on G1 Optane DCPMM while that on G2

Optane DCPMM declines gracefully, and the turning point

exceeds 12KB.

Experiment (E5): Read after persist test

Expected outcome. Reading recently persisted cacheline

causes high latency, and "sfence" allows low latency for

instantly reading recent one or two cachelines compared

to "mfence" on G1 Optane DCPMM. In contrast, only the

latency of reading nt-stored cachelines stands out on G2 Op-

tane DCPMM. The overall latency for remote NUMAnodes is

higher than that on local NUMA nodes on G1 and G2 servers.

Experiment (E6): Latency test

Expected outcome. Among the three sub-figures, the major

difference between the first two figures is that relaxed

model has much lower latency than strict persistency. The

last figure indicates significantly high read latency and

consistent write latency for large working set sizes.

Experiment (E7): CCEH case study

Expected outcome. Helper threads improve the latency and

throughput by almost 35% at maximum. The improvement

may fade away faster with fewer DIMMs upon multi-

threaded insert operations.

Experiment (E8): B+-tree case study

Expected outcome. The throughput is improved by 60%, and

the latency is decreased by 40% on G1 Optane DCPMM

approximately, but there is no significant difference in

performance on G2 Optane DCPMM.

Experiment (E9): Prefetching case study

Expected outcome. With default prefetching, the Optane

DCPMM may read up to X2 data of the desired. The

optimized case may decrease the read size back to almost X1

and shows better throughput along with latency when the

thread number exceeds almost 12 for both G1 and G2 server.

505

