
PATS: Taming Bandwidth Contention between
Persistent and Dynamic Memories

Shucheng Wang�, Qiang Cao��, Ziyi Lu�, Hong Jiang† and Yuanyuan Dong‡
�Wuhan National Laboratory for Optoelectronics, HUST, ‡Alibaba Group,

†Department of Computer Science and Engineering, University of Texas at Arlington

Abstract—Emerging persistent memory (PM) with fast per-
sistence and byte-addressability physically shares the memory
channel with DRAM-based main memory. We experimentally
uncover that the throughput of application accessing DRAM
collapses when multiple threads access PM due to head-of-line
blockage in the memory controller within CPU. To address this
problem, we design a PM-Accessing Thread Scheduling (PATS)
mechanism that is guided by a contention model, to adaptively
tune the maximum number of contention-free concurrent PM-
threads. Experimental results show that even with 14 concurrent
threads accessing PM, PATS is able to allow only up to 8%
decrease in the DRAM-throughput of the front-end applications
(e.g., Memcached), gaining 1.5x PM-throughput speedup over the
default configuration.

Index Terms—Persistent Memory, Memory Contention, Thread
Scheduling

I. INTRODUCTION

Persistent memory is considered as ‘persistent DRAM’ and

became commercially available for the first time in April 2019

with the launch of the Intel Optane DC Persistent Memory

Model (PM) [1]. Therefore, DRAM-PM architecture has been

widely used in data-intensive scenarios such as PM-based file

systems [2] and key-value stores [3]–[5]. However, unlike

DRAM, PM has asymmetric read and write performances that

are lower than DRAM, with limited access parallelism [1].

In the current DRAM-PM architecture, DRAM and PM

physically share high bandwidth memory channels, e.g., about

60GB/s bandwidth per channel at 2.6GHz [6]. Despite a poten-

tial memory-channel contention between DRAM and PM, there

has not been any study mentioning, much less studying, such

contentions in the literature to the best of our knowledge. We

speculate that this oversight may in part stem from the fact that

applications on the traditional DRAM-disk architecture rarely

incur significant I/O interference between DRAM and disk. To

understand and study this issue, we conduct an experiment in

a real DRAM-PM platform with three DRAMs and a 128GB

PM, detailed in Table I. The PM is configured in the AppDirect

mode and formatted by the Ext4-DAX file system. MBW

[7], a memory benchmark, performs memory copy operations

(i.e., memcpy()) upon the DRAM. Meanwhile, a set of threads

sequentially read/write data on the PM with 4KB request size.

Fig.1 reports that the throughput of MBW drops dramatically

as the number of PM-accessing threads (PA-threads) increases.

Specifically, the MBW throughput decreases by more than 90%

at 14 PM write-threads. In contrast, the aggregated throughput

of read PA-threads increases quickly by 2.2 times until 5 PA-

threads, and then decreases marginally to about 2 times. The

Fig. 1. Throughput of a memcpy() thread accessing DRAM while an increasing
number of threads accessing PM. Both DRAM and PM throughputs with
multiple PM-threads are normalized to that of a single PM-thread.

experimental result reveals that multiple threads accessing PM

can seriously degrade the performance of applications accessing

main memory, such as Memcached [8].

We experimentally and holistically analyze the DRAM-PM

contention behavior, uncover that slow PM-accesses could

severely impede the performance of fast DRAM-accesses under

concurrent PM-threads. Previous researches focus on inter-

thread interference upon shared DRAM by prioritizing different

threads via operating system and scheduling requests based on

their priority by the memory controller, to tradeoff between per-

formance and fairness [9]. However, they not only modify the

hardware memory-controller, but also introduce extra request

handling overhead in the request critical path.

In this paper, we first build a contention model to dy-

namically determine the maximum contention-free concurrency

of PM-threads under a given hardware setting and workload.

We further propose PM-Accessing Thread Schedule mechanism
(PATS), a PM-side thread dynamic scheduling mechanism in-

tegrating within Persistent Memory Development Kit (PMDK)

library, to ensure the performance of both accessing DRAM and

PM by effectively taming the DRAM-PM contention. PATS

avoids the costly request-level hardware-assisted scheduling

and extra scheduling delay for fast DRAM accesses.

This paper makes the following contributions:

• We experimentally reveal that multiple threads accessing

PMs can cause performance collapse of DRAM.

• We propose an effective request scheduling scheme, PATS,

guided by a contention model, to effectively harness the

parallelism of concurrent PA-threads.

• We implement a PATS prototype. The evaluation shows

that PATS can dynamically maintain DRAM-access per-

formance independent of PM accessing behaviors. Mean-

while, PATS effectively improves the overall throughput

of PM by up to 45% under multi-threaded mode.

The rest of paper is organized as follows. Section II presents

the background for Optane PM and the motivations for PATS.



Section III analyzes the behaviors of DRAM-PM contention.

Section IV describes PATS’s design. We evaluate PATS in

Section V and describes related works in Section VI . VII

concludes this paper.

II. BACKGROUND AND MOTIVATION

A. Optane PM

Emerging persistent memory is attractive because of its near-

DRAM latency, byte-addressability and durability. The Intel

Optane DC Persistent Memory Model (PM) [1] is the first com-

mercialized persistent memory product. In a PM-based system,

shown in Fig.2, a CPU’s integrated memory controller (iMC)

communicates with the Optane PM and DRAM via memory

channels. Each memory channel can achieve up to 60GB/s

bandwidth at 2.6GHz. The Intel Xeon Salable Processor, as

the only CPU supporting PM at the present, has two internal

iMCs, each of which supports up to three memory channels.

Each memory channel can deploy DRAM DIMM and/or PM

DIMM. For example, iMC1 connects DRAM DIMMs located

in A1/B1/C1 and PM DIMMs in A2/B2/C2, respectively.

DRAM

DRAM

DRAM

PM

PM

PM

Memory Mode

DRAM

DRAM

DRAM

PM

PM

PM

AppDirect 
Mode

PCIe Devices

PM DRAM
(cache) PM

DRAM

Fig. 2. Overview of an Intel Optane platform.

The Optane PMs work in either the Memory mode or the

AppDirect mode. The Memory mode merely utilizes DRAM

and PM in memory hierarchy where PM is a backend larger

‘DRAM’ with DRAM as its cache and is transparent to users

and applications. In the AppDirect mode, PM is a storage

device accessed by applications via memory mapped interface

(mmap) [10]. The DAX-mapped I/O can be executed with

loads/stores and bypass OS page cache [11], thus reducing

software overhead and context switches between user and

kernel space. In the rest of this paper, we employ the AppDirect

mode with DAX-mmap to access PM, unless otherwise noted.

B. Accessing DRAM and PM simultaneously

The bandwidth of PM is 1-2 orders of magnitude lower than

DRAM. Therefore, modern computer architectures still depend

on DRAM-based main memory to guarantee the performance

of data-intensive applications while utilizing PM as fast disk

for persistence. The emerging DRAM-PM storage architecture

with the PM AppDirect mode has been increasingly applied in

practical scenarios, such as file systems [2], [10], [11], key-

value stores [3], and HPC systems [12]. In these cases, both

PM and DRAM are intensively accessed simultaneously.

To better understand the interplay between PM and DRAM

when they are simultaneously accessed, we design a test

approach. Specifically, a thread continuously inserts data into

Memcached in DRAM mimicking typical accessing behaviors

of data-intensive applications. Meanwhile, FIO [13] continu-

ously issues 4KB-size write requests into the PM with a varying

TABLE I
EVALUATION PLATFORM SPECIFICATIONS

Components Configurations

Processor Single Socket Intel Xeon Gold 5218, 16 Cores, 32MB LLC
2 iMCS × 3 channels

Memory 32GB 2666MHz DDR4 × 3
128GB PM in AppDirect mode × 1

Operating System Ubuntu 20.04 LTS with Linux kernel 5.1.0

Fig. 3. The read latency of DRAM under multi-threaded PM reads.

number of PM-accessing threads (PA-threads). The IO-engine

is libpmem provided by PMDK [14]. The test results are shown

in Fig.1, depicting the collapses of the memcached throughput.

We further measure the DRAM read latency using LMBench

[15] when reading from PM with multiple threads. The results,

shown in Fig.3, indicate a sky-rocketing of the average DRAM

latency from about 75 ns at 2 PA-threads to 1820 ns at 14

PA-threads. This clearly illustrate a drastic increase of DRAM

latency as a result of the bandwidth contentions.

These interesting findings motivate us to further explore their

root causes, behaviors, triggering conditions, and finally an

effective solution in the emerging DRAM-PM architecture.

III. ANALYSIS AND CONTENTION MODEL

A. Experimental Setup

We conduct our experimental analysis on a single-socket

server with configurations specified in Table I. We adopt

Memcached and MBW as data-intensive applications accessing

DRAM. Memcached is a widely used in-memory key-value

store. A program continuously launches GET or SET requests

to Memcached with a single thread and calculates its average

throughput. MBW is an in-memory benchmark tool to accu-

rately evaluate the performance of different memory operations.

MBW has three basic operations: MEMCPY, DUMB, and

MCBLOCK. MEMCPY invokes the memcpy() function to copy

a whole data array to another memory area. MCBLOCK cuts

the array into a series of 256KB-sized blocks and copies them

one by one. DUMB executes an assignment operation between

two array elements. MBW also runs in a single thread. To

avoid the dataset being completely cached in the CPU, we set

the dataset size to 10GB that far exceeds the cache capacity.

In addition, we use FIO to generate a sequential read/write

workload upon PM. The request size is set from 512B to 4KB.

The maximum number of PA-threads is set to 14.

We bind the threads of FIO, Memcached and MBW to

different CPU cores, thus avoiding the overhead of thread

scheduling and resource contention among CPU cores.

B. The Problem and Its Root Cause

We invoke MBW and Memcached and measure their per-

formances. At the same time, we generate 1-14 PA-threads to

perform continuous write upon PM in the background. The I/O

size of write requests is fixed at 4KB. The experimental results,



(a) Throughput of Memcached (b) Throughputs of MBW with dif-
ferent memory test operations

Fig. 4. Memcached and MBW with different numbers of PA-threads.

Fig. 5. Throughput of the MEMCPY operation with PM and DRAM located
in the same and different iMCs.

shown in Fig.4, indicate that the throughput first decreases

slightly until it reaches a threshold, or a ”knee” point, where

it starts to drop precipitously in a “waterfall” region until an

”ankle” point whereon it flattens out again smoothly reaching

a floor. More specifically, at 14 PA-threads, the throughputs of

the GET and SET operations in Memcached and three memory

operations in MBW decrease more than 78% from their peak

levels when PM is not accessed by any PA-thread.

The sharpness of the knee and the steepness of the waterfall

region are dependent on workloads, especially for MBW. The

Memcached throughput with 7 PA-threads is only 8% lower

than the peak throughput while dropping to 65% with 9 PA-

threads. The SETs and GETs behave similarly due to read/write

symmetry on DRAM. MBW suffers a steeper throughput drop

than Memcached with relatively lighter DRAM-access load.

With 8 PA-threads, the MBW performance drops to about 85%

lower than its peak, while that percentage in Memcached is

less than 55%. The peak throughputs of the three operations in

MBW are different significantly. The floor throughput of the

MEMCPY operation at 14 PA-threads is only 5% of its peak

throughput. MCBLOCK has the highest peak throughput and

the highest knee point, but is also the steepest in the waterfall

region between 5 and 8 PA-threads. In the experiment, the LLC

miss rates of MBW remain unchanged at about 99.2%.

1) iMC: We conduct experiments to analyze the role iMC

plays in the resource contention. In previous experiments, the

PM and three DRAMs are installed in channel A2 and channels

A1, B1 and C1 respectively, while the iMC2 is totally idle,

an Intel recommended [1] iMC configuration referred to as

S-iMC. In this experiment, we move the PM DIMM from

channel A2 in iMC1 to channel D2 in iMC2, and leave all

DRAMs in iMC1, an iMC configuration referred to as D-iMC.

Fig.5 shows the performance of the MEMCPY operation

with D-iMC and S-iMC. Both cases have a similar “knee-

ankle” profile, but D-iMC has higher knee points. When

multiple threads read PM, the throughput knee of MEMCPY is

7 PA-threads under D-iMC, and the throughput drops by 35%

at 14 PA-threads. In S-iMC, the knee point is 3 PA-threads

and the performance drops by up to 80% at 14 PA-threads.

2) Request Size: We investigate the effect of request size

using MBW. The request size ranges from 64B to 4KB. Fig.6

Fig. 6. Throughput of MBW with
multiple threads access PM in dif-
ferent requests I/O sizes.

Fig. 7. MBW throughput when
employing read-only and write-only
workloads on PM.

(a) MEMCPY operation in MBW (b) Sequential PM write

Fig. 8. MBW and PM throughput with different numbers of interleaved PMs.

shows that a workload with requests larger than 256B triggers

the performance collapse with a smaller number of PA-threads.

Previous studies [1] confirm that PM with a 256B-sized built-in

XP-Buffer saturates its bandwidth with I/Os larger than 256B.

3) PM-accessing Patterns: We explore the effect of PM’s

read and write patterns. The experiment issues sequential reads

and writes to PM with a fixed request size of 4KB. Fig.7 reports

that multi-threaded writes to PM cause more severe memory

throughput degradation than reads in the waterfall region. The

write throughput of MBW drops by more than 70% when PM

serves two more threads after the knee point, while the read

throughput decreases by only 30% in the same case.

4) PM Devices: In this experiment, we finally vary the

number of PM devices from 1 to 3 in the platform. A single PM

only uses the non-interleaved mode (denoted as PM-NI), while

multiple PMs are configured in the interleaved mode (denoted

as PM-2I and PM-3I). Results in Fig.8 show that the plat-

form with more interleaved PM devices suffers less bandwidth

contention under the same multi-threaded workloads. This is

because the interleaved mode spreads the requests as evenly

as possible across multiple PM devices. As shown in Fig.8(b),

PM-3I has nearly 3x bandwidth than that in PM-NI. The PM

in the interleaved mode improves capability to serve concurrent

requests and makes them less likely to be blocked.

5) Summary: Due to the fact that an iMC has limited

channels and queue-length, when a large-sized PM request

sits at the head of the queue, its relatively slow memory-

transaction will heavily hamper the fast DRAM-requests be-

hind it in the queue, resulting in the notorious head-of-line

blockage. Through extensive experiments, we find that it is

the number of PA-threads exceeding a threshold that primarily

triggers the performance collapse of DRAM applications, with

the detailed and complex queueing-behavior likely playing a

secondary role. We also test the impact of other factors on

the DRAM-PM bandwidth contention, such as different PM-

aware file systems, different DIMM placement policies, ratio

of DRAM:PM capacities and CPU LLC hit ratios, and find that

they basically do not affect the severity of the contention.



TABLE II
MODEL PARAMETERS AND CORRESPONDING DESCRIPTIONS

Paremeters Descriptions

Input

Tmc Threshold of tolerable memory contention impact
N Number of PMs in interleaved mode
S Average request size
Wr Ratio of write requests

Output TS Threshold of runnable PA-Threads count

C. Contention Model

It is clear that finding or projecting the aforementioned

“knee” point, i.e., the threshold number of PA-threads beyond

which the DRAM performance collapses, for a given workload

and platform configuration, is critical for taming the bandwidth

contention. Based on the above observations and analysis, we

build a contention model, expressed in Eq.1, that provides a

contention profile projecting this “knee” point. The output TS

of the model is the maximum contention-free concurrency of

runnable PA-threads, which is determined by workload patterns,

the number of PMs, and the threshold Tmc.

TS = �(1 + 2Tmc) ∗ Prw + (1 + Tmc) ∗ PN + Psize� (1)

The key parameters are described in Table II. Tmc represents

the performance degradation severity predefined by the user,

which has range of [0, 1], where 0 and 1 mean lower-bound and

upper-bound contention on DRAM, respectively. The default

value is set as 0.2 for a trade-off between PM and DRAM

performance.

Prw represents the read/write ratio of the workload on the

bandwidth contention. Results in Fig.7 show that writes to PM

incur the performance collapse of DRAM applications at a

smaller number of PA-threads than reads.

Prw = 3−Wr (2)

N is the number of PM devices. Fig.8 shows that more PM

devices help weaken the bandwidth contention under the same

multi-threaded workloads.

PN = N − 1 (3)

Psize represents the impact of the average request size.

Psize =

{
0 S ≥ 256Byte

2∗256B
S

− 1 S < 256Byte
(4)

Finally, we validate the accuracy of the contention model.

For example, the evaluation shown in Fig.6 runs with a write-

only workload (i.e., Wr = 1), with an average request size of

4KB (i.e., S = 4096B) and a single PM (i.e., N = 1). With

these inputs, the model could shape the actual results of the

knee point and the waterfall region. For example, the model

outputs TS = 2 when Tmc is 0.1 and TS = 4 when Tmc is 0.5.

In addition, we further evaluate the accuracy of the contention

model on rehabilitating memory performance in Section V.

IV. DESIGN

The architecture of PATS is shown in Fig.9. PATS has

two dedicated scheduling threads, Collector and Selector, and

maintains three global data structures, Req-Info array, Running-

Lock array, and Serving-Thread count. The Req-Info array

links each PA-thread’s own Req-Info that records the request

read/write type and length. A PA-thread accesses PM only after

obtaining the Running-Lock.

PATS assigns each PA-thread a globally unique thread ID

(TID), which is less than the global array length value. A

Algorithm 1 PATS scheduling
Input: N , Tmc, T , S, Wr, defined in Table II

1: Function Selector()
2: for each blocked PA-thread with thread ID as TID do
3: if TS >= T then: unblock(Running-Lock-Array[TID])
4: end if
5: end for
6: Function Collector()
7: for each PA-thread with thread ID as TID do
8: S,Wr += Req-Info-Array[TID]
9: end for

10: S,Wr = average(S, Wr)
11: TS = model(S, Wr, Tmc, N )

Per PA-Thread
Req-Info Array

Per PA-Thread
Running-Lock Array

DCPMMs

Serving-Threads
Count

Collector

Selector

PA-Threads

PMDK
Library

User App

Hardware

Fig. 9. The architecture of PATS scheduling.

PA-thread uses its own TID to locate its corresponding Req-

Info and Running-Lock. The per-thread structures are updated

by their owner threads. When a PA-thread is terminated, PATS

recycles its TID and clears its corresponding data structures.

At runtime, a PA-thread sets its running-lock to ”1” (i.e., the

locked state) at initialization. Before launching a PM request,

the PA-thread updates its Req-Info in the global Req-Info array,

and is locked. Once unlocked by Selector, the PA-thread adds

1 to the Serving-Thread count and then performs its relevant

PM request. After request completion, the PA-thread subtracts

1 from the counts and clears the request info from Req-Info

array. Collector traverses the current Req-Info array within a

time-window and calculates the maximum number of runnable

PA-threads (i.e., parameter TS in the model). Selector monitors

Serving-Thread count at runtime (i.e., parameter T in the

model) and decides when to release blocked PA-threads.

As shown in algorithm 1, collector traverses all the non-

empty Req-Info arrays to collect request patterns of all PA-

threads periodically and calculates TS according to the con-

tention model. At runtime, Selector handles each Running-Lock

in a round-robin manner, which ensures fairness among PA-

threads and avoids starvation. PATS does not block PA-threads

with very small request sizes (e.g., less than 256B by default)

to avoid high scheduling overhead. We implement and integrate

the PATS prototype in PMDK to perform scheduling on PA-

threads invoked by applications.

V. EVALUATION

A. Experiment Setup

We run experiments in the platform as described in Section

III-A. We use FIO to access PM with a varying number of

threads and different block sizes, while executing MBW and

Memcached in DRAM with a single thread. The Baseline is

accessing PM and DRAM simultaneously without PATS. The

value of N and Tmc are 1 and 0.2, respectively.



(a) In PATS (b) Normalized to Baseline

Fig. 10. Throughput of the MEMCPY operation with different numbers of
PA-threads and varying request sizes.

Fig. 11. Throughput of Memcached with different numbers of PA-threads and
varying request sizes.

B. Performance

1) DRAM: The design goal of PATS is to mitigate the

DRAM performance collapses when accessing PMs and

DRAMs simultaneously. In experiments, we measure the oper-

ational throughput of MBW and Memcached, and compare the

results with those in the Baseline. We set the request size from

256B through 8KB, and invoke up to 14 PA-threads.

The results of the Baseline are shown in Fig.4 and Fig.6. The

MEMCPY throughput degrades from the peak of 5.1 GB/s to

the bottom of 500 MB/s with 14 PA-threads. Compared to the

Baseline, the PATS results shown in Fig.10(a) indicate that the

MEMCPY throughput in PATS remains stable independent of

the PM accessing behaviors. With request size and number of

PA-threads varying, the fluctuation of the MEMCPY throughput

in PATS is controlled within a 6% margin. It indicates that

PATS can adapt to different workload characteristics. However,

workloads with 256B-sized PM requests still incur DRAM

performance collapse. This is because PATS does not schedule

PM requests smaller than 256B by default, to ensure that the

PM performance does not suffer from PATS overhead.

Moreover, we define the MEMCPY throughput without using

PM (w/o PM) as the peak throughput and compare it with that

in PATS, both of which are normalized to Baseline. Fig.10(b)

shows that the MEMCPY throughput increases to up to 60x

that of Baseline, while dropping by less than 5% from w/o
PM at 14 PA-threads. Fig.11 demonstrates an identical trend.

With 14 PA-threads, the Memcached throughput increases to

up to 5x that of the Baseline, while slightly decreased by less

than 8% from the peak throughput.

2) PM: We measure the write throughput of PM in PATS,

as shown in Fig.1, the peak write throughput of PM sustains

with less than 5 PA-threads and drops by over 45% with 14

PA-threads. Fig.12(a) shows PM write throughput under the

PATS scheduling. When PM requests size is larger than 1KB,

the throughput remains at its peak regardless of the number of

PA-threads. Workloads with requests smaller than 256B will

not be scheduled by PATS, thus performing similarly as the

Baseline. Moreover, Fig.12(b) shows that 4KB-sized requests

with 14 PA-threads obtain 1.6x throughput gain in PATS over

the Baseline. This is because PATS can effectively control

the number of concurrent requests and mitigate the impact of

1 2 3 4 5 6 7 8 9 10 11 12 13 14
#PA-Threads

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
Th

ro
ug

hp
ut

Baseline
PATS-512B
PATS-4KB

Fig. 12. PM throughput with different numbers of PA-threads and varying
request sizes.

(a) Normalized to w/o PM (b) Normalized to Baseline

Fig. 13. MEMCPY throughput with different number of PM devices.

bandwidth contention on PM’s own performance.

We evaluate the overhead of PATS on PM performance.

We select PM throughput results in PATS with two typical

request sizes of 512B and 4KB and normalize them to the

Baseline. Fig.12(b) shows that with the 512B request size, the

PM throughput at one or two PA-threads is decreased by up to

25% of the Baseline. This is because small size requests are

more sensitive to the scheduling overhead of PATS. It is for this

reason that PATS does not schedule requests with extra small

size. However, we observe that PM throughput with 512B-sized

requests is still better than the Baseline beyond 6 PA-threads.

This indicates that the PATS scheduling overhead can be hidden

with multiple PA-threads to some extent. In addition, the CPU

load of PATS is less than 1% of the total CPU resources.

C. Sensitivity Study

1) Different numbers of PMs: We explore the effectiveness

of PATS with different numbers of PM devices (i.e., parameter

N in the contention model). We configure two PMs (PM-2I) in

the interleaved mode and compare it with a single PM (PM-NI).

Results under the PATS scheduling are normalized to that in

Baseline and that without using PM (w/o PM), respectively.

Fig.13(a) shows that, in both PM-NI and PM-2I, the MEM-

CPY throughput in PATS is reduced slightly, by 11% from

the peak performance without using PM, which satisfies the

threshold Tmc. It shows that PATS adapts to different hardware

environments with varying PMs. Fig.13(b) demonstrates that

PATS improves the MEMCPY throughput by 5.4x over the

Baseline with 6 PA-threads in PM-2I, while by 8.7x in

PM-NI. We also observe that the difference between PM-2I
and PM-NI narrows with more than 10 PA-threads. Previous

experiment in Fig.8(a) shows that, in the uncontrolled case (i.e.,

Baseline), the MEMCPY throughput with a varying number of

PM devices exhibit a larger gap in the waterfall region, while

the difference in bottom region is relatively small.
2) Threshold Tmc: To evaluate the impact of the Tmc value

on the performance, we compare the pre-defined Tmc value

(Def), with Tmc+0.1 (Inc) and Tmc−0.1 (Dec), respectively.

We set the write size for PM at 512B. Note that the threshold

Tmc is designed to tradeoff between maintaining the DRAM

performance and fully exploiting PM throughput. In general,

a larger Tmc value always leads to more concurrent requests

accessing PM (i,e., the Serving-Thread-count Ts) in PATS.



(a) MEMCPY throughput (b) PM throughput

Fig. 14. PM and DRAM throughput with varying TS .

Fig.14(a) shows that Dec is able to improve the MEMCPY

throughput by up to 8% over Def with a varying number of

PA-threads. This is because Dec strictly limits the number of

runnable PA-threads in PATS. However, the other side of the

coin is that too few PA-threads may decrease the performance

of PMs, especially for workloads with small request sizes

(e.g., 512B in this experiment). Fig.14(b) shows that the write

throughput of PM in Dec drops by up to 18% compared

to Def. In this case, even more PA-threads from application

cannot promote the PM overall throughput.

In contrast, Inc achieves a relatively small improvement in

the PM throughput at the cost of notably decreased DRAM

accessing performance. With 14 PA-threads, the throughput for

MEMCPY drops by up to 19% in Inc compared to Def, while

the PM write throughput increases by less than 3%. These

results are consistent with the earlier observation that more

PA-threads cause higher bandwidth contention, significantly

reducing DRAM performance.

VI. RELATED WORKS

To the best of our knowledge, our work is the first to address

and proposes solutions for the PM-access-induced bandwidth

contention between DRAM and PM, with the following relevant

issues studied in the literature.

Contention in multi-threaded execution environment.
Prior to the advent of PM, existing works have explored

performance issues stemming from resource contention in the

critical paths when multiple threads access DRAM memory, in-

cluding CPU cores [16], memory controllers [17], and memory

channel bandwidth [18]. Appropriate analytical models were

also constructed to quantify and predict contention behaviors

[19]. However, none of them considers the DRAM-PM ar-

chitecture where DRAM and PM are used simultaneously in

the memory subsystem. Our findings reveal that in such an

architecture accessing PM with multiple threads can heavily

hurt the performance of the DRAM memory.

Previous works mitigate the memory contention among mul-

tiple application-threads by optimizing the scheduling policy

within the memory controller, i.e., by prioritizing memory

requests with static scheduling according to request-types [9],

or dynamic scheduling to prevent starvation [20]. However,

these request-based schemes operate on the execution critical

path and introduce extra hardware cost and processing delay. In

contrast, PATS is implemented in the PM-processing software

layer without extra hardware modification. And importantly,

PATS is not on the critical path of accessing DRAM.

PM characteristics. There have been some efforts on mea-

suring the actual characteristics of the PM device, including

testing its basic performance, analyzing available patterns for

different applications and exploring its internal scheduling

mechanisms [1]. However, none of them addresses the band-

width contention problem arising from the joint use of PM

and DRAM. Our study complements these prior studies by

exploring these missing device characteristics of PM.

VII. CONCLUSION

We experimentally analyze the performance impact of severe

bandwidth contention due to multiple threads accessing PM

and DRAM simultaneously. We design a PM-Accessing Thread

Scheduling mechanism with PMDK library that is guided by a

contention model to mitigate the problem.

ACKNOWLEDGMENTS

This work is supported by National key research and de-

velopment program of China under Grant 2018YFA0701800,

NSFC No.62172175, No.61821003, NSF CNS-2008835, and

Alibaba Innovative Research (AIR) Program.

REFERENCES

[1] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistent memory,”
in FAST 2020.

[2] R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, A. Kolli, and V. Chi-
dambaram, “Splitfs: reducing software overhead in file systems for
persistent memory,” in SOSP 2019.

[3] F. Xia, D. Jiang, J. Xiong, and N. Sun, “Hikv: A hybrid index key-value
store for DRAM-NVM memory systems,” in USENIX ATC 2017.

[4] O. Kaiyrakhmet, S. Lee, B. Nam, S. H. Noh, and Y. Choi, “SLM-DB:
single-level key-value store with persistent memory,” in FAST 2019.

[5] H. T. Kassa, J. Akers, M. Ghosh, Z. Cao, V. Gogte, and R. G. Dreslinski,
“Improving performance of flash based key-value stores using storage
class memory as a volatile memory extension,” in USENIX ATC 2021.

[6] J. Breitbart, S. Pickartz, S. Lankes, J. Weidendorfer, and A. Monti,
“Dynamic co-scheduling driven by main memory bandwidth utilization,”
in CLUSTER 2017.

[7] A. Horvath and J. Slocum, “Mbw,” 2020, https://github.com/raas/mbw.
[8] “memcached,” 2020, http://memcached.org/.
[9] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. T. Kandemir, and

T. Moscibroda, “Reducing memory interference in multicore systems via
application-aware memory channel partitioning,” in MICRO 2011.

[10] I. Neal, G. Zuo, E. Shiple, T. A. Khan, Y. Kwon, S. Peter, and B. Kasikci,
“Rethinking file mapping for persistent memory,” in FAST 21.

[11] J. Xu and S. Swanson, “NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories,” in FAST 2016.

[12] O. Patil, L. Ionkov, J. Lee, F. Mueller, and M. Lang, “Performance
characterization of a DRAM-NVM hybrid memory architecture for HPC
applications using intel optane DC persistent memory modules,” in
MEMSYS 2019.

[13] AXBOE, “Fio: Flexible i/o tester,” 2020, https://github.com/axboe/fio.
[14] Intel, “Intel persistent memory programming,” https://pmem.io/pmdk/.
[15] INTEL, “Lmbench,” 2020, https://github.com/intel/lmbench.
[16] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu,

“Decoupled direct memory access: Isolating CPU and IO traffic by
leveraging a dual-data-port DRAM,” in PACT 2015.

[17] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi,
“Application-to-core mapping policies to reduce memory system inter-
ference in multi-core systems,” in HPCA 2013.

[18] W. Wang, T. Dey, J. W. Davidson, and M. L. Soffa, “Dramon: Predicting
memory bandwidth usage of multi-threaded programs with high accuracy
and low overhead,” in HPCA 2014.

[19] W. Wang, J. W. Davidson, and M. L. Soffa, “Predicting the memory
bandwidth and optimal core allocations for multi-threaded applications
on large-scale NUMA machines,” in HPCA 2016.

[20] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu, “MISE:
providing performance predictability and improving fairness in shared
main memory systems,” in HPCA 2013.


