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ABSTRACT
In recent years, system researchers have proposedmany out-of-core
graph processing systems to efficiently handle graphs that exceed
the memory capacity of a single machine. Through disk-friendly
graph data organizations and well-designed execution engines, ex-
isting out-of-core graph processing systems canmaintain sequential
locality on disk access and greatly reduce disk I/Os during process-
ing. However, they have not fully explored the characteristics of
graph data and algorithm execution to further reduce disk I/Os,
leaving significant room for performance improvement. In this
paper, we present a novel out-of-core graph processing system
called GraphSD, which optimizes the I/O traffic by simultaneously
capturing the state and dependency of graph data during compu-
tation. At the heart of GraphSD is a state- and dependency-aware
update strategy that includes two adaptive update models, selective
cross-iteration update (SCIU) and full cross-iteration update (FCIU).
These two update models are dynamically triggered at runtime to
enable active-vertex aware processing and cross-iteration vertex
value computation, which avoid loading inactive edges and reduce
disk I/Os in the future iterations. Moreover, an efficient sub-block
based buffering scheme is proposed to further minimize I/O over-
heads. Our evaluation results show that GraphSD outperforms two
state-of-the-art out-of-core graph processing systems HUS-Graph
and Lumos by up to 2.7× and 3.9× respectively.
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1 INTRODUCTION
Graph processing plays an important role in many big data ap-
plications, such as social networks [16], fraud detection [12] and
Internet of things [3]. Real-world graphs usually exhibit enormous
sizes (i.e., billions of vertices and edges) and complex structures,
which makes very challenging to handle them in a scalable way. To
efficiently handle these large-scale graphs, researchers have devel-
oped a series of out-of-core (disk-based) graph processing systems
[2, 6, 11, 17, 20, 21, 29] in recent years.

Out-of-core graph processing systems effectively use the exter-
nal storage to process large graphs beyond the available memory of
a single compute node. Due to the large capacity and low price of
the external storage, out-of-core graph processing systems are more
easy and cheaper to scale to process very large graphs, compared
with distributed (memory) graph processing systems [13, 14, 27].
Moreover, they overcome the challenges of high communication
costs [8] and load imbalance [18] faced by distributed systems. Be-
fore processing a graph, out-of-core graph processing systems first
divide the vertex set of the graph into disjoint intervals and then
partition the edge set into several smaller edge blocks, where each
edge block contains the incoming or outgoing edges of the vertices
in corresponding vertex interval. In this way, they can ensure each
edge block fits in the available memory. During the processing of
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the graph, the system successively loads and processes each vertex
interval and the corresponding edge block from disk. Through a
disk-friendly graph data organization format and well-designed
execution engine, existing out-of-core graph processing systems
can significantly reduce random disk accesses, even achieving com-
petitive performance with distributed graph processing systems
[2, 11, 29]. However, they have not fully explored the characteristics
of graph data and algorithm execution for opportunities to further
reduce disk I/Os.

On one hand, many graph algorithms are organized into several
iterations and they usually access a small portion of graph data
in each iteration. Moreover, as iterations progress, the number of
active vertices continuously shrinks [15]. For example, Breadth-first
Search (BFS) only visits neighbors of vertices in the current frontier
in each iteration, and the number of unvisited vertices becomes
very small at the end of the search. Unfortunately, existing out-of-
core graph processing systems are usually designed for sequential
accessing of graph data, which loads the whole graph into mem-
ory in each iteration. They are unaware of the states of vertices
(active or not) during the algorithm executions, which incurs many
unnecessary accesses of inactive edges.

On the other hand, most graph processing systems follow the
processing semantics of the Bulk Synchronous Parallel (BSP) [19]
model, to ensure the consistency and correctness of algorithm exe-
cutions. In this model, the value of a vertex in the current iteration
is computed based on the values of its neighbors in the previous
iteration. Therefore, this model specifies the dependencies among
vertices in graph computing [20]. Specifically, for an edge e = (u,v),
the value of v in iteration t is dependent on the value of u in iter-
ation t − 1. In fact, the dependencies among vertices provide an
opportunity to proactively compute the vertex values in the future
iterations by making full use of the loaded edge blocks, so as to
avoid the I/Os of the corresponding graph portions in the future it-
erations. For instance, after vertex u is updated in iteration t, we can
use u’s latest value to update the values of u’s neighbors in iteration
t +1 based on u’s edges that are loaded into memory. Therefore, the
I/Os of loading u’s edges can be avoided when executing iteration
t + 1. Unfortunately, most of the current out-of-core graph pro-
cessing systems have not exploited this future dependency, which
allows each edge/vertex to be processed only once in each iteration.

Although some recent works make efforts to explore above char-
acteristics to improve I/O efficiency by performing active vertex
aware processing [21, 22] or future-value computation [2, 20], none
of them can simultaneously exploit the states and dependencies of
graph data, leaving significant room to further reduce disk I/Os. In
this paper, we develop GraphSD, an I/O efficient out-of-core graph
processing system fully exploiting such characteristics of graph
data. The main contributions of GraphSD are summarized below.

• GraphSD proposes a state- and dependency-aware update
strategy that simultaneously captures the state and depen-
dency of graph data during computation to significantly
reduce I/O traffic. In this update strategy, GraphSD first se-
lects a proper I/O access model including the on-demand
I/O model and the full I/O model through a state-aware I/O
scheduling strategy. Then, based on the selected I/O access

model, GraphSD proposes two adaptive update models, se-
lective cross-iteration update (SCIU) and full cross-iteration
update (FCIU). Specifically, when selecting the on-demand
I/O model, SCIU is triggered to selectively process the active
edges, avoiding loading unnecessary data. When selecting
the full I/O model, FCIU is triggered to load and process all
edges. Both SCIU and FCIU further executes cross-iteration
vertex value computation by efficiently exploiting the depen-
dencies among vertices to reduce I/O traffics in the future
iterations.
• To further reduce I/O overheads, GraphSD adopts an effi-
cient sub-block based buffering scheme to judiciously buffer
sub-blocks based on their priorities in the FCIU model. The
priority of a sub-block is determined by the number of active
edges in the sub-block.
• We conduct extensive experiments to demonstrate GraphSD’s
efficacy. Evaluation results show that GraphSD achieves a
speedup up to 2.7× and 3.9× respectively over HUS-Graph
[22] and Lumos [20], two state-of-the-art out-of-core graph
processing systems, thanks to GaphSD’s improved I/O per-
formance.

The rest of the paper is organized as follows. Section 2 intro-
duces the background and related works. Section 3 presents the
system overview of GraphSD. Section 4 describes the detailed de-
signs of the state- and dependency-aware update strategy. Section
5 demonstrates our experiment results and Section 6 concludes this
paper.

2 BACKGROUND AND RELATEDWORKS
Out-of-core graph processing systems are designed for handling
large graphs beyond the available memory of a machine. GraphChi
[11] is a pioneering out-of-core graph processing system using a
vertex-centric computing model. It adopts an interval-shard struc-
ture to store a graph. The vertices are divided into disjoint intervals
and a shard structure is created for each interval to store the in-
coming edges. Furthermore, GraphChi proposes a parallel sliding
windows model to reduce random disk I/Os. Following GraphChi,
a number of out-of-core graph processing systems have been pro-
posed. Based on the adopted optimizations, these systems can be
classified into three categories, as summarized in Table 1.

Eliminating Random Accesses. To fully avoid random ac-
cesses, X-Stream [17] uses an edge-centric approach. It streams
the raw edge list during each iteration to update the destination
vertices of each edge. GridGraph [29] further improves X-Stream
by using a 2-Level hierarchical partition method and dual sliding
window model, which avoids writing the intermediate results to
disk. PathGraph [24] proposes a path-centric abstraction, which
stores a graph as a collection of tree-based partitions and iteratively
processes along the path in each partition, aiming to take full ad-
vantage of access locality. VENUS [6] proposes two I/O-efficient
algorithms that enable the system to stream the graph data while
performing vertex updating. NXgraph [7] adopts three adaptive
update strategies according to different memory budgets so as to
ensure the locality of graph data access.

Avoiding Inactive Data. Recent works exploit the running
characteristics of graph algorithms to perform active vertex based
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Table 1: Main optimizations adopted by existing out-of-core graph processing systems and GraphSD

System Eliminating Random Accesses Avoiding Inactive Data Future-Value Computation
GraphChi [11] % % %

X-Stream [17] ! % %

GridGraph [29] ! % %

PathGraph [24] ! % %

VENUS [6] ! % %

NXgraph [7] ! % %

GraphZ [26] ! % %

DynamicShards [21] ! ! %

HUS-Graph [22] ! ! %

MultiLogVC [15] ! ! %

CLIP [2] ! % !

Wonderland [25] ! % !

Lumos [20] ! % !

GraphSD ! ! !

processing. These systems further reduce I/O traffic by identifying
the active vertices and avoiding loading the inactive data. Dynamic
Shards [21] removes unnecessary I/Os by creating a dynamic shard
for each interval in each iteration, which only contains the active
edges in the current iteration. Therefore, the loading of inactive
edges can be skipped. It also delays the updating of several vertices
that cannot be performed due to missing edges. HUS-Graph [22]
proposes a hybrid update strategy that adaptively selects I/O ac-
cess and computing model based on the number of active vertices.
MultiLogVC [15] uses a combination of the CSR graph format, and
message logging to reduce read amplification caused by reading
inactive vertices and edges.

Future-Value Computation. Moreover, several systems enable
future-value computation to perform multi-iteration of computa-
tion in one round of graph loading, which significantly speeds up
the convergence of graph algorithms and reduces disk I/Os. CLIP [2]
uses a reentry method to make full use of the loaded edge blocks,
enabling more efficient algorithms that require fewer total disk
I/Os. Wonderland [25] allows users to extract effective abstractions
from the original graph to capture certain graph properties. The
abstractions can be used as a bridge to propagate information across
different graph partitions. Lumos [20] adopts an out-of-order ex-
ecution model to proactively compute vertex values in the future
iterations while simultaneously ensuring the processing guarantees
of BSP.

All these optimizations can dramatically improve I/O perfor-
mance. However, as shown by Table 1, none of these systems can
perform future-value computation while simultaneously capturing
the states of vertices to avoid loading inactive graph data, leaving
significant space to further reduce disk I/Os. Motivated by this
observation, we propose a novel out-of-core graph processing sys-
tem called GraphSD that can simultaneously support active-vertex
aware processing and future-value computation by capturing the
states and dependencies of graph data during computation.

GraphSD

Graph Algorithms (PageRank, BFS, SSSP, CC, .etc)

Sub-block based Buffering

State-aware I/O Scheduler

selective cross-

iteration update

full cross-

iteration update

Adaptive Update Strategy

Graph Partitions
External Storage

Figure 1: The GraphSD Architecture

3 SYSTEM OVERVIEW
3.1 The GraphSD Architecture
GraphSD aims to reduce the disk I/Os of out-of-core graph process-
ing systems by fully exploiting the characteristics of graph data and
algorithm execution. Figure 1 shows the architecture overview of
GraphSD. To efficiently exploit the states of vertices and avoid the
loading of inactive data, GraphSD adopts a state-aware I/O sched-
uler to schedule the loading of graph partitions. The state-aware
I/O scheduler first identifies the number of active vertices in the
current iteration, and then performs a benefits evaluation to select
the proper I/O access model. Intuitively, when the number of the
active vertices is small, the system tends to only load the active
edges of a graph partition since it skips many unnecessary I/Os.
When the number of the active vertices is large, the system tends to
load the whole graph partition to avoid the expensive random disk
accesses. Depending on different I/O access models, the system pro-
poses two adaptive update models, selective cross-iteration update
(SCIU) and full cross-iteration update (FCIU). When only loading
the active edges, GraphSD uses SCIU model to selectively update
the destination vertices of the active vertices. When loading the
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(a) Example graph
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edge-block 1
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1 -> 2

2 ->  3

3 -> 1
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4 -> 3

5 -> 2, 3

sub-block (2, 2)

4 -> 6

5 -> 4

6 -> 5

(b) Intervals and sub-blocks

Figure 2: fig/Graph representation of GraphSD

whole graph partition, GraphSD uses the FCIU model to update all
vertices. Both SCIU and FCIUmodels can not only update the vertex
values of the current iteration but also exploit the dependencies
among vertices to enable cross-iteration vertex value computation,
which reduces I/O traffics in the next iteration. In addition, several
sub-blocks (graph partitions) are selected and buffered in DRAM to
efficiently utilize the memory resource and further reduce the disk
I/Os.

3.2 Preprocessing
We consider two principles when designing GraphSD’s graph rep-
resentation. First, to enable efficient access of active vertices and
edges, the edges should be sorted by the source vertices so as to
support fast query of active vertices and edges. Second, to support
cross-iteration vertex value propagation for a vertex, the vertex
should be fully updated in the current iteration. Therefore, the edges
should also be organized by the destination vertices. In this way, a
graph partition stores the incoming edges of a vertex interval and
the vertices belong to an interval are fully updated after processing
the interval.

Based on these two principles, GraphSD uses a 2-D partitioning
method [7, 22, 29] to organize and partition the graph in the pre-
processing phase. Specifically, the edges are first partitioned into P
(P is the number of vertex intervals) edge blocks according to the
source vertices. Then, each edge block is further partitioned into
P sub-blocks based on the intervals of the destination vertices in
the edge block. Intuitively, the 2-D partitioning method partitions
the input graph into P × P grid. Figure 2 shows the data layout of
an example graph in GraphSD’s representation. The vertex set are
partitioned into two intervals (1, 3) and (4, 6), and edges are orga-
nized into four sub-blocks. Each sub-block (i, j) stores edges whose
source and destination vertices belong to interval i and interval j
respectively. Therefore, interval i is called the source interval and
interval j is called the destination interval for sub-block (i, j). For
the processing of each sub-block, vertices in the source interval are
read to calculate new values for vertices the destination interval. In
addition, GraphSD creates an index structure index (i, j) to store the
offset of each edge in sub-block (i, j), which enables fast accesses of
active vertices and edges.

Table 2: Notations

Notation Definition
G the graph G = (V ,E)
V vertex set in G
E edge set G
P number of intervals
A active vertex set
M size of an edge structure
N size of a vertex value
W size of an edge weight value
Br r random read bandwidth
Brw random write bandwidth
Bsr sequential read bandwidth
Bsw sequential write bandwidth

4 GRAPHSD UPDATE STRATEGY
After the preprocessing phase, GraphSD can execute different graph
algorithms programmed by the users based on the partitioned
sub-blocks. In this section, we introduce the detailed designs of
GraphSD’s update strategy and system designs.

4.1 State-aware I/O Scheduling Strategy
To accommodate different I/O access characteristics of graph al-
gorithms, GraphSD adopts a state-aware I/O scheduling strategy.
Specifically, GraphSD dynamically selects the proper I/O access
model by identifying the states of vertices (active or not) and cap-
turing the number of active edges. If the number of active edges in
the current iteration is small, GraphSD selectively load the active
edges to avoid the unnecessary I/Os (the on-demand I/O model).
Otherwise, GraphSD sequentially loads the whole sub-blocks to
eliminate random disk I/Os (the full I/O model).

To accurately switch and select between these two I/O access
models, GraphSD should evaluate the performance benefits of these
two I/O access models and choose the best one. The performance
benefit is estimated based on the I/O cost of each I/O access model,
which can be computed by the total size of data accessed divided by
the bandwidth of disk access. We analyze the I/O cost of each I/O
access model as follows. For easy reference, we list the notations in
Table 2.M, N,W represent the size of an edge structure, the size of a
vertex value record and the size of an edge weight value respectively.
For the disk bandwidth, Br r , Brw , Bsr and Bsw represent random
read, randomwrite, sequential read and sequential write bandwidth
respectively.

When adopting the full I/O model, GraphSD sequentially loads
all sub-blocks and vertex values into memory. For data writing,
GraphSD only needs to write back vertex values, since only vertex
values are updated during the processing. Therefore, the I/O cost
Cs when executing an iteration can be constantly stated as:

Cs =
|V | × N + |E | × (M +W )

Bsr
+
|V | × N

Bsw
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When adopting the on-demand I/O model, we suppose that the
active vertex set is A. Note that reading the active edges is not
totally random. There are some vertices with large degrees or ver-
tices with contiguous IDs. The reading of their edge lists can be
sequential. Therefore, we should calculate the sizes of edge lists
that are sequentially and randomly read respectively, which are
stated as Sseq and Sran . Through one pass of A and the correspond-
ing vertex degrees, Sseq and Sran can be computed with the time
complexity ofO(|A|). We skip the computing details here due to the
page limitation. In addition, GraphSD also loads the vertex index
structure in order to locate the active edges. Therefore, the I/O cost
Cr when randomly loading the active edges in an iteration can be
stated as:

Cr =
Sran
Br r

+
Sseq

Bsr
+
2|V | × N

Bsr
+
|V | × N

Bsw
If Cr ≤ Cs , the system selects the on-demand I/O model. Other-

wise, it selects the full I/O model. The disk access bandwidths Br r ,
Brw , Bsr and Bsw can be measured by some measurement tools
such as fio [17] conducting the experiments. Other parameters such
as A, Sseq and Sran can be directly collected and computed in the
runtime. This performance benefit evaluation method provides an
accurate performance prediction that enables efficient scheduling
of edges, as shown in Section 5.4.

4.2 Update Models
According to different I/O access models, GraphSD proposes two
adaptive update models, selective cross-iteration update (SCIU)
and full cross-iteration update (FCIU), as shown in Algorithm 1.
These two update models can not only update the vertex values
of the current iteration but also exploit the dependencies among
vertices to enable cross-iteration vertex value computation, so as
to to reduce disk I/Os in the future iterations.

Algorithm 1 The GraphSD execution
1: Out ← NewActiveVertexSet
2: OutNI ← NewActiveVertexSetFortheNextIteration
3: for each iteration iter do
4: Vactive ← Out
5: Out ← OutNI
6: OutNI ← Empty
7: model ← UpdateModelSelection(Vactive )
8: if model = SCIU then
9: /* Implement SCIU model, using Alg. 2*/
10: SCIU (Vactive ,Out ,OutNI )
11: else
12: /* Implement FCIU model, using Alg. 3*/
13: FCIU (iter ,Out ,OutNI )
14: end if
15: end for

SelectiveCross-iterationUpdate.When selecting the on-demand
I/O model, SCIU is triggered to selectively load the edges of the
active vertices and update their neighbors. Algorithm 2 shows the
execution procedure of SCIU in one iteration. When processing
each interval i, SCIU successively processes from sub-block(i, 0) to

sub-block(i, P-1). For each sub-block (i, j), SCIU first locates active
edges in the sub-block based on the corresponding vertex index and
loads them into memory (Line 7). Then, it updates the destinations
of these edges through a user-defined update function (Line 8 ∼
11). If a vertex’s value is updated, it will be added to the new active
vertex set Out and scheduled in the next iteration.

Algorithm 2 SCIU (Vactive ,Out ,OutNI )

1: for i from 0 to P − 1 do
2: /* Identify active vertices in interval i*/
3: V i

act ive ← GetActiveVertices(Vactive , i)
4: for j from 0 to P − 1 do
5: VertexIndex ← index(i, j)
6: for each active vertex v in V i

act ive do
7: v .edдes ← LoadEdдes(v,VertexIndex ,sub-block(i,

j))
8: for each edge e in v .edдes do
9: neiдhbor ← e .dst
10: UserFunction(v,neiдhbor ,Out)
11: end for
12: end for
13: end for
14: end for
15: for each new activated vertex vnew in Out do
16: if vnew ∈ Vactive then
17: Out .Remove(vnew )
18: for each edge e ′ in vnew .edдes do
19: neiдhbor ← e ′.dst
20: CrossIterUpdate(v,neiдhbor ,OutNI )
21: end for
22: end if
23: end for

Different from existing works that support active-vertex aware
processing [21, 22], SCIU further performs cross-iteration vertex
value computation based on the loaded active edges (Line 15 ∼ 23).
Specifically, if the edges of the new activated vertices are already
loaded into memory (i.e., the new activated vertices are also active
in the current iteration), SCIU can directly update their neighbors’
values in the next iteration in advance. Consequently, these vertices
are removed from Out and their edges need not to be loaded in the
next iteration.

Figure 3 illustrates one iteration of execution of SCIU with the
example graph in Figure 2(a). Supposing the active vertices in the
current iteration are vertex 1, 3 and 4. When processing vertex
interval 1, SCIU successively accesses sub-block (1, 1) to sub-block
(1, 2) to load the edges of vertex 1 and 3 and update their destina-
tions. Then, SCIU moves to interval 2 to process sub-block (2, 1)
and sub-block (2, 2). After the processing of this iteration is fin-
ished, vertex 1 and 3 are activated again and their edges are already
loaded into memory. Therefore, SCIU performs cross-iteration ver-
tex value computation for the neighbors of vertex 1 and 3, and the
corresponding edges will not be scheduled in the next iteration.

Full Cross-iterationUpdate.When selecting the full I/Omodel,
FCIU is triggered to load all edges and update the vertices. FCIU
executes two consecutive iterations to enable cross-iteration vertex
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(e) Cross-iteration vertex updating

Figure 3: Execution procedure of the SCIU model

value computation. Algorithm 3 shows the execution procedure of
FCIU. In the first iteration, FCIU loads the whole sub-blocks and
iterates over all vertices to update the vertex values in the current
iteration (Line 3 ∼ 6). Then, it updates the values of several vertices
in the next iteration based on the loaded edges (Line 7 ∼ 11). The
vertices chosen for cross-iteration values propagation should sat-
isfy the following two conditions. First, they have been updated
in the current iteration. Second, their edges should be loaded into
memory. In this way, the vertices can exploit the dependencies
among vertices to update the values of their neighbors in the next
iteration with their own values in the current iteration, according
to the BSP model. Unlike previous works [20] that create secondary
partitions to store these edges, GraphSD can easily capture these
edges with its graph representation. Specifically, for a sub-block(i,
j), it can satisfy the dependencies among vertices and enable cross-
iteration vertex value computation if i <j, since vertices in interval
i are updated before vertices in interval j. In addition, sub-block (i,
i) can also perform cross-iteration vertex value computation after
all vertices in interval i are updated (Line 13 ∼ 16). FCIU holds sub-
block (i, i) in memory until all vertex updating for interval i have
finished. In the second iteration (Line 18∼ 26), FCIU only needs
to load the sub-blocks that do not perform cross-iteration vertex
value computation in the first iteration (i.e., i >j), and performs
normal vertex updating (we called these sub-blocks as secondary
sub-blocks).

Figure 4 shows the execution procedure of FCIU for two con-
secutive iterations. FCIU iterates over sub-block (1, 1) to sub-block
(2, 1) when updating the vertices in interval 1, and sub-block (1, 2)
to sub-block (2, 2) when updating the vertices in interval 2 in the
first iteration. During the processing, sub-block (1, 1), sub-block
(1, 2) and sub-block (2, 2) can enable cross-iteration vertex value

Algorithm 3 FCIU (iter ,Out ,OutNI )

1: for j from 0 to P-1 do
2: for i from 0 to P-1 do
3: edдes ← LoadEdдes(sub-block(i, j))
4: for each edge e in edдes do
5: UserFunction(e .src, e .dst ,Out)
6: end for
7: if int(e.src) <int(e.dst) then
8: for each edge e in edдes do
9: CrossIterUpdate(e .src, e .dst ,OutNI )
10: end for
11: end if
12: end for
13: /*sub-block(i, i) is held in memory*/
14: for each edge e in sub-block(i, i) do
15: CrossIterUpdate(e .src, e .dst ,OutNI )
16: end for
17: end for
18: iter = iter + 1
19: for i from 1 to P-1 do
20: for j from 0 to i-1 do
21: edдes ← LoadEdдes(sub-block(i, j))
22: for each edge e in edдes do
23: UserFunction(e .src, e .dst ,Outn )
24: end for
25: end for
26: end for

computation. For instance, when processing edge (1, 5) in sub-block
(1, 2), FCIU can use the value of vertex 1 in the first iteration (since
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Figure 4: Execution procedure of the FCIU model (two consecutive iterations)

vertex 1 has been updated before processing sub-block (1, 2)) to
update the value of vertex 5 in the second iteration. Consequently,
edge (1, 5) does not need to be loaded in the second iteration. And
so do other edges in sub-block (1, 2). While for sub-block (2, 1), it
has to be loaded in the second iteration since their source vertices
are updated behind their destination vertices and cannot support
cross-iteration vertex value computation in the first iteration.

In our programming model (Algorithms 1, 2 and 3), only function
UserFunction and CrossIterUpdate are user-defined, while the others
are provided by runtime. UserFunction is applied to the edges to
conduct the user-defined update function, and generate new ac-
tive vertices in the current iteration. Differently, CrossIterUpdate
is executed for cross-iteration vertex values computation, which
updates the values of vertices in next iteration in advance. Com-
pared with other computing model such as block-centric model
[23], our programming model focuses on disk-based graph pro-
cessing and enables both selective and sequential access of edges
by combining vertex-centric and edge-centric models. In addition,
some systems that adopt asynchronous execution model like Gi-
raph [9] can also support future-value computation by relaxing
the BSP barrier. While our update strategy can not only enable
future-value computation, but also guarantee synchronous pro-
cessing semantics that ensures the consistency and correctness of
algorithm executions.

4.3 Buffering of Secondary Sub-blocks
As mentioned above, the secondary sub-blocks are loaded into
memory twice in the FCIU model. Moreover, their structures are
unchanged during the computation. Therefore, it provides an op-
portunity to further reduce disk I/Os by buffering these secondary

sub-blocks in memory. However, it may not be efficient to simply
cache all secondary sub-blocks. First, there is not enoughmemory to
cache all secondary sub-blocks for very large graphs. Second, after
finishing the first iteration of processing, there may only exist very
few active vertices, which means the secondary sub-blocks contain
very few active edges. Hence, simply caching all the secondary
sub-blocks can result in low utilization of memory.

To address these problems, we propose an efficient buffering
scheme to judiciously buffer secondary sub-blocks based on their
priorities. Specifically, the priority of a secondary sub-block is de-
termined by the number of active edges in the secondary sub-block.
The buffering scheme is implemented as follows. In the first itera-
tion of the FCIU model, for each loaded secondary sub-block, if it is
not cached and the buffer space is not full, it will be inserted into the
buffer space. If the loaded sub-block has not been cached and there
is no buffer space, the cached secondary sub-block with the lowest
priority will be evicted. The priority of a secondary sub-block will
be automatically updated after the processing of this secondary
sub-block in the first iteration of the FCIU model. In this way, the
memory resources can be efficiently utilized, which further reduces
I/O traffic.

5 EVALUATION
In this section, we first present the evaluation environment in-
cluding the hardware platform, graph dataset, graph algorithms
and compared systems. Then, we evaluate GraphSD in terms of
overall performance, I/O traffic and preprocessing time. Finally, we
evaluate the effects of the design choices.
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Table 3: Datasets used in evaluation

Dataset Vertices Edges Type
Twitter2010 [10] 42 million 1.5 billion Social network

SK2005 [5] 51 million 1.9 billion Social network
UK2007 [4] 106 million 3.7 billion Web graph
UKUnion [4] 133 million 5.5 billion Web graph
Kron30 [1] 1 billion 32 billion Synthetic graph

5.1 Experiment Setup
Our experiments are conducted on a server with two 8-core 2.10
GHz Intel Xeon E5-2620 CPU, 32GB main memory and two 500GB
HDDs, running Ubuntu 16.04 LTS. The dataset used for the experi-
ments as summarized in Table 3.

We use four graph algorithms: PageRank (PR), PageRank-delta
(PR-D), Connected Components (CC), and Single Source Shortest
Path (SSSP). PR computes the rank value of each page by several
rounds of iterations, in order to evaluate the impact of a Web page
on a Web graph. PR-D is a variant of PageRank where vertices are
activated in an iteration only if they have accumulated enough
changes in their PR values. CC is an important graph mining al-
gorithm that is usually implemented based on Label Propagation
[28]. SSSP computes the shortest paths from a root vertex to other
vertices, commonly used for navigation and traffic planing. These
algorithms exhibit different I/O access and computation character-
istics, which provides a comprehensive evaluation of GraphSD. For
PR and PR-D, we run five iterations and twenty iterations on each
graph respectively. For CC and SSSP, we run them until conver-
gence. We use 16 execution threads for all algorithms. To better
evaluate the out-of-core processing performance, we limit the mem-
ory budget to 5% of the graph data. In addition, for fair comparison
and evaluation of the I/O optimizations, we disable the pagecache
and use direct I/O in the experiments.

We compare GraphSD with two state-of-the-art out-of-core
graph processing systems that support active vertex aware pro-
cessing and future-value computation respectively, HUS-Graph
[22] and Lumos [20]. HUS-Graph proposes a hybrid update strat-
egy that captures the number of active vertices to skip unnecessary
I/Os. Lumos proactively computes vertex values in future iterations
to reduce I/O traffics across iterations. Therefore, they become a
natural baseline to evaluate the efficiency of GraphSD’s state- and
dependency-aware update strategy.

5.2 Comparison to Other Systems
We first evaluate the overall performance of the algorithm execu-
tions. To intuitively compare the performance of different systems
on different graphs, we show the normalized results in Figure 5.
We also report the absolute execution time of GraphSD in Table
4. GraphSD finishes the executions more quickly than other two
systems in all cases. On average, GraphSD outperforms HUS-Graph
and Lumos by 1.7× and 2.7× respectively (up to 2.7× and 3.9×).

HUS-Graph adaptively schedules the loading of graph data to
skip inactive I/Os. However, it cannot support cross-iteration com-
putation. Lumos performs out-of-order execution model to reduce

Table 4: Execution time (in seconds) of GraphSD

PR PR-D CC SSSP
Twitter2010 167.6 231.5 163.6 239.1
SK2005 170.1 140.9 766.3 1489.1
UK2007 370.1 337.6 892.1 1223.8
UKUnion 563.1 567.4 1962.7 4121.6
Kron30 3378.6 4370.1 7563.1 22181.8

I/Os across future iterations but it loads many inactive vertices and
edges. While for GraphSD, performance benefits come from the
fact that it can not only perform active-vertex aware processing
but also cross-iteration processing, leading to much less disk I/Os.
Therefore, GraphSD is more useful for graph algorithms where
the number of active vertices is small, and datasets whose struc-
tures can enable many cross-iteration propagations. Specifically,
for the PR-D, CC and SSSP where the number of active vertices is
small, GraphSD outperforms HUS-Graph by 1.8×, 1.5× and 1.7×
respectively thanks to the reduced I/Os result from cross-iteration
vertex-value computation. It outperforms Lumos by 2.8×, 3.1× and
2.7× respectively since it avoids the loading of inactive edges. For
PR where all vertices are active and active vertex aware process-
ing may not bring benefits, GraphSD still outperforms Lumos by
1.4× due to the efficient buffering of sub-blocks. The performance
speedup over HUS-Graph is less for Kron30 because this synthetic
graph exhibits different graph structure, which may produce fewer
cross-iteration propagations than other datasets.

Figure 6 shows the breakdowns of the execution time on Twit-
ter2010. As expected in out-of-core graph processing, the execution
time is dominated by disk I/O (56%∼91% of execution time) despite
of different computation features of these graph algorithms. From
the results, we can observe that the disk I/O time of GraphSD (GS) is
73% and 49% of HUS-Graph (HG) and Lumos (LU) respectively. For
vertex updating, HUS-Graph achieves the best performance because
of fully utilization of parallelism and no need for cross-iteration
values propagation.

Figure 7 compares the I/O traffics on Twitter2010 and UK2007.
From the results, the volume of I/O traffic of GraphSD is 1.6× and
5.5× less than that of HUS-Graph and Lumos respectively. This
is mainly attributed to GraphSD’s state- and dependency-aware
update strategy that not only reduces the loading of inactive data
but also merges disk I/Os for several iterations. For PageRank where
all vertices are active, HUS-Graph produces most I/O amounts since
it cannot support cross-iteration computation to reduce I/Os in
future iterations. For other three algorithms, Lumos produces most
I/O amounts as it has to read many inactive edges.

5.3 Preprocessing Time
The comparisons of preprocessing time of different systems are
depicted in Figure 8. The preprocessing procedure includes loading
the raw graph data, partitioning and sorting the raw graph data,
and writing the preprocessed graph data to disk. As shown in Figure
8, HUS-Graph takes the longest preprocessing time because it has
to build two copies of edges and sort these edges. Specifically, the
preprocessing time of HUS-Graph is longer than that of Lumos and
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Figure 5: Comparison of overall execution time
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Figure 6: Runtime breakdown on Twitter2010

GraphSD by 1.8× and 1.4× respectively. Lumos takes the shortest
preprocessing time as it only maintains one copy of edges and does
not need to sort the edges. For GraphSD, it maintains one copy of
edges and needs to sort the edges to construct its representation. Al-
though it takes more preprocessing time than Lumos, the overheads
of the extra preprocessing can be offset by the performance im-
provements it brings. For example, by sorting the edges, GraphSD
can enable selective loading of edges to skip many unnecessary
I/Os. Furthermore, the preprocessed graph can be reused many
times, which significantly amortizes the preprocessing overheads.

5.4 Effects of the Design Choices
We first evaluate the effect of GraphSD’s update strategy. We com-
pare GraphSDwith two baseline implementations. The first baseline
implementation (GraphSD-b1) disables cross-iteration vertex up-
date, which only updates vertex values of the current iteration. The
second baseline implementation (GraphSD-b2) disables selective
vertex update, which loads all sub-blocks regardless of the num-
ber of active vertices. Figure 9 shows the comparison of different
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Figure 7: I/O traffic comparison
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Figure 8: Preprocessing time comparison

update strategies in terms of execution time and I/O traffic on Twit-
ter2010. Thanks to capturing both states and dependencies of graph
data during computation, GraphSD outperforms GraphSD-b1 and
GraphSD-b2 by 1.7× and 2.8× respectively. In addition, GraphSD-
b2 has a worse performance than GraphCP-b1. This indicates that
active vertex aware processing can bring more improvements on
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Figure 9: Effect of different update strategies
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Figure 10: Effect of the state-aware I/O scheduling strategy

I/O performance than cross-iteration processing. As to I/O traffic,
the I/O amount produced by GraphSD is 1.6× and 5.4× less than
that of GraphSD-b1 and GraphSD-b2 shown in Figure 9(b), which
further proves the I/O efficiency of GraphSD’s update strategy.

Then, we evaluate the efficiency of the state-aware I/O schedul-
ing strategy. To this end, we compare GraphSD with two baseline
implementations that adopts the full I/O model (GraphSD-b3) and
the on-demand I/O model (GraphSD-b4) for all iterations respec-
tively. Figure 10 shows the comparison of execution time in each
iteration when running CC on UKUnion. From the results, GraphSD
is able to select the better I/O access model in all iterations, which
verifies the accurate prediction of the performance benefits evalua-
tion model of the state-aware I/O scheduling strategy.

We also evaluate the overheads of the state-aware I/O schedul-
ing strategy since it will evaluate the performance benefits in each
iteration and produce extra computation overheads. Specifically,
we compare the computation overheads with the reduced I/O time
overheads optimized by the state-aware I/O scheduling strategy
on Twitter2010. As shown in Figure 11, we can see that the extra
computation overheads are negligible. For example, the computa-
tion time for performance benefits evaluation of PR-D is only 3.4s,
while the corresponding reduced I/O time is 158s.

Finally, we evaluate the effect of the buffering scheme of GraphSD.
We run all algorithms on UKUnion, and compare the execution
time with/without our buffering scheme. As shown in Figure 12,
the buffering scheme can improve the performance by up to 21%,
since the I/O overheads of the buffered sub-blocks are avoided in
the FCIU model.
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Figure 11: Overheads of the state-aware I/O scheduling
strategy
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Figure 12: Effect of buffering scheme

6 CONCLUSION
In this paper, we present a novel out-of-core graph processing
system called GraphSD that significantly improves disk I/O per-
formance. GraphSD proposes a state- and dependency-aware up-
date strategy that dynamically schedules the I/O accesses of graph
data based on active vertices while simultaneously enabling cross-
iteration vertex value computation. Moreover, GraphSD adopts an
efficient sub-block based buffering scheme to further minimize I/O
overheads. Our evaluation results show that GraphSD outperforms
two state-of-the-art graph processing systems, HUS-Graph and
Lumos. In future works, we will research how to exploit emerging
storage devices such as Intel Optane PMM to further improve the
I/O performance of GraphSD.

ACKNOWLEDGMENTS
This work was supported by NSFC No. 61832020, No.61821003. This
work is also supported by the Natural Science Foundation of Fujian
Province under Grant No.2020J01493, Zhejiang provincial "Ten
Thousand Talents Program" (No. 2021R52007) and Center-initiated
Research Project of Zhejiang Lab (No. 2021DA0AM01).

REFERENCES
[1] 2022. http://www.graph500.org/.
[2] ZhiyuanAi, Mingxing Zhang, YongweiWu, Xuehai Qian, Kang Chen, andWeimin

Zheng. 2017. Squeezing out all the value of loaded data: An out-of-core graph
processing system with reduced disk i/o. In USENIX ATC’17. 125–137.

[3] Hisham Alasmary, Aminollah Khormali, Afsah Anwar, Jeman Park, Jinchun
Choi, Ahmed Abusnaina, Amro Awad, Daehun Nyang, and Aziz Mohaisen. 2019.
Analyzing and detecting emerging internet of things malware: A graph-based
approach. IEEE Internet of Things Journal 6, 5 (2019), 8977–8988.

[4] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. 2008. A large time-aware
web graph. In ACM SIGIR Forum, Vol. 42. ACM, 33–38.

[5] Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: compression
techniques. In WWW’04. ACM, 595–602.



GraphSD: A State and Dependency aware Out-of-Core Graph Processing System ICPP ’22, August 29-September 1, 2022, Bordeaux, France

[6] Jiefeng Cheng, Qin Liu, Zhenguo Li, Wei Fan, John CS Lui, and Cheng He. 2015.
VENUS: Vertex-centric streamlined graph computation on a single PC. In ICDE’15.
IEEE, 1131–1142.

[7] Yuze Chi, Guohao Dai, Yu Wang, Guangyu Sun, Guoliang Li, and Huazhong Yang.
2016. Nxgraph: An efficient graph processing system on a single machine. In
ICDE’16. IEEE, 409–420.

[8] Hoang-Vu Dang, Roshan Dathathri, Gurbinder Gill, Alex Brooks, Nikoli Dryden,
Andrew Lenharth, Loc Hoang, Keshav Pingali, and Marc Snir. 2018. A lightweight
communication runtime for distributed graph analytics. In IPDPS’18. IEEE, 980–
989.

[9] Minyang Han and Khuzaima Daudjee. 2015. Giraph unchained: Barrierless asyn-
chronous parallel execution in pregel-like graph processing systems. Proceedings
of the VLDB Endowment 8, 9 (2015), 950–961.

[10] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In WWW’10. ACM, 591–600.

[11] Aapo Kyrola, Guy E Blelloch, and Carlos Guestrin. 2012. Graphchi: Large-scale
graph computation on just a pc. In OSDI’12. USENIX, 31–46.

[12] Zhao Li, Haishuai Wang, Peng Zhang, Pengrui Hui, Jiaming Huang, Jian Liao,
Ji Zhang, and Jiajun Bu. 2021. Live-Streaming Fraud Detection: A Heteroge-
neous Graph Neural Network Approach. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 3670–3678.

[13] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,
and Joseph M Hellerstein. 2012. Distributed GraphLab: a framework for machine
learning and data mining in the cloud. PVLDB (2012), 716–727.

[14] Grzegorz Malewicz, MatthewHAustern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In SIGMOD’10. ACM, 135–146.

[15] Kiran Kumar Matam, Hanieh Hashemi, and Murali Annavaram. 2021. Multi-
LogVC: Efficient Out-of-Core Graph Processing Framework for Flash Storage. In
IPDPS’21. IEEE, 245–255.

[16] Tuan-Anh Nguyen Pham, Xutao Li, Gao Cong, and Zhenjie Zhang. 2015. A
general graph-based model for recommendation in event-based social networks.
In ICDE’15. IEEE, 567–578.

[17] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-
centric graph processing using streaming partitions. In SOSP’13. ACM, 472–488.

[18] Shuang Song, Meng Li, Xinnian Zheng, Michael LeBeane, Jee Ho Ryoo, Reena
Panda, Andreas Gerstlauer, and Lizy K John. 2016. Proxy-guided load balancing of
graph processing workloads on heterogeneous clusters. In ICPP’16. IEEE, 77–86.

[19] Leslie G Valiant. 1990. A bridging model for parallel computation. Commun.
ACM 33, 8 (1990), 103–111.

[20] Keval Vora. 2019. LUMOS: Dependency-Driven Disk-based Graph Processing. In
USENIX ATC’19. 429–442.

[21] Keval Vora, Guoqing Xu, and Rajiv Gupta. 2016. Load the edges you need: A
generic I/O optimization for disk-based graph processing. In USENIX ATC’16.
507–522.

[22] Xianghao Xu, Fang Wang, Hong Jiang, Yongli Cheng, Dan Feng, and Yongxuan
Zhang. 2020. A Hybrid Update Strategy for I/O-Efficient Out-of-Core Graph
Processing. IEEE Transactions on Parallel and Distributed Systems 31, 8 (2020),
1767–1782.

[23] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A block-centric
framework for distributed computation on real-world graphs. Proceedings of the
VLDB Endowment 7, 14 (2014), 1981–1992.

[24] Pingpeng Yuan, Wenya Zhang, Changfeng Xie, Hai Jin, Ling Liu, and Kisung Lee.
2014. Fast iterative graph computation: A path centric approach. In SC’14. IEEE,
401–412.

[25] Mingxing Zhang, Yongwei Wu, Youwei Zhuo, Xuehai Qian, Chengying Huan,
and Kang Chen. 2018. Wonderland: A novel abstraction-based out-of-core graph
processing system. ACM SIGPLAN Notices 53, 2 (2018), 608–621.

[26] Zhixuan Zhou andHenry Hoffmann. 2018. Graphz: Improving the performance of
large-scale graph analytics on small-scale machines. In ICDE’18. IEEE, 1368–1371.

[27] Xiaowei Zhu,Wenguang Chen, andWeimin Zheng. 2016. Gemini: A computation-
centric distributed graph processing system. In OSDI’16. 301–316.

[28] Xiaojin Zhu and Zoubin Ghahramani. 2002. Learning from labeled and unlabeled
data with label propagation. Technical Report. Citeseer.

[29] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-scale
graph processing on a single machine using 2-level hierarchical partitioning. In
USENIX ATC’15. 375–386.


	Abstract
	1 Introduction
	2 Background and Related Works
	3 System Overview
	3.1 The GraphSD Architecture
	3.2 Preprocessing

	4 GraphSD Update Strategy
	4.1 State-aware I/O Scheduling Strategy
	4.2 Update Models
	4.3 Buffering of Secondary Sub-blocks

	5 Evaluation
	5.1 Experiment Setup
	5.2 Comparison to Other Systems
	5.3 Preprocessing Time
	5.4 Effects of the Design Choices

	6 Conclusion
	Acknowledgments
	References

