
ForkMV: Mean-and-Variance Estimation of
Fork-Join Queuing Networks for Datacenter

Applications
*

Prathyusha Enganti
Computer Science and Engineering

University of Texas at Arlington
Arlington(TX),USA

prathyusha.enganti@mavs.uta.edu

Todd Rosenkrantz
Computer Science and Engineering

University of Texas at Arlington
Arlington(TX),USA

stoddard.rosenkrantz@mavs.uta.edu

Lin Sun
Computer Science and Engineering

University of Texas at Arlington
Arlington(TX),USA

lxs5171@mavs.uta.edu

Zhijun Wang
Computer Science and Engineering

University of Texas at Arlington
Arlington(TX),USA
zhijun.wang@uta.edu

Hao Che
Computer Science and Engineering

University of Texas at Arlington
Arlington(TX),USA

hche@cse.uta.edu

Hong Jiang
Computer Science and Engineering

University of Texas at Arlington
Arlington(TX),USA
hong.jiang@uta.edu

Abstract—The Fork-Join structure underlays many distributed
computing applications in data centers. In this paper, we develop
a technique, called ForkMV, to estimate the mean and variance of
request response time for Fork-Join queuing networks (FJQNs)
with both short-tailed and long-tailed service time distributions
and arbitrary request fanout degrees (i.e., the number of Fork
nodes). Specifically, for an FJQN with any given service time
distribution of practical interests, ForkMV is able to estimate the
mean and variance of request response time, accurate enough to
facilitate effective resource allocation for data center applications.
The test results indicate that in the entire range of the fanout
degrees being tested (i.e., [1, 4000]), ForkMV is able to estimate
the mean response time within 5% and 15% and variance
response time within 15% and 10% of the simulation results
for short-tailed exponential service distribution and long-tailed
truncated Pareto distribution, respectively, at the 90% load or
higher.

Index Terms—Mean-latency, Mean-latency with bounded vari-
ance, Tail latency, Fork-Join queuing networks.

I. INTRODUCTION

Today’s data center applications can be broadly classified
into two types, i.e., online user-facing and background batch
applications [1]. While the former usually needs to meet
stringent request tail-latency service level objectives (SLOs),
the latter may need to satisfy request mean-latency or mean-
latency with a bounded variance SLOs. For both types of
applications, a user request or job (in this paper, we use
request and job interchangeably) may spawn multiple tasks
(in this paper, the exact number of tasks spawned is called
the job fanout degree), which are dispatched to different
server machines to be queued and processed, and finally the

processing results are merged and returned to the user. Notable
examples are inverse indexing for web search [2], a user-
facing application, and MapReduce-based background batch
applications [3]. This request process follows a Fork-Join
structure with synchronization barrier (i.e., the slowest task
determines the request response time), which can be modeled
as Fork-Join queuing network model (FJQN). FJQNs, which
find their roots in queuing theory, are popular models for
the performance analysis of such workloads. Consequently, to
facilitate proper server resource allocation to meet the request
tail-latency, mean latency and mean latency with bounded
variance SLOs for data center applications, it is important to
estimate the tail, mean, and variance of the request latency
for an FJQN that underlays the Fork-Join structure and the
workload in question [4]–[6]. Due to the structure of the
workload and server resource variability, the task service time
distribution for the queuing servers may be short or long tailed.

Unfortunately, FJQNs are notoriously difficult to solve,
with closed-form solutions available only for an FJQN with
M/M/1 queuing servers and fanout degree of two or two
Fork nodes. Although approximate solutions are available, the
design space they cover falls short of the above requirements.
Table I depicts the desired design space to be covered and
the notable existing approximate solutions, together with the
areas in the design space they cover. As one can see, except
for ForkTail [5] and ForkMean [6], all other solutions fail
to cover the case of long-tailed distributions. The area that
ForkTail covers allows it to apply to user-facing applications
with request tail-latency SLOs. Yet, it alone is insufficient
to deal with user-facing applications, which call for latency

978-1-6654-5408-7/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 N

et
w

or
ki

ng
, A

rc
hi

te
ct

ur
e

an
d

St
or

ag
e

(N
AS

) |
 9

78
-1

-6
65

4-
54

08
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

N
AS

55
55

3.
20

22
.9

92
55

31

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:20:43 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EXPLORING DESIGN SPACE

mean and variance estimation as well. ForkMean provides
the similar coverage for background batch applications with
request mean-latency SLOs, except that it was not designed
to fit the case where fanout degrees are smaller than 100.
To the best of our knowledge, GV [7] is the only solution
available that is capable of estimating latency variance, which
however, only works for the case where the fanout degree is
small. In other words, the design space covered by the existing
solutions are insufficient to facilitate resource allocation for
cloud applications in general.

In this paper, we put forward ForkMV, a latency mean
and variance estimation solution for FJQNs that fills the void
of the design space in Table I, and hence, together with
ForkTail, provides a much needed tool to facilitate effective
resource allocation for cloud applications. Just like ForkMean
[6], ForkMV is derived based on ForkTail [4], [5]. However,
ForkMV employs a more elaborate modeling technique to
allow accurate estimation of the mean latency at any given
fanout degree, including those smaller than 100. Moreover,
ForkMV also allows the latency variance at any fanout degree
to be estimated with high accuracy. The testing results demon-
strate that ForkMV can estimate latency mean and variance
consistently within 15% of the simulation results at any load
level for FJQN with short-tailed M/M/1 queuing servers and
within 10% of the simulation results at 90% load or higher
for FJQN with a long-tailed Truncated Pareto distribution.

II. RELATED WORK

For FJQNs, the exact closed-form solution is only available
for a 2-node FJQN with M/M/1 fork queues, which alludes
to the complexity in solving FJQNs [8], [9]. This motivated
the development of various response time approximation tech-
niques [[10], [11], [12], [7], [13], [9], [6]], most of which can
only approximate FJQN with M/M/1 queues. Others focus on
getting the response time bounds [14], [15].

Table I covers some major approximation techniques. EV
[10] derives response time approximation using mean value
analysis (MVA) for FJQNs with exponential service time
distributions. AM [11] uses MVA to come up with the re-
sponse time approximation of heterogeneous multi-class Fork-

TABLE II
NOTATION SUMMARY

Symbol
λ Arrival rate
n Number of Tasks
µ Service rate

G(t) Service time cumulative distribution function (CDF)
α Shape parameter of Truncated Pareto service time distribution
L Lower bound of Truncated Pareto service time distribution
H Upper bound of Truncated Pareto service time distribution

FT (t) Task response time cumulative distribution function (CDF)
β Scale parameter of generalized exponential distribution
η Shape parameter of generalized exponential distribution
E Mean of task response time
V Variance of task response time
ρ Utilization

FJ (t, n) CDF of the job response time
tp pth-percentile job tail-latency
∆m Tail latency to Mean latency gap

tp and tm Exact tail latency and mean latency
tap and tam Analytically estimated tail and mean latency

w The Right Quantile Weight of G(t)
q Quantile
∆s Tail latency to standard Deviation latency gap

ts and tas Exact and analytically estimated standard deviation latency
Gge Generalized exponential distribution function

Join structure for open and closed queuing networks, again
for exponential service time distributions only. VMC [12]
works with FJQNs with M/M/1 queues and puts forward
an algorithm to find optimistic and pessimistic bounds and
mean response time approximation. Although designed for
exponential service time distribution, VMC was applied to and
tested for long tail distributions as well. GV [7] estimates
the mean response time of a cloud computing system by
modeling virtual machines to act as devices in FJQNs with
M/M/1 queues and estimates the mean response time by using
a combination of analytical approach with an empirical one. It
only studies the case with fanout degrees up to 20. VM [13]
provides a heuristic to estimate mean response time for FJQNs
with Erlang-2 (E2) and Hyperexponential-2 (H2) service time
distributions with Poisson arrivals. The authors study fanout
degrees only up to 20. NT [9] uses a scaling approximate
technique to come up with mean response time approximation

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:20:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. A M/G/1-based FJQN model

for FJQNs with short-tailed service time distributions. Fork-
Mean [6] can estimate the mean response time for FJQNs
with both short and long tailed service time distributions with
the estimation errors becoming relatively large at low fanout
degrees, especially for short-tailed distributions.

To the best of our knowledge, GV [7] is the only work
that provides variance response time approximation along with
mean approximation. GV provides a mathematical model and a
neural networks model to approximate the variance for fanout
degrees no larger than 20. The neural networks model would
need one to train at every fanout degree and hence is not
practical for higher degrees of fanout. ForkTail [5] and EAT
[16] are tail response time estimation solutions. While EAT
works for FJQNs with short-tailed service time distributions,
ForkTail works for FJQNs with both short and long tailed
distributions.

III. FORKMV

This section is organized as follows. Section III-A defines
the FJQN models to be studied. Section III-B summarizes the
prior results ForkMV is based upon. Section III-C presents
ForkMV.

A. Model

We consider M/G/1-based FJQNs as depicted in Fig. 1. Job
arrivals follow a Poisson arrival process with mean arrival
rate, λ. Note that the Poisson process has been considered
to be a good model to characterize the job arrival processes
in operational data center clusters [17]. Each job spawns n
tasks, which are dispatched to n Fork nodes to be queued
and serviced by a single server based on an M/G/1 FIFO
queue, where G represents a known service time distribution of
practical interests with cumulative distribution function (CDF)
denoted as G(t), which may be short, medium, or long tailed.
In this paper, we only consider the homogeneous case where
queuing servers at all the Fork nodes share the same CDF,
G(t), although in principle, ForkMV can be generalized to deal
with heterogeneous cases as well. This means that an M/G/1-
based FJQN is uniquely determined by G(t). The triangle on
the right represents the synchronization barrier, meaning that
the job does not complete until its slowest task finishes. In

other words, the job response time or latency (in this paper, we
use response time and latency interchangeably) is determined
by its slowest task.

To cover a sufficiently wide range of FJQNs of practical
interests, in this paper, we shall focus on the following two
FJQNs:
- Short-tailed exponential service time distribution:

G(t) = 1− e−µt, (1)

where µ is the mean service rate.
- Long-tailed Truncated Pareto service time distribution:

G(t) =
1− Lαt−α

1− (L
H)α

, (2)

where α is the shape parameter and L and H are the lower and
upper bounds, respectively. Here, α determines the heaviness
of the tail and according to [6], for real data center workloads,
α < 2. Hence, to cover the workloads of practical interests,
in all our case studies, we set α = 2.0119, to cover the worst
case scenario.

B. Prior Work

This section summarises the results from the prior work
[4]–[6] the current solution is based on.

ForkTail [4], [5]: In the design of ForkTail, two approxima-
tions are made. The first approximation is to assume that the
task response time CDF, FT (t), can be adequately expressed
as a generalized exponential distribution, i.e.,

FT (t) ≈

{
(1− e−βt)η , t > 0

0 otherwise.
(3)

Where β and η are the scale and shape parameters, respec-
tively, which satisfy the following equations,

E =
1

β
[Ψ(η + 1)−Ψ(1)], (4)

V =
1

β2
[Ψ′(1)−Ψ′(η + 1)], (5)

Where Ψ and its derivative(s) are digamma and polygamma
functions, respectively, and E and V are the mean and variance
of task response time. Hence, the two parameters are uniquely
determined by E and V . In other words, E and V uniquely
determine FT (t). Since we assume that the CDF for the
task service time, G(t), is a given, according to the Takacs
recurrence theorem [20], we have,

E = E[s](1 +
ρ

1− ρ
∗ 1 + Cs2

2
), (6)

and,

V = E [w]
2
+

λE
[
s3
]

3 (1− ρ)
+ E

[
s2
]
− E [s]

2
, (7)

where E[sk] is the kth moment of service time, which can be
easily calculated given G(t), ρ = λE [s] is the queuing server

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:20:43 UTC from IEEE Xplore. Restrictions apply.

utilization, Cs is the coefficient of variation of the service
time, and E [w] = λE

[
s2
]
/ [2 (1− ρ)] is the mean of the

task waiting time. In other words, with any given FJQN with
known G(t), the task response time distribution is known and
given by Eq. (3).

The second approximation made in ForkTail is to assume
that the task response times for all the tasks belonging to
the same job are independent random variables, and hence,
according to the extreme value theorem [21], the CDF of
the job response time, FJ(t, n), the ordered statistics, can be
expressed as follows,

FJ(t, n) = FT (t)
n =

{
(1− e−βt)ηn, t > 0

0 otherwise.
(8)

With this CDF, the job mean, variance, and tail latency can
be calculated analytically. In particular, the pth-percentile job
tail-latency of tp time units can be written as,

tp = F−1
J (

p

100
, n) =

−1

β
ln(1− (

p

100
)(

1

ηn
)). (9)

It turns out that ForkTail above provides sufficiently
accurate estimation of the tail latency for resource allocation
throughout the entire load range of [0, 100]% and 80%
load or higher for short-tailed and long-tailed G(t)’s of
practical interests, respectively [4]–[6]. This makes ForkTail a
practically useful tool to facilitate effective resource allocation
for user-facing applications.

ForkMean [6]: The design of ForkMean is based on
two key observations. The first observation is that although
directly applying Eq. (8) to estimate the mean latency results
in relatively large errors, especially in the case of FJQNs
with short-tailed task distributions, the gap between the
exact tail-latency-to-mean-latency ratio and its estimated
counterpart stays almost unchanged, as the fanout degree
n becomes large (e.g., above 100), regardless of the load.
Mathematically, it means that the gap, ∆m(ρ, n,G), defined
as follows,

∆m(ρ, n,G) =
tp
tm

−
tap
tam

, (10)

can be viewed as a constant for any given G(t) (or any given
FJQN) and ρ (0 < ρ < 1) for any n(> 100), where tp and tm
are the exact tail latency and mean latency, respectively (they
can be accurately measured based on long simulation runs)
and tap and tam are the tail latency and mean latency estimated
analytically using the above ForkTail approximation technique.
Fig. 2(a) and 2(b) give two examples to demonstrate that this is
indeed the case, respectively. Since the estimated tail-latency
tap is accurate, meaning that tp ≈ tap is a good approximation,
substituting it into Eq. (10) and rearranging Eq. (10), we have,

tm ≈
tap

tap
tam

+∆m(ρ, n,G)
. (11)

In other words, as long as the gap, ∆m(ρ, n(> 100), G),
can be accurately estimated, tap and tam estimated using the

TABLE III
TABLE FROM [NGUYEN ET AL. 2020]

ρ ∆
75% 0.0371w−7.517 − 0.0052
80% 0.0322w−8.008 + 0.0056
90% 0.0274w−8.654 + 0.0284

ForkTail approximation technique can still be employed to
accurately estimate the job mean latency at n > 100. Now,
the problem boils down to the one of estimating, ∆m(ρ, n(>
100), G). Note that if ∆m is indeed a direct function of FJQN
or G, it will have to be modeled one FJQN at a time. To allow
it to be applied to any FJQN or G, it takes us to the second
observation.

The second observation is that the gap, ∆m(ρ, n(> 100), G)
is much less of a function of the task service time distribution,
G(t), than the Right Quantile Weight of G(t), w(G), or the
tail weight for short, i.e., ∆m = ∆m(ρ, n, w(G)), where w(G)
is defined as follows [22],

w(G) =
G−1(1+q

2) +G−1(1− q
2)− 2G−1(0.75)

G−1(1+q
2)−G−1(1− q

2)
. (12)

where quantile, q, is set to 0.99 to capture the tail effect.
This observation implies that as long as two different FJQNs
with distinct task service time distributions, G1(t) and G2(t),
have the same tail weight value, i.e., w(G1) = w(G2),
they share the same gap. This makes it possible to use the
generalized exponential distribution function in Eq. (3) to
generate different task service time distributions by tuning the
parameters, β and η, to cover a wide range of possible tail
weights. Then for each distribution or w thus obtained and
each load, ρ, of interest, use Eq. (10) to estimate ∆m at an n
value greater than 100. This allows ∆m(ρ, n(> 100), w) as a
function of w to be established for different ρ’s. For example,
Table III (i.e., Table II in [6] lists the gaps as a function of w
at three different loads.

With the above preparation, ForkMean then works as fol-
lows. For any FJQN with a given G(t), ForkMean first
calculates w(G) by Eq. (12). Then, at a given load of interest,
e.g., ρ = 80%, ForkMean uses w(G) thus obtained as input
to find ∆m from Table III. Finally, Substituting ∆m thus
obtained, together with tap and tam estimated analytically by
means of FJ in Eq. (8), the ForkTail approximation technique,
into Eq. (14) to estimate the job mean latency for n > 100.

C. ForkMV: Filling the Void

ForkMV aims to fill the two voids in the design space in
Table I: (a) extend ForkMean to cover the entire fanout degree
dimension; and (b) develop a solution that can estimate the
variance for the entire fanout degree dimension. In what
follows, we develop the two, separately.

Mean Estimation: To extend ForkMean to cover n < 100,
we note from Fig. 2(a) and 2(b) that ∆m is roughly an
increasing function of n but the impact of n diminishes as

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:20:43 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c) (d)

Fig. 2. At ρ = 90%, mean gaps for plots (a) and (b), and standard deviation gaps (abbreviated to std) for plots (c) and (d), for exponential and truncated
Pareto distributions, respectively

TABLE IV
MEAN GAP FUNCTION

ρ ∆m

75% (−0.3577/(nw)) + (0.039w−7.34)
80% (−0.3838/(nw)) + (0.04152w−7.354)
90% (−0.3646/(nw)) + (0.05124w−7.08)

TABLE V
STD GAP FUNCTION

ρ ∆s

75% 0.599 +−0.2394 log(1 + (nw))/w2.568

80% 0.6009 +−0.2522 log(1 + (nw))/w2.476

90% 0.6152 +−0.2757 ∗ log(1 + (nw))/w2.317

(a) (b) (c)

Fig. 3. Standard deviation gap (∆s) vs tail weight (w) at ρ = 75%

(a) (b)

Fig. 4. Standard deviation gap (∆s) vs fanout degree (n) at ρ = 75% for (a) exponential distribution and (b) truncated Pareto distribution

n reaches 100 and beyond. We also note that ∆m takes
the following function format: ∆m = a(ρ) + b(ρ)wc(ρ) for
n > 100, according to Table III. These observations prompt
us to extend this format to include another term that is
inversely proportional to n. This term is negative. It helps
reduce the gap as n gets smaller and becomes negligibly
small as n exceeds 100, so that ∆m becomes pretty much a
constant with respect to n for n > 100. We used MATLAB’s
curve fitting toolbox [18] to perform nonlinear regression
and generate a custom fit for the function format above. It
turns out that at the loads, ρ = 75%, 80%, and 90%, where
resource allocations are desirable, the fitted gap functions
in Table IV give smallest sum of squared estimate of errors

(SSE) (i.e., 0.2938, 0.3887, and 1.3320, respectively), an
indicator of goodness of fit. SSE measures the difference
between data points and predicted model.

In summary, ForkMV follows the same steps as ForkMean
to estimate the mean latency analytically, except that now it
uses Table IV, not Table III.

Variance Estimation:
We find that just like the mean latency estimation, the

variance estimation based on the ForkTail approximation is
inaccurate. To see if the approach taken for the mean latency
estimation can be applied here as well, we define the tail-to-

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:20:43 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

(d) (e) (f)

Fig. 5. At ρ = 90% for both exponential and truncated Pareto distributions respectively, (a) and (b) mean response time, (c) and (d) standard deviation
response time, (e) and (f) response time variance

standard deviation ratio gap, ∆s, as follows,

∆s(ρ, n,G) =
tp
ts

−
tap
tas
, (13)

where ts and tas are the exact standard deviation and the
estimated standard deviation by means of FJ given in Eq.
(8). Note that here we use standard deviation (i.e., the square
root of variance) rather than variance itself, because the tail-to-
standard-deviation ratio is unitless, whereas the tail-to-variance
is not. As seen in Fig. 2(c) and 2(d), ∆s increases with n,
similar to ∆m. However, unlike ∆m, it does not converge
to a constant as n increases. This means that ∆s is a strong
function of n, which must be explicitly modeled. Again letting
tp ≈ tap, Eq. (13) can be rewritten as,

ts ≈
tap

tap
tas

+∆s(ρ, n,G)
. (14)

Namely, the problem boils down to the one of modeling
∆s(ρ, n,G).

Before we proceed further, again, we want to know if the
dependence of ∆s on G can be translated into the dependence
of ∆s on w(G) instead, so that the solution can be applied
to all FJQNs, rather than one FJQN at a time. To this end,
we draw in Fig. 3 the curves of ∆s(ρ, n,Gge) as a function
of w, at n = 10, 100, 1000 and ρ = 75%, generated by
Gge, the generalized exponential distribution function given
in Eq. (3), at different β and η values. Now, we also plot
∆s for both exponential and truncated Pareto distributions
at their respective tail weights. As one can see, these data
points fall near the curves, especially for those corresponding
to the exponential distribution. Our experiment also shows that
they fall closer to the curves as the load, ρ, further increases
(not shown here due to page limitation). This observation
implies that ∆s(ρ, n,G) ≈ ∆s(ρ, n, w(G)) is a reasonably
good approximation.

To model ∆s(ρ, n, w), we first make two observations. First,
Fig. 3 clearly indicates that ∆s is a negative function and it
increases and approaches zero as w increases. In other words,
∆s is likely to be inversely proportional to w. Second, as
clearly shown in Fig. 4, ∆s decreases logarithmically fast as
n increases. These two observations make it possible for us to
find ∆s with very small SSE values using the curve fitting tool
in MATLAB. Specifically, Table V gives the fitted functions
for standard deviation gap at three different load levels 75%,
80% and 90% with SSE values of 2.3845, 2.4967 and 2.4826
respectively, as indicators of goodness of fit.

Finally, following the same procedure for the estimation of
the mean latency, the standard deviation and hence the variance
can be estimated for any FJQN or G(t) analytically.

IV. PERFORMANCE EVALUATION

In this section we use simulation to generate exact measures
to evaluate and validate ForkMV. We use exponential service
time distribution with µ−1 = 1 ms to model short tailed
distribution and truncated Pareto service time distribution with
the upper bound H as 276.6ms, lower bound L as 2.14ms, α
as 2.0119 and coefficient of variance, CV, as 1.2 to model long
tailed distributions.

Fig. 5 gives the mean, standard deviation and variance
gap correction using ForkMV. After correcting the gap, the
prediction error of mean response time and response time
variance between exact measurement and approximation
in both exponential and truncated Pareto distribution cases
is less than 15% at the high load region, i.e., ρ=90%.
This is where the resource provisioning becomes quite
challenging [19]. Our test results at lower loads also
indicate (not shown here due to page limitation) that while
exponential service time distribution gets accurate mean
and variance approximation at all load levels, truncated
Pareto service time distribution’s standard deviation and

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:20:43 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

(c) (d)

Fig. 6. Mean response time validation,at ρ = 90%,for (a) exponential service time distribution and (b) truncated Pareto service time distribution; (c) and (d)
Average prediction error comparison for exponential and truncated Pareto distributions respectively

(a) (b) (c)

Fig. 7. At ρ = 90%, variance Response time validation for (a) exponential service time distribution, (b) truncated Pareto service time distribution,(c) average
prediction error

variance approximation are not as accurately approximated.
For example, at loads of ρ = 75% and 80%, the estimation
errors reaches 40% and 30% respectively. This follows
the fact that tail approximation of long tailed distributions
give increased prediction errors as the load decreases [4].
Since we use the tail approximation to calculate standard
deviation latency approximation, such errors are expected.
Additionally, we have used α = 2.0119 as a parameter in the
service time distribution of long-tailed truncated Pareto, as
opposed to α < 2, to cover all the practical regions of interest.

Mean Estimation Comparison: Fig. 6(a) gives a detailed
comparison of ForkMV with related work, at ρ = 90%,
for exponential service time distribution. ForkMV gives
best results in the lower fanout region while outperforming
ForkMean throughout n. It is on par with NT overall,
performing better in the low fanout region and slightly behind
NT in the higher fanout region. ForkMV performs much better

than VMC and GV. Note that GV is only compared from n=1
to 20, which is the fanout degree used by the authors of the
paper. ForkMV for truncated Pareto distribution, as shown in
Fig. 6(b), at lower fanout degree (n <10) is not as good as
ForkMean but performs better than ForkMean throughout the
rest of n. It also gives much better prediction errors than NT
and VMC, which are specifically designed for exponential
distributions.

Fig. 6(c) and 6(d) depict the mean response time errors,
averaged over n=1 to 4000, for exponential and truncated
Pareto service time distributions, respectively. GV is omitted
from these plots to show consistency of the average value
taken. For exponential distribution, error for ForkMV is better
than ForkMean and VMC, and falls second to NT, which was
specifically designed for FJQN M/M/1 queues. For truncated
Pareto distribution, the average prediction error is far less
than VMC and NT and while on par with ForkMean but

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:20:43 UTC from IEEE Xplore. Restrictions apply.

slightly better at ρ = 90%. Unlike NT, ForkMV however,
performs consistently well for both exponential and truncated
Pareto distributions.

Variance Estimation Comparison: Fig. 7 gives the com-
parison of variance approximation at ρ = 90%. A comparison
is provided only up to fanout degree of 20 for GV, the largest
fan-out degree tested and ForkMV n = 1 to 2000. ForkMV
outperforms GV. In fact, ForkMV provides less prediction
errors even at higher fanout degrees, as can be seen in Fig.
7(a). Fig. 7(b) shows error for truncated Pareto distribution
for ForkMV (note that GV cannot be applied to Pareto
distribution), which is < 10%. Fig. 7(c) presents the average
prediction error comparison of ForkMV and GV. Note that
ForkMV’s average is the average of prediction errors over the
fanout degree range of 1 to 4000, while GV’s average is the
average of fanout degree 1 to 20. Even with such high fanout
degree range, ForkMV’s prediction is more accurate than GV.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed ForkMV, an approximation
technique to estimate both mean and variance response time
for Fork-Join queuing networks (FJQNs) with M/G/1 queues,
covering short, medium and long tailed service time distribu-
tions. Driven by both short-tailed exponential and long-tailed
truncated Pareto distributions, our simulation test results of
ForkMV demonstrate that ForkMV gives better prediction in
most cases than the state-of-the-art solutions. ForkMV can
estimate both mean latency and latency variance with less
than 15% errors at the load of 90% or higher, where resource
allocation is challenging and matters the most. In our future
work, we plan to develop a resource allocation solution for
cloud applications in a data center computing architecture,
underpinned by ForkMV, together with ForkTail, a tail latency
estimation technique [5].

ACKNOWLEDGMENT

This work was supported by the US NSF under Grant No.
CCCF SHF-1704504 and CCF SHF-2008835.

REFERENCES

[1] Awasthi, M., Suri, T., Guz, Z., Shayesteh, A., Ghosh, M., Balakrishnan,
V. (2015, January). System-level characterization of datacenter applica-
tions. In Proceedings of the 6th ACM/SPEC International Conference
on Performance Engineering (pp. 27-38).

[2] Barroso, L. A., Dean, J., Holzle, U. (2003). Web search for a planet:
The Google cluster architecture. IEEE micro, 23(2), 22-28.

[3] Dean, J., Ghemawat, S. (2008). MapReduce: simplified data processing
on large clusters. Communications of the ACM, 51(1), 107-113.

[4] Nguyen, M., Li, Z., Duan, F., Che, H., Jiang, H. (2016). The tail at
scale: how to predict it?. In 8th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 16).

[5] Nguyen, M., Alesawi, S., Li, N., Che, H., Jiang, H. (2018, June).
ForkTail: A black-box fork-join tail latency prediction model for user-
facing datacenter workloads. In Proceedings of the 27th International
Symposium on High-Performance Parallel and Distributed Computing
(pp. 206-217).

[6] Nguyen, M., Alesawi, S., Li, N., Che, H., Jiang, H. (2020). A black-box
Fork-join latency prediction model for data-intensive applications. IEEE
Transactions on Parallel and Distributed Systems, 31(9), 1983-2000.

[7] Gorbunova, A. V., Vishnevsky, V. M. (2020). Estimating the response
time of a cloud computing system with the help of neural networks.
Advances in Systems Science and Applications, 20(3), 105-112.

[8] Flatto, L., Hahn, S. (1984). Two parallel queues created by arrivals
with two demands I. SIAM Journal on Applied Mathematics, 44(5),
1041-1053.

[9] Nelson, R., Tantawi, A. N. (1988). Approximate analysis of fork/join
synchronization in parallel queues. IEEE transactions on computers,
37(6), 739-743.

[10] Varki, E. (2001). Response time analysis of parallel computer and
storage systems. IEEE Transactions on parallel and distributed systems,
12(11), 1146-1161.

[11] Alomari, F., Menasce, D. A. (2013). Efficient response time approxi-
mations for multiclass fork and join queues in open and closed queuing
networks. IEEE Transactions on Parallel and Distributed Systems, 25(6),
1437-1446.

[12] Varki, E., Merchant, A., Chen, H. (2008). The M/M/1 fork-join queue
with variable sub-tasks. unpublished, available online.

[13] Varma, S., Makowski, A. M. (1994). Interpolation approximations for
symmetric fork-join queues. Performance Evaluation, 20(1-3), 245-265.

[14] Balsamo, S., Donatiello, L., Van Dijk, N. M. (1998). Bound per-
formance models of heterogeneous parallel processing systems. IEEE
transactions on parallel and distributed systems, 9(10), 1041-1056.

[15] Chen, R. J. (2010). An upper bound solution for homogeneous fork/join
queuing systems. IEEE Transactions on Parallel and Distributed Sys-
tems, 22(5), 874-878.

[16] Qiu, Z., Pérez, J. F., Harrison, P. G. (2015). Beyond the mean
in fork-join queues: Efficient approximation for response-time tails.
Performance Evaluation, 91, 99-116.

[17] Meisner, D., Sadler, C. M., Barroso, L. A., Weber, W. D., Wenisch, T.
F. (2011, June). Power management of online data-intensive services. In
Proceedings of the 38th annual international symposium on Computer
architecture (pp. 319-330).

[18] MATLAB. (2019). 9.7.0.1216025 (R2019b). Natick, Massachusetts: The
MathWorks Inc.

[19] Delimitrou, C., Kozyrakis, C. (2014). Quasar: Resource-efficient and
qos-aware cluster management. ACM SIGPLAN Notices, 49(4), 127-
144.

[20] Kleinrock, L. (1975). Theory, volume 1, Queueing systems. Wiley-
Interscience.

[21] De Haan, L., Ferreira, A., Ferreira, A. (2006). Extreme value theory:
an introduction (Vol. 21). New York: Springer.

[22] Brys, G., Hubert, M., Struyf, A. (2006). Robust measures of tail weight.
Computational statistics data analysis, 50(3), 733-759.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:20:43 UTC from IEEE Xplore. Restrictions apply.

