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Abstract
Popular software storage architecture Linux Multiple-Disk

(MD) for parity-based RAID (e.g., RAID5 and RAID6) as-

signs one or more centralized worker threads to efficiently

process all user requests based on multi-stage asynchronous

control and global data structures, successfully exploiting

characteristics of slow devices, e.g., Hard Disk Drives (HDDs).

However, we observe that, with high-performance NVMe-

based Solid State Drives (SSDs), even the recently added

multi-worker processing mode in MD achieves only limited

performance gain because of the severe lock contentions un-

der intensive write workloads.

In this paper, we propose a novel stripe-threaded RAID

architecture, StRAID, assigning a dedicated worker thread

for each stripe-write (one-for-one model) to sufficiently ex-

ploit high parallelism inherent among RAID stripes, multi-

core processors, and SSDs. For the notoriously performance-

punishing partial-stripe writes, StRAID presents a two-phase

stripe write mechanism to opportunistically aggregate stripe-

associated writes to minimize write I/Os; and designs a parity

cache to reduce write-induced read I/Os on parity disks. We

evaluate a StRAID prototype with a variety of benchmarks

and real-world traces. StRAID is demonstrated to consistently

outperform MD by up to 5.8 times in write throughput without

affecting the read performance.

1 Introduction
The advent of ultra-fast storage devices such as NVMe-

based Solid-State Drives (SSDs) and Non-volatile Memory

(NVM) with GB/s-level I/O bandwidth has dramatically nar-

rowed the performance gap between memory and storage.

Redundant Array of Inexpensive Disks (RAID) [56] can com-

bine multiple such high-performance storage devices to fur-

ther promote the overall storage performance, reliability, and

capacity simultaneously. Many empirical studies [11, 19, 35]

including distributed datacenter storage systems [49, 70] and

enterprise storage systems [48] report that SSD drivers exhibit
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reliability problems in that more than 20% of SSDs develop

uncorrectable errors in a four-year period [58]. Therefore,

parity-based RAIDs composed of ultra-fast SSDs have be-

come attractive storage systems for modern data-intensive ap-

plications in supercomputing [55], big data analytics [27, 64],

machine learning [8], enterprise storage [48], and cloud ser-

vices [1, 32, 38, 46, 61].

HDD-based RAIDs have been extensively studied since

1988 [56]. In the literature, recent studies focus on SSD-based

RAID and All-Flash-Array (AFA), with efforts to reduce SSD

write-penalty by mitigating parity update [9, 16, 67], reduce

garbage-collection induced performance jitter [23,33,42], and

optimize AFA using declustering RAID approach to balance

load within devices and reduce tail-latency [30, 75]. Existing

RAID I/O handling techniques generally adopt a centralized

stripe-processing architecture following a classic principle

that trades more fast-CPU-cycles (e.g., scheduling algorithms)

for fewer slow-I/Os. Nonetheless, the question of whether

such RAID architecture can fully exploit the power of emerg-

ing fast storage remains unanswered.

We experimentally measure the actual performance of

Multiple-Disk (MD) [45], the most popular and mature soft-

ware RAID integrated into the Linux kernel for over two

decades. We conduct MD running on 6 NVMe-based SSDs

with 64 user threads (i.e., issuing block requests) and 64 work-

ers threads (i.e., handling RAID stripe-writes), with the ex-

periment environment summarized in Tables 1 and 2. The

results are shown in Figure 1 (detailed in Section 3.1). With

RAID0 (non-parity RAID-level), MD obtains an expected

performance that approaches the aggregate raw I/O capacity

of the underlying SSDs, i.e., 20GB/s and 14GB/s for read

and write throughputs respectively. However, MD falls far

short of the expectation in write performance in RAID5 and

RAID6 (parity-based RAID-levels). Specifically, the write

throughput of RAID5 is below 2.2GB/s under partial-stripe

writes and below 5.2GB/s under full-stripe writes, which are

only about 1/7 and 1/3 of that of RAID0, respectively. Al-

though parity-RAIDs introduce extra parity-compute over-

heads, our measured XORing rate on a CPU core can reach
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up to 29GB/s [29], which is clearly not the bottleneck.

Through profiling (detailed in Section 3.2), we experimen-

tally uncover that the write inefficiency of parity-based RAID

comes from a centralized stripe-handling architecture in the

legacy MD. Specifically, a worker thread using shared data

structures (e.g., stripe-list) handles write requests by effi-

ciently collaborating with user threads, XORing threads, and

device I/O threads. For HDDs and slow SSDs, this one(worker

thread)-for-all(stripe) architecture utilizes fast CPU suffi-

ciently by postponing stripe-writes to absorb more requests

for reducing actual I/Os. However, a single worker thread is

upper-bounded in its processing capability that fails to keep

up with the fast storage. The latest MD introduces a multi-

worker mechanism, referred to as the N-for-all processing

model, but achieves a limited performance gain due to severe

lock contention on the centralized data structures.

In this paper, we propose a novel stripe-threaded architec-

ture, called StRAID, for parity-based RAIDs built on ultra-

fast storage devices such as NVMe-based SSDs. To ad-

dress the architectural drawback of the existing software

RAID (MD), StRAID employs a one(worker)-for-one(stripe)

model, thus significantly reducing the number of stripe-states

and their lock-based checks. Furthermore, StRAID adopts

a fine-grained stripe-level lock, substantially mitigating con-

tentions on shared data structures. To tame the notoriously

performance-degrading partial-stripe writes, StRAID further

designs a two-phase stripe submission mechanism that oppor-

tunistically aggregates subsequent incoming writes belonging

to the same stripe within a limited time window. Meanwhile,

StRAID proposes a parity-block cache to speed up frequent

write-induced parity reads. Fundamentally, StRAID effec-

tively exploits stripe-based data parallelism while mitigat-

ing intra-stripe conflicts between the dedicated stripe worker

thread and other threads. StRAID leverages the power of mul-

ticore CPUs that offers sufficient inexpensive-threads to fully

unleash the superior IOPS provided by fast SSDs.

The main contributions of this paper are as follows.

• We experimentally observe a serious write inefficiency

problem in the current MD when parity-based RAID is

running on ultra-fast storage. We further reveal that the

root cause is the centralized one-for-all stripe-handling

architecture.

• We propose a novel parity-RAID processing architec-

ture, StRAID, guided by a stripe-threaded one-for-one

model to unleash the full performance potentials of mod-

ern hardware. We also present two key techniques, op-

portunistic stripe-aggregation and parity-block cache, to

improve the performance of partial-stripe writes.

• We prototype and evaluate StRAID with a variety of

benchmarks and real-world workloads. StRAID con-

sistently outperforms MD by up to 5.8 times in write

throughput without affecting the read performance while

reducing CPU utilization.

The rest of the paper is organized as follows. Section 2

presents the background for RAID. Section 3 analyzes the

performance behaviors of Linux software RAID (MD) and

motivates the StRAID design. Section 4 describes StRAID’s

design. We evaluate StRAID in Section 5 and describe related

works in Section 6 . Section 7 concludes this paper.

2 Background

2.1 RAID Systems
Redundant Array of Inexpensive Disks (RAID) [56] is a

classic system-level approach that combines multiple disks to

improve performance, reliability and capacity simultaneously.

Over the past decades, RAID has been used ubiquitously to

construct and manage efficient storage servers, distributed

storage [5, 54], and cloud storage [1, 38] from within and/or

among storage devices.

The RAID architecture is categorized into various RAID

levels based on the amount of redundancy and how redun-

dancy is incorporated, including non-parity RAIDs (e.g.,

striping-only RAID0 and mirroring-only RAID1) and par-

ity RAIDs (e.g., RAID5 and RAID6 that can tolerate one and

two disk failures respectively). RAID can be implemented in

either software or dedicated hardware (e.g., I/O controllers or

firmware) to offer the block-addressable volume. A common

N-disk RAID internally consists of multiple stripes, each of

which comprises user data chunks and their corresponding

parity data chunks across N disks according to an algorithmic

address-mapping method. Normal reads without disk failure

are directly decomposed to their constituent chunk I/Os served

by the underlying disks. Normal writes in non-parity RAIDs

behave like normal reads without accessing parity chunks.

Normal writes in parity-based RAIDs need extra parity gen-

eration, update, or construction operations. For a full-stripe

user write where all data chunks of a stripe are written, the

RAID system generates all new parity chunks at once, and

then writes both data chunks and parity chunks into their

corresponding disks. For a partial-stripe write where only a

subset of the data chunks of a stripe are written, only after its

constituent old data or parity chunks are read from the disks

is the stripe updated and then written into the disks again,

thus inducing numerous extra I/Os [9, 30]. This read-modify-

write nature of partial-stripe writes makes them notoriously

costly. When disks fail within the failure-tolerance range, the

RAID transitions from its normal mode to a degraded mode

to perform read, write, or resync operations.

2.2 Linux Software RAID
The Linux software RAID module, referred to as Multiple-

Disk (MD) [45], is the most commonly used software RAID

evolving with the Linux Kernel for over two decades. Cur-

rently, MD supports various RAID levels and RAID composi-

tions. Non-parity-based RAIDs in MD perform an algorithmic
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(a) 860PRO (64KB Write) (b) 970PRO (64KB Write) (c) 980PRO (64KB Write) (d) 980PRO (1MB Write) (e) 980PRO (64KB Read)

Figure 1: The throughput of Linux software RAIDs on three-types of SSDs under varying number of user threads.
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Figure 2: Architecture of Linux MD parity-based RAID.

block-to-chunk address mapping. For parity-based RAIDs,

normal reads are similar to those in a non-parity-based RAID

without parity operation. However, writes inevitably intro-

duce several additional parity-generation/modification oper-

ations. Figure 2 shows the architecture of MD parity-based

RAIDs and Figure 3 shows the workflow of their stripe-writes.

The centralized data structure (stripe-cache) comprises inac-

tive and handling stripe-lists, which maintain the metadata

of the stripes (up to 256 by default). Each stripe has its own

stripe_head containing stripe states and device states (Devs).

Devs contains a set of block request structures (bios) pointing

to their buffered pages. Specifically, a stripe and its corre-

sponding Devs have 28 and 27 states respectively that are

used to precisely identify the handling states of this stripe.

When a stripe is processed and cleared, its corresponding

stripe_head will be transferred into the inactive_list.

MD handles stripe-writes using a state machine represented

as a directed acyclic graph (DAG) [17]. As shown in Fig-

ure 3, a normal user write process can be divided into 5

consecutive stages: 1) inserting/aggregating bios to a stripe

(INS); 2) reading data/parity chunks (RD); 3) computing par-

ity (XOR); 4) writing data/parity (WT); 5) clearing stripe

(CLR). Specifically, in the first stage �, user threads (UT)

invoke make_request() to attach bios to their correspond-

Read stageInsert stage XOR stage Write stage Clear stage
Stripe 1

Stripe 2

Figure 3: Stripe-write workflow of parity-based MD RAID.

ing stripe_head structures. Afterwards, a daemon worker

thread (WT), i.e., RAID5d in MD by default, handles all active

stripe_heads in a circular manner with priority.

For a full-stripe write, MD skips the second stage. For a

partial-stripe write, MD must introduce write-induced reads

�, resulting in I/O amplification. More specifically, there are

two stripe-updating schemes, read-modify-write (RMW) and

read-construction-write (RCW) [30]. MD calculates the re-

quired number of disk-read I/Os of both RCW and RMW,

selects the I/O-minimum approach, and launches the relevant

disk-read I/Os. When a disk I/O thread (DT) completes the

read, it sets a data-prepared flag to its bios. Afterwards, � WT

checks all the involved bios until prepared, and then launches

a parity-calculation executed by other XORing threads. When

WT verifies that the parity has been prepared, � it invokes

disk-write I/Os. � WT finally validates the completed state

and clears the stripe_head. Therefore, the write process or-

chestrates WT, UT, and DT threads via shared-state setting

and checking.

WT handles each stage of a stripe-write in four steps, as de-

scribed in Figure 3: 1© getting a stripe_head from a stripe_list;
2© analyzing the current state of this stripe and all its in-

volved bios, to determine whether this stripe is still in-flight;
3© handling the stripe by launching a given operation (e.g.,

XOR) through executing DAG; and 4© updating the stripe

state, inserting it back into a stripe_list and selecting the next

stripe. The worker thread handling a stripe exclusively ac-

cesses shared data structures and stripe-states using multiple

locks. For example, in step 4©, WT exclusively modifies han-

dle_list with a global device lock.

For HDD-based RAID, a disk I/O takes at least several

milliseconds. Therefore, a WT in Linux MD has sufficient

CPU-cycles to drive all stripe-writes. With the emerging SSDs

that have 2-3 orders of magnitude lower I/O latency than

HDD, MD also introduces a multi-worker mechanism [39,40]

that enables more numbers of functionally equivalent worker

USENIX Association 2022 USENIX Annual Technical Conference    917



Table 1: Evaluation Platform Specifications
Components Configurations

Processor Duel Socket Intel Xeon Gold 6328, 56 Cores, 128MB LLC

Memory 256GB 2666MHz DDR4

Operating System Ubuntu 20.10 LTS with the Linux kernel version 5.13.0

MD controller mdadm v4.1

Table 2: Characteristics of three representative SSD products.
Device
Types

Device
Modules Capacity Stable Write

Thr. (MB/s)
Stable Read
Thr. (MB/s) Interfaces

SATA SSD Samsung 860 Pro 512GB 500 510 SATA

NVMe SSD Samsung 970 Pro 512GB 2200 3200 PCIe 3.0

NVMe SSD Samsung 980 Pro 1TB 2600 6900 PCIe 4.0

threads to process stripes concurrently, referred to as the N-

for-all processing model.

3 Analysis and Motivation

3.1 Understanding the Write Performance

Experiment Setup We start with measuring the MD per-

formance in the RAID0, RAID5 and RAID6 levels running

on three types of SSD devices, whose I/O characteristics are

listed in Table 2. The platform configuration is shown in Ta-

ble 1. The XORing throughput on a single CPU-core can

reach up to 29GB/s. We deploy six SSD devices to construct

parity-based RAIDs, that is, 5+1 RAID5 and 4+2 RAID6

respectively. The chunk size in all RAIDs is set to 64KB

as default. We pin each user thread (UT) to a unique CPU-

core and increase the number of UTs from 1 to 64. Each UT

issues random 64KB-sized writes over 30 seconds. For parity-

RAIDs, we invoke up to 64 extra RAID worker threads (WT),

and enlarge the stripe cache capacity from the default of 256

stripe_heads to 16K stripe_heads.

Write Inefficiency with Parity-RAID Figure 1 reports

the throughput performance of MD. In all the cases, the write

performance and scalability of the non-parity RAID0 far

exceed those of parity-based RAID5 and RAID6. RAID0

achieves a write performance of about 1.4GB/s and 11GB/s

peak throughput on 860Pro and 980Pro SSDs at 64 UTs,

while RAID5 in the multi-worker mode achieves a peak write

performance of lower than 0.72GB/s and 5.3GB/s, respec-

tively. On 980Pro, the 64KB partial-stripe write throughputs

of parity-RAIDs are below 2.1GB/s, which is only 1/7 of that

of RAID0. Even for the 1MB full-stripe writes, the through-

puts of RAID5 and RAID6 with 64 UTs are below 5.2GB/s

and 5.3GB/s respectively, only about 38% of that of RAID0. It

indicates that parity-RAIDs fall short of leveraging the write

I/O performance of modern SSDs and the bottleneck on CPU

processing is the main reason. We will show more details in

the next section. Besides, normal reads of MD in all RAID

levels are generally similar and scale well with the number of

UTs.

We further analyze the write inefficiency of the multi-

worker mechanism with RAID5 on six 980Pro SSDs. We

invoke 64 UTs in either the single-worker (i.e., Single) mode

or the multi-worker mode with the number of WTs vary-

Figure 4: Write throughput of MD RAID5 under the multi-

worker mechanism.

Table 3: Key function calls and locks of Linux parity-RAID.
Operations Function as example Description

RD/WT generic_make_request()
Send bio to block device queues

( 2© in stages � and �)

XOR async_xor() Compute parity data ( 2© in stage �)

F/R List release_stripe()
Insert the stripe_head to stripe_list

according to its states ( 1© and 4©)

Lock spin_lock_irq(device_lock)
Global MD device Lock,

mainly used for updating shared structs

Analyze analyze_stripe()
Analyze the states of a stripe

and its Devs before handling ( 2©)

Others - Other software overhead

ing from 1 to 64 (i.e., +1W to +64W). Figure 4 shows that

the parity-based RAID gains limited benefits from the multi-

worker mode. For example, MD with 8 more WTs has a write

throughput improvement of 2.4x and 3.6x over the single-

worker mode under 16 and 64 UTs, respectively. However,

MD’s performance gain peaks at 16 WTs, beyond which MD’s

throughput starts to gradually decrease, e.g., with a 5% de-

cline at 64 WTs. This indicates that the multi-worker mode

has a diminishing return in performance beyond a relatively

small number of WTs. Therefore, even in the case of 64 UTs

and 64 WTs, parity-RAIDs still fall short of fully leveraging

the I/O bandwidth offered by the fast SSDs.

3.2 Identifying the Root Causes
We investigate the CPU usage distribution to identify the

root causes of poor write scalability of MD. We use RAID5

with fixed 64 UTs and vary the number of WTs from 1 to 64.

We use perf [44] to measure CPU cycles of key functions

within a WT thread, detailed in Table 3. We randomly select

one WT for analysis since all WTs behave very similarly in

our experiments. Figure 5 shows that CPU cycles of disk I/O

(RD/WT) and XORing (XOR) decrease as the number of WTs

increases, accounting for 42% of the total CPU cycles in the

single-worker mode, but only 9.7% at 64 WTs. Meanwhile,

the CPU cycles of stripe-write process (i.e., F/R List, Lock,

Analyze and Others) increase significantly as WTs increase.

First, the global device lock (Lock) consumes a mere 4.3%

of CPU-cycles in the single-worker mode but a dominant

54.6% in the 64-worker mode. As shown in Table 3, the de-

vice lock in Linux MD is spin lock, which controls concurrent

accesses from WTs, UTs, and DTs to all the stripe_lists and

metadata of RAID. In most cases, each WT exclusively ac-

cesses the handle_list, thus causing severe lock contention

918    2022 USENIX Annual Technical Conference USENIX Association



Figure 5: Breakdown of CPU cycles on key functions and

locks of the worker threads in Linux MD.

among these threads. Recently, Linux Kernel contributors also

found high overhead of the device lock in the read path [52]

and replaced them with a lockless memory barrier, thus achiev-

ing 7x improvement in small-sized reads. However, the device

lock in the write path remains a serious source of contention.

Second, checking for stripe states (Analyze) consumes 22%

and 13.2% CPU usage in the single-worker and 64-worker

modes, respectively. In Linux MD, most of the stripe states

and device bio states use a set of semaphores to orchestrate

UTs, WTs, and DTs. In summary, through extensive exper-

iments, we observe that the architectural deficiency of the

N-for-all centralized handling model leads to severe lock

contentions due to highly-concurrent accesses to global data

structures and the states of stripes.

4 Design
Given the above identified root causes of write inefficiency

of MD with parity-RAIDs running on ultra-fast SSDs, we pro-

pose a stripe-threaded architecture of parity-RAID, StRAID

for short. StRAID assigns a dedicated worker thread for

each stripe-write, which significantly reduces lock contentions

among multiple threads, and addresses the partial-stripe-write

penalty with a two-phase write submission and a parity cache.

4.1 Architecture
Figure 6 illustrates the StRAID architecture for parity-

RAID. StRAID does not change the data layout of the legacy

MD. It persists RAID’s metadata at the pre-defined location

of each disk. Each user thread (UT) pushes a block-write to

a dedicated worker thread (WT) that exclusively handles its

corresponding stripe. Multiple WTs process their own stripes

independently, exploiting the intrinsic data parallelism among

stripes. StRAID pre-allocates at least 256 WTs in the WT

Pool to alleviate frequent thread creation/destroy overhead in

runtime.

A normal stripe-write process in StRAID can be divided

into 6 consecutive stages of � initializing stripe_heads and

inserting bios (INS); � reading parity/data chunks (RD); �
performing I/O batching (BAT); � computing parity (XOR);

� writing data/parity and � clearing stripe states in SST

(CLR). Moreover, � user threads being batched must wait for

completion (WAIT). A notable workflow difference between

StRAID in Figure 6 and the legacy MD in Figure 3 is that

User Thread Stripe head 

StRAID

Parity
Cache

SSA

Block I/O request

Device I/O Thread

Per Thread
Batching QueueWorker Thread

CPU 0 CPU 4 CPU 8

WT
Pool

......

SSD 1

Disk
Group

SSD 4SSD 2 SSD 3

Figure 6: Architecture and process flow of StRAID

the latter’s stages of 1© stripe acquisition, 2© analysis and 4©
stripe release are removed in the former.

Compared to the legacy MD, StRAID removes the cen-

tralized stripe_head lists and their corresponding concurrent

operations. Furthermore, StRAID minimizes the number of

shared stripe-states and global-state checking among WTs,

because a dedicated WT handles a stripe-write exclusively.

Finally, the parity computation and I/O execution processes of

a stripe write are pinned to the same CPU core, thus avoiding

frequent context switches and CPU cache pollution.

However, StRAID faces new challenges in effectively con-

ducting thread collaboration and reducing the partial-write

penalty. StRAID still needs a minimal shared-data structure

to orchestrate UTs, WTs, and DTs in handling stripe-writes.

To this end, StRAID proposes a Stripe State Table (§4.2)

with lockless access features. Further, the legacy MD uses

the global stripe-cache and active/passive delays to aggregate

stripe-associated writes (SS-writes) that target the same stripe,

thus reducing partial-write-induced disk I/Os. However, in

StRAID, a user write triggers a dedicated WT to immedi-

ately and exclusively handle the corresponding stripe-write,

which does not address the costly partial-write penalty. To

optimize partial-stripe writes, StRAID presents a two-phase

stripe submission mechanism (§4.3) to opportunistically ag-

gregate SS-writes by employing a batching queue per WT.

Further, StRAID employs a parity cache (§4.4) in memory

to buffer hot parity blocks, for significantly mitigating write-

induced parity-reads.

4.2 Stripe State Table
StRAID designs a Stripe State Table (SST), as shown in

Figure 7, to maintain a minimal set of shared stripe-states.
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Stripe ID [0:31] Stripe Lock TID [32:46] is_frozen [47:47]

0x0004 Locked 3 F

-- Unlocked -- --

0x0200 Locked 8 T

......

-- Unlocked -- --

Cuckoo 
Hashing

Figure 7: Stripe state table.

SST adopts a hash table to index up to 4096 active stripe-

entries, each of which is handled by a dedicated worker thread.

An SST-entry (48-bit) contains four fields: 32-bit Stripe ID
uniquely specifying a stripe; 1-bit Stripe Lock indicating

whether this stripe is currently being processed; 14-bit TID
identifying the thread ID of the dedicated WT handling this

stripe; and 1-bit is_frozen recording the shared stripe-state

that indicates whether the stripe is allowed to batch. SST is a

globally shared structure between WTs and DTs, where each

entry is uniquely associated with a physical stripe and can

only be exclusively modified by a WT using CAS [57] at any

time. SST employs Cuckoo hashing [53] for achieving high

table occupancy while preventing hash collisions. The total

memory footprint of SST is smaller than 40KB.

4.3 Two-phase Stripe Submission
Partial-stripe Write Overhead A partial-stripe write

causes write-induced reads and write amplification. The write-

induced-read ratio (WIRR) and write amplification (WA) of

RAID5 are estimated by Eq.1 and Eq.2 respectively, where

WS, CS and SS represent write-size, chunk-size and stripe-

size, respectively. When WS is smaller than CS in RAID5, a

block-size write induces 2x read I/Os and 2x write amplifica-

tion (one data-block write and one parity-block write) with

optimal RMW strategy. As WS increases, the amount of write-

induced-read data decreases (0 for a full-stripe write). The

write amplification is larger than 1.2x on RAID5 with no disk

failures.

Write-induced-read Ratio =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 WS ≤CS (RMW )

1+ CS
WS CS ≤WS <

SS
2

(RMW )

SS
WS −1

SS
2

≤WS < SS (RCW )

0 WS = SS

(1)

Write Ampli f ication =

{
2 WS ≤CS

1+ CS
WS WS > SS−CS (2)

Existing optimizations for partial-stripe writes can be

characterized by the three general approaches of write-

aggregation [45], dynamic stripe size [7, 76], and parity log-

ging [9,10,15,71,72]. The legacy Linux MD employs a global

stripe-cache to absorb active user writes by postponing stripe-

writes actively or passively. This write-aggregation approach

reduces actual disk I/Os but increases the latency of the post-

poned requests, which may hurt the overall performance for

low-latency SSDs. RAIDZ [7] uses a dynamic stripe size

mechanism to eliminate partial-stripe writes, but assumes the

support of the ZFS file system. The logging approach first

persists incoming writes to an auxiliary fast-disk (e.g., SSD

or NVM), and then rewrites the relevant stripes to original

locations in the background, thus leading to at least 2x write

amplification and bottlenecks from log-devices.

Two-phase Stripe Submission Without a global stripe-

cache, StRAID designs a two-phase stripe submission mecha-

nism to opportunistically absorb SS-writes. StRAID divides

the stripe-write process into two phases: a batching phase and

a frozen phase. Specifically, Figure 8 (referred by circled num-

bers) and Algorithm 1 (referred by line numbers) describe the

two-phase submission using an example where three concur-

rent I/O threads issue requests targeting the same stripe (S1).

A worker thread 1 (WT1) receives bios from its corresponding

UT, and acquires a stripe lock to begin stripe processing (Time
	, line 2) by CAS operation. WT1 first initializes the stripe

states in SST, then it determines the reconstruction method

(RCW/RMW) for this stripe and reads the required parity/data

blocks from the disk (line 4-6). Shortly after WT1’s arrival,

a second worker thread (WT2) arrives and seeks SST, only

to find that the targeted stripe is locked but enables batching

(Time 
, line 14). It inserts bios belonging to this stripe to the

batching queue of the handling thread WT1 (Time �, line 15)

and then suspends itself.

When WT1 completes its batching phase, it immediately

transitions the stripe into the frozen phase (Time �, line 7)

by using the CAS operation. At this point, the stripe is not al-

lowed to accept new bios. Hence, the newly arrived bios from

worker thread 3 (WT3) (Time 
) are blocked and have to wait

for the stripe write’s completion. WT1 coalesces all requests

in its batching queue and processes them as a whole, then it

re-executes parity read (if required) in accordance with the ag-

gregated stripe-write, and performs XORing and data/parity

writes to reconstruct the stripe. Finally, WT1 clears up the

stripe states of S1 in SST and releases the stripe lock. The cor-

responding waiting thread WT2 will also return successfully

(Time �, line 12). Next, WT3 successively acquires the Stripe
Lock to handle its requests on the stripe.

In contrast to the stripe-cache approach for aggregating SS-

writes used in Linux MD, the novelty of the two-phase writing

approach in StRAID leverages the latency of executing a re-

construction read in the batching phase to opportunistically

aggregate incoming SS-writes. It ensures the efficiency of

each handling thread, thus achieving better throughput with-

out sacrificing I/O latency.

4.4 Parity Cache

Partial-stripe writes induce frequent parity-block accesses

and cause performance degradation. To alleviate this problem,

StRAID further designs a parity cache to keep hot parity-

blocks in the memory to reduce disk I/Os. Previous works

[9, 63, 72] use the logging approach to absorb parity updates

at the cost of write amplification and potential bottlenecks at

the log-devices. StRAID, instead, uses the parity cache only

for eliminating parity reads induced by partial-stripe writes.
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Algorithm 1 Two-phase stripe submission

1: while all bios are handled do
2: if get_stripe_lock(stripe_id) then
3: init_SST(stripe_id)

4: Determine reconstruction method

5: if is partial-stripe write then
6: read from disks

7: set is_ f rozen = true in SST and pull batching bios from queue

8: if Data is not enough for reconstruction then
9: Re-read from disks

10: Compute XOR and reconstruct stripe

11: clear_SST(stripe_id)

12: release_stripe_lock(stripe_id)

13: else
14: if !is_frozen(stripe_id) then
15: insert bio to queue with TID

16: else
17: handled = f alse
18: continue

19: Waiting for all bios to complete

Freeze Stripe 1

Worker Thread 1 Time Line

Worker Thread 2 Time Line

Worker Thread 3 Time Line

Read Write

Waiting for WT1 
to complete

Waiting for WT1 to complete

Lock S1
(False)

bio 1
arriving

Lock S1
(True)

Pull Batching
Queue Re-read bio 1

return

bio 2
arriving

Lock S1
(False)

S1 Frozen
(True)

Push bio to Batching
Queue(WT1)

bio 2
return

bio 3
arriving

S1 Frozen
(False)

Lock S1
(True)

XOR

Figure 8: Workflow of two-phase stripe submission, an exam-

ple with 3 concurrent worker threads (WT1-WT3) targeting

the same stripe.

The stripe parity has higher access-frequency than its stripe

data for partial stripe writes. Therefore, caching parity data is

significantly valuable.

The architecture of parity cache is shown in Figure 9. It con-

tains a high concurrency hash table with O(1) lookup cost, and

uses an LRU-based cache replacement policy to capture fre-

quently accessed parity data. Each hash entry corresponds to

a physical stripe and contains three fields, Stripe_ID, p_data
and q_data with the latter two pointing to cached parity data

aligned with the 4KB block size. RAID5 only uses the p_data
pointer and RAID6 uses both pointers. In addition, each entry

has a fine-grained read-write lock for synchronization.

The cache module updates and queries at the block granu-

larity, but inserts and deletes hash entries at the stripe gran-

ularity. For updates and queries, a WT needs to first insert

the Stripe_ID into the LRU and searches the relevant entry.

The read lock is required to access cached data because each

stripe can only be updated exclusively by one WT. During the

stripe-write process, a WT first searches the parity cache and

acquires hit parity blocks. When missed, WT updates both

disks and cache in a write-through scheme with the newest

parity data after XORing.

StRAID periodically triggers a dedicated thread to clean

up the stripe in the background. When the cache size exceeds

stripe ID    1 RWL T
0 p_data q_data

4K * *

8K p_data q_data

......

64K * *

Hash with stripe ID

Worker Threads

Parity
Cache

stripe ID    3 RWL F
0 * *

4K p_data p_data

8K * *

......

64K * *

……

Stripe LRU

Cache Clean Threads

Query with
stripe ID & parity offset

Record stripe ID

Figure 9: Architecture of the parity cache.

a threshold (64MB capacity for 16K parity blocks as default),

the cleaning thread removes the entries of evicted stripes from

the cache according to the LRU policy.

4.5 Recovery and Degraded Mode
Crash Consistency and Recovery After a system crash,

part of the chunk writes belonging to a stripe-write may be

lost, making the stripe inconsistent between its data and parity.

StRAID uses a bitmap to record the current update-state of

each chunk. Compared with Linux MD, StRAID’s bitmap

has basically the same data structure and layout, but can only

be updated and flushed by dedicated threads. For each chunk

update, StRAID first sets the corresponding bitmap bits and

changes their involved memory-page as dirty, then flushes

the page to the underlying SSDs via the memory mapping

mechanism. The bits will be cleared after their corresponding

chunks are written to the disk. Similar to MD, StRAID groups

bitmap updates in a batch to avoid frequent disk I/Os. In the

experiment, it is found that flushing the bitmap only incurs

a very small overhead (less than 2%) when handling stripe

writes. With unexpected power failures, StRAID will fetch

the bitmap from the disks and restore it to the consistent

state after reboot. Moreover, StRAID has the option to use a

journal device [3] as a writeback cache to prevent the write

hole problem [22].

Resync and Degraded Mode StRAID supports degraded

reads, degraded writes and resync operations in the same way

as the legacy MD because the underlying data layout is iden-

tical. For stripe writes, StRAID identifies the degraded stripe

and handles it after entering the frozen phase. The resync

operation reads all the data blocks from disks and compares

their calculated parity results with their on-disk parity data. It

is triggered upon RAID initialization, or reconstruction from

disk replacement. We evaluate the performance of StRAID in

degraded mode in Section 5.

5 Evaluation

5.1 Evaluation Setup
Platform We run all experiments on a server (detailed

settings listed in Table 1) and three types of SSD devices (de-

scribed in Table 2). The CPU-core can reach 29GB/s XORing
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(a) RAID5 4KB (b) RAID6 4KB

(c) RAID5 64KB (d) RAID6 64KB

(e) RAID5 1MB (f) RAID6 1MB

Figure 10: Write scalability on three different RAID systems.

(a) RAID5 (b) RAID6

Figure 11: Read scalability of StRAID and MD.

throughput and the PCIe I/O bandwidth is 48GB/s [21], ex-

ceeding the aggregate sequential bandwidth of 6 NVMe-based

SSDs (2.6GB/s stable write throughput per SSD, 15.6GB/s

in total). In our experiments, we bind all the I/O threads and

worker threads to the same CPU socket-0 to avoid remote

accesses of memory and PCIe, i.e., the NUMA issues.

RAID systems setup We evaluate StRAID and Linux MD

(MD) of the RAID5 (5+1) and RAID6 (4+2) levels built on 6

SSDs. The chunk size is set to 64KB by default. StRAID has

a 64MB-sized parity cache. Linux MD has a 16K-entry stripe-

cache and up to 64 worker threads. This is a setting that MD is

shown by our experiments to achieve the best throughput. In

addition, we compare StRAID with EPLOG [9] that mitigates

parity update overhead by redirecting parity traffic to separate

dedicated HDD logging devices. To prevent the log-devices

from becoming a bottleneck, we replace the HDDs of EPLOG

with the same type of SSDs used in the main RAID array.

Workloads We implement a program to issue direct block

I/O requests with sequential or random access patterns as

micro-benchmark. We run each experiment ten times and

take the average as the results. We further select six repre-

sentative block traces summarized in Table 4 as trace-driven

(a) Average Latency 4K (b) Tail Latency 4KB

(c) Average Latency 64KB (d) Tail Latency 64KB

(e) Average Latency 1MB (f) Tail Latency 1MB

Figure 12: Average and tail latency of RAID systems.

macro-benchmarks. We implement a trace player in C++ us-

ing POSIX sync to generate direct block I/O requests to the

underlying RAID systems.

5.2 Micro-benchmark
We measure the write throughput, average and tail latency,

and amount of disk read/written data on MD, StRAID and

EPLOG with RAID5 and RAID6 on 980Pro SSDs, respectively.

We generate workloads with a different number of concurrent

I/O-issuing threads (i.e., UTs) and varying access patterns.

Three default I/O sizes are: 4KB (default block-size of file

systems, page cache, and block devices), 64KB (partial-stripe

write size), and 1MB (full-stripe write size).

Throughput Figure 10 reports the write throughput of

StRAID, MD and EPLOG in RAID5 and RAID6, respectively.

The errorbars are added on StRAID’s results. The throughput

of StRAID exceeds that of MD and EPLOG respectively by

up to 2.1x and 1.4x with 4KB-sized writes and 1.5x and 1.3x

with 64KB-sized writes with a single UT, respectively. This is

because StRAID effectively reduces the overhead of handling

stripe-states. As the number of UTs increases to 64, StRAID

achieves up to 2.0GB/s±0.2GB/s and 6.0GB/s±0.8GB/s peak

throughput with 4KB and 64KB writes respectively, repre-

senting 2.1x/59.1x and 2.9x/35.1x performance improvement

over MD/EPLOG. In addition, EPLOG achieves 1.4x-1.9x

higher throughput than MD under random write at a single

UT, because it avoids partial-write-induced reads with parity-

logging. However, EPLOG does not scale at all with more
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Figure 13: Breakdowns of CPU

cycles on StRAID and MD

Figure 14: Total CPU uti-

lizations

(a) Written data (b) Read data

Figure 15: Amount of data written to and read from disks by

StRAID, normalized to that of MD.

UTs, because it uses a global lock for serializing each write

operation.

For full-stripe writes (i.e., 1MB), StRAID achieves

4.6x/12x and 5.2x/13x higher write throughput in random

and sequential cases than MD/EPLOG with a single UT, re-

spectively. As the number of UTs increases to 8, StRAID’s

throughput saturates the device bandwidth, with an almost

fixed increase of about 6GB/s over MD. With 64 UTs,

the peak write throughput reaches 11.4GB/s±1.1GB/s and

10.4GB/s±1.0GB/s in StRAID under RAID5 and RAID6 re-

spectively, which are 2.1x higher than those of MD (5.2GB/s

and 5.1GB/s) and 41x higher than EPLOG (0.25GB/s and

0.26GB/s). StRAID’s full-stripe writes nearly unleash the full

power of the SSD performance, while MD suffers from heavy

contention on the global data structures.

Moreover, Figure 11 shows the read throughput of StRAID

and MD with varying-size reads. The average read throughput

difference between MD and StRAID is less than 5% in RAID5

and RAID6 respectively, demonstrating that StRAID does not

affect read performance.

Latency and Breakdown of CPU-cycles Figure 12

shows the average and tail (99th-percentile) latency under

RAID5 in StRAID, MD and EPLOG, respectively. StRAID

significantly outperforms MD and EPLOG in both average

and tail latencies performance under 64 UTs, reducing la-

tency by 75% and 98.2% with 4KB block-writes, 76% and

97.1% with 64KB partial-stripe writes, and by 69% and 95.2%

with full-stripe writes. StRAID reduces 22%-67% tail laten-

cies from MD under 64 UTs. The tail latency of EPLOG is

6.5x-42.1x higher than StRAID under multiple UTs, since the

global lock in EPLOG makes its average and tail latencies

much higher than those of MD and StRAID.

To better understand the reasons behind StRAID’s superi-

ority, Figure 13 shows the breakdown of the CPU-cycles of

key functions consumed by MD and StRAID with 64 UTs

issuing random writes, respectively. For partial-stripe writes,

the combined CPU-cycles on XORing and disk I/Os account

Figure 16: StRAID and MD throughput with partial-stripe

(*-P) and full-stripe writes (*-F) of different chunk sizes.

Table 4: Characteristics of block I/O traces used in the macro-

benchmark evaluations
Trace Write Ops

(millions)
Data Written

(GB)
Avg.write
size (KB)

Read Ops
(millions)

Data Read
(GB)

Avg.read
size (KB)

Pangu-A 1.89 113.24 63.21 0.24 4.06 17.99

Pangu-B 2.44 81.32 35.08 0.30 18.61 65.24

prxy_0 12.14 53.80 4.65 0.38 3.05 8.33

prn_0 4.98 45.97 9.67 0.60 13.12 22.84

varmail 3.39 39.20 12.13 0.05 5.38 114.05

fileserver 1.19 99.45 87.56 0.47 42.37 95.49

for 76% of the total CPU usage in StRAID, while that of MD

is less than 20%. The average stripe-write handling overhead

of StRAID, i.e., 60μs, is about 20 times less than that of MD,

i.e., 1180μs. Besides, the lock overhead on StRAID and MD

account for 5.1% and 46.1% of the total CPU usage, respec-

tively. StRAID efficiently mitigates lock contentions through

the stripe-threaded architecture and the lockless access fea-

tures in SST.

For full-stripe writes, the lock, XORing and I/O-write of

StRAID account for 1.3%, 22.5% and 62.6% of the total CPU

usage, respectively, in contrast to their MD counterparts of

36.7%, 24.5% and 19.4%, suggesting that StRAID achieves

to make better advantage of SSDs’ high write bandwidth. In

addition, the two-phase submission and the parity caching use

only 6% and 1.5% of the stripe-write CPU-cycles of partial-

stripe and full-stripe writes, respectively.

CPU utilization We compare the CPU utilizations of

StRAID and MD under random full-stripe and partial-stripe

write workloads respectively, with the same RAID5 settings

in Figure 10. Results in Figure 14 show that the total CPU uti-

lization of MD is up to 6.3x higher than StRAID with 64 UTs.

Even when the number of UTs is less than 8, the CPU usage

of MD is 2x higher than that of StRAID on average. Combin-

ing with the throughput results shown in Figure 10, MD with

4495% CPU-core utilization consumes only 1/3 of the SSDs

bandwidth, in contrast to StRAID that consumes 86.9% of

the SSDs bandwidth with 1156% CPU-core utilization.

Moreover, 64KB-sized partial-stripe writes of MD (MD-
64K) consume up to 80% more CPU than full-stripe writes

(MD-1M) with 64 UTs. MD’s inefficiency stems from its

high consumption of CPU cycles required to handle in-flight

partial-stripe writes. On the contrary, StRAID-64K consumes

only 25% less CPU cycles than StRAID-1M because StRAID

gains higher throughput for full-stripe writes that consumes

more CPU resources for computing XOR and issuing I/Os.

Read/Write amplification Figure 15 shows the amount of
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(a) Pangu-A (b) Pangu-B (c) prn0 (d) prxy0 (e) varmail (f) fileserver

Figure 17: Throughput of StRAID and MD on trace-driven workloads.

(a) Pangu-A (b) Pangu-B (c) prn0 (d) prxy0 (e) varmail (f) fileserver

Figure 18: Latency CDF of StRAID and MD on trace-driven workloads.

data written to and read from disks by StRAID in RAID5, nor-

malized to that of MD. For random writes, StRAID and MD

have exactly the same amount of data written and data read

because stripe-write aggregation is rare for random writes.

For sequential writes, however, the amount of data written

in StRAID is up to 12% larger than MD. This is because

the two-phase submission in StRAID has a smaller aggrega-

tion window (i.e., proportional to SSD-read latency), which

is slightly less efficient than Linux MD’s active delays of

sequential stripe writes.

For sequential writes, the amount of data read in StRAID

and MD varies significantly with different numbers of UTs.

With a single UT, the amount of read data in StRAID is

1/2 of that in MD, because the parity caching mechanism

effectively reduces parity reads. However, with 64 UTs as

the worst case, StRAID reads 12x more data than MD. It

is because MD postpones and aggregates almost all stripe-

associated writes (SS-writes) into full-stripe writes, thus re-

ducing the amount of write-induced-read data (e.g., 1.1% of

user-written data). In contrast, a StRAID’s worker thread

immediately executes reading parity/data chunks before per-

forming write-aggregation, resulting in a nearly fixed number

of write-induced reads (e.g., 13.7% of user-written data). How-

ever, since the high read IOPS of fast SSDs can completely

absorb the increased number of read I/Os, StRAID’s write

performance can still be 5.2x higher than MD.

Chunk Sizes We evaluate the effect of chunk size config-

uration on the performance of StRAID and MD with 64KB-

sized writes in RAID6. The chunk size is set to 8KB for the

full-stripe-write case (StRAID-F and MD-F), and 64KB for

the partial-stripe-write case (StRAID-P and MD-P), respec-

tively. Figure 16 shows that both StRAID and MD benefit

significantly from full-stripe write workloads. The through-

put of StRAID-F reaches 11.8GB/s with 64 UTs, about 1.9x

higher than StRAID-P. Similarly, the throughput of MD-F is

up to 3.1x higher than MD-P. However, the peak throughput

of MD-F (8KB chunk size and 64KB write size) remains

at 5.3GB/s, consistent with the results shown in Figure 1(d)

(with 64KB chunk size and 1MB I/O size). It indicates that

the peak throughput of StRAID is sensitive to the chunk size

setting. An insight from this experiment is that it is beneficial

to set StRAID’s chunk size smaller, such as 8KB, to take full

advantage of full-stripe writes.

5.3 Macro-benchmark

We use six representative block traces from Filebench [60],

cloud-based application traces from Alibaba-Pangu [47] and

Microsoft [51] to evaluate StRAID’s performance. Table 4

summarizes the characteristics of these workloads, most of

which are read-write mixed or write-dominated. In the experi-

ments, we enable 32 WTs in MD and StRAID, and evaluate

them in both the RAID5 and RAID6 levels with a chunk size

of 8KB. We invoke 32 user threads to replay these traces

continuously, mimicking high-intensity workloads.

Figure 17 shows the throughput of StRAID and MD

over time. StRAID achieves up to 2.8x higher throughput

than MD, and shortens the total running time by an aver-

age of 64% across 6 workloads. In the fileserver workload,

StRAID achieves peak and average throughput of 10.3GB/s

and 7.9GB/s respectively, in contrast to their MD counter-

parts of 5.0GB/s and 3.2GB/s. The fileserver workload has

the largest average write size, so that StRAID benefits from

full-stripe writes. For the cloud-based workloads, StRAID’s

average throughput is 3.1x and 3x higher than MD’s in Pangu-

A and Pangu-B, respectively. The prxy0 workload exhibits the

lowest average throughputs among all workloads, 1.8GB/s

and 0.6GB/s for StRAID and MD respectively. This is be-

cause the prxy0 trace has the smallest average write size (i.e.,

4.6KB) among all workloads, leading to a large amount of

partial-stripe writes for both StRAID and MD. Further, it is

observed that StRAID in RAID5 is 10%-15% better than in

RAID6 among all the workloads, because RAID5 has less

parity data than RAID6.

Figure 18 shows the latency CDFs of StRAID and MD

across all the workloads. StRAID shows significantly better

CDF profiles, with about 80% and 69% lower average latency

than MD in workloads Pangu-A and Pangu-B, respectively.

For the other four workloads, StRAID also has at least 49%

lower average latency than MD. The median latencies of

924    2022 USENIX Annual Technical Conference USENIX Association



(a) Partial-stripe writes (b) Full-stripe writes

Figure 19: Performances of StRAID and MD on different

SSDs and RAMs.

Figure 20: StRAID throughput with partial-stripe (*-P) and

full-stripe writes (*-F) when running with/without two-phase

stripe submission (w/ TPS and w/o TPS).

StRAID in workloads Pangu-A, Pangu-B and filebench are

almost ten times lower than MD, while for workloads var-

mail, prn0, and prxy0 StRAID’s is 78%, 74% and 75% lower

than MD’s respectively. The 99th-percentile tail latency in

StRAID is 25% lower than that in MD among all workloads

on average. For example, StRAID’s tail latency is up to 31.1%

and 31.9% lower in workloads Pangu-A and prn0. StRAID’s

advantage over MD in tail latency is lower than in average

latency, because the high tail latency of both StRAID and MD

mainly comes from write latency spikes caused by internal

maintenance operations (e.g., garbage collection) within the

SSD devices.

5.4 Sensitivity Study
Experiment with other devices Next, we evaluate the

sensitivity of StRAID and MD to different types of storage

devices. We first build StRAID and Linux MD on six Intel Op-

tane PMs (in AppDirect Mode) [28] and lower-performance

970Pro SSDs, and compare these performances with that

in 980Pros. The raw read and write bandwidth per PM can

reach 6GB/s and 2GB/s [74], respectively. Further, we test

the extreme RAID performance over six ramdisks on 128GB

DRAM. We invoke up to 64 UTs with 64KB write-size for

partial-stripe write-load and 1MB for full-stripe write-load.

Results in Figure 19 show that StRAID on 980Pro SSDs

exhibits up to 20% higher throughput than it on 970PRO

SSDs. In contrast, the performance difference of Linux MD

on these two different types of SSDs is less than 5%. The

throughput of StRAID on PMs is up to 50% and 35% higher

than MD on partial-stripe and full-stripe writes, respectively.

We also find that StRAID on PMs shows up to 26% higher

throughput in partial-stripe writes than that SSDs. This is

because PM has one order of magnitude lower read latency

than SSDs, thus StRAID could handle stripes more efficiently.

Table 5: Parity cache capacity
Written

Data (GB)
Read

Data (GB)
Cache

Hit Rate
Average

Thr. (MB/s)
StRAID-NC 54.10 13.64 - 1482

StRAID-4M 54.10 12.12 0.39 1593

StRAID-16M 54.10 12.01 0.45 1636

StRAID-64M 54.10 11.75 0.55 1711

StRAID-256M 54.10 11.23 0.57 1726

MD 53.80 6.10 - 667

(a) Degraded read (b) Degraded write

Figure 21: Read and write performance on degraded StRAID

and Linux MD.

Moreover, StRAID on PM shows a throughput drop at higher

than 8 UTs, because PM has a limited concurrency [74].

In addition, StRAID on RAMs delivers up to 5.8x higher

write throughput than MD. At 64 UTs, StRAID reaches up

to 35.2GB/s random write throughput and 32.7GB/s sequen-

tial write throughput, respectively, in contrast to their MD

counterparts of 5.8GB/s and 5.7GB/s. It shows that StRAID

has the potential to effectively exploit faster storage like the

emerging PCIe 5.0 SSDs [18] in the near future.

Two-phase Submission We analyze the performance con-

tributions of the two-phase stripe submission (TPS) mecha-

nism of StRAID in RAID5. We run the experiment with (w/
TPS) and without (w/o TPS) two-phase submission, respec-

tively. The request size is set to 1MB for the full-stripe-write

case (*-F), and 64KB for the partial-stripe-write case (*-P).

We issue requests with sequential access patterns. Figure 20

shows that StRAID with TPS achieves 3.5x improvement of

average throughput than without TPS for partial-stripe writes

at 64 UTs. The two-phase submission allows request aggrega-

tion on writes belonging to a same stripe and handles them in

a batch. StRAID without TPS, by contrast, has to individually

execute each writes on a stripe. Besides, the performance con-

tribution of two-phase submission on full-stripe write load is

less than 4%, because the requests targeting different stripes

will not be aggregated.

Parity Cache We analyze the effectiveness of the parity

cache on StRAID performance. We compare the StRAID with

the parity cache disabled (StRAID_NC) against the StRAID

with its parity cache capacity varying from 4MB to 256MB

(StRAID_4M to StRAID_256M). We select the RAID5 level

with 8KB chunk size as an example. We run the prxy0 work-

load with the most partial-stripe writes among all workloads

tested, which has 9.5% write operations (0.51 million ops)

with I/O sizes of 40KB or larger (i.e., full-stripe write size

for 8KB chunk size), and the sequential write ratio is 66%

(8.02 million ops). We measure the average throughput, cache

hit rate, and amount of disk read/written data, respectively.

USENIX Association 2022 USENIX Annual Technical Conference    925



Results are shown in Table 5. As the parity cache capacity

increases, the cache hit ratio increases from 39% at StRAID-

4M to 57% at StRAID-64M, resulting in a 16% improvement

of average throughput. In addition, increasing the cache ca-

pacity to beyond 64MB contributes less than a 5% increase

in both the cache hit ratio and throughput, because the cache

has captured most of the parity data under such conditions.

5.5 Resync and Degraded Mode
We assess the performance of StRAID and Linux MD in the

degraded mode under RAID5. One random SSD in the RAID

array is set as failed. Then, a varying number of UTs issue

reads and writes of 64KB and 1MB size, respectively. Re-

sults in Figure 21 show that the read throughput of degraded

StRAID and Linux MD is almost the same, with an average

difference of less than 5%. Meanwhile, the write performance

of degraded StRAID is 50-70% higher than that in Linux MD

with multiple UTs. This is because the processing flow of

write operation in degraded mode is basically the same as that

in the normal mode. In addition, StRAID and MD apply the

same resync approach.

6 Related Works
SSD-aware RAID SSD-based RAIDs have been exten-

sively studied and can be roughly classified into three groups:

1) taming tail-latency by alleviating GC impact [33,68,69,73];

2) enhancing data reliability by optimizing parity distribution

or conducting wear leveling across SSDs [4, 41, 65]; and 3)

mitigating the overhead of parity writes [9, 15, 26, 31, 72].

StRAID focuses on the multi-threaded processing architec-

ture in RAID systems and can complement these works.

All-Flash-Array Systems RAID for AFA (all-flash-array)

systems have been studied for RAID data layout optimization

[50, 75] and taming tail-latency by alleviating GC impact

[33, 59]. FusionRAID [30] improves the latency performance

of the RAID system for SSD pools by leveraging the Latin-

square-based deterministic addressing methods proposed in

RAID+ [75], while proposing an out-of-place write method

for optimizing parity-updates. SWAN [33] tames tail-latency

by alleviating SSD GC impact in an all-flash-array system.

Complementary to them, StRAID focuses on the stripe-write

process on multi-core processors and fast SSDs without any

modification of the RAID data layout. Therefore, StRAID as

a new stripe-handling engine can be used in AFA systems to

exploit modern hardware with high internal parallelism.

Parity Write Optimization The stripe aggregation

method is widely studied to construct full-stripe writes for

reducing the write-induced reads or reducing the number of

parity writes to SSDs. Previous works [15, 16, 26, 63, 72] use

an NVRAM or SSD as a cache to absorb incoming write data

and/or parity information and delay parity updates with extra

devices. In contrast, the parity cache in StRAID is located

in memory and only used to accelerate read I/Os for stripe

reconstructions. Existing systems [20, 30, 67] first steer all

writes to a logging zone and then write back to the RAID zone

in the background. Such an aggregation approach requires

additional storage and double the amount of data written to

SSDs. In comparison to these efforts, StRAID performs an in-

place update for stripe writes and opportunistically aggregates

writes without extra storage requirements.

Block IO Scheduling Prior studies on block IO scheduling

are focused on optimizing multi-queue management including

prioritization [37], fairness queuing [24, 77], policy-based

storage provisioning and management [2, 62] and providing

low scheduling latency [25]. StRAID is a RAID stripe-write

engine on top of and thus complementary to these block IO

scheduling approaches. Additionally, compared with other

RAID systems that adopt FTL-level block I/O scheduling

[34, 66, 78], StRAID considers SSDs as black boxes, making

it highly portable and non-intrusive.

Multicore Optimization Previous studies have addressed

the scalability issues in key-value stores [12, 13], file sys-

tems [6, 14, 43], volume management [36] and block drivers

[25] with multicore processors and high-performance devices

(e.g., SSDs and NVMs). MAX [43] demonstrates that lock

contentions are the major reasons for poor scalability in file

systems. These works exploit the potentials of parallelism

on multicore processors and fast SSDs through localized key

data structures and fine-grained lock designs. The Linux ker-

nel contributors optimize lock mechanisms to improve read

performance [52]. In this paper, StRAID focuses on optimiz-

ing the write path of the MD parity-RAID architecture and

addresses the software overhead in handling stripe writes.

7 Conclusion

We experimentally reveal that Linux MD with parity-based

RAIDs cannot fully exploit the potentials offered by high-

performance SSDs due to the architectural drawback of cen-

tralized stripe-writes. We propose a stripe-threaded parity-

RAID (StRAID) to efficiently handle stripe-writes in parallel.

StRAID introduces a two-phase stripe submission mechanism

for aggregating partial-stripe writes and a parity cache for hot

parity-accesses. Through extensive trace-driven evaluations,

StRAID is shown to significantly and consistently outper-

form MD parity-based RAID in write performance without

sacrificing read performance.
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