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Abstract—High-Level Synthesis (HLS) translates high-level
behavior-description to Register-Transfer Level (RTL) implemen-
tation in modern Field-Programmable Gate Arrays (FPGAs),
accelerating domain-specific hardware developments. Low-Density
Parity-Check (LDPC), as a powerful error-correction code family,
has been widely implemented in hardware for building a reliable
data channel over a noisy physical channel in communication
and storage applications. Leveraging HLS to fast prototype high-
performance LDPC decoder is intriguing with high scalability
and low hardware-dependence, but generally is sub-optimal due
to the lack of accurate and precise behavior descriptions in
HLS to characterize iteration- and circuit-level implementation
details. This paper proposes an HLS-based QC-LDPC decoder
with scalable throughput by precisely refining the LDPC behavior
descriptions, R-LDPC for short. To this end, R-LDPC first adopts
an HLS-based LDPC decoder microarchitecture with a module-
level pipeline. Second, R-LDPC offers a multi-instance-sharing
one (MSO) description to explicitly define shared parts and non-
shared parts for an array of check-node updating-units (CNU),
eliminating redundant function modules and addressing circuits.
Third, R-LDPC designs efficient single-stage and multi-stage
shifters to eliminate unnecessary bit-selection circuits. Finally,
R-LDPC provides invalid-element aware loop scheduling before
the compile phase to avoid some unnecessary stalls at runtime.
We implement an R-LDPC decoder, compared to the original
HLS-based implementation, R-LDPC reduces the hardware con-
sumption up to 56%, the latency up to 67%, and the decoding
throughput up to 300%. Furthermore, R-LDPC is adapted to
different scales, LDPC standards, and code rates, and can achieve
9.9Gbps decoding throughput in Xilinx U50.

Index Terms—Low-density parity-check (LDPC), High-level
synthesis (HLS), Field-programmable gate array (FPGA)

I. INTRODUCTION

Low-Density Parity-Check codes (LDPC) are a popular and
powerful family of linear error-correction codes close to the
Shannon limit [1], which have become safeguards for building
reliable cyberspace upon noise-filled physical space. Quasi-
cyclic (QC) LDPC codes are a subclass of LDPC codes with
regular code structures facilitating the hardware implementation
[2], widely adopted in many wireless standards (e.g., WiFi and
CCSDS) and in data storage (e.g., solid-state drives).

LDPC decoders with high computation complexity have been
extensively studied in code structures, decoding algorithms and
hardware implementation [3] [4]. Generally, a Register-Transfer
Level (RTL) LDPC decoder implementation is dedicated to a
given code structure and decoding algorithm, which is generally
long and prone-error process even for RTL experts [5].

Fortunately, High-Level Synthesis (HLS) has been advancing
to automatically compile untimed behaviors described in high-

level languages such as C/C++ or OpenCL into the RTL,
thus dramatically improving hardware-development productiv-
ity, especially for hardware accelerators [6]–[8]. Xilinx Vivado
HLS (renamed Vitis HLS now) has been the most popular
commodity HLS [9] used to implement FPGA applications
according to its corresponding C/C++ algorithms.

However, there still exists a considerable Quality-of-Result
(QoR) gap in the LDPC-decoder between HLS-generated and
RTL-expert-generated designs. By analyzing the RTL imple-
mentation of the QC-LDPC decoder based on a straightforward
algorithm description of HLS (H-LDPC), we find that there
exists significant hardware inefficiency largely due to a lack
of HLS detailed description to accurately characterize speci-
fied behaviors and functions in three key decoding modules.
First, H-LDPC does not distinguish between shared and non-
shared parts for multiple hardware instances. Second, H-LDPC
realizes a general bit-selection-based shifter. Third, H-LDPC
implements loop iteration and does not consider whether the
iteration is valid.

We present an HLS-based refining behavior-description QC-
LDPC decoder (R-LDPC). Specifically, R-LDPC first offers
a multi-instance-sharing-one expression to avoid repetitive
shared-part hardware. Second, R-LDPC characterizes element-
wise vector processing and further designs single/multi-stage
shifters. Finally, R-LDPC reduces unnecessary element-invalid
iterations before the compiling phase and decoding delay.

We implement an R-LDPC decoder in Xilinx U50. Compared
to the original HLS-based implementation, R-LDPC reduces
the hardware consumption by up to 56% and the latency by
up to 67% and increases the decoding throughput by up to
300% (209Mbps). The throughput of the R-LDPC decoder
can linearly scale to 9.9Gbps, outperforming existing HLS-
based implementations and exceeding most hand-crafted RTL
designs.

The main contributions of this work are as follows:

• We design an HLS-based QC-LDPC decoder microar-
chitecture and identify the inefficiency of origin HLS
implementation.

• We refine three key precise behavior descriptions to design
three corresponding optimizations.

• We implement and evaluate the R-LDPC decoder in real
hardware to manifest its effectiveness, scalability, and
flexibility.



II. BACKGROUND

A. FPGA and High-level Synthesis

Field-Programmable Gate Array (FPGA) is a reconfigurable
integrated circuit, ubiquitously used for domain-specific hard-
ware, from IoT devices to cloud data centers. FPGA is mainly
composed of Look-Up-Table (LUT), Flip-Flops (FF), and rout-
ing resources. Modern FPGA usually uses standard on-chip bus
protocols for high-speed communication inside or outside the
chip, such as AXI-MM, AXI-Lite, AXI-S, etc.

High-Level Synthesis (HLS) is an automated design process
that compiles an algorithmic description of a logic behavior
to the corresponding FPGA hardware implementation at the
Register-Transfer Level (RTL). Traditional RTL-based manual
design generally is error-prone with a long development cycle
[5]. In contrast, HLS-based automated hardware development
has higher productivity and flexibility, which is broadly used
in large-scale and/or new functionality scenarios, e.g. machine
learning, graph computing, and domain-specific accelerators.

Mainstream HLS, such as Vivado HLS and Intel HLS,
uses C/C++ as development languages [10] and additional
pragmas or directives to characterize hardware behaviors. For
example, UNROLL indicates whether a loop is implemented
as multiple hardware instances in parallel or multiple-cycle
serial processing. HLS automatically schedules according to
the built-in delay model under the frequency requirement. In
addition, HLS also largely decouples algorithms, scalability,
and hardware platforms.

Although HLS can rapidly achieve the required functionality
in the hardware, the implementation generally can be sub-
optimal in hardware efficiency due to a high-level abstract
behavior corresponding to multiple realizations with different
performances. It is generally necessary to optimize with the
pragmas provided by HLS and refactor the behavior-description
to improve the quality of HLS results (QoR) [11], [12].

B. QC-LDPC and Decoding Algorithm
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Fig. 1: An example of QC-LDPC parity check matrix extending
from the base matrix and its tanner graph.

LDPC codes have superior error-correction capability and
channel efficiency at the cost of computation complexity.
Original LDPC codes with a randomly generated H matrix
cause irregular and complex wire routing circuits. Quasi-Cyclic
LDPC (QC-LDPC) [13] codes are well-structured and rela-
tively easy to implement in hardware without significant error-
correction performance decreases and have been widely used in
the communication and storage field. Fig. 1 gives a base matrix
and its tanner graph of an example QC-LDPC. Its parity check
matrix consist of 2 × 3 I(n) sub-matrices.The size of I(n) is
Z×Z. The I(n) sub-matrix is an n-times circulant permutation

matrix from the unit matrix (I(0)). The I(−1) represents a zero
matrix.

In the parity check matrix of the LDPC code. Each row
corresponds to a check node (CN) and each column corresponds
to a variable node (VN). 1 represents exist edge between the
VN and CN. The decoding algorithm of LDPC is based on
message passing. There are two classic node update scheduling
of decoding algorithms, namely flood and layered decoding.

The flood decoding first updates messages from CN to VN
(R), and then updates messages from VN to CN (Q) with
the log-likelihood probability of each bit (P ). The layered
decoding divides an LDPC check matrix into multiple layers.
Only needs to update R and Q in a layer then updates P .
The layered approach speeds up the decoding convergence and
reduces the complexity of the LDPC decoder interconnection,
but introduces additional inter-layer dependencies. Meanwhile,
the QC-LDPC decoder can be implemented semi-parallel to
exploit sub-matrix level.

III. DESIGN

A. R-LDPC Decoder Microarchitecture

We use HLS to implement a layered semi-parallel QC-
LDPC decoder with three key features: value-reuse, intra-block
parallel and inter-block serial scheduling. The entire decoding
process comprises the following 5 steps:

① Read P and R. At initialization, the value of P is read
from INPUT and the value of R is 0.

② Calculate Q from P −R.
③ Uses Q as input, Rnew as output executes CN updating.
④ Generate Pnew from Rnew +Q
⑤ Update P and R
The entire decoding process includes multiple iterations

with multiple sub-iterations, each of sub-iteration executes the
complete ①②③④⑤ process.
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Fig. 2: R-LDPC decoder microarchitecture

We design a decoder microarchitecture, as shown Fig. 2, and
use HLS to describe its entire decoding behavior. P and R are
stored in the memory block arrays, which are implemented by
C++ arrays. In addition, Pshift, Rnew and Pnew are added as
C++ arrays for more accurately express decoding behavior. ①
is implemented as three sub-steps: read INPUT , initialize P
with INPUT , and executes parallel cyclic shift by assignment
to Pshift from P in a loop; ② executes a subtraction from R
and Pshift to Q in a loop; ③ defines a CNU class, declare an
object array of CNU and use Q call the member function of
CNU in a loop to get Rnew; ④ executes an addition in a loop
from Rnew and Q to Pnew; ⑤ executes an assignment from
Pnew to P in a loop. Finally, the PIPELINE pragma is added
to the sub-iteration loop, achieving a module-level pipeline.



However, compared to the representative RTL design [3],
the HLS-based decoder has a lower decoding throughput (44%
down) but higher hardware consumption (584% up), as detailed
in Section IV. By analyzing RTL implementation details, we
find that there exists hardware inefficiency in the CNU array
and parallel cyclic shifter, while existing HLS cannot accu-
rately define detailed behaviors such as multi-instances sharing
one, single/multi-stage shifter and invalid-element aware loop
scheduling. This motivates us to refine the behavior descriptions
to implement an optimized QC-LDPC decoder.

B. Multi-instance Sharing One (MSO)
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Fig. 3: Structures of CNU-array

The CN updating unit (CNU)-array is the compute heart
of QC-LDPC decoder to perform the value-reuse feature. As
shown in Fig. 3, the CNU-array consists of N CNUs, which
are independent but can process the same set of edges in the
I(n) sub-matrices simultaneously. All CNUs share the CNU
control but have their internal state (PS), final state (FS) and
q sign as non-shared members.

1 class CNU{
2 bit3 pos; // ....shared part
3 CNU_State PS; //private part
4 CNU_State FS; //private part
5 FIFO q_signs; //private part
6 bit6 f(bit6 q){
7 #pragma HLS PIPELINE
8 bit6 ret;
9 if(CNU_control(pos))

10
11 FS = PS;
12
13
14 min_finder(PS, q, pos);
15 q_signs << q.sign;
16 ...
17 ret = Rgenerate(
18 FS, q_signs.pop(), pos);
19 return ret;
20 }
21 };
22 ...
23 void decoder(...){
24 CNU cnua[N];
25 ...
26 for (int i=0; i<N; i++){
27 #pragma HLS UNROLL
28 ... = cnua[i].f(...);
29 }
30 ...
31 }

(a) Original CNU-array

1 class CNUA{
2 bit3 pos;
3 CNU_State PS[N];
4 CNU_State FS[N];
5 FIFO q_signs[N];
6 V<bit6> f(V<bit6> q){
7 #pragma HLS PIPELINE
8 V<bit6> retV;
9 if(CNU_control(pos))

10 for (int i=0; i<N; i++){
11 FS[i] = PS[i];
12 }
13 for (int i=0; i<N; i++){
14 min_finder(PS[i],q[i],pos);
15 q_signs[i] << q[i].sign;
16 ...
17 ret[i] = Rgenerate(FS[i],
18 q_signs[i].pop(), pos);}
19 return retV;
20 }
21 };
22 ...
23 void decoder(...){
24 CNUA cnua;
25 ...
26
27
28 cnua.f(...);
29
30 ...
31 }

(b) MSO CNU-array

Fig. 4: CNU-array HLS codes

As shown in Fig. 4a, a CNU is defined as a C++ class on lines
1-22 containing its members and functions. Line 24 defines N
CNU-instances. The CNU-array is implemented with loop and
UNROLL pragma (lines 26 to 29) to generate N CNU hardware
independently. However, the shared parts of the CNU are also
implemented as multiple copies as Fig. 3a shows.

To solve this problem, we propose Multi-instance-Sharing-
One (MSO) description. MSO explicitly defines a CNU-array
class containing a set of member arrays. Each element of an
array is associated with a non-shared member/function of an

instance. A shared member/function is only generated once as
shown in Fig. 3b.

Specifically, as shown in Fig. 4b, we first define a CNU-
array class (lines 1, 24). Second, the members corresponding
to the non-shared part in the CNU-array class are implemented
as arrays (lines 3-5), Third, the loop with UNROLL is used
to express multiple instances of the non-shared part inside the
member function of the CNU-array class (lines 10-18). The
read of the shared part is inside the loop (lines 14, 18), and the
write of the shared part is outside the loop (lines 9). Therefore,
multiple CNU instances have their non-shared members but
share the no-array members in the CNU-array class.

C. Parallel Cyclic Shifter

for(i=0;i<size;++i)
{
#pragma HLS UNROLL
outa[i]=
ina[(i+count)%size];

}
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Fig. 5: Parallel cyclic shifter structures in HLS

The parallel cyclic shifter is another important component of
the QC-LDPC decoder, which is implemented by a simple loop
as Fig. 5a shows. We find that when the ina and outa arrays
are applied with different pragmas, the loop is implemented as
different structures in HLS.

Specifically, when the input/output array is specified as an
array partition, the implemented structure (Fig. 5b) is similar to
a barrel shifter with some redundant addressing circuits. When
the input/output array is specified as a vector or array remap
(Fig. 5c), the addressing circuit is no longer redundant but
implemented structure has a very high hardware consumption
(about 277k LUTs). The reason is, i becomes a constant
after the loop is unrolled, count is a runtime variable, so
(i+count)%size is a runtime variable. In HLS, a vector means
a high-width integer, so the behavior of those codes is to use
a variable as an address to get some bits from a high-width
integer and obtain the structure as shown in Fig. 5c.

1 void vshifter(...){
2 #pragma HLS PIPELINE
3 T in_reg[size];
4 #pragma HLS array_partition ...
5 T out_reg[size];
6 #pragma HLS array_partition ...
7 for (int j=0;j<size;++j){
8 in_reg[j]=ina[j];}
9 for (int j=0;j<size;++j){

10 out_reg[j]=
11 in_reg[(j+count)%size];}
12 for (int j=0;j<size;++j){
13 outa[j]=out_reg[j];}
14 }

(a) HLS code
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Fig. 6: Parallel cyclic shifter structures in HLS

1) Single-stage Shifter: To improve hardware efficiency, we
first design a single-stage shifter behavior description. Specif-
ically, as shown in Fig. 6a, first in reg and out reg array
added to this function with array partition pragma at lines 3
and 5. Second, every element is assigned in the input vector to



the in reg array at line 8. Third, the in reg and out reg are
used to perform a parallel cyclic shift at lines 10-11. Finally,
every element is assigned in the out reg to the output vector
at line 13. This approach can obtain an expected barrel shifter
structure (Fig. 6b) without redundant addressing circuits.

1 template<int size, typename T>
2 void logshifter(
3 V<T> &ina, V<T> &outa,
4 3bit count){
5 #pragma HLS PIPELINE
6 V<T> s1;
7 V<T> s2;
8 if(count[0])
9 cshifter<T, 1>(ina, s1);

10 else cshifter<T, 0>(ina, s1);
11 if(count[1])
12 cshifter<T, 2>(s1, s2);
13 else cshifter<T, 0>(s1, s2);
14 if(count[2])
15 cshifter<T, 4>(s2, outa);
16 else cshifter<T, 0>(s2, outa);
17 }

(a) HLS code
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Fig. 7: Structure of logarithmic shifter

2) Multi-stage Shifter: We further implement a multi-stage
parallel shifter, shift 0 or 2i elements (i = 0, 1, 2, 3...) in each
stage, as shown in Fig. 7a. Since the hardware consumption
of a parallel cyclic shift with a constant shift count is small,
the shifter can reduce the hardware consumption with the same
decoding throughput. The multi-stage shifter structure is similar
to the logarithmic shifter as shown in Fig. 7b, which reducing
the hardware complexity from O(N2) to O(NlogN).

D. Invalid-element Aware Loop Scheduling

In many LDPC communication standards, the base matrix
is irregular and has a large number of invalid elements (‘-1’).
For example, in the 802.16e standard with 1/2 code, about 70%
elements in the base matrix are invalid.

1
2 int base_m[][] = {...};
3
4 for (int i=0; i<col; i++){
5 for (int j=0; j<row; j++){
6 if(base_m[i][j] != -1){
7 ...
8 P = Parray[j];
9 logshfter(

10 P, Pshift,base_m[i][j]);
11 ...
12 } } }

(a) Original HLS code

1 int jMAX = ...;
2 int c_matrix[][jMAX] = {...};
3 int c_index[] = {...};
4 for (int i=0; i<col; i++){
5 for (int j=0; j<jMAX; j++){
6
7 ...
8 P = Parray[c_index[j]];
9 logshfter(

10 P, Pshift,c_matrix[i][j]);
11 ...
12 } }

(b) R-LDPC HLS code

Fig. 8: Base matrix and usage

For a loop implemented with a PIPELINE in HLS, the
decoding delay mainly depends on the number of loop iterations
as shown in Fig. 8a at line 5. For R-LDPC, the number of loop
iterations is the element number in the base matrix. because
the pipelined decoder does not handle invalid elements, the
corresponding handling cycles cannot be eliminated at runtime.

We reduce the actual number of iterations, as shown in
Fig. 8b. We first traverse the base matrix and only keep valid
elements in the base matrix, and then compact each column of
the matrix. Second, all compacted rows construct a compacted
matrix (c matrix at line 2) and use an additional index array
(c index at line 3) to record the position of each element in the
original array. The compacted matrix with valid elements has
a shorter columns-length (jMAX at line 5) which determines
the number of iterations.

IV. IMPLEMENTATION AND EVALUATION

A. Implementation and Experimental Setup

We use the Xilinx Vitis hardware development platform for
implementing a set of LDPC decoders on FPGA and conduct
a set of experiments to analyze the performance and hardware
consumption. The experimental platform employs a server with
Intel Xeon CPU E5-2660 and 173GB memory. The FPGA
used for the experiment is a Xilinx Alveo U50 data center
accelerator card (A-U50-P00G-PQ-G) with official firmware
(Xilinx u50 gen3x16 xdma 201920 3). The version of Vitis
is 2022.2, and the version of XRT is 2.6.655.

The decoders use the 802.16e and the CCSDS standard with
different code rates (0.5-0.9), the expansion factor is 64 and
the decoding iterations number is 5.

B. Overall Performance

We implement five version decoders, including the original-
HLS as the baseline (HLS-decoder), HLS-decoder with the
MSO (HLS-v), HLS-v decoder with the single-stage shifter
(HLS-vss), HLS-v decoder with the multi-stage shifter (HLS-
vms), and HLS-vms decoder with invalid-element aware loop
scheduling (R-LDPC).
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Fig. 9: Decoder hardware consumption and performance

Fig. 9 shows the performance and resource consumption of
these five versions of the decoders. The R-LDPC decoder with
305% higher decoding throughput at a 56% lower LUT usage
than the H-LDPC.

Compared with the HLS-decoder, HLS-v consumes more
hardware resources. The reason is that the MSO CNU array has
a vectorized memory interface, without the element-aware vec-
tor, HLS will generate an extra bit-selection circuit. However,
by applying a single-stage shifter and multi-stage shifter, the
HLS-vb decoder reduces hardware consumption by 27%, HLS-
vl further decreases hardware consumption by 56%. These four
decoders do not dramatically change either decoding latency
or throughput. Nevertheless, when using invalid-element aware
matrix scheduling, the R-LDPC decoder gains improvements in
all three metrics as decoding latency, throughput, and hardware
consumption.

C. Sensitivity Study

Next, we further analyze the effect of MSO and single-/multi-
stage shifter optimization in detail.

The kernel is the smallest runnable unit of the Vitis platform.
To independently evaluate the optimization effect of R-LDPC, a
kernel containing only one function module and bus interface
module is implemented in this experiment. The INLINE-off
pragma is applied to the function module to retain the module



boundary for easier analysis of the hardware consumption of
itself.

1) Multi-instance sharing one (MSO): In this experiment, a
kernel contains only the CNU array and bus interface modules.
The CNU array has 64 CNUs with 2-bit calculation bit-width.
The baseline CNU array uses the code as shown in Fig. 4a,
while the MSO CNU array uses the code as shown in Fig. 4b.

TABLE I: The hardware consumption of CNU array

Type of CNU array Hardware
consumption (LUT)

Hardware
consumption (FF)

Baseline 1345 1740
MSO 1165 1554

Table. I shows the result of the CNU array, indicating that the
hardware consumption of the MSO CNU array is 13% lower
than that of the baseline CNU array.

2) Parallel Cyclic Shifter: Three versions of shifters are
implemented in this experiment. All shifters shift 64 elements
in parallel, with each element being an 8-bit integer. The
baseline shifter is the original HLS version with the code as
shown in Fig. 5a and the single-/multi-stage shifter.
TABLE II: Delay and hardware consumption of three types of
shifters

Shifter type Delay (Cycles) Hardware consumption (LUT)
baseline 1 8599
single-stage 0 6627
multi-stage 1 797

As shown in Table. II, compared to the baseline shifter, the
single-stage shifter reduces the hardware consumption and the
delay by eliminating the bit-selection circuit. Compared with
the single-stage shifter, the multi-stage shifter further greatly
reduces the hardware usage due to its lower hardware com-
plexity, and only increases the delay by one cycle. Because the
circuit delay of the const cyclic shifter in HLS is significantly
less than a one-cycle delay, multiple shifting operations can be
completed within one cycle without increasing pipeline delay.

D. Scalability and Flexibility

To manifest the scaling advantages of R-LDPC, we use the
R-LDPC decoder as a decoding unit (DU), simply implement
the coarse-grained pipeline across DU as shown in Fig. 10, and
adjust the number of DUs to increase the decoding throughput
of the decoder.

In addition, we adopt the different LDPC code standards,
code rate, and calculation bit-width of the LDPC decoder by
simply replacing the key arrays and constants in the R-LDPC
behavior description HLS code.

Fig. 11 shows the hardware and decoding throughput scal-
ability in the coarse-grained pipelined manner. The result

1 #pragma dataflow
2 MemoryForUnit buf[UNIT_NUM];
3 for (int i = 0; i<UNIT_NUM; i++)
4 data_in(buf[i]);
5 for (int i = 0; i<UNIT_NUM; i++)
6 #pragma UNROLL
7 decode_unit(buf[i]);
8 for (int i = 0; i<UNIT_NUM; i++)
9 data_out(buf[i]);

(a) HLS code

I 
D

O

D
D

I = Data Input

D = Decoding

O = Data Output

(b) Space-time diagram

Fig. 10: Coarse-grained pipeline

0 10 20 30 40 50
Decoder unit number

0

2

4

6

8

10

H
w

 c
on

su
m

pt
io

n 
(1

03 LU
T) Baseline

R-LDPC
[3]
[4]
[5]

(a) Hardware consumption

0 10 20 30 40 50
Decoder unit number

0

100

200

300

400

500

R
ea

l t
hr

ou
gh

pu
t (

G
bp

s)

Baseline
R-LDPC
[3]
[4]
[5]

(b) Decoding throughput

Fig. 11: Scalability of R-LDPC decoder

indicates that the R-LDPC decoder scales linearly with the
number of decoder units. It also suggests that HLS is convenient
and effective for designing large-scale hardware.

Due to limited resources on FPGA, the design with excessive
hardware consumption cannot complete synthesis. As a result,
the baseline decoder cannot expand the scale beyond 24 decod-
ing units, while R-LDPC can scale to 48 decoding units and
obtain maximum decoding throughput up to 9.9Gbps.

In addition, R-LDPC has advantages over the latest RTL-
based QC-LDPC decoders [3], [4], [14] in the peak decoding
throughput as shown in Fig. 11. Although R-LDPC decoders
consume slightly more hardware than these RTL-based expert
designs at the same scale. By more accurately describing the
latest RTL-based expert design behavior, R-LDPC can further
improve the decoding throughput.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Code rate

0

5

10

15

20

25

30

H
w

 c
on

su
m

pt
io

n 
(1

03 LU
T)

Type
R-LDPC
baseline

Width
3
4
5
6

Standard
806_16e
CCSDS

(a) Hardware consumption

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Code rate

0
50

100
150
200
250
300
350
400

Th
ro

ug
ht

pu
t (

M
bp

s)

Type
R-LDPC
baseline

Width
3
4
5
6

Standard
806_16e
CCSDS

(b) Decoding throughput

Fig. 12: Flexibility of R-LDPC decoder

Fig. 12 shows the flexibility of H-LDPC and R-LDPC can
effectively adapt to different LDPC algorithms, code rates,
calculation bit-widths, and the number of iterations, which is
mainly due to the functionality of HLS. In all cases, R-LDPC
outperforms H-LDPC in reducing the hardware consumption up
to 66% and increasing the decoding throughput up to 213%,
which indicates that it is still beneficial to refine the behavior
description as R-LDPC.

V. RELATED WORK

A. Improve QoR of HLS by Refining Behavior Description

While HLS already supports many syntaxes of high-level
languages, which can greatly shorten the development cycle of
hardware development. But its semantics and automatic opti-
mizations are still limited, which leaves room for improvement
in QoR.

Winterstein and Homsirikamol et al. [15], [16] conducts a
study on how to restructure C codes to improve QoR with HLS.
They convert the code manually, which effectively improves
the performance of the hardware. However, such conversion



requires developers to have rich hardware development experi-
ence, and the optimized code is not intuitive and portable.

Young-kyu and Cong [11] propose an automated source code
conversion, but this work can only deal with three specific
variable boundary loops. However, the QoR of the HLS-based
LDPC decoder cannot benefit from these automated methods.

B. HLS-based LDPC Decoder Design
Some excellent HLS-based LDPC decoder designs achieve

performance close to RTL designs.
Mhaske et al. [17], [18] propose a layered decoder based on

LabVIEW-based HLS. Although the performance is excellent,
the HLS used in this work is designed to describe hardware
through low-level circuit diagrams, which has a big semantic
gap from the mainstream HLS based on high-level program-
ming languages.

Wang et al. [19] implemented a performance-balanced
general-purpose QC-LDPC decoder design using Vivado HLS,
which is similar to the expert design in 2007 [20], However, this
microarchitecture cannot support layered decoding algorithms,
which have faster decoding iterative convergence and lower
complexity of interconnection. Therefore, it consumes more
hardware resources (the closest design is about 25K LUTs)
than the R-LDPC decoder (14K LUTs) under similar decoding
throughput.

VI. CONCLUSION

We design an HLS-based QC-LDPC decoder micro-
architecture and identify the inefficiency of H-LDPC. We
propose three refined behavior descriptions to realize the corre-
sponding optimizations. These optimizations just use standard
C++ and common HLS semantics, without relying on specific
HLS and new compilers. The experiments show that the R-
LDPC has effectiveness, scalability, and flexibility.

R-LDPC reduces hardware consumption up to 66%, in-
creases decoding throughput up to 213% and reaches the
maximum decoding throughput up to 9.6 Gbps on the U50.
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