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Abstract
Attempts to improve the performance of key-value stores

(KVS) by replacing the slow Hard Disk Drives (HDDs) with

much faster Solid-State Drives (SSDs) have consistently fallen

short of the performance gains implied by the large speed

gap between SSDs and HDDs, especially for small KV items.

We experimentally and holistically explore the root causes

of performance inefficiency of existing LSM-tree based KVSs

running on powerful modern hardware with multicore pro-

cessors and fast SSDs. Our findings reveal that the global

write-ahead-logging (WAL) and index-updating (MemTable)

can become bottlenecks that are as fundamental and severe

as the commonly known LSM-tree compaction bottleneck,

under both the single-threaded andmulti-threaded execution

environments.

To fully exploit the performance potentials of full-fledged

KVS and the underlying high-performance hardware, we pro-

pose a portable 2-dimensional KVS parallelizing framework,

referred to as p
2
KVS. In the horizontal inter-KVS-instance

dimension, p
2
KVS partitions a global KV space into a set

of independent subspaces, each of which is maintained by

an LSM-tree instance and a dedicated worker thread pinned

to a dedicated core, thus eliminating structural competition
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on shared data structures. In the vertical intra-KVS-instance

dimension, p
2
KVS separates user threads from KVS-workers

and presents a runtime queue-based opportunistic batch

mechanism on each worker, thus boosting process efficiency.

Since p
2
KVS is designed and implemented as a user-space

request scheduler, viewing WAL, MemTables, and LSM-trees

as black boxes, it is nonintrusive and highly portable. Under

micro and macro-benchmarks, p
2
KVS is shown to gain up to

4.6× write and 5.4× read speedups over the state-of-the-art

RocksDB.
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1 Introduction
Key-value Store has become a building block of modern IT in-

frastructure to support a myriad of upper-layer applications

[13, 34, 42]. Most current production KVSs, such as RocksDB

[22], LevelDB [23], HBase [2], and Cassandra [35], adopt

log-structured merge tree (LSM-tree) [44] to batch random

writes in memory, and then flush them to storage sequen-

tially, which is IO friendly for traditional Hard Disk Drives

(HDDs). Furthermore, LSM-tree based indexing structures

keep KV pairs sorted in storage, thus accelerating retrieves

and scans.

Modern computer systems with high-performance Solid-

State Drives (SSDs) and multicore processors are expected

to dramatically improve the overall performance of KVS

over the older HDD-based systems. Unfortunately, simply
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(a) Single user thread

(b) 8 user threads

Figure 1. RocksDB single-threaded and multi-threaded
throughput performance. HDD: WDC WD100EFAX 10TB,
SATA SSD: Samsung 860 PRO 512 GB, NVMe SSD:Intel Optane
905p 480 GB. The hardware platform is equipped with two
22-core CPUs. The KV size is 128-byte.

replacing slow HDDs with fast SSDs has failed to consis-

tently deliver the write performance of KVS promised by

SSD’s with 10× higher IO bandwidth and 100× higher IOPS

than HDDs, especially for small key-value pairs. Figure 1a

illustrates that although RocksDB achieves up to 2 orders of

magnitude higher read performance from superior SSDs, its

write performance remains almost unchanged between SSDs

and HDDs. Recent research [19, 36] and our experimental

results consistently suggest that write workloads with small-
sized KV pairs overload a system’s host CPU-cores rather than
being bottlenecked by the system’s IO bandwidth. Neverthe-
less, a naive approach to increasing the processing capacity

is to fully leverage the power of the multicore CPU by in-

voking more user threads. Figure 1b shows that even with 8

user threads the query-per-second (QPS) performance under

the write workloads for sequential PUT, random PUT, and

UPDATE, is only improved by about 40%, 150%, and 160%,

respectively, far short of the desired linear scaling. However,

compared to the single-threaded cases, the performance of

the three 8-threaded cases under write workloads improve

from HDD-based system to SSD-based system by less than

10%, except for the update operation case with a 40% gain.

This means, RocksDB which is designed to fully exploit supe-

rior SSD to maximize QPS[22], still suffers from bottlenecks

under the small-sized KV workloads.

Previous studies have reported the potential bottlenecks in

the logging[10], indexing[5], and compaction[4, 8, 41] stages

separately. A body of existing KVS research presents novel

global data structure fully replacing LSM-tree[14, 29, 36],

or local point technique-optimizations in caching[24, 25,

30, 32, 54], logging[10, 12], concurrent indexing[16, 17, 56],

and compaction[46, 50]. The production-level KVSs (e.g.,

RocksDB) have been evolving with hardware advances by

developing optimization techniques, such as batch-write,

concurrent skiplist, multi-threaded compaction, etc. The KVS

sharding mechanism with multiple instances is widely used

in common database practices to exploit the inter-instance

parallelism [2, 19–21, 27, 55]. However, existing works still

cannot comprehensively explain and effectively address the

poor performance scalability with high-performance hard-

ware.

Generally, foreground user threads each first executeWAL

and then execute indexing while its background threads ex-

ecute compactions. To help understand the root causes of

the performance inefficiency of mature KVSs on fast SSDs

and powerful processors, we conduct a series of experiments

with the well-optimized RocksDB (detailed in Section 3). The

results provide three revealing findings. First, with a single

user thread, either logging or indexing can impose a serious

compute bottleneck that severely limits the performance

of random small-sized writes. Only when both logging and

indexing are no longer the bottlenecks, will LSM-tree com-

paction become a storage bottleneck. Second, increasing the

number of user threads yields marginal benefits because of

the intensive contentions on the shared log and index struc-

tures, the more the user threads, the worse the contentions.

Third, the KVS sharding mechanism with multiple instances

still suffers from the contention from multiple user threads,

as well as inefficient logging and indexing.

To overcome the architectural drawback of existing KVS

systems, we propose a portable 2-dimensional parallelizing

KVS framework, referred to as p
2
KVS, to effectively lever-

age both matured production KVS implementations (e.g.,

RocksDB) and their underlying high-performance hardware.

First, in the horizontal dimension of inter-KVS-instance par-

allelism, p
2
KVS adopts a scheduling scheme for multiple

KVS-worker threads that are each pinned to dedicated indi-

vidual cores. Each worker maintains its own independent

WAL log, MemTable, and LSM-tree, thus reducing the con-

tention on shared data structures. Second, in the vertical di-

mension of intra-KVS-instance parallelism, p
2
KVS designs a

global KV accessing layer to separate user threads from KVS-

worker threads. The accessing layer strategically distributes

all incoming requests to the workers’ queues, balancing load

among the cores. Third, p
2
KVS presents a runtime queue-

based opportunistic batching mechanism in each worker.

For outstanding write requests in the queue, OBM merges

them to amortize the overheads of both KV-handling and

logging. For outstanding read requests, OBM invokes the

existing multiget function to improve processing efficiency.

Different from multi-instance KVS configurations, p
2
KVS

explicitly eliminates the potential contention among user

threads upon an instance while simultaneously leveraging a

batching mechanism to improve efficiency.

The goal of p
2
KVS is to design an efficient thread-based

parallelizing framework upon RocksDB or other existing
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Figure 2. The main components of LSM-tree based KVS
and the processing flow of KV write and read requests.
①Write-ahead logging. ②MemTable Index updating. ③LSM-
tree compaction. ❶Search in MemTables. ❷Search in LSM-tree.

KVSs, to improve the processing capacity by fully leveraging

modern hardware characteristics while leaving their existing

features and internal designs intact. Therefore, p
2
KVS is

portable and nonintrusive.

The contributions of p
2
KVS are summarized as follows:

• We experimentally and holistically analyze and identify

the root causes of poor scalability experienced by KVSs

running on fast SSDs and multicore processors.

• We present p
2
KVS, a portable 2-dimensional KVS paral-

lelizing framework to uniformly and effectively exploit

internal parallelism among and within KVS instances. We

further design a queue-based opportunistic batching mech-

anism to improve the handling efficiency of each worker.

• We implement p
2
KVS prototype on RocksDB, LevelDB

and WiredTiger[49] respectively, to evaluate it through

extensive experiments under popular macro- and micro-

benchmarks. Compared with the state-of-the-art LSM-tree

based RocksDB and PebblesDB, p
2
KVS achieves up to

4.6× write and 5.4× read speedups for small-sized KVs. It

also outperforms the state-of-the-art Non-LSM-tree based

KVell.

The rest of this paper is organized as follows. Section 2

introduces LSM-tree based KVS and multi-threaded opti-

mizations of RocksDB on SSDs. Section 3 analyzes the root

causes of the observed poor scalability of running RocksDB

on modern hardware. Section 4 presents the design of p
2
KVS.

We evaluate p
2
KVS in Section 5, discuss related works in

Section 6 and conclude the paper in Section 7.

2 Background
2.1 LSM-tree based Key Value Store
LSM-tree based KVSs were originally designed for write-

intensive workloads on HDDs. As shown in Figure 2, an

LSM-tree based KVS consists of three main components: log,

MemTables, and on-disk LSM-Tree. During write operations,

M
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Group logging Update 

memtable

Update 
memtable
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Update 
memtable W
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unlock
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Figure 3. RocksDB concurrent write process.

key-value (KV) pairs are written to these three components

in sequence. A KVS implementation is generally a user li-

brary so that its foreground threads are also user threads.

Write.When a user thread from an application writes a

KV pair (e.g., PUT, DELETE, and UPDATE), it first writes

the KV pair into the log file for fast persistence, a process

referred to as write-ahead-logging (WAL①). And then, the

user thread inserts the KV pair into a MemTable buffered in

memory and updates the corresponding index structure (e.g.,

skiplist), a process referred to as index-updating (②).

When a MemTable reaches its predefined capacity, it be-

comes a read-only Immutable MemTable, and then is trans-

ferred to the LSM-tree as a Sorted-String-Table (SST) by the

background thread, a process referred to asminor compaction.
After that, its corresponding log records will be removed.

The on-disk LSM-tree contains multiple levels (𝐿0, 𝐿1, 𝐿2,

. . . , 𝐿𝑛) with exponentially growing capacity. Each level con-

sists of multiple fix-sized SSTs, containing sorted KV pairs

and metadata. To ensure that the LSM-tree structure is kept

with exponentially growing sorted levels, the background

threads of KVS also triggermajor compactions to merge SSTs

from higher levels to lower levels. We refer to both minor

and major compaction as LSM-tree compaction (③).

Only when a level in LSM-tree reaches its capacity, is com-

paction triggered, consuming SSD bandwidth and indirectly

impacting the write processing [4, 8, 39].

Read. Read-type requests (e.g., GET and SCAN) search the

requested keys in the MemTable and the on-disk LSM-tree.

For point query (i.e., GET), KVS first searches in MemTables

through the skiplist index (❶). When the key is not found in

memory, the LSM-tree on the disk is searched from higher to

lower levels until the requested KV is found (❷). For range

query (i.e., RANGE and SCAN), KVS scans MemTables and

LSM-tree to retrieve all KV pairs in the requested range.

2.2 RocksDB optimizations for concurrency
As a well-optimized production-level LSM-tree based KVS,

RocksDB has implemented many optimizations and con-

figurations to improve its QPS performance by exploiting

hardware parallelism. An example of concurrent write pro-

cess in RocksDB is shown in Figure 3. The key concurrency

optimizations are as follows:

Group logging. When multiple user threads submit write

requests concurrently, RocksDB organizes them into a group.
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(a) 128-byte KV size (b) 1KB KV size

Figure 4. RocksDB IO bandwidth and CPU utilizations.
A user thread continuously inserts 100M KV pairs sequentially
and randomly, respectively, on an Optane SSD.

One of these threads is elected as the leader responsible for

aggregating log entries from all threads in the group and

then writing the log file once, while the other threads, called

followers, are suspended until the log-file write is complete.

This reduces the actual log IOs, thus improving IO efficiency.

Concurrent MemTable. RocksDB supports a concur-

rent skiplist index, improving QPS of MemTable insertions

by up to 2× over the vanilla skiplist. Like group logging, a

group of user threads that concurrently update MemTable

are synchronized when updating the global metadata.

Pipelinedwrite. RocksDB pipelines the logging and index-

updating steps in different groups to reduce blocking.

LSM-tree based KVSs such as LevelDB and RocksDB typi-

cally provide a request batching operation, calledWriteBatch,

which allows users to perform multiple write-type requests

in a batch. RocksDB merges the logging operations of all the

requests in a WriteBatch like the group logging mechanism.

3 Root Causes of Poor Scalability
3.1 Single User Thread
Modern SSDs outperform HDDs in both read and write band-

width by one order of magnitude (e.g., about 2 GB/s vs. 0.2

GB/s). Furthermore, SSDs with high internal parallelism ex-

hibit almost 2~4 orders of magnitude higher IOPS than HDDs,

especially for random and small IOs.

Intuitively, replacing HDDs with superior SSDs should

significantly boost the performance of LSM-tree based KVSs.

To validate this, we perform 5 sets of 10M 128-Byte KV op-

erations (i.e., sequential and random PUT, random UPDATE,

sequential and random GET) on RocksDB with an HDD, a

SATA SSD, and an NVMe SSD, respectively. Workloads with

small-sized key-value pairs are considered a common case, as

it has been reported that 90% of KV pairs in typical RocksDB

workloads are less than 1KB and the average key-value size

is less than 100 bytes [7]. The results are shown in Figure 1.

Although the sequential and random read performances of

RocksDB on the SSDs are up to 3× and 200× higher than

those on the HDD respectively, the write performances are

only comparable to or slightly higher than HDD.

Figure 4a further shows that a user thread inserts small-

sized KV pairs over time in the random and sequential cases.

The thread with 100% CPU-core utilization consumes only

1/6 and 1/20 of the full SSD IO bandwidth respectively. The

continuous random writes trigger periodic flushes and com-

pactions performed by the corresponding background threads

that consume about 25% CPU-core utilization. When the user

thread with about 70% CPU-core utilization continuously

inserts random large-sized KV pairs (i.e., 1KB), only the pe-

riodic compactions by the background threads consume 23%

IO bandwidth and 60% CPU-core utilization as indicated in

Figure 4b. Most previous studies in this area consider LSM-

tree compaction as a primary factor severely hampering the

overall performance because of its high IO intensity with

write stall and write amplification [1, 3, 18, 41, 43, 46, 50, 54].

In fact, write workloads with small-sized KV pairs overload
CPU-cores but underutilize IO bandwidth, while the exact op-
posite is true for write workloads with large-sized KV pairs.

3.2 Multiple User Threads
Both multicore-processors and NVMe based SSDs have ad-

equate computing and IO capacity with high parallelism,

respectively. Naturally, increasing the number of user threads

leveraging powerful hardware can enhance the overall through-

put of KVS. Alternatively, in practice, database practitioners

also simply configure multiple independent KVS instances

on superior hardware to improve the overall performance.

In this analysis, we consider the two cases of single-instance

and multi-instance that are accessed by multiple user threads.

Each KVS instance has its own independent log file,MemTable,

and LSM-tree.

The results in Figure 5a show the scalability in both cases.

The write QPS in the single-instance case with all parallel op-

timizations still scales poorly and gains a meager 3× speedup
at 32 user threads. Its throughput peaks at 24 threads and

further scaling beyond this point shows diminishing returns.

Compared to the single-instance case, the multi-instance

case achieves 80% higher throughput and better scalability,

with its throughput peaking at less than 16 threads/instances.

The experimental results in Figure 5b clearly suggest again

that compaction is not the bottleneck of KVSs on SSDs,

at least not the main or dominant one, even in the multi-

threaded case. At its peak bandwidth consumption at 16

threads, only 1/5 of the SSD IO capacity (400 MB/s of 2

GB/s) is used. Meanwhile, the bandwidth consumed by com-

pactions is no more than 3/4 of the total bandwidth con-

sumed. Similar to the single-user-thread case, the CPU us-

ages of foreground user threads are close to 100% while the
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(a) Throughput (b) IO bandwidth of the single-instance case (c) Average CPU utilization of the single-instance case

Figure 5. Performance analysis of concurrent writes in RocksDB. Each experiment performs 10M random writes with
128-byte key-value pairs on an Intel Optane 905p SSD.

background compaction threads consume relatively lowCPU

utilizations, as shown in Figure 5c.

In addition, Figure 5a also illustrates the performance ben-

efits of binding threads to the physical CPU cores, increasing

the write throughput of RocksDB by 10% to 15% because the

bound threads do not switch among CPU cores due to the

scheduling of the operating system.

Recent studies, KVell [36] and SplinterDB [14], reported

similar low IO bandwidth utilizations and believed that the

maintenance (i.e., compaction) and index-synchronization

stemming from LSM-tree cause the performance bottleneck

of RocksDB on fast storage devices.

In light of the large user installation bases of matured

production-level KVSs (e.g., RocksDB), we are motivated to

explore solutions that address the root causes of the afore-

mentioned performance inefficiency upon modern hardware

with multicore CPUs and superior SSDs in a nonintrusive

and portable way.

3.3 Breakdown of Processing Time
Next, we explore the root causes of inefficient scalability in

LSM-tree based KVS.

Figure 6 shows the latency breakdown of the user threads

in the single-instance case of RocksDB. We divide the write

process into five steps,WAL,MemTable,WAL lock,MemTable

lock, and Others.WAL represents the execution time of write-

ahead logging, including IO time and the other processes

(e.g., encoding log records, calculating checksum, and adding

them into a memory buffer). MemTable represents the la-

tency of inserting key-value pairs into MemTable, of which

more than 90% is updating the skiplist index.WAL lock rep-

resents the lock overhead associated with the group logging

mechanism, including the lock acquisition time of other user

threads when a leader thread executes WAL and the time

when the leader thread notifies other threads of the com-

pletion of the WAL execution. MemTable lock indicates the

thread synchronization time when the same group of threads

concurrently write MemTable. Others represents the other
software overheads.

Lock overheads. As the number of writers increases, the

combined percentage of CPU cycles for WAL and MemTable

Figure 6. RocksDB write latency breakdown.

decreases from 90% at a single thread to 16.3% at 32 threads,

while the total lock overhead (i.e., WAL lock and MemTable

lock) increases from almost nothing to 81.4%. More writers

introduce heavier contention upon the shared data structures

such as the log and MemTable. Particularly, the WAL-lock

with just 8 threads accounts for more than half of the latency.

According to Amdahl’s Law, optimizations on a specific log

and index structure are no longer effective under high con-

current workloads with small-sized KV pairs, because the

serialization bottlenecks account for a larger percentage of

the latency.

The primary reasons for the high lock overhead are three-

fold. First, RocksDB’s group-logging policy serializes log

writes on a leader and suspends the followers; Second, the

more threads in the group, the more CPU time is used to un-

lock the follower threads; Finally, multiple threads inserting

into a MemTable introduces the synchronization overhead.

3.4 Multi-threading, a Double-edged Sword
As indicated by experimental results shown above, the ad-

vantage of multi-threading in exploiting parallelism can be

more than offset by the contentions among the threads on

shared data structures such as log and index. Therefore, a

careful tradeoff should be found to achieve an optimal overall

outcome. With this in mind, next, we investigate the effect

of multiple threads on the two key bottlenecks of logging

and indexing. We experimentally analyze the performance

of singe-instance and multi-instance cases in the WAL pro-

cess and MemTable process respectively with 128-byte KV

workloads, as shown in Figure 8.
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(a) IO bandwidth (b) CPU utilization

Figure 7. The effect of write request batching mecha-
nism. The async-logging approach is enabled.

(a) Logging (b) MemTable

Figure 8. Throughput of different parallelizing
schemes on the WAL and MemTable process respec-
tively. MemTable inserting and indexing are disabled when
testing WAL logging, and vice versa.

Write-ahead-logging. As shown in Figure 6, the average

latency of WAL decreases from 2.1 𝜇𝑠 at a single user thread

to 0.8 𝜇𝑠 at 32 user threads. This is because the group logging

strategy aggregates small log IOs from different threads into

larger IOs, thus improving IO efficiency.

To demonstrate the effect of batching mechanism on write

performance, we measure the bandwidth and CPU usage of

WAL when batching several 128-byte key-value pairs into

256-byte to 16KB sized WriteBatch requests, as shown in

Figure 7. With the default configuration of RocksDB, the

async-logging approach of RocksDB is enabled to eliminate

write amplification caused by fysnc after each small IO.

The results show that the request-level batching mechanism

can not only improve SSD bandwidth utilization due to the

larger IO size but also effectively reduce CPU load due to the

reduction of software overhead in the IO stack.

Figure 8a shows that the single-instance case improves

QPS by 2× with 32 threads using batching, while the multi-

instance case achieves at its peak more than 2.5× QPS with

4 threads. The limited IO parallelism within the underly-

ing SSD largely determines the optimal number of logging

threads in the multi-instance case.

Index. Different from the logging process above, the over-

all throughput in the MemTable index updating process

scales well in both single-instance and multi-instance cases,

as shown in the Figure 8b, although the latency of updating

MemTable increases from 2.9 𝜇𝑠 at a single thread to 5.7 𝜇𝑠

at 32 threads. Further, the multi-instance case is obviously

superior to the single-instance case. Specifically, the through-

put gain with the former reaches 10.5× QPS at 32 threads,

while the latter only improves QPS by 3.7× at 32 threads in

Figure 8b. This performance gap stems primarily from the

synchronization overheads and the diminishing return of the

shared concurrent skiplist in the latter. This indicates that

although the concurrent MemTable allows multiple threads

to insert into the skiplist in parallel, its scalability is limited.

In summary, both the single-instance and multi-instance

cases have shown their own advantages and disadvantages

in scalability when deployed in the current KVS architec-

ture with high-performance hardware. For the WAL logging

bottleneck, while the single-instance case can consistently

benefit from thread-scaling by leveraging the batching mech-

anism, the multi-instance case achieves a much higher log-

ging throughput performance but at limited inter-instance

parallelism. On the other hand, the overall index-updating

performance scales better with the multiple-instance case

than with the single-instance case because of the lack of

lock contention in the former. Furthermore, since WAL and

MemTable are on the same KVS write critical path, with the

former preceding the latter in the process flow, the overall

throughput is limited by the slower of the two processes.

These observations and analysis suggest that a KVS process-

ing architecture that fully harnesses the underlying high-

performance hardware should be designed to holistically

consider the interplay and tradeoff between the inter- and

intra-instance parallelism, between logging and indexing,

and between computation and storage overheads.

4 Design and Implementation
Our in-depth experimental analysis in the preceding sections

motivates us to propose a portable 2-dimensional paralleliz-

ing KVS framework, referred to as p
2
KVS, to effectively

leverage both matured production KVS implementations

(e.g., RocksDB) and the power of modern hardware. p
2
KVS

takes a three-pronged approach to its design as follows.

• Exploiting inter-instance parallelism with horizontal key

space partitioning among multiple KVS instances. p
2
KVS

adopts multiple KVS-worker threads that are each bound

to different cores. Each worker runs a KVS instance with

its own independent WAL log, MemTable, and LSM-tree,

thus avoiding the contention upon shared data structures.

• Exposing intra-instance parallelism with a global KV ac-

cessing layer. p
2
KVS designs a global KV accessing layer

to separate user threads from KVS-worker threads. The

accessing layer strategically distributes all incoming KV re-

quests from applications to the workers’ queues, balancing

load among a limited number of workers.

• Alleviating logging and indexing bottlenecks with queue-

based opportunistic batching. p
2
KVS presents a runtime

queue-based opportunistic batching mechanism in each

worker to amortize the overheads of both KV-handling

and logging.
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Figure 9. Architectural overview and workflow of
p2KVS framework. ①Submit request. ②Allocate worker

and enqueue. ③Request return. ❶Batch requests from the

request queue. ❷Perform processing. ❸Finish processing.

4.1 Overall Architecture
The architecture of p

2
KVS is shown in Figure 9a. In the ver-

tical dimension, p
2
KVS adds an accessing layer between the

application layer and the KVS layer. The accessing layer

accepts user requests from the upper applications. In the hor-

izontal dimension, p
2
KVS maintains a set of worker threads

(workers for short) that each manages a KVS instance and

runs independently without shared data structures. Each

worker has its own request queue and is bound to a CPU

core and is responsible for executing requests in its own KVS

instance.

As shown in Figure 9b, in p
2
KVS, each user thread only

submits the requests to the request queue of the correspond-

ing worker according to the allocation strategy (①)(see Sec-

tion 4.2 for details), and then suspends itself without further

CPU consumption (②). The worker handles the enqueued

requests in batch (❶) and executes them in the correspond-

ing KVS instance (❷) (see Section 4.3 for details). When a

request is handled (❸), its suspended owner user thread will

be notified to return (③). Note that the request processing

consumes the CPU resources of the worker. Background

operations like minor and major compactions in RocksDB

are performed by background threads belonging to the KVS

instance. These intra-instance parallelism optimizations are

dependent on the implementation of the KVS instance and

p
2
KVS is fully compatible with them.

p
2
KVS maintains a global and standard KV interface, e.g.,

PUT, GET, DELETE, SCAN, etc., and is expected to be totally

transparent to the upper applications. However, it redirects

KV requests to internally sharded KVS instances, offering

inter-instance parallelism. Note that, while databases and

applications generally leverage user-specific semantics (e.g.,

column semantics of RocksDB[20]) to assign key-value pairs

to the underlying multiple KVS instances, p
2
KVS provides

the standard KV interfaces for the upper application without

additional semantics. In addition, p
2
KVS also extends asyn-

chronous write interfaces (e.g., 𝑃𝑢𝑡 (𝐾,𝑉 , 𝑐𝑎𝑙𝑙𝑏𝑎𝑐𝑘)), where
a user thread is not blocked by its handling requests.

4.2 Balanced Request Allocation
To distribute user requests evenly among workers for effi-

cient exploitation of inter-instance parallelism, p
2
KVS adopts

a simple and effective modular-based hash function to evenly

divide the key-space, i.e.,𝑊𝑘𝑒𝑦 = 𝐻𝑎𝑠ℎ(𝑘𝑒𝑦)%𝑁 , where𝑊𝑘𝑒𝑦

is the corresponding worker ID and 𝑁 is the total number of

workers that is predefined according to the actual measure-

ment of hardware parallelism. We set 8 as the default total

number of workers according to our hardware performance.

This hash-based partition policy has three advantages: load

balancing, minimal overhead, and no read magnification

because there are no overlapping keys among partitions.

Extending 𝑁 or adjusting hash function may lead to a recon-

struction of the entire set of KVS instances. More approaches

of sophisticated hashing and runtime scaling (e.g., consistent

hash [31]) will be further considered as a topic of our future

study. Our experimental results show that even under highly

skewed workloads with Zipfian distributions, the hash func-

tion can still make the hot requests evenly distributed across

partitions. In the likelihood of imbalance among instances,

e.g., most hot requests are occasionally hashed to a certain

worker, p
2
KVS is degraded to RocksDBwith a single instance.

Besides, p
2
KVS can be configured with appropriate partition

strategies to well match the access patterns of workloads,

such as using multiple independent hash functions [40] or

dynamic key-ranges [27].

Note that this key-range partitioning is equivalent to ex-

panding the capacity of each level in the global LSM-tree

with multiple mutually-exclusive sub-key-ranges. Therefore,

the partitioning can reduce compaction-induced write ampli-

fication to some extent, because multiple instances increase

the width of LSM-tree while reducing its depth [54].
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Figure 10. Opportunistic batching mechanism on
RocksDB.

4.3 Opportunistic Request Batching
As shown in Section 3.4, request batching is an effective

method to reduce IO and CPU overhead for small-sized

writes. In addition, some KVSs, such as RocksDB, have good

parallel optimizations of read-type requests. These features

help improve the overall performance of each worker.

To effectively leverage these intra-parallelism potentials,

p
2
KVS introduces a queue-based request batching sched-

uling technique called opportunistic batching mechanism

(OBM), as shown in Figure 10. When a worker is handling

requests, user threads add requests into the request queue.

When the worker finishes processing a request, it checks the

request queue. If there are two or more consecutive incoming

requests of the same request-type (e.g., read-type GET or

write-type PUT, UPDATE and DELETE), they are merged

into a batched request that is then handled as a whole, as

shown in Algorithm 1. For write-type requests, the worker

processes them as a WriteBatch. Compared with IO-level

batching such as RocksDB group logging, which merges the

logging IOs of multiple user threads, this request-level batch-

ing is more beneficial for reducing the thread synchroniza-

tion overheads. For read-type requests, the worker queries

them concurrently on KVS. RocksDB provides a multiget
interface which is a well-optimized operation to handle con-

current key search internally, and we use this interface in

our implementation to handle read-type batched requests.

Note that the worker does not proactively wait to capture

incoming requests. Therefore, this batching is opportunistic.

The OBM can improve the processing efficiency under

heavy concurrent workloads by eliminating the overhead

of synchronization and waiting. To prevent the tail-latency

problems due to extremely large batched-request, we set a

predefined upper bound for the number of requests per batch

(32 by default). Although different types of requests can also

be processed in parallel within an instance, the OBM merges

only same-type requests consecutively, to avoid consistency

problems caused by out-of-order read-write requests when

Algorithm 1 Opportunistic batching.

Input: 𝑅𝑄 , the request queue;𝑀 , the maximum batch size;

𝑅𝐿𝑖𝑠𝑡 , an empty request list;

Output: the return value of RocksDB instance.

1: function opportunistic_batching(RQ, M, RList)

2: 𝑅 ← 𝑅𝑄.𝑝𝑜𝑝 ()
3: if 𝑅.𝑡𝑦𝑝𝑒 = 𝑆𝐶𝐴𝑁 then
4: return 𝑑𝑏.𝑠𝑐𝑎𝑛(𝑅.𝑏𝑒𝑔𝑖𝑛, 𝑅.𝑠𝑐𝑎𝑛𝑠𝑖𝑧𝑒)
5: end if
6: 𝑅𝐿𝑖𝑠𝑡 .𝑎𝑑𝑑 (𝑅)
7: 𝑏𝑎𝑡𝑐ℎ_𝑡𝑦𝑝𝑒 ← 𝑅.𝑡𝑦𝑝𝑒
8: while (𝑛𝑜𝑡 𝑅𝑄.𝑒𝑚𝑝𝑡𝑦 ()) and (𝑅𝑄.𝑓 𝑖𝑟𝑠𝑡 .𝑡𝑦𝑝𝑒 =
𝑏𝑎𝑡𝑐ℎ_𝑡𝑦𝑝𝑒) and (𝑅𝐿𝑖𝑠𝑡 .𝑠𝑖𝑧𝑒 < 𝑀) do

9: 𝑅 ← 𝑅𝑄.𝑝𝑜𝑝 ()
10: 𝑅𝐿𝑖𝑠𝑡 .𝑎𝑑𝑑 (𝑅)
11: end while
12: if 𝑏𝑎𝑡𝑐ℎ_𝑡𝑦𝑝𝑒 =𝑊𝑅𝐼𝑇𝐸 then
13: build a𝑊𝑟𝑖𝑡𝑒𝐵𝑎𝑡𝑐ℎ with all the requests in 𝑅𝐿𝑖𝑠𝑡
14: return𝑤𝑟𝑖𝑡𝑒 (𝑊𝑟𝑖𝑡𝑒𝐵𝑎𝑡𝑐ℎ)
15: else if 𝑏𝑎𝑡𝑐ℎ_𝑡𝑦𝑝𝑒 = 𝑅𝐸𝐴𝐷 then
16: build a key list 𝑀𝑒𝑟𝑔𝑒𝐾𝑒𝑦𝑠 with all the request

keys in 𝑅𝐿𝑖𝑠𝑡
17: return𝑚𝑢𝑙𝑡𝑖𝑔𝑒𝑡 (𝑀𝑒𝑟𝑔𝑒𝐾𝑒𝑦𝑠)
18: end if
19: end function
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Figure 11. An example of transaction crash recovery.

using the asynchronous interface. When the queues are often

empty under light workloads, the approach simply degrades

to the KVS without batching.

In summary, p
2
KVS uses OBM to opportunistically aggre-

gate multiple small requests into one larger request, which

not only reduces the software and logging-IO overhead of

the write process but also takes advantage of the parallel

reading optimizations. Different from the IO-level batching

mechanism in RocksDB or other KVSs [12, 36], p
2
KVS avoids

introducing additional synchronization overhead of merging

writes in the underlying IO layer.

4.4 Range Query
Like other KVSs using hash indexes, it is a challenge for

p
2
KVS to implement range query operations (i.e., RANGE

and SCAN), because adjacent keys could be physically dis-

tributed to different instances. The key-space partitioning

means that a range query must be forked into the corre-

sponding workers covering the specified key range. Fortu-

nately, each sharded instance using its own LSM-tree struc-

ture keeps its internal keys sorted, benefitting range queries.
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There is a semantic difference between RANGE and SCAN,

resulting in some differences in their implementations in

p
2
KVS. The RANGE operation specifies a beginning key and

an end key and reads out all existing KV pairs between them.

Differently, the SCAN operation specifies a begin key and

the number of its subsequent KV pairs to read (i.e., scan-size).

When the underlying IO bandwidth is sufficient, a RANGE

request can be divided into multiple sub-RANGE operations

executed by multiple instances of p
2
KVS in parallel without

extra cost. For the SCAN operation, the distribution of re-

quested keys across the instances is unknown initially so

that the number of target keys within each KVS instance is

not determined a priori. A conservative way is to construct a

global iterator based on the iterator of each KVS instance to

serially traverse the keys in the entire key space like RocksDB

MergeIterator. p2KVS also provides an alternative paral-

lelizing approach that first performs the SCAN operation

with the same scan-size on all instances and then filters out

the requested KVs from all return values. This approach

causes extra reads, potentially impacting the performance.

However, the simplicity and ease of implementation and the

high bandwidth and parallelism offered by the underlying

hardware may reasonably justify its use.

4.5 Crash Consistency
p
2
KVS guarantees the same level of crash consistency as the

underlying KVS instance, each of which can be recovered by

replaying its own log file after a crash or failure.

Most LSM-tree based KVSs support basic transactions

based on WriteBatch, where updates in the same transaction

are committed by one WriteBatch. When a transaction cov-

ering multiple instances is executed, the transaction is split

into multiple WriteBatches running on the instances in par-

allel, causing consistency problems if only a part of them are

committed before crashing. To solve this problem, p
2
KVS

introduces a strictly increasing Global Sequence Number

(GSN) for each write request to indicate its unique global

order. GSN can be written to the KVS log files as a prefix of

the original log sequence number. The WriteBatches split

from the same transaction have the same GSN number and

the OBM will not merge them with other requests.

When an instance crashes, p
2
KVS rolls back the logging

requests in all instances according to the maximal GSN in

the log of the crashed instance. To ensure recovery after a

system-wide crash, p
2
KVS persists the GSN of a transaction

on the SSDwhen a transaction initializes or commits, thereby

rolling back the whole transaction by canceling the corre-

sponding WriteBatch on each KVS instance after a crash.

For example, in Figure 11, before the crash, transaction A

has returned and recorded the commit, transaction B has

been processed by the KVSs but not committed, and transac-

tion C has not been completed. When the system recovers,

p
2
KVS first deletes the log records of transactions B and C

because the transaction log shows that the GSN of the last

committed transaction is transaction A, and then performs

the recovery process for all KVS instances. We conducted

experiments that kill the p
2
KVS process during writing data

and the results show that p
2
KVS can always be recovered to

a consistent state.

At present, p
2
KVS focuses on scaling the performance of

basic KVS operations (e.g., batch-write and read) and ensures

the atomicity and the crash consistency of any single request

at high concurrency without modifying the underlying KVS

code. In the future work, we will adopt existing transactional

optimizations[37, 48] and support more transaction levels by

further exploiting the functionality in KVS code. For example,

p
2
KVS can use the snapshot feature of RocksDB to achieve

the read committed transaction isolation level. Each worker

creates a snapshot of the instance before the WriteBatch is

processed, and other read requests will access the snapshot

to avoid dirty reads. When the transaction commits, the

snapshot will be deleted and the updates in the transaction

will become visible.

4.6 Portability
p
2
KVS as a portable parallelizing framework can be flexibly

applied to existing KVSs. This section describes the porta-

bility implementation of p
2
KVS upon two representative

KVSs as LevelDB (LSM-tree based) and WiredTiger (B+-tree

based). Both of them use WAL mechanism and shared index

structure.

Since all KVSs have three basic functions, namely initial-

izing, submitting requests, and closing. p
2
KVS inserts its

own logic into these three functions of the targeted KVS

keeping the corresponding API and process unchanged. In

the initialization step, p
2
KVS creates multiple instances and

directories storing their own data within the open function

of the KVS. In the request-submission step, the user thread

invokes a KV request (e.g. put and get) and executes the

allocate strategy to insert the request to the queue of the

corresponding instance. The instance worker fetches the

head-request from the request queue and calls the same KVS

API (e.g. put and get) to process KV operations. If the KVS

has a dedicated functionality for batching requests, such as

Writebatch and multiget of RocksDB, the OBM mechanism

can be enabled accordingly. When the p
2
KVS will be closed,

each worker calls the close API of the KVS. Also, a crash of

any worker triggers closing the whole system.

The OBM-write of p
2
KVS can be executed on LevelDB

with batch-write but is disabled on WiredTiger without

batch-write. Although LevelDB and WiredTiger do not have

the batch-read like multiget, p
2
KVS can still leverage OBM to

submit multiple read requests concurrently to exploit intra-

instance parallelism. The experimental results in Section 5.6

show that p
2
KVS can effectively improve the parallelism of

LevelDB and WiredTiger significantly accelerate their read

and write.

583



EuroSys ’22, April 5–8, 2022, RENNES, France Ziyi Lu, Qiang Cao, Hong Jiang, Shucheng Wang, and Yuanyuan Dong

Table 1. Key characteristics of YCSB workloads. RMW
means a GET and an UPDATE that point to the same key.

Workloads Request ratio Distribution Count
LOAD 100% PUT Uniform 670M

A 50% UPDATE 50% GET Zipfian 120M

B 5% UPDATE 95% GET Zipfian 120M

C 100% GET Zipfian 120M

D 5% PUT 95% GET Latest 120M

E 5% PUT 95% SCAN Uniform 20M

F 50% RMW 50% GET Zipfian 120M

Figure 12. Write performance. Throughput, IO amplifica-
tion, and bandwidth utilization under random writes.

5 Evaluation
We evaluate a prototype of p

2
KVS upon RocksDB with both

micro- andmacro- benchmarks against state-of-the-art KVSs,

including LSM-Tree based RocksDB and PebblesDB, and B-

tree based KVell. PebblesDB [46] is a typical write optimized

solution by reducing write amplification of compactions.

KVell [36] exploits thread-level parallelism by maintaining

multiple B-tree indexeswith non-competitiveworker threads

(see Section 5.5 for details). We also evaluate the LevelDB

and the WiredTiger version of p
2
KVS in Section 5.6 to prove

the portability.

5.1 Experimental Setup
Hardware and Configuration. We run all experiments on

a server with two Intel Xeon E5-2696 v4 CPUs (2.20 GHz,

22-core), 64 GB of DDR4 DRAM, and an Intel Optane 905p

480 GB NVMe SSD. The Optane SSD exhibits high and sta-

ble write and read bandwidths of 2.2 GB/s and 2.6 GB/s,

respectively. We use two configurations of p
2
KVS with 4 or

8 workers, labeled p2KVS-4 and p2KVS-8, respectively.
Workloads. We use micro-benchmarks to compare the

peak processing capacity of p
2
KVS and the baselines. We

perform 100M random PUT operations using the db_bench
tool with 16 user threads to evaluate concurrent write per-

formance. The asynchronous interface of p
2
KVS is enabled

to show peak performance. We also perform 10M GET op-

erations and 1M SCAN operations, respectively, to evaluate

read performance. In macro-benchmarks, we use 𝑌𝐶𝑆𝐵 [15]

to generate synthetic workloads, whose key characteristics

are summarized in Table 1. We evaluate performance under

both strong and weak concurrency in 2 sets of experiments

with 8 and 32 user threads respectively. The size of KV pair

is set to 128-Byte by default in both benchmarks.

Table 2. Memory and CPU usages under 100M random
writes. CPU usages are normalized to that of single-core.

Avg. Mem. Max. Mem. Avg. CPU Max. CPU
RocksDB 0.14 GB 0.21 GB 1694% 1881%

PebblesDB 0.74 GB 1.93 GB 321% 441%

p2KVS-4 0.58 GB 0.91 GB 762% 982%

p2KVS-8 0.94 GB 1.20 GB 1239% 1417%

(a) Average latency (b) Tail latency

Figure 13. Write latencies as a function of different
request intensities. "RocksDB + OBM" in (a) denotes a single
RocksDB instance with the opportunistic batching mechanism.

5.2 Micro-benchmark
Write. Weevaluate the application-level QPS and the storage-

level IO bandwidth utilizations of RocksDB, PebblesDB, p
2
KVS-

4 and p
2
KVS-8. As shown in Figure 12a, p

2
KVS-4 and p

2
KVS-

8 outperform RocksDB in throughput by 2.7× and 4.6×, re-
spectively.

To further analyze IO efficiency for applications, we also

measure the IO amplification under the random write work-

load. Figure 12b shows that p
2
KVS-8 has the lowest IO am-

plification due to the increased capacity at each level of its

LSM-tree where a wider but shallower LSM-tree is formed

collectively across all instances. Although PebblesDB opti-

mizes compactions and achieves lower IO amplification than

RocksDB and p
2
KVS-4, it incurs higher IO amplification than

p
2
KVS-8 because it is developed based on LevelDB and not

optimized for concurrent writes. To better understand the

cause of performance enhancement achieved by p
2
KVS, we

examine the corresponding IO behaviors on SSD. As shown

in Figure 12c, the SSD bandwidth is almost fully utilized

with p
2
KVS while the bandwidth usage of RocksDB and

PebblesDB is less than 20%. This is because p
2
KVS triggers

compactions more frequently by eliminating the foreground

bottlenecks. Clearly, p
2
KVS’ performance superiority comes

from its highly effective capacity utilization of the underlying

hardware.

We show in Table 2 the usages of memory and CPUs when

processing 100M random writes on p
2
KVS and other KVSs.

The average memory usages are less than 1.5 GB across all

KVSs. The CPU consumptions of p
2
KVS-4 and p

2
KVS-8 are

over 7× and 12× that of a single core. These higher CPU

usages of p
2
KVS come from the 4 or 8 worker threads and
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(a) Without OBM (b) Effect of OBM

Figure 14. Throughput of point query.

Figure 15. Throughputs of RANGE and SCAN opera-
tions with different scan sizes.

additional background threads. The user threads sleep after

submitting the request and only consume very little CPU

resources. Each user thread in RocksDB overloads almost

a whole CPU core, resulting in a huge CPU footprint at

16 threads. However, its throughput is low due to frequent

thread synchronization and lock overhead. Therefore, the

background compaction threads consume a small amount of

CPU resources. Because PebblesDB is not optimized for con-

current writes, most concurrent user threads are in a waiting

state and only take up a small fraction of the total CPU re-

sources. The memory consumption of p
2
KVS comes from

the sum of the memory usage of the underlying RocksDB

instances. It is acceptable and stable because the memory

usage of RocksDB instance does not scale with the amount

of data.

Next, we assess the request latency as a function of load

intensity. We conduct 1M random writes on RocksDB and

p
2
KVS with different request intensities. Figure 13a shows

that the average latencies of p
2
KVS and RocksDB are very

close to each other under light workloads. However, p
2
KVS

can support much higher intensity at the same latency than

RocksDB, because of its higher processing capacity. We fur-

ther observe the tail latency, an important measure of the

quality of user experience in KVS. As shown in Figure 13b,

RocksDB suffers from drastic latency spikes when the re-

quest intensity exceeds 100 KQPS, while p
2
KVS can guar-

antee 99
𝑡ℎ
-percentile latency below 1 ms with less than 400

KQPS intensity.

Point query. Figure 14 shows the impact of multiple work-

ers and OBM on point queries. We launch 10M GET requests

to RocksDB and p
2
KVS. As shown in Figure 14a, without

OBM, p
2
KVS has almost the same performance as RocksDB.

By leveraging the read optimizations of RocksDB with OBM,

Figure 16. Throughputs under YCSB workloads.

p
2
KVS achieves almost linear scalability as shown in Fig-

ure 14b. The QPS of p
2
KVS-8 with OBM enabled outperforms

the disabled case by up to 7.5×, and RocksDB by up to 5.4×.
Range Query. We load 100M 128-Byte KV pairs to warm

up the system, and then perform 1M RANGE or SCAN opera-

tions with different scan sizes, using a single user thread. As

shown in Figure 15, p
2
KVS outperforms RocksDB by up to

2.9× in RANGE query. p
2
KVS improves QPS by 1.5× during

small-range SCAN because there is sufficient IO bandwidth

to compensate for read amplification. The performance of

short scans depends on the seek operation and the parallel

optimization of p
2
KVS for random reads also accelerates the

seek operation thus improving short scans. When the scan-

size is larger than 1000, p
2
KVS with high read amplification

saturates the SSD IO capacity, exhibiting the same perfor-

mance as RocksDB. In summary, p
2
KVS further extends the

benefit of parallelism based on the read optimizations of

RocksDB.

5.3 Macro-benchmark
We evaluate the effectiveness of p

2
KVS relative to RocksDB

under YCSB workloads with 8 or 32 threads, as shown in Fig-

ure 16. Results of PebblesDB are excluded because it fills up

all memory and crashes when writing hundreds of millions

of KV pairs.

Under write-intensive workloads (LOAD), with more user

threads, p
2
KVS exhibits higher speedup. For example, p

2
KVS-

8 outperforms RocksDB by 2.4× and 5.2× with 8 and 32

user threads, respectively. This is because p
2
KVS not only

incorporates RocksDB’s request-level batching optimization

by OBM but also improves parallelism efficiency through

multiple non-competitive workers, especially under high

concurrent workloads (e.g., 32 threads). The performance

improvement of p
2
KVS-8 is more obvious than that of p

2
KVS-

4, indicating that the number of workers should match the

hardware parallelism to maximize performance.

Under read-intensive workloads (B, C, D), p
2
KVS improves

over RocksDB by about 1~2× in QPS. This read performance

improvement comes from not only using OBM to leverage

RocksDB’s original read parallelism, but also from the ad-

ditional benefits of the hash partitioned indexes and the

parallel workers. Under workload E (i.e., 95% SCAN and

5% PUT), the performance of p
2
KVS is similar to that of
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Figure 17. p2KVS sensitivity to the number of workers
and OBM. The single-worker configuration is equivalent to
RocksDB. All throughputs are normalized to RocksDB. Solid-
colored and patterned bars are used to indicate OBM being
disabled and enabled, respectively.

RocksDB because p
2
KVS’gain in exploiting IO parallelism is

offset by the resulting read amplification.

Undermixedworkloads (A, F), p
2
KVS outperforms RocksDB

by 1.5~3.5× mainly because of the optimization for the con-

current write process.

5.4 Sensitivity Study
We perform sensitivity studies to understand the impact of

different design parameters and choices of p
2
KVS on the

overall performance. We still use YCSB as workloads and

take RocksDB with a single user thread as a baseline.

Number of workers and OBM. We vary the number of

workers with enabled and disabled OBM. The result is shown

in Figure 17. Under the write-intensive workload LOAD, the

inter-instance parallelism helps boost performance by 3×
and 5× with 4 and 8 instances, respectively. OBM further

accelerates the write speed by exploiting request batching,

increasing QPS by up to 2×. The results suggest that simply

increasing the number of instances cannot significantly im-

prove the performance in cases of small-sized KVs. However,

when applying OBM, the write throughput scales well.

Under the read-intensive workload C, the inter-instance

parallelizing improves performance by up to 3.3× and 5.8×,
with 4 and 8 workers, respectively. OBM improves read per-

formance by 5× evenwith a single instance, but only achieves
2× QPS enhancement with 8 workers because parallelism at

this level has nearly exhausted SSD capacity, leaving insuffi-

cient bandwidth to be further leveraged by OBM.

Under hybrid workloads A and B, without OBM the overall

performance increases by up to 3.5× and 6.5× under 4 and
8 instances, respectively. OBM increases QPS by 2.2×~4.2×
under workload B while gaining less benefit under workload

A, increasing the throughput by 1.8×~3.2×. This is because
workload B has more mixed read and write requests, limiting

the batching size of OBM that only batches adjacent requests

of the same type.

Because of the SSD contention, too many workers even

lead to performance degradation. The experimental results

in Figure 17 show that 8 is an optimal number of workers.

Figure 18. p2KVS sensitivity to key-value size.

Figure 19. p2KVS performance at key-value size of 1KB.

Figure 20. Overall performance of KVell and p2KVS.

Key-value Size. Next, we observe the impact of different

KV sizes. We test the performance as a function of KV-sizes

in three typical workloads (LOAD, A, and C), as shown in

Figure 18. The result demonstrates that the small-KV cases

benefit more from OBM than the large-KV cases. Figure 19

shows the performance of p
2
KVS at the KV size of 1KB,

which exhibits a lower speedup than the case at 128-Byte

KV. OBM is less effective under write-intensive workloads

with large-sized KV because the benefit of merging large

logging IOs is small. However, OBM remains effective for

read-intensive workloads.

5.5 p2KVS vs. KVell
KVell uses multiple workers to maintain multiple indepen-

dent B-tree indexes that can be accessed in parallel. It uses

in-place updates for all write requests to avoid write am-

plification, and maintains large indexes and page cache in

memory to speed up queries. We compare KVell with 4 or

8 worker-threads to p
2
KVS-4 and p

2
KVS-8 by using macro-

benchmarks, as shown in Figure 20. We configure the page

cache size of KVell to 4 GB, which consumes an acceptable

amount of memory and is much larger than the 8 MB block

cache of each RocksDB instance. Even with this configura-

tion, the maximum memory consumption of KVell is 22 GB

due to the large in-memory indexes, in contrast to the 3 GB

memory consumption of p
2
KVS. Underwrite-intensivework-

loads (LOAD, A, and F) the performance of p
2
KVS is higher

than KVell. p
2
KVS’s point query performance is similar to

KVell (under workloads B and D) and its SCAN performance
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(a) IO bandwidth (b) Memory utilization

(c) Total CPU utilization (d) Per-core CPU utilization

Figure 21. Hardware utilizations of p2KVS and KVell
under random write workloads.

is higher than KVell (under workload E). Under workload

C, KVell achieves higher throughputs than p
2
KVS due to its

large page cache and all-in-memory indexes.

We also record and compare the utilizations of IO band-

width, memory, and CPU of p
2
KVS-8 and KVell-8 under

a continuous 100M random write workload. The through-

puts of KVell-8 and p
2
KVS-8 are 2.5 MQPS and 3.0 MQPS

respectively. As shown in Figure 21a, although KVell uses in-

place update to reduce write amplification, it only consumes

about 300 MB/s IO bandwidth under small-sized 128-byte KV

writes. In contrast, LSM-tree is more suitable for aggregating

small IOs and enables p
2
KVS to utilize full IO bandwidth.

Figure 21b shows that even after subtracting the footprint of

the page cache, KVell still uses 2×more memory than p
2
KVS

because it stores all the indexes in memory, while LSM-tree

sorts the data on disk to reduce the index size. Meanwhile,

each thread of KVell maintains a large index, resulting in an

average CPU utilization per core of more than 80%. However,

each RocksDB instance under p
2
KVS runs multiple threads

in the foreground and background to perform logging and

compactions separately. Therefore, although the total CPU

utilization of p
2
KVS is higher, each core consumes about

50% of CPU as shown in Figure 21c and 21d. This means that

p
2
KVS is more suitable for multicore hardware environments

and does not rely on single-core performance. As a result,

although KVell uses a large in-memory index and page cache

to gains higher performance than vanilla RocksDB, p
2
KVS

can achieve the same even better performance than KVell by

exploiting fast SSDs with much fewer hardware resources.

5.6 Portability
As described in Section 4.6, in addition to RocksDB, we also

port p
2
KVS to two other KVS, LevelDB and WiredTiger. In

this section, we will evaluate the effect of p
2
KVS on improv-

ing parallelism of both KVS.

(a) Random write

(b) Random read

Figure 22. Performance of p2KVS on LevelDB. The num-
ber of instances of p2KVS is equal to the number of threads.

(a) Random write

(b) Random read

Figure 23. Performance of p2KVS on WiredTiger. The
number of instances of p2KVS is equal to the number of threads.

5.6.1 p2KVS on LevelDB. Figure 22 shows the through-
puts of p

2
KVS based on LevelDB instances under micro-

benchmarks. The results indicate that even though LevelDB

does not offer intra-instance parallelism optimizations as

RocksDB (e.g., pipelined write and multiget), p
2
KVS can still

improve random write and read performance by up to 3.4×
and 5.3×, respectively, compared to the single-threaded Lev-

elDB. With multiple threads, p
2
KVS brings write parallelism

to LevelDB without loss of read performance.

5.6.2 p2KVSonWiredTiger. Figure 23 shows the through-
puts of p

2
KVS upon WiredTiger. Although WiredTiger does

not support batch writes, p
2
KVS can still effectively scale its

write and read throughput to 8.4× and 15× of that at single-

thread, respectively. At the same number of threads, p
2
KVS

outperforms WiredTiger. In addition, the write performance

degrades when the number of workers exceeds 12, meaning
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that the benefits of parallelism are not enough to compensate

for the overhead of too many instances.

6 Related Works
A large body of research has been conducted to improve KVS

performance on SSDs.

Optimize WAL and MemTable Some existing works

attempt to directly address the problem of low performance

in WAL or MemTable steps. Faster [10] presents the Hybrid-

log mechanism to store most of the log in volatile DRAM,

thus dramatically improving WAL performance but sacri-

ficing fast persistence. Aether [28] takes sophisticated ap-

proaches such as Early Lock Release and Flush Pipelining to

reduce concurrency-induced contention for small-sized log

writes. Taurus [51] further optimizes these techniques and

implements an efficient parallel logging scheme by tracking

and encoding transactions with the log sequence number.

SpanDB [12] provides asynchronous group logging and re-

quest processing with polling-based IO via SPDK by using

asynchronous request interfaces.

FloDB [5], Accordion [6], WipDB [59], and CruiseDB [39]

improve MemTable’s write performance by modifying the

data structure of the memory component. FloDB and Ac-

cordion add buffers on the top of skiplist-based MemTable.

WipDB replaces skiplist with multiple large hash tables and

compacts KV-pairs in memory instead of in SSD. CruiseDB

dynamically adjusts the size of MemTable based on work-

loads and SLA to reduce write stalls. p
2
KVS is compatible

with these works and can absorb their ideas while using effi-

cient parallel scheduling to avoid the contentions by WAL

and on in-memory structures.

Optimize LSM-tree Compacting. In order to efficiently

utilize the bandwidth of SSDs, many solutions reduce the

write amplification bymodifying the LSM-tree structure. Peb-

blesDB [46] designs a fragmented LSM-tree structure, which

allows overlapping key-ranges on tree levels and reduces

most of the compaction overhead. LSM-trie [50], SifrDB [43],

Dostoevsky [18], SlimDB [47] and ChameleonDB [58] also

design some variants of LSM-tree to mitigate write amplifi-

cation by tolerating overlapping key-ranges. ForestDB [1],

WiscKey [41], LWC-Tree [53], HashKV [9], UniKV [57] and

diffKV [38] apply KV separation mechanism, which stores

KV pairs in multiple log files and records key-pointer pairs

in LSM-tree levels, thereby reducing write amplification for

large-sized KV pairs.

While sharing a common goal to optimize the IO efficiency

of LSM-tree based KVSs, p
2
KVS, as a user-space scheduler, is

orthogonal and complementary to these solutions and highly

portable for implementation on top of existing KVSs.

Design Non-LSM-tree. Some studies have designed new

structures for high-performance SSDs in lieu of LSM-tree.

KVell [36] maintains large B-tree-based indexes and page

cache in memory to ensure GET and SCAN performance

on modern fast SSDs. uDepot [33] stores data in unordered

segments mapped by a hash table and fully utilizes SSDs by

leveraging asynchronous user-space IO with a task runtime

system. Tucana [45] uses B
𝜖
-tree to reduce the overhead and

IO amplification of compactions. SplinterDB [14] designs

STB
𝜖
-tree based on B

𝜖
-tree, which is optimized for SSDs with

high hardware parallelism. Although these new indexing

structures take full advantage of modern SSDs, p
2
KVS takes

an orthogonal approach that views KVS and SSD as black

boxes and thus inherits time-tested, desirable features of the

widely-used and well-optimized LSM-tree based KVSs (e.g.,

RocksDB) and SSDs, providing high portability.

ShardingKVS.Distributed databases partition table-space
into multiple tablets and store them in different KVS in-

stances among nodes [2, 11, 27, 60]. Recently, LSM-tree based

OLTP storage engine running upon high-performance hard-

ware employs multiple LSM-tree instances, each of which

is used to store a table, or subtable, or an index[19, 26, 52].

Specific interface semantics (e.g., column) or dynamic sched-

uling policies are used to determine the instances where

key-value pairs are placed. However, p
2
KVS uses the key-

space sharding to evenly assign KVs to multiple workers

without database semantics to expedite the global KVS.

7 Conclusion
In the production-level key-value store environments, sys-

tem administrators expect to obtain consistent performance

improvement by simply replacing slow HDDs with fast SSDs.

The outcome has often been disappointing, especially for

pervasive small-sized KV workloads. We reveal that the fore-

ground operations in the KVS write process (logging and

indexing) can become a serious performance bottleneck un-

der single-threaded and concurrent write workloads. We

present a portable parallelizing engine, p
2
KVS, upon multi-

ple instances of LSM-tree based KVS to effectively and effi-

ciently perform KV operations. p
2
KVS is designed to exploit

inherent parallelism among and within these instances to

fully utilize the processing capacities offered bymodern CPU,

memory, and storage hardware. Compared to the state-of-

the-art vanilla RocksDB, p
2
KVS improves write performance

and read performance by up to 4.6× and 5.4× respectively.
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A Artifact Appendix
A.1 Abstract
Our artifact consists of two parts. The first part is a script to
analyze the bottlenecks of RocksDB and the second is a simple
prototype of p2KVS with some benchmarks.

A.2 Description & Requirements
A.2.1 How to access. We store the artifact code in our
GitHub repository https://github.com/luziyi23/p2KVS.
DOI: https://doi.org/10.5281/zenodo.6336196.

A.2.2 Hardware dependencies. The platform should be
equipped with at least one multi-core CPU (preferably at least
16 cores) and a high-performance SSD (at least 2GB/s read/write
bandwidth). Note that the choice of hardware will affect the
test results.

A.2.3 Software dependencies. Any distribution of Linux.
We recommend Linux versions above 5.4.

A.2.4 Benchmarks. We use db_bench and YCSB[15] to
generate workloads for evaluation. They have already been
integrated into the repository.

A.3 Set-up
git clone. See README file in the code directory.

A.4 Evaluation workflow
A.4.1 Major Claims.
• (C1): As the number of user threads increases, RocksDB’s
throughput increases only moderately (3× speedup at
32 threads as stated) because thread synchronization
overheads cause the bottleneck. This is proven by the
experiment (E1) described in Section 3.2 and Section 3.3
whose results are reported in Figure 5a and Figure 6.
• (C2): p2KVS with 8 workers improves the write perfor-
mance of RocksDB by up to 4.6×. This is proven by the
experiments (E2) in Section 5.2 whose illustrated in Fig-
ure 12a.

A.4.2 Experiments. Experiment (E1): [Bottleneck Analy-
sis] [10 human-minutes + 10 compute-minutes]: Evaluate the
random write throughput of RocksDB for different user threads
and analyze bottlenecks by latency breakdown.

[Preparation] Build RocksDB and DB_Bench benchmarks. In-
stall the Linux-perf and FlameGraph for latency breakdown.
Mount the high-performance SSD in any directory.

[Execution] Change the db_dir variable in scripts/perf.py
to the SSD directory. This script will evaluate RocksDB by per-
forming 10M writes at 1 to 32 user-threads respectively and
save the latency breakdown results as flame graphs.

[Results] All throughput and average latency results are in
test_result.txt, while the latency breakdown graph for
each experiment are in perf_[#threads].svg.

Experiment (E2): [Write Performance Evaluation] [10 human-
minutes + 10 compute-minutes]: Evaluate the write perfor-
mance of p2KVS-8 with micro-benchmarks.

[Preparation] Build the test code with the following instruction.
make write_test DATANUM=10000000 INSTNUM=8

[Execution] Run the test with the following instruction.
write_test [the SSD directory].

[Results] The program will output results such as through-
put and latency on the screen. Compare the throughput with
the highest write throughput of RocksDB in (E1) to get the
performance improvement of p2KVS relative to RocksDB.
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