
FLOWS: Balanced MRC Profiling for Heterogeneous
Object-Size Cache

Xiaojun Guo§,†, Hua Wang§B, Ke Zhou§, Hong Jiang‡, Yaodong Han§, Guangjie Xing§
§Huazhong University of Science and Technology, China

†Tencent Inc., China
‡University of Texas at Arlington, USA

{xjguo,hwang,zhke}@hust.edu.cn,hong.jiang@uta.edu,{ydhan,guntherxing}@hust.edu.cn

Abstract
While Miss Ratio Curve (MRC) profiling methods based on
spatial sampling are effective in modeling cache behaviors,
previous MRC studies lack in-depth analysis of profiling
errors and primarily target homogeneous object-size sce-
narios. This has caused imbalanced errors of existing MRC
approaches when employed in heterogeneous object-size
caches. For instance, in CDN traces, the error of the Byte
Miss Ratio Curve (BMRC) could be two orders of magnitude
larger than that of the Object Miss Ratio Curve (OMRC).
In this paper, we reveal an important insight from our

experimental analysis, namely, the source of profiling inac-
curacy is twofold, the “imbalanced requests” and the het-
erogeneous object-size distribution. To this end, we propose
𝐹𝐿𝑂𝑊𝑆 , a Filtered LOw-variance Weighted Sampling ap-
proach, to address the root causes of the problem by combin-
ing a Cache Filter, designed to balance sampled requests, with
a Weighted Sampling technique, designed to reduce byte-
level estimation error. 𝐹𝐿𝑂𝑊𝑆 constructs a more accurate
MRC for traces with heterogeneous content popularity and
object sizes. Evaluation on real-world traces demonstrates
that 𝐹𝐿𝑂𝑊𝑆 reduces the error of the BMRC and OMRC
profiling by 16× and 3×, respectively, compared with state-
of-the-art approaches. Additionally, 𝐹𝐿𝑂𝑊𝑆 enables cache
systems to effectively balance the Byte Hit Ratio (BHR) and
Object Hit Ratio (OHR), achieving an improvement of up to
26.5% in overall hit rate compared to other methods.

CCS Concepts: • Information systems→ Storage man-
agement.

Keywords: MRC profiling, object cache, cache optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3650078

1 Introduction
Data caching plays a crucial role in web service optimization
by reducing the amount of data transferred over the net-
work, leading to lower bandwidth costs and improved user
experience. Content Delivery Networks (CDNs) are the pri-
mary providers of web caching services, accounting for over
50% of the total Internet traffic [6]. Therefore, understand-
ing and optimizing data caching techniques are essential
for delivering better services and enhancing performance.
When evaluating the performance of an object-level cache,
two commonly used metrics are Byte Miss Ratio (BMR) and
Object Miss Ratio (OMR). OMR serves as an indicator of
the miss ratio for our accesses and is closely linked to the
resulting access latency [5], whereas BMR holds particular
significance on bandwidth overhead and associated costs for
the cache provider [54].

In general, a cache system should be capable of supporting
and managing multiple caching services [41]. A more effec-
tive cache policy can lead to a higher hit ratio for a particular
service, while better management of cache resources can
result in improved overall performance for all services that
share the cache. Miss Ratio Curve (MRC) is a quantitative
model to characterize cache performance, where the x-axis
represents the cache size and the y-axis represents the miss
ratio. Figure 1 shows the Byte Miss Ratio Curve (BMRC)
and Object Miss Ratio Curve (OMRC) of a CDN trace [1] un-
der the Least Recently Used (LRU) replacement policy. MRC
plays a vital role in cache resource management methods,
such as cache allocation [14, 16, 72], cache sharing [14], and
traffic provisioning [54].
Exact MRC profiling requires trace replaying, which can

incur high space and time overhead [39]. Previous studies
have proposed approximate MRC profiling methods to re-
duce overhead [18, 24, 27, 30, 60, 62, 70, 72], primarily focus-
ing on the LRU replacement policy since the reuse distance
is a reliable intermediate variable. Spatial (hash) sampling
based MRC profiling is the most representative algorithm
[18, 59, 60], which uses a sampled subset of the working set
to approximate cache performance, thus significantly reduc-
ing the overhead compared to a complete trace enumeration,
e.g., Footprint Descriptors [53]. However, this method may
not be applicable to real-world object cache traces, as evi-
denced by Figure 1(a) that reveals two major problems with

421

https://doi.org/10.1145/3627703.3650078
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627703.3650078&domain=pdf&date_stamp=2024-04-22

EuroSys ’24, April 22–25, 2024, Athens, Greece Xiaojun Guo, Hua Wang, Ke Zhou, Hong Jiang, Yaodong Han, Guangjie Xing

10−3 10−1 101 103 105

Cache Size (MB, log scale)
0.0

0.2

0.4

0.6

0.8

1.0

By
te

 M
iss

 R
at

io

Exact
SHARDS-1
SHARDS-2
SHARDS-3

10−3 10−1 101 103 105

Cache Size (MB, log scale)
0.0

0.2

0.4

0.6

0.8

1.0

Ob
je

ct
 M

iss
 R

at
io

Exact
SHARDS-1
SHARDS-2
SHARDS-3

(a) MRC Profiling with SHARDS.

10−3 10−1 101 103 105

Cache Size (MB, log scale)
0.0

0.2

0.4

0.6

0.8

1.0

By
te

 M
iss

 R
at

io

Exact
HCPP-1
HCPP-2
HCPP-3

10−3 10−1 101 103 105

Cache Size (MB, log scale)
0.0

0.2

0.4

0.6

0.8

1.0

Ob
je

ct
 M

iss
 R

at
io

Exact
HCPP-1
HCPP-2
HCPP-3

(b) MRC Profiling with HCPP.
Figure 1. The exact and profiled LRU BMRC and OMRC of
the MetaCDN-rega [1] trace. When using a sampling rate
of 𝑟 = 0.01, the SHARDS [60] and HCPP [18] exhibit two
weaknesses: 1) incorrect construction of the BMRC, and 2)
inaccurate OMRC.
spatial sampling: 1) inaccurate front portion MRC profiling,
due to heterogeneous content popularity, i.e., request prob-
ability; and 2) significant profiling error disparity between
BMRC andOMRC, caused by heterogeneous object sizes. The
state-of-the-art method proposed by Carra and Neglia [18]
solves the first problem, as shown in Figure 1(b), but still suf-
fers from the second problem. For ease of description in the
subsequent text, we refer to this method as Heterogeneous
Content Popularity cache Profiling (HCPP).

In this paper, we focus on the MRC profiling of real-world
object caches. We find that the inaccuracy of the MRC pro-
filing is due to the imbalanced sampling of requests and
bytes under heterogeneous content popularity and hetero-
geneous object-size. To address this problem, we propose
FLOWS (Filtered LOw-variance Weighted Sampling), which
can achieve highly accurate BMRC and OMRC profiling with
no additional cost compared to existing spatial sampling
methods. Our contributions are summarized as follows:

1. We model spatial sampling based MRC profiling tech-
niques as a distributed cache system and point out that
keeping load balanced is essential for the accuracy of
these methods.

2. We propose FLOWS with two novel mechanisms, a
Cache Filter and a Weighted Sampling technique, to
overcome the imbalance caused by heterogeneity, thus
resulting in accurate BMRC and OMRC profiling.

3. We evaluate the accuracy of FLOWS using 18 real-
world traces. In comparison to state-of-the-art MRC

profiling methods [18, 27, 60], our approach achieves
an average error reduction of 16× in BMRC profiling
and 3× in OMRC profiling, without incurring any ad-
ditional space and time overhead.

4. The cache allocation experiments demonstrate that
using FLOWS profiling can achieve a better balance
between Byte Hit Ratio (BHR) and Object Hit Ratio
(OHR) compared to the state-of-the-art algorithms.
Our approach results in a maximum improvement of
26.5% in overall hit rate.

The rest of the paper is organized as follows. In Section 2,
we discuss the motivation for FLOWS. Section 3 models
the spatial sampling based MRC profiling methods as a dis-
tributed cache, and proposes a load-balancing mechanism to
reduce the error of MRC profiling. The detailed algorithm
for both BMRC and OMRC is described in Section 4. We
evaluate our solution in Section 5. Section 6 discusses the
value of using MRC and how to profile real cache systems.
Section 7 provides an overview of related work. Finally, in
Section 8, we conclude the paper.

2 Background and Motivation
2.1 MRC Profiling Methods
MRC is the metric that represents the cache miss ratio as
a function of cache size. Most cache policies are unable to
efficiently construct an MRC, with the exception of the LRU
policy [39], which has the attribute of reuse distance. As
shown in Figure 2, the reuse distance of an object refers to
the total size of unique objects between its two consecutive
accesses, with a reuse distance of infinity indicating that the
object is the first time been requested. The reuse distance can
also be considered as aWorking Set Size (WSS) of consecutive
requests, that is, the sum of the total unique object sizes. If
the reuse distance is no larger than the LRU cache size, then
the object will be hit in the cache.
The MRC of LRU is constructed as a discrete integration

histogram that counts all requests’ reuse distances (Figure 3).
Using a search tree data structure is the most efficient way to
calculate the exact reuse distance histogram, which requires
𝑂 (𝑀) space and 𝑂 (𝑁𝑙𝑜𝑔(𝑀)) time, where 𝑁 is the length
of the trace and𝑀 is the number of unique objects [73]. This
high cost makes exact MRC profiling impractical [10, 55].
Spatial sampling methods, such as SHARDS [60] and HCPP
[18], have been shown effective in MRC profiling. These
methods employ selective counting of objects based on their
hash values. They estimate the impact of a request being a
hit or a miss (estimate size), as well as the required cache
capacity to ensure that the request hits the cache (reuse
distance). This approach helps in reducing computational
and memory overhead (refer to Figure 2).
The accuracy of spatial sampling methods can be signif-

icantly impacted by the popularity and size of objects. For
instance, if a highly popular object A is not sampled, the

422

FLOWS: Balanced MRC Profiling for Heterogeneous Object-Size Cache EuroSys ’24, April 22–25, 2024, Athens, Greece

40

X

1

INF INF 5Reuse
Distance

X A AObjectID

1 2 2Size

0.50.5 0.6 0.6Hash

INF

B

3

0.1

INF

C

4

0.3

INF

F

12

0.9

INF

E

7

0.2

18

F

0.9

12

INF

D

5

0.7

6

A

2

0.6

7

A

2

0.6

INF

G

6

0.4

Exact Reuse Distance

INF INF INF INF 42Reuse
Distance

X B E G XObjectID

2 6 14 12Estimate
Size 2

INF

C

8

5 6Reuse
Distance

A AObjectID

2 2Size

7

A

2

Spatial Sampled Reuse Distance Small Cache Reuse Distance

1

?

13

Figure 2. The reuse distance for object cache. When using
spatial sampling based methods with a sample rate of 0.5,
only XBCEG are sampled. With a small cache of size 10, all
reuse distances less than 10 are counted.

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60

By
te

 M
is

s
R

at
io

Cache Size

Exact
SHARDS
HCPP

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60

By
te

 M
is

s
R

at
io

Cache Size

SHARDS
Small Cache

Figure 3. By integrating size over reuse distances, we obtain
the BMRC. SHARDS [60] only uses spatial sampled reuse
distance, and the HCPP [18] uses small cache reuse distance.

reuse distance histogram in SHARDS will fail to capture
the low reuse distance portion of object A. Similarly, if ob-
ject F, which has a large size, is not sampled, the SHARDS
method cannot accurately estimate the required cache space
for achieving a hit on that object.

To overcome this challenge, SHARDS employs a compen-
sation method for improper sampling. For example, if the
original trace contains a total of 57 bytes, while the sampled
trace only includes 44 bytes, SHARDS assumes that 13 bytes
will be hit in a smaller cache. To account for this, SHARDS
adjusts the histogram by adding a bin with a reuse distance of
1 and a size of 13. The MRC resulting from this compensation
is shown on the left side of Figure 3.

The issue of inaccurate front portion MRC caused by het-
erogeneous content popularity was observed in the research
conducted by Carra and Neglia [18]. To address this problem,
they propose the HCPP method. This method utilizes a small
fixed-size cache to construct an exact front portion of the
MRC, which is then concatenated with the MRC profiled by
SHARDS, as illustrated on the right side of Figure 3.

0.01% 0.1% 1% 10% 100%
#% hot objects

101

103

105

107

109

Si
ze

 D
ist

rib
ut

io
n

MetaCDN-reag

Size
0.01% 0.1% 1% 10% 100%

#% hot objects

102

103

104

105

106

107

108

wiki2019u
Size

0.0

0.2

0.4

0.6

0.8

1.0

Req CDF
0.0

0.2

0.4

0.6

0.8

1.0

Re
q

CD
F

Req CDF

Figure 4. Popularity and size distribution in MetaCDN-reag
and wiki2019u [51] trace. The x-axis represents the propor-
tion of the hottest working set, while the y-axis on the left
and right sides represents the object-size distribution and
the cumulative request ratio, respectively.

Although this method can obtain a relatively accurate
OMRC, the modeling error of BMRC is still significant (Fig-
ure 1(b)). As the BMR has a significant impact on the per-
formance of web cache systems, using such a method for
MRC profiling and guiding cache allocation may result in
suboptimal cache performance.

2.2 Web Cache System
Modern web cache systems, such as Content Delivery Net-
works (CDNs), primarily focus on object-level caching ser-
vices. The size of an object is often closely related to its
popularity, and there is a significant heterogeneity in both
popularity and size. Our CDN trace study, illustrated in Fig-
ure 4, shows the distributions of object sizes and popularity
in two real-world traces. Notably, in the MetaCDN-reag [1]
trace, the smallest object is nine orders of magnitude smaller
than the largest object, indicating a substantial level of het-
erogeneity in object sizes. Additionally, the top 0.01% of the
most popular objects account for approximately 40% of the
overall requests. Such highly popular objects can signifi-
cantly impact cache performance, especially when the cache
size is relatively small.
Cache systems store the most popular contents to offer

end-users low latency and high throughput. Origin offload,
end-user latency, and midgress bandwidth cost are the three
key metrics of a CDN system [54]. One of the primary ob-
jectives of cloud providers is to effectively reduce resource
usage under the premise of satisfying the Quality of Service
(QoS). BMR directly reflects bandwidth costs, therefore a
high BMR will result in increased origin offload, end-user
latency, and midgress traffic costs [54]. From this perspec-
tive, minimizing the BMR is a major objective in cloud cache
service under the constraints of cache capacity.
Some caching systems and frameworks have embraced

the concept of isolation and resource reallocation among
multiple cache pools [9, 56]. In these approaches, each cache

423

EuroSys ’24, April 22–25, 2024, Athens, Greece Xiaojun Guo, Hua Wang, Ke Zhou, Hong Jiang, Yaodong Han, Guangjie Xing

A E A E ···B B F F ···C G G C ···D H D D ···

T1 T3 T4T2

Skewed sub-
trace length

Cache Size

M
is

s R
at

io Inaccurate front MRC

D
Stream of requests

1 0.75 0.5 0.25 0
Sampled requests

Spatial Sampling (r = 0.25)

Su
bt

ra
ce

 L
en

gt
h

2

1

3

4 MRC profiling

Stream of requests

Consistent Hash (N = 4)

D

A E ··· B F ··· C G ··· D H ···

N1 N2 N3 N4

D

N1 N2 N3 N4

Se
rv

er
 L

oa
d

Request Load Storage Load

Balanced
Storage Load

Skewed
Request Load

Figure 5. Distributed Cache (left) and Spatial Sampling (right).

pool assumes the responsibility of managing its own stor-
age space. This strategy offers several advantages, such as
reducing the footprint and achieving performance isolation.
Since most cache instances demonstrate different MRCs, this
practice often helps to improve the cache hit ratio.

2.3 Cache Resource Management
Cache resource management methods are vital in provid-
ing balanced and efficient cache services for multiple ap-
plications. To efficiently utilize cache resources in multi-
application environments, a variety of solutions have been
proposed from different perspectives, such as cache allo-
cation [12, 14, 27, 29, 36, 46, 55, 57, 71, 72], cache sharing
[14, 35, 45, 63] and traffic provisioning [53, 54]. Most of these
solutions utilize MRC to achieve the desired optimization
goals. However, existing methods face challenges in simul-
taneously constructing accurate BMRC and OMRC, which
makes fine-grained and efficient management of cache re-
sources impractical.

2.4 Our Work
In this study, we uncover how the heterogeneity of object
sizes and popularity can significantly impact cache MRC
profiling in spatial sampling. To mitigate this problem, we
propose a solution based on load balancing principles. Our
approach is designed especially for web caches that operate
under heterogeneous object-size workloads. We demonstrate
that our approach is capable of providing highly accurate
and low-cost MRC profiling, which can be beneficial for such
cache systems.

3 System model
In this section, we model the spatial sampling based method
as a distributed cache system and propose a Cache Filter

Table 1. Symbol Summary Table

Symbol Description

𝑁 # of requests
𝑀 # of objects
𝑟 Sampling rate
𝐾 # of nodes in an analogous distributed cache
𝐵 Size of small cache in HCPP [18]
𝐿 # of object cached in Cache Filter
𝑠𝑖 Size of object 𝑖

and a Weighted Sampling technique to address the inaccu-
racy of spatial sampling. We demonstrate that these tech-
niques can be used to improve the accuracy of MRC profiling
substantially. The symbols primarily used for analysis are
summarized in Table 1.

3.1 From Load Balance to MRC Profiling
Figure 5 (left) demonstrates a typical four-node distributed
cache system based on Consistent Hash. Each node in this
system keeps data blocks hashed to it and serves their cor-
responding requests. Figure 5 (right) shows a spatial sam-
pling based MRC profiling procedure. This procedure begins
by mapping each object 𝑖 to a random variable ℎ𝑎𝑠ℎ(𝑖) ∈
𝑈 (0, 1)(❶, ❷). Then, with a sampling rate of 𝑟 = 0.25, only
objects with hash values less than 𝑟 are sampled(❸). Spa-
tial sampling uses these sampled requests to construct an
MRC(❹), such as SHARDS [60] for LRU and Miniature Sim-
ulation [59] for some Non-LRU policies.
The overall cache performance across different nodes in

the consistent hash is the same as that of a pooled single
virtual cache sharing a single LRU eviction list [31]. This
means that spatial sampling with a sampling rate of 𝑟 can

424

FLOWS: Balanced MRC Profiling for Heterogeneous Object-Size Cache EuroSys ’24, April 22–25, 2024, Athens, Greece

be modeled as a distributed cache with 𝐾 = 1/𝑟 nodes, and
the overall cache performance is represented by randomly
selecting one cache node.
Let us consider a workload trace with 𝑁 requests and𝑀

unique objects. We use spatial sampling with a sampling
rate of 𝑟 , and the number of nodes in the corresponding
distributed cache is 𝐾 = 1/𝑟 . The basic SHARDS relies on
two primary assumptions:

(1) Balanced Request: the number of sampled requests is
close to 𝑟 × 𝑁 for accurate request estimation;

(2) Balanced Storage: the number of sampled unique ob-
jects is close to 𝑟 ×𝑀 for accurate reuse distances or
WSS estimation.

While the storage load is almost balanced [47] for caches
with homogeneous object sizes, due to heterogeneous con-
tent popularity, the request load may be skewed, leading to
an imbalance in the number of requests (as seen in Figure 5
left). The latter has a significant impact on the variation of
cache performance in the back-end nodes [25, 38]. Moreover,
the skewed content popularity in spatial sampling can cause
the sampled requests to deviate from 𝑟 × 𝑁 , resulting in
inaccurate MRC profiling (as seen in Figure 5 right).

3.2 Popularity Heterogeneity with Cache Filter
Despite the “Balanced Request” assumption made by spatial
sampling, objects in real-world workloads have various pop-
ularity. Assuming that the sampled trace includes hot objects,
the observed cache performance based on sampling will be
much higher than the actual one. Conversely, if the sampled
trace excludes hot objects, the observed cache performance
will be abnormally lower [18].

To address the “load imbalance” issue, a partial solution
called SHARDSadj was proposed by Waldspurger et al. [60].
In the subsequent sections, we will refer to it as SHARDS
for brevity. It adds 𝑁𝑒 − 𝑁𝑠 to the beginning of the reuse dis-
tance histogram, where 𝑁𝑒 = 𝑟 × 𝑁 is the expected number
of sampled requests, and 𝑁𝑠 is the actual number of sampled
requests.While this re-balancing scheme can lead to accurate
miss ratio profiling for larger cache sizes, it can be inaccurate
when the cache size is relatively small (Figure 1(a)). To ad-
dress this issue, HCPP [18] proposed constructing an exact
front portion MRC for cache capacity from 0 to 𝐵, where
𝐵 > 1/𝑟 (Figure 1(b)). This approach can provide a more
accurate MRC profiling, but the configuration of parameter
𝐵 is not specified in the original paper.

A small cache serving as a load balancer can significantly
reduce the imbalance in a distributed cache system [25, 38].
Fan et al. [25] demonstrated that balancing the number of
requests across all 𝐾 back-end nodes can be achieved by
caching only the 𝑂 (𝐾 × log(𝐾)) most frequently accessed
objects, regardless of the total number of objects. In our study,

Consistent Hash (N = 4)

Cache Filter

N1 N2 N3 N4

Miss Requests

Requests

N1 N2 N3 N4

Se
rv

er
 L

oa
d

Request Num Storage NumBalanced
Request Load

Cache Filter
select one node randomly

Balanced
Storage Load

Cache Size

M
is

s R
at

io

Exact head MRC

Cache Size

M
is

s R
at

io

Accurate tail MRC

Cache Size

M
is

s R
at

io

Accurate full MRC

Figure 6. The Cache Filter serves as a load balancer for
the spatial sampling process, ensuring that requests are dis-
tributed evenly.

conducted in Theorem 3.1, we also proved that caching high-
popularity objects during the spatial sampling process can
effectively bound the bias of sampled requests.

Theorem 3.1. (proof in Appendix A) In a spatial sampling
process with a sample rate of 𝑟 , by caching the 𝐿 most popular
objects, the relative bias of the sampled requests is consistently
bounded with a probability of (1 −𝑂 (𝑟 2)). The value of 𝐿 is
determined by the following equation:

𝐿 = 𝑂 (1
𝑟
log

1
𝑟
). (1)

Cache Filter. Based on the concept of small load balancing
cache, we propose a Cache Filter technique, which consists
of a small LRU cache of a fixed length 𝐿 and a search tree to
calculate reuse distances, is illustrated in Figure 6.
Cache Filter only caches 𝐿 most recent accessed objects,

and constructs the exact front portion MRC. Compared to
the HCPP method, our proposed Cache Filter has two addi-
tional benefits: first, only missed requests affect the sampling
phase, thus reducing the computational overhead of spatial
sampling; second, the Cache Filter only maintains a fixed

425

EuroSys ’24, April 22–25, 2024, Athens, Greece Xiaojun Guo, Hua Wang, Ke Zhou, Hong Jiang, Yaodong Han, Guangjie Xing

10% 5% 1% 0.5% 0.1%
Spatial sampling rate

0.00

0.02

0.04

0.06

0.08

W
SS

 e
st

im
at

io
n

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

MetaCDN-reag
Heterogeneous
Homogeneous

10% 5% 1% 0.5% 0.1%
Spatial sampling rate

0.00

0.02

0.04

0.06

W
SS

 e
st

im
at

io
n

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

wiki2019u
Heterogeneous
Homogeneous

Figure 7. The coefficient of variation of WSS estimation is
calculated for both heterogeneous-size and homogeneous-
size traces, which can effectively capture byte-level profiling
errors. The results are obtained from the MetaCDN-reag and
wiki2019u [51] traces.

number of objects in the search tree, making it more efficient
than the fixed size cache of HCPP.

3.3 Low-Variance Byte Estimation via Weighted
Sampling

We employ the estimation of WSS as the target for subse-
quent error analysis. The WSS represents the sum of unique
object sizes within the entire working set. In other words,
it also denotes the reuse distance between the initial and
final access within the trace. To assess the error in the WSS
estimate, we use the coefficient of variation, providing an
intuitive reflection of relative error. For a random variable 𝑆 ,
its coefficient of variation is defined as:

𝐶𝑣 [𝑆] =
√︁
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 [𝑆]
E[𝑆] . (2)

The “Balanced Storage” assumption of spatial sampling
implies that the WSS can be estimated accurately. However,
in a scenario where the cache objects have heterogeneous
sizes, this assumption may no longer be valid.

Theorem 3.2. (proof in Appendix B) For a trace with𝑀 dis-
tinct objects, the sampling rate is 𝑟 and the WSS estimated by
spatial sampling is𝑊𝑆𝑆𝑠 . The coefficient of variation of𝑊𝑆𝑆𝑠
is given by:

𝐶𝑣 [𝑊𝑆𝑆𝑠] =

√︄
1 − 𝑟
𝑟𝑀
× E[𝑠

2]
E2 [𝑠] , (3)

where E[𝑠] is the average object-size, and E[𝑠2] is the averaged
square of the object-size.

Theorem 3.2 formalizes the error of the spatial sampling
WSS estimation in heterogeneous object-size scenarios. For a
cache with heterogeneous object sizes, the ratio E[𝑠2]/E2 [𝑠]
exceeds 1. We conduct an experiment to illustrate the error
induced by the heterogeneity of object sizes in real-world
workloads. As depicted in Figure 7, the WSS estimation error

Algorithm 1:Weighted Sampling
Input: sampling rate 𝑟 , 𝑖th object size 𝑆𝑖 , average

object-size 𝑆𝑎𝑣𝑔
Output: Estimated Sum Size of Distinct Objects

𝑊𝑆𝑆𝑤𝑠

1 𝑊𝑆𝑆𝑤𝑠 = 0;
2 foreach object 𝑖 do
3 𝑟𝑖 = min(1, 𝑟 × 𝑠𝑖/𝑠𝑎𝑣𝑔);
4 if hash(i) ≤ 𝑟𝑖 then
5 𝑊𝑆𝑆𝑤𝑠 += 𝑠𝑖/𝑟𝑖
6 end
7 end

for two CDN traces, along with their corresponding homo-
geneous traces (created by standardizing the object size), is
amplified by a factor of 10 and 6.87 respectively.
Weighted Sampling. In sum estimation problems, linearly
weighted sampling has proven to be a highly effective way to
reduce estimation error [8, 22, 42]. The key point ofWeighted
Sampling is applying a linearly increasing sampling probabil-
ity to objects based on their assigned weights. Furthermore,
the influence of each sampled object is recalibrated according
to its individual sampling rate.
Algorithm 1 shows how to apply Weighted Sampling to

WSS estimation. For example, consider a Weighted Sampling
process with a sampling rate of 𝑟 . Each object 𝑖 of size 𝑠𝑖 , is
assigned a sampling rate 𝑟𝑖 = min(1, 𝑟 × 𝑠𝑖/𝑆𝑎𝑣𝑔), where 𝑆𝑎𝑣𝑔
is the average size of the distinct objects. If object 𝑖 is sampled
with a probability of 𝑟𝑖 , its contribution to the reuse distance
or WSS estimation is 𝑠′𝑖 = 𝑠𝑖/𝑟𝑖 . Our Theorem 3.3 demon-
strates that Weighted Sampling can effectively reduce the
estimation variance in heterogeneous object-size scenarios
to the same level as in homogeneous scenarios.

Theorem 3.3. (proof in Appendix C) For a trace with𝑀 dis-
tinct objects, 𝑠𝑖 is the size of object 𝑖 , the sampling rate is 𝑟 , and
𝑊𝑆𝑆𝑤𝑠 is the estimatedWSS calculated byWeighted Sampling.
The coefficient of variation of𝑊𝑆𝑆𝑤𝑠 is given by:

𝐶𝑣 [𝑊𝑆𝑆𝑤𝑠] ≤
√︂

1 − 𝑟
𝑟𝑀

. (4)

We note that the parameter 𝑆𝑎𝑣𝑔 is essential for ensuring
that the final sampling rate is close to 𝑝 . In our evaluation, we
estimate 𝑆𝑎𝑣𝑔 using a small trace prefix segmentwithminimal
additional overhead and without sacrificing accuracy.

4 FLOWS
In this section, we present the detailed design of FLOWS
(Section 4.1). We then demonstrate how Weighted Sampling
can be employed for cache policies beyond LRU (Section 4.2).
Additionally, we will explore how FLOWS can be employed
for multi-objective optimization in cache management (Sec-
tion 4.3).

426

FLOWS: Balanced MRC Profiling for Heterogeneous Object-Size Cache EuroSys ’24, April 22–25, 2024, Athens, Greece

0 1

Hash

Byte Reuse Distance

R
eu

se
 B

yt
es

Exact Histogram

Byte Reuse Distance

R
eu

se
 B

yt
es

8

Cache Size

M
is

s R
at

io

Accurate full BMRC

R
eu

se
 B

yt
es

Byte Reuse Distance

Full Histogram

Cache Filter

Load
Balance Cache

A, 1

E, 4

B, 1 C, 3

D, 10

D, 10

hit

Cache miss

2

Stream of requests
A, 1C, 3 D, size = 10 E, 1 B,4

: object size
: sampling rate

: average object size

5

K', 20G', 16

D', 16
G', 16 D', 16 K', 20 ···

D

Weighted Sampling

1

3

4

6

7

9

= 0.25 × 10 / 4 = 0.625
Estimated Histogram

Figure 8. FLOWS overview.

4.1 Algorithm Design
We propose FLOWS, a three-phase algorithm that combines
the Cache Filter and Weighted Sampling techniques to con-
struct MRC, as shown in Figure 8. To explain the workflow
of FLOWS, we use the following BMRC profiling example:
• The incoming stream of requests, BEDAC, are first
sent to the Cache Filter(❶). If a request is found in
the Cache Filter, its reuse distance is computed using
a search tree (❷). If not, the request is added to the
Cache Filter in an LRU manner and has a chance to
be counted in the next Weighted Sampling phase (❸).
The Cache Filter only keeps 𝐿 objects in its cache and
the search tree, and the evicted objects are passed to
the Weighted Sampling phase.
• In the Weighted Sampling phase, a missed object (❸)
is hashed to 𝑈 ∈ (0, 1) (❹), and its sampling rate is
weighted by its size 𝑠𝐷 . Formally, 𝑟𝐷 = 𝑟 × 𝑠𝐷/𝑠𝑎𝑣𝑔,
where 𝑟 and 𝑠𝑎𝑣𝑔 are the given sampling rate and av-
erage object-size (❺), respectively. With a sampling
rate of 𝑟𝐷 , the counted size of the object 𝐷 is 𝑠′

𝐷
=

𝑠𝐷/𝑟𝐷 (❻). The sampled trace is then used to esti-
mate the reuse distance histogram of objects missed
in Cache Filter (❼).
• Finally, the exact histogram from the Cache Filter is
combined with the estimated histogram in Weighted
Sampling (❽) to yield the BMRC (❾).

Many studies have shown that content popularity is strongly
correlated with object-size in web caches [7, 13, 20]. While
our Weighted Sampling approach is able to accurately esti-
mate the BMRC, it performs poorly in OMRC profiling due
to this correlation. To address this issue, we propose a novel
approach combining spatial sampling of a fixed sampling
rate and Weighted Sampling to estimate the OMR and the
reuse distance orthogonally. We then demonstrate how to
adapt FLOWS to both a fixed sampling rate scheme and a
fixed sampling number scheme.
Fixed Sampling Rate Scheme. Algorithm 2 provides a

detailed description of FLOWS, which estimates both BMRC
and OMRC simultaneously. There are two search trees, T𝐶𝐹 ,
used in the Cache Filter, andT𝑊𝑆 , used inWeighted Sampling.
Histograms 𝐻𝐵 and 𝐻𝑂 are used to construct BMRC and
OMRC, respectively. Furthermore, the last access time of
sampled objects is recorded in a hash table, which is not
shown in the pseudocode.
The Cache Filter is shared for both front portion BMRC

and OMRC profiling as it always tracks the last 𝐿 requests.
When an object is hit in the Cache Filter, the BMRC his-
togram 𝐻𝐵 and OMRC histogram 𝐻𝑂 are updated (Lines 6
to 9). Objects that are not found in the Cache Filter can be
sampled by spatial sampling (Line 14) or Weighted Sampling
(Line 18). The reuse distance 𝑅𝐷 is estimated by:

𝑅𝐷 = 𝑅𝐷𝑤𝑠 + 𝑠𝑖𝑧𝑒 (T𝐶𝐹), (5)

where 𝑅𝐷𝑤𝑠 is the sampled reuse distance in T𝑊𝑆 , which
is calculated by weighted sampling at sampling rate 𝑟 , and
𝑠𝑖𝑧𝑒 (T𝐶𝐹) is the total size of the cached 𝐿 objects in the Cache
Filter (Lines 12 to 13).
To reduce the high variance of reuse distance estimation

caused by spatial sampling, we omit objects that are only
sampled by spatial sampling from T𝑊𝑆 . In the case of an
object 𝑖 that is sampled by spatial sampling (Lines 14 to 15),
we increase 𝐻𝑂 at its estimated reuse distance 𝑅𝐷𝑖 by 1/𝑟 .

For weighted sampled object 𝑖 , we set its sampling rate
𝑟𝑖 = min(𝑟 × 𝑠𝑖/𝑠𝑎𝑣𝑔, 1), update its position in search tree
T𝑊𝑆 and update the BMRC histogram 𝐻𝐵 (Lines 17 to 20). In
order to ensure a consistent estimation of large objects (e.g.,
𝑠𝑖 > 𝑠𝑎𝑣𝑔/𝑟), we limit the maximum weighted sampling rate
to no greater than 1. Consequently, the updates in 𝐻𝐵 and
T𝑊𝑆 are equal to 𝑠𝑖/𝑟𝑖 .
To ensure accurate sampling, the object evicted from the

Cache Filter should be re-inserted into T𝑊𝑆 if it is weighted
sampled (Lines 22 to 25). This will help to avoid counting
the same object twice in T𝐶𝐹 and T𝑊𝑆 .
However, there may still be a slight difference between

the number of bytes or requests sampled, and the expected
number of bytes or requests. To account for this difference,
we normalize the histogram starting from the average size
of the Cache Filter in 𝐻𝐵 and 𝐻𝑂 , until the sum of the buck-
ets meets the expected value. After this, we construct the

427

EuroSys ’24, April 22–25, 2024, Athens, Greece Xiaojun Guo, Hua Wang, Ke Zhou, Hong Jiang, Yaodong Han, Guangjie Xing

Algorithm 2: Fixed Sampling Rate MRC Profiling
Input: Cache Filter size 𝐿, sampling rate 𝑟 , average

object-size 𝑆𝑎𝑣𝑔, request trace
Output: Estimated BMRC and OMRC

1 T𝐶𝐹 ← 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑇𝑟𝑒𝑒 ();
2 T𝑊𝑆 ← 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑇𝑟𝑒𝑒 ();
3 𝐻𝐵 ← 𝑏𝑦𝑡𝑒𝑅𝑒𝑢𝑠𝑒𝐻𝑖𝑠𝑡 ();
4 𝐻𝑂 ← 𝑟𝑒𝑞𝑅𝑒𝑢𝑠𝑒𝐻𝑖𝑠𝑡 ();
5 foreach requested object 𝑖 do
6 if 𝑖 ∈ T𝐶𝐹 then
7 𝑅𝐷𝑖 ← 𝑢𝑝𝑑𝑎𝑡𝑒 (T𝐶𝐹 , 𝑖, 𝑠𝑖);
8 𝐻𝐵 [𝑅𝐷𝑖] ← 𝐻𝐵 [𝑅𝐷𝑖] + 𝑠𝑖 ;
9 𝐻𝑂 [𝑅𝐷𝑖] ← 𝐻𝑂 [𝑅𝐷𝑖] + 1;

10 else
11 // missed object in Cache Filter;
12 𝑅𝐷𝑤𝑠,𝑖 ← 𝑟𝑎𝑛𝑔𝑒𝑆𝑢𝑚(T𝑊𝑆 , 𝑖);
13 𝑅𝐷𝑖 ← 𝑅𝐷𝑤𝑠,𝑖 + 𝑠𝑖𝑧𝑒 (T𝐶𝐹);
14 if hash(𝑖) ≤ 𝑟 then
15 𝐻𝑂 [𝑅𝐷𝑖] ← 𝐻𝑂 [𝑅𝐷𝑖] + 1/𝑟 ;
16 end
17 𝑟𝑖 = min(1, 𝑟 × 𝑠𝑖/𝑠𝑎𝑣𝑔);
18 if ℎ𝑎𝑠ℎ(𝑖) ≤ 𝑟𝑖 then
19 𝑑𝑒𝑙𝑒𝑡𝑒 (T𝑊𝑆 , 𝑖, 𝑠𝑖/𝑟𝑖);
20 𝐻𝐵 [𝑅𝐷𝑖] ← 𝐻𝐵 [𝑅𝐷𝑖] + 𝑠𝑖/𝑟𝑖
21 end
22 𝑖𝑛𝑠𝑒𝑟𝑡 (T𝐶𝐹 , 𝑖 , 𝑠𝑖);
23 if 𝑙𝑒𝑛𝑔𝑡ℎ(T𝐶𝐹) > 𝐿 then
24 𝑒 ← 𝑝𝑜𝑝 (T𝐶𝐹);
25 𝑝𝑟𝑜𝑏𝐼𝑛𝑠𝑒𝑟𝑡 (T𝑊𝑆 , 𝑒, 𝑠𝑒/𝑟𝑒 , 𝑟𝑒);
26 end
27 end
28 𝐵𝑀𝑅𝐶 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐵𝑀𝑅𝐶 (𝐻𝐵);
29 𝑂𝑀𝑅𝐶 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑂𝑀𝑅𝐶 (𝐻𝑂);
30 end

BMRC and OMRC from the normalized histograms 𝐻𝐵 and
𝐻𝑂 (Lines 28 to 29).

Fixed Sampling Number Scheme. Fixed sampling num-
ber schemes can provide a more predictable and efficient
resource usage compared to fixed sampling rate schemes.
Weighted sampling can be easily adapted to a fixed sampling
number scheme by tracking only𝑈 items with the smallest
sized-hash ℎ𝑎𝑠ℎ𝑠 (𝑖), which is defined as:

ℎ𝑎𝑠ℎ𝑠 (𝑖) = ℎ𝑎𝑠ℎ(𝑖)/𝑠𝑖 . (6)

In the fixed sampling number implementation of SHARDS,
the sampling rate 𝑟 is represented by the largest hash value
of the sampled objects. In contrast, in our Weighted Sam-
pling scheme, the sampling rate 𝑟 is the largest sized-hash
max(ℎ𝑎𝑠ℎ𝑠 (·)) of 𝑈 sampled objects. To implement fixed

sampling number spatial sampling in the OMRC profiling,
we use the paradigm introduced by SHARDS.

Parameter Configuration. FLOWS requires three pa-
rameters: the length of the Cache Filter 𝐿, the sampling
rate 𝑟 , and the average object-size 𝑆𝑎𝑣𝑔. Typically, 𝐿 is set to
𝑂 (1/𝑟 × log(1/𝑟)), while the average object-size 𝑆𝑎𝑣𝑔 can be
approximated through a small part of the trace file (e.g., 10K
requests). It is important to note that FLOWS will increase
the actual sampling rate, as Weighted Sampling and spatial
sampling work independently. To ensure a fair comparison
with other methods, the sampling rate or the number of
samples in FLOWS may be halved.

4.2 Applying to Non-LRU Policies
For most cache algorithms, simulation is the only way to
build an MRC, but it can be slow and inefficient. Fortunately,
Miniature Simulation [59] techniques based on spatial sam-
pling provide an alternative solution, which reduces both
the time and space cost of simulation, while still providing
good accuracy for some Non-LRU policies.
The Weighted Sampling scheme is easy to adapt to the

BMRC and OMRC profiling for Non-LRU cache policies. Our
methodology for non-LRU caches encompasses four key
steps: sampling, scaling, replaying, and statistics:
• Sampling: Within a given trace, we calculate the sam-
pling rate for an object 𝑖 using the formula 𝑟𝑖 = max(0.5×
𝑟, 𝑟 × 𝑠𝑖/𝑠𝑎𝑣𝑔) in order to achieve the targeted overall
sampling rate 𝑟 . We sample all objects whose hash
values are less than 𝑟𝑖 for further analysis.
• Scaling: For each sampled object 𝑖 , we adjust its size
to 𝑠′𝑖 = 𝑠𝑖/𝑟𝑖 to reflect the sampling rate.
• Replay: All sampled requests are fed directly into a
cache simulator of a specified cache capacity, for ex-
ample, libCacheSim.
• Statistics: During the replay phase, if an object 𝑖 is
hit, we increment the hit ratio accordingly. Scaling
adjustments are necessary; for instance, the increase
in byte-level hits is calculated as 𝑠′𝑖 = 𝑠𝑖/𝑟𝑖 , and the
increase in object-level hits is quantified as 1/𝑟𝑖 .

Since the Cache Filter is not involved in this process, we
calculate the difference in traffic size and request number be-
tween the sampled trace and the original trace. We attribute
these differences to high-popularity objects and treat these
requests as hits. Finally, by simulating under different cache
sizes, we obtain the BMRC and OMRC of Non-LRU Policies.

4.3 Multi-Objective Optimization
By leveraging FLOWS, we can perform multi-objective opti-
mization by allocating caches in a way that maximizes both
BHR and OHR simultaneously. This approach enables us to
strike a balance between these two objectives and achieve
an optimal cache allocation strategy that meets the specific
requirements of the system or application.

428

FLOWS: Balanced MRC Profiling for Heterogeneous Object-Size Cache EuroSys ’24, April 22–25, 2024, Athens, Greece

0 20000 40000 60000 80000 100000
Cache size (# cache units)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
iss

 ra
tio

MAE
Exact MRC
Profiled MRC

100 101 102 103 104 105

Cache size (# cache units, log scale)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
iss

 ra
tio

MAEQ

Exact MRC
Profiled MRC

Figure 9. MAE (left) calculates the average absolute error
of the miss ratio for uniformly distributed test points across
different cache sizes (represented by different color sections).
On the other hand, MAEQ (right) selects test ranges with
evenly spaced miss ratios, such as 0.1 as shown in the figure.
This approach causes MAEQ to place more emphasis on
profiling errors for small cache sizes.

In this work, we consider Equation 7 as our optimization
objective. The overall BHR andOHR for all𝑁 cache instances
are denoted as 𝐵𝐻𝑅𝑔 and 𝑂𝐻𝑅𝑔, respectively, and 𝐶 is the
total cache size. For a specific cache instance 𝑖 with cache
size 𝑐𝑖 , its BHR and OHR are represented as 𝐵𝐻𝑅𝑖 (𝑐𝑖) and
𝑂𝐻𝑅𝑖 (𝑐𝑖). The access traffic and request for cache instance 𝑖
are denoted as𝑇𝑖 and 𝑅𝑖 , respectively. Hence, the overall byte
hit rate (BHR) and object hit rate (OHR) can be expressed as
follows: 𝐵𝐻𝑅𝑔 =

∑𝑁
𝑖 𝐵𝐻𝑅𝑖 (𝑐𝑖)×𝑅𝑖
𝑆𝑢𝑚𝑇𝑟𝑎𝑓 𝑓 𝑖𝑐

and𝑂𝐻𝑅𝑔 =
∑𝑁

𝑖 𝑂𝐻𝑅𝑖 (𝑐𝑖)×𝑅𝑖
𝑆𝑢𝑚𝑅𝑒𝑞𝑢𝑒𝑠𝑡

.

max
𝑐𝑖

𝐸 = 𝜔 × 𝐵𝐻𝑅𝑔 + (1 − 𝜔) ×𝑂𝐻𝑅𝑔 (7)

s.t.
𝑁∑︁
𝑖

𝑐𝑖 = 𝐶 (8)

The formulated equation represents a weighted combina-
tion of the global BHR and OHR, where 𝜔 is a configurable
parameter. We set 𝜔 = 0.5 in the following evaluations.

5 Evaluation
In this section, we evaluate the efficacy of FLOWS by first
assessing the accuracy of MRC profiling under various sam-
ple settings, specifically examining the sensitivity of the
FLOWS method parameters (Section 5.2). Subsequently, we
analyze the performance improvement achieved through
FLOWS in comparison to other cache management methods
(Section 5.3). Additionally, we evaluate the time and space
complexity of the FLOWS method, along with its efficiency
(Section 5.4). Furthermore, we extend Weighted Sampling to
profile some non-LRU cache policies (Section 5.5).

Table 2. Evaluated real-world traces.

Trace name #Objs #Reqs Average
object size Traffic

Wiki2019t [51] 18.3M 207M 33KB 6454GB
Wiki2019u [51] 11.1M 100M 41KB 3884GB
QQPhoto [74] 33.3M 100M 25KB 2364GB
Twitter17 [66] 0.7M 883M 597B 491GB
Twitter18 [66] 1.1M 1292M 69B 83GB
Twitter24 [66] 1.2M 328M 598B 182GB
Twitter29 [66] 25.2M 699M 300B 195GB
Twitter44 [66] 5.8M 549M 42B 21GB
Twitter45 [66] 6.5M 22M 43B 1GB
Twitter52 [66] 25.2M 1343M 151B 188GB
MetaKV1 [1] 18.2M 207M 576B 110GB
MetaKV2 [1] 17.1M 204M 566B 108GB
MetaKV3 [1] 17.3M 198M 566B 105GB
MetaKV4 [1] 17.3M 201M 566B 106GB
MetaKV5 [1] 17.8M 204M 579B 110GB

MetaCDN-reag [1] 14.7M 50M 7935KB 370TB
MetaCDN-rnha [1] 36.9M 103M 8368KB 802TB
MetaCDN-rprn [1] 34.6M 96M 5314KB 475TB

5.1 Evaluation Methodology
The profiling accuracy is evaluated using Mean Absolute
Error per Quantile (MAEQ) [18], which quantifies the ab-
solute error between the exact and profiled MRC. MAEQ
divides the MRC into equidistant quantiles based on the
miss ratio and calculates the average Mean Absolute Error
(MAE) for each quantile. The overall MAEQ is computed as
𝑀𝐴𝐸𝑄 =

∑𝑄

𝑖=1𝑀𝐴𝐸𝑖/𝑄 , where 𝑀𝐴𝐸𝑖 represents the MAE
of the 𝑖th quantile and 𝑄 is the total number of quantiles.
For our evaluations, we use an interval of 0.01. Figure 9 vi-
sualizes how MAE and MAEQ focus on errors in different
regions of the MRC. We generate an MRC with 1000 data
points, gradually increasing the cache size exponentially to
facilitate MAEQ calculations.
We compare FLOWS with three state-of-the-art spatial

sampling-based methods: SHARDS [60] and HCPP [18], as
well as one learning-based algorithm, LPCA [27]. To ensure
a fair comparison among the sampling methods, we set the
sampling rate for FLOWS to be half of its baselines in all
tests. This is because we sample both BMRC and OMRC
separately and halving the sampling rate makes the total
sampling amount of FLOWS equal to that of the baselines.

When comparing with the HCPPmethod and using a fixed
sampling rate 𝑟 , we set its small cache size, denoted as 𝐵 to a
fixed value. Specifically, we calculate 𝐵 = 𝑠𝑎𝑣𝑔/𝑟 × log10 1/𝑟 ,
where 𝑠𝑎𝑣𝑔 is the average object size estimated using a prefix
of 10K requests from the traces. Additionally, we set the
length of the Cache Filter, denoted as 𝐿, to be 1/𝑟 × log10 1/𝑟 .

429

EuroSys ’24, April 22–25, 2024, Athens, Greece Xiaojun Guo, Hua Wang, Ke Zhou, Hong Jiang, Yaodong Han, Guangjie Xing

10−3 10−1 101 103 105

Cache Size (MB, log scale)
0.0

0.2

0.4

0.6

0.8

1.0

By
te

 M
iss

 R
at

io

Exact
FLOWS
LPCA
SHARDS
HCPP

10−3 10−1 101 103 105

Cache Size (MB, log scale)
0.0

0.2

0.4

0.6

0.8

1.0

Ob
je

ct
 M

iss
 R

at
io

Exact
FLOWS
LPCA
SHARDS
HCPP

Figure 10. MRC profiling results under MetaCDN-reag
traces with different methods with sampling rate 𝑟 = 0.01.

The LPCA [27] method differs from the sampling-based
approaches as it employs a neural network for predictive
modeling. Our implementation of LPCA incorporates several
features, including the re-access ratio, frequency histogram,
frequency-class histogram, and reuse time histogram at byte
level and object level. It is important to note that the intervals
between the data points in our reuse time histograms also
follow an exponential growth pattern.
To demonstrate the effectiveness of our approach, we as-

sess the performance using 18 real-world traces as summa-
rized in Table 2. In the original traces, we observed numerous
cache misses where the object size was recorded as −1. To
address this issue, we assign the size of each object as the
largest observed size among all its requests. Additionally, we
set the minimum object size to 1B.
In our cache allocation experiments, we utilize various

cache traces as distinct cache instances that share a limited
cache space. We combine different trace data with a uniform
request rate. To simulate the cache environment, we employ
libCachesim [3], a library that offers convenient I/O reading
and cache instance functions. We have extended libCachesim
to incorporate additional features such as cache size adjust-
ment, MRC generation, and cache instance balancing.
The cache instance balancer utilizes the profiled BMRC

and OMRC from the last time window to generate adjust-
ment plans, gradually adjusting to the cache space in the
subsequent time window. In our experiments, we assess the
impact of various cache allocation strategies on system per-
formance across different cache sizes. The primary metrics
of interest include the overall BHR and OHR.

5.2 Real-World Trace Evaluation
To demonstrate the effectiveness of FLOWS in real-world
scenarios, we evaluate its performance using a collection of
open-source object cache traces (Table 2). Due to the large
size of the original trace data, we have selected the sampled
Twitter traces and the truncated Wiki and QQPhoto trace.
These traces are sourced from various cache types, includ-
ing KV cache, CDN cache, and multimedia cache, providing
diverse traffic volumes and object sizes.

Twi-2 Twi-7 Twi-8 Twi-4 Twi-4 Twi-5 Twi-9 MK-1 MK-2 MK-3 MK-4 MK-5 MC-reaMC-rnh MC-rpr Wiki-t qqphotoWiki-u

Trace

10−3

10−2

10−1

M
AE

Q

LPCA-OMRC
SHARDS-OMRC

HCPP-OMRC
FLOWS-OMRC

LPCA-BMRC
SHARDS-BMRC

HCPP-BMRC
FLOWS-BMRC

Figure 11. Profiling MAEQ of different profiling methods.
Only the FLOWS method achieves an MAEQ lower than 0.01
in BMRC and OMRC profiling.

Fixed Sampling Rate. We first evaluate the accuracy of
different MRC profiling methods using a sampling rate of
𝑟 = 0.01. Figure 10 presents the results of BMRC and OMRC
for the MetaCDN-reag [1] trace. As the cache size expands
to around 1GB, the BMR experiences a significant decrease,
while the object hit rate decreases linearly with exponential
growth in cache size.

The LPCAmethod fails to match the exact curves due to its
inability to learn MRC for objects of varying sizes. Although
the SHARDS method can match the latter part of the Exact
curve, it falls far short for small cache sizes. Conversely, the
HCPP method accurately constructs the front portion of the
curve but fails to capture the drop in byte hit rate around 1GB.
Only FLOWS accurately models the entire curve, matching
the exact curve closely and providing precise MRC profiling.
Figure 12 displays the MRC modeling results for all 18

traces at a sampling rate of 𝑟 = 0.01. The FLOWS method
accurately models the MRC for all traces across different
cache sizes. To further compare the modeling performance,
Figure 11 presents the modeling errors of different methods
in terms of BMRC and OMRC with 𝑟 = 0.01. HCPP exhibits
an average modeling error of 7.29% for BMRC, while FLOWS
achieves an average BMRC modeling error of 0.44%. FLOWS
reduces the error by a factor of 16 compared to HCPP. Sim-
ilarly, for OMRC, HCPP has an average modeling error of
1.33%, while FLOWS achieves an average OMRC modeling
error of 0.43%. Once again, FLOWS reduces the error by a
factor of 3 compared to HCPP. In particular, for MetaCDN
traces, FLOWS achieves a 416-fold reduction in the BMRC
modeling error compared to HCPP (from 24.9% to 0.06%).
As the sampling rate varies, the modeling error distribu-

tion changes. Figure 13 depicts the variations in modeling
error distribution for different methods across all traces at
sampling rates of 1%, 0.1%, and 0.01%. Across all settings,
FLOWS consistently outperforms HCPP, reducing the av-
erage BMRC profiling error by at least 6×. Similarly, the
average error for OMRC also decreases by at least 2×.
Fixed Sampling Number. Fixed Sampling Number scheme
only samples a limited number of objects, resulting in con-
stant memory overhead. The distribution of profiling errors
for this scheme is illustrated in Figure 14. For FLOWS, we
allocate up to half of the sampling count to Cache Filter,

430

FLOWS: Balanced MRC Profiling for Heterogeneous Object-Size Cache EuroSys ’24, April 22–25, 2024, Athens, Greece

10−3 100 1030.0

0.5

1.0
Twitter52

10−3 1000.0

0.5

1.0
Twitter17

10−3 1000.0

0.5

1.0
Twitter18

10−2 1010.0

0.5

1.0
Twitter24

10−2 1010.0

0.5

1.0
Twitter44

10−4 10−1 1020.0

0.5

1.0
Twitter45

10−2 1010.0

0.5

1.0
Twitter29

10−3 1010.0

0.5

1.0
MetaKV-1

10−3 1010.0

0.5

1.0
MetaKV-2

10−3 1010.0

0.5

1.0
MetaKV-3

10−3 1010.0

0.5

1.0
MetaKV-4

10−3 1010.0

0.5

1.0
MetaKV-5

10−2 1030.0

0.5

1.0
MetaCDN-reag

10−2 1030.0

0.5

1.0
MetaCDN-rnha

10−2 1030.0

0.5

1.0
MetaCDN-rprn

100 1030.0

0.5

1.0
wiki2019t

10−1 102 1050.0

0.5

1.0
qqphoto

10−1 1030.0

0.5

1.0
wiki2019u

Cache Size (MB)

M
iss

 R
at

io
Exact-BMRC FLOWS-BMRC Exact-OMRC FLOWS-OMRC

Figure 12. The MRC of 18 real-world traces. The curves generated by FLOWS closely resemble the exact MRC across all cache
sizes. This indicates that FLOWS is able to accurately capture the miss ratio behavior in various caching scenarios.

1% 0.1% 0.01%
SampleRate*

0.0

0.1

0.2

0.3

0.4

M
AE

Q

BMRC

1% 0.1% 0.01%
SampleRate*

0.0

0.1

0.2

0.3

0.4

M
AE

Q

OMRC
LPCA SHARDS HCPP FLOWS

Figure 13.The distribution ofMAEQ obtained from profiling
using the FLOWS method and other methods with different
configurations on all traces. (*) For LPCA [27], no sampling
is performed.

32K 16K 8K
SampleCount

0.0

0.1

0.2

0.3

0.4

M
AE

Q

BMRC

32K 16K 8K
SampleCount

0.0

0.1

0.2

0.3

0.4

M
AE

Q

OMRC
SHARDS HCPP FLOWS

Figure 14. The error distribution obtained from FLOWS and
other methods with different numbers of sampled objects on
all traces.

FLOWS
1:9

FLOWS
3:7

FLOWS
5:5

FLOWS
7:3

FLOWS
9:1

HCPP

SampleConfiguration

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

M
AE

Q

BMRC
OMRC

Figure 15. Average MAEQ of all traces with a sampling rate
of 𝑟 = 0.01. FLOWS 𝑟𝑤𝑠 : 𝑟𝑠𝑠 means that the ratio ofWeighted
and spatial sampling is 𝑟𝑤𝑠 : 𝑟𝑠𝑠 .

while the remaining count is evenly divided between Spatial
sampling and Weighted sampling.
As the sampling count increases, the modeling error of

FLOWS method gradually increases. However, FLOWS con-
sistently outperforms the HCPP method in BMRC profiling,
reducing the average MAEQ by 6× (from 0.060 to 0.010).
Additionally, FLOWS achieves a comparable lower level of
profiling error (0.011) in OMRC profiling.
Impact of the Ratio of Spatial Sampling and Weighted
Sampling. Tuning the ratio of the Weighted Sampling rate
𝑟𝑤𝑠 and the spatial sampling rate 𝑟𝑠𝑠 can have a significant
impact on the accuracy of both BMRC and OMRC. In the
FLOWS evaluation up to this point, the two sampling rates
are equal, i.e., 𝑟𝑤𝑠 : 𝑟𝑠𝑠 = 5 : 5, which is the best ratio overall
as indicated by Figure 15. Increasing the weighted sampled
objects can decrease the error of BMRC, but also result in
a higher OMRC error. When 𝑟𝑤𝑠 : 𝑟𝑠𝑠 = 3 : 7, FLOWS can
reduce the average MAEQ of OMRC by about 3× compared
to the HCPP method.

431

EuroSys ’24, April 22–25, 2024, Athens, Greece Xiaojun Guo, Hua Wang, Ke Zhou, Hong Jiang, Yaodong Han, Guangjie Xing

1GB 2GB 4GB
CacheSize

0.0

0.2

0.4

0.6

0.8

By
te

 H
it

Ra
tio

1GB 2GB 4GB
CacheSize

0.0

0.2

0.4

0.6

Ob
je

ct
 H

it
Ra

tio

1GB 2GB 4GB
CacheSize

0.8

1.0

1.2

1.4

Av
er

ag
e

Hi
t R

at
io

 In
c

SHARDS HCPP Sharing Static FLOWS

Figure 16. The overall BHR and OHR of multi-cache in-
stances across different cache sizes. FLOWS consistently bal-
ances BHR and OHR to achieve a better overall hit ratio. The
right figure presents the ratio of the 𝐵𝐻𝑅+𝑂𝐻𝑅 for different
methods relative to the SHARDS method.

5.3 Cache Allocation Evaluation
We choose Twitter17 [66], MetaKV1 [1], MetaCDN-rprn [1],
and wiki2019t [51] as distinct cache instances that share the
overall cache space.We utilize Equation 7 as the optimization
objective, which aims to optimize the overall hit ratio. We
evaluate the overall performance of FLOWS and other meth-
ods at different cache sizes. These cache allocation schemes
can be classified into three categories:

1. Static allocation method: This method evenly allocates
the cache space among the cache instances.

2. Sharing method: In this approach, all cache instances
share the same cache, and cache space is managed by
the cache replacement algorithm.

3. Dynamic allocation method: This category includes
the SHARDS, HCPP, and FLOWS methods. After every
1 million requests, based on the BMRC and OMRC
constructed from the previous time window, we des-
ignate the cache instance with the highest increase in
overall hit rate when increased and the least decrease
in overall hit rate when decreased as the victim and
receiver, respectively. We then gradually transfer 1%
to a maximum of 5% of the cache space from the victim
to the receiver.

Figure 16 demonstrates that FLOWS outperforms other
methods significantly in terms of average hit rate. Particu-
larly, when the cache space is relatively small, such as 2GB,
FLOWS exhibits a 26.5% increase in 𝐵𝐻𝑅 + 𝑂𝐻𝑅 metrics
compared to HCPP.

5.4 Space and Time Complexity Analysis
The analytical complexity of FLOWS in both space and time
is comparable to SHARDS and HCPP. We utilize the open-
source splay tree code developed by Sleator [50] as a refer-
ence to implement FLOWS, which can perform range sum-
ming, inserting, or deleting operations at an 𝑂 (log𝑀) com-
plexity, where 𝑀 is the number of objects in the tree. We

Exact SHARDS HCPP FLOWS
Method

0

50

100

150

200

M
in

ut
e

Time Overhead

20

30

40

Memory Overhead

Exact SHARDS HCPP FLOWS
Method

0.0

0.5

1.0

G

ig
ab

yt
e

Figure 17. Time and memory overhead of profiling all 18
traces with sampling rate 𝑟 = 0.01.

constructed all 18 traces using different methods in a single-
threaded manner on a cloud server equipped with an Intel(R)
Xeon(R) Gold 6133 CPU. The sum of the time and memory
overhead required to build all traces was used as the evalua-
tion metric. The results are shown in Figure 17.
With a fixed sampling rate 𝑟 = 0.01, the exact method re-

quired 3.8 hours to complete all profiling, and the total mem-
ory overhead was 31.0 GB. Compared to the exact method,
the FLOWS method significantly reduced the time and mem-
ory overhead required for MRC profiling, reducing the time
overhead by a factor of 7.8 (to 29 minutes) and the memory
overhead by a factor of 152.5 (to 200MB). It is important
to note that the open-source traces we are using are not
fully representative of production systems. For instance, the
Twitter traces are sampled at 1/10, and the MetaKV traces
are sampled at 1/100 [1]. This implies that in a real-world
environment, the overhead compared to our evaluation may
increase by one to two orders of magnitude, requiring tens
to hundreds of gigabytes of memory and tens of hours for
exact MRC construction.

5.5 MRC Profiling under Non-LRU Policies
Weighted Sampling is an enhanced samplingmethod that can
readily accommodate various non-LRU cache policies, includ-
ing eviction policies such as 2Q [33], ARC [40], CACHEUS
[48], and S3-FIFO [68], as well as cache admission policies
like Probabilistic Admission [52] and AdaptSize [13]. To as-
sess the performance of Weighted Sampling, we employed
a constant sampling rate of 𝑟 = 0.01, with the lower bound
of the Weighted Sampling rate set to 𝑟𝑖𝑚𝑖𝑛

= 0.5 × 𝑟 . This
adjustment to the Weighted Sampling rate yields a more
consistent and precise OMRC profiling, with only a marginal
increase in the number of sampled requests compared to
spatial sampling.
EvictionPolicies. Figure 18 illustrates the BMRC andOMRC
obtained through exact simulation and Weighted Sampling
for the 2Q [33], ARC [40], CACHEUS [48], and S3-FIFO
[68] algorithms. Weighted Sampling demonstrates its abil-
ity to achieve accurate MRC construction across all these

432

FLOWS: Balanced MRC Profiling for Heterogeneous Object-Size Cache EuroSys ’24, April 22–25, 2024, Athens, Greece

25 50 75 100
Cache Size (GB)

0.4

0.5

0.6

0.7

0.8

0.9

By
te

 M
iss

 R
at

io

25 50 75 100
Cache Size (GB)

0.2

0.3

0.4

0.5

0.6

0.7

Ob
je

ct
 M

iss
 R

at
io

S3FIFO Cacheus ARC TwoQ WeightedSample(0.01) Exact

Figure 18. Exact and Weighted Sampling MRC profiling for
wiki2019u [51].

100 101 102 103 104 105

Admission Parameter C (KB)
0.0

0.2

0.4

0.6

0.8

1.0

By
te

/O
bj

ec
t H

it
Ra

tio

1%WSS-Wikipedia

100 101 102 103 104 105

Admission Parameter C (KB)
0.0

0.2

0.4

0.6

0.8

1.0 5%WSS-Wikipedia

Exact BHRC
Exact OHRC

MiniSim BHRC
MiniSim OHRC

WeightedSampling BHRC
WeightedSampling OHRC

Figure 19. BHRC and OHRC of the Probabilistic Admission
policy with different admission parameters 𝑐 . The cache size
on the left is 1% of the WSS, and on the right is 5%.

algorithms. Moreover, compared to exact simulation, the
Weighted Samplingmethod offers a significant speedupwhile
achieving more precise MRC construction compared to spa-
tial sampling. For instance, in the case of 2Q profiling, the
time required to construct a 100-point MRC decreased from
6150s (exact simulation) to 286s (Weighted Sampling). Addi-
tionally, the modeling MAE for BMRC and OMRC by using
spatial sampling decreased from 3.28% and 0.56% to 0.24%
and 0.23% with Weighted Sampling (which is not shown in
the figure), respectively.
Probabilistic Admission. The Probabilistic Admission pol-
icy admits object 𝑖 with probability 𝑝𝑖 , where 𝑝𝑖 is typically a
function of object-size 𝑠𝑖 , e.g., 𝑒−𝑠𝑖/𝑐 . Properly setting param-
eter 𝑐 can maximize the OHR [13]. We form two sub-traces
using spatial sampling and Weighted Sampling with a sam-
pling rate of 𝑟 = 0.01 and use the sampled sub-traces to
estimate the cache performance. Figure 19 shows both ex-
act and estimated BHRC (1-BMRC) and OHRC (1-OMRC) of
different 𝑐 and cache sizes. Our Weighted Sampling scheme
can accurately approximate both BHRC and OHRC.

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Cache Size (#WSS)

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

 R
at

io

Redis

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Cache Size (#WSS)

M
iss

 R
at

io

CacheLib

Exact-BMRC
Exact-OMRC

WeightedSample(0.01)-BMRC
WeightedSample(0.01)-OMRC

Figure 20. Weighted Sampling based Miniature Simulation
MRC profiling on Redis [2] and CacheLib [9].

6 Discussion
6.1 How production CDN benefits from MRC
Through the MRC, cache managers can be effectively guided
on how to optimize production CDNs. For instance, cache
partitioning can prevent inefficient use of cache by limiting
its capacity, which is supported in many cache systems, such
as CacheLib [41]. Using the CDN trace from Meta as an
example, when the cache capacity expands from 1GB to
7GB, the BMR plummets from approximately 32% to 5%.
Further increasing the cache capacity to 32GB, the BMR
only decreases by less than 1%. Some CDN systems opt not
to support cache partitioning to simplify management, as
reported in [54]. Such systems can optimize overall midgress
traffic (reflected by the BMR) by distributing requests of
the same traffic class [53] to different cache servers in a
certain proportion, a process known as traffic provisioning.
By simultaneously constructing accurate BMRC and OMRC,
cache managers can accurately distinguish between traffic
classes, thereby considering both midgress traffic and hit
ratio when provisioning traffic.

6.2 Miniature Simulation of real cache systems with
Weighted Sampling

Cache eviction algorithms do not always conform precisely
to their theoretical constructs in practical caching systems.
For example, Redis employs a probabilistic strategy to imple-
ment LRU by sampling a random subset of keys and evicting
the one with the oldest access time within that subset [2].
Meanwhile, CacheLib [9] organizes objects into different
slab classes based on size, where each class independently
manages evictions via its own LRU list. Additionally, Cache-
Lib integrates slab rebalancing to reduce allocation failures,
ensure fairness, and enhance the OHR.
We attempt to quickly obtain the cache performance of

these systems by employing Miniature Simulation [59] with
Weighted Sampling. Figure 20 presents the cache perfor-
mance of Redis and CacheLib’s default configured LRU, pro-
cessing 10 million MetaKV1 trace requests. The Miniature
Simulation with Weighted Sampling, utilizing a sampling

433

EuroSys ’24, April 22–25, 2024, Athens, Greece Xiaojun Guo, Hua Wang, Ke Zhou, Hong Jiang, Yaodong Han, Guangjie Xing

rate of 𝑟 = 0.01, yields accurate profiling for Redis. On the
other hand, CacheLib’s performance closely resembles that
of an ideal LRU when there is sufficient cache capacity, en-
suring the accuracy of the profiling.
A point of distinction in our methodology is that, unlike

previous Miniature Simulations where modeling a cache of
size 𝐶 with a trace at sampling rate 𝑟 necessitated adjusting
the cache size to 𝑟 ×𝐶 , our approach maintains the physical
cache capacity constant. Instead, we adjust the object size by
dividing it by the Weighted Sampling rate. This significantly
enhances the accuracy of the Miniature Simulation in object
caching systems.

7 Related Work
Evolving Caching Algorithms. To optimize the utilization
of cache resources, researchers have proposed various cache
policies. Most of these policies are designed for scenarios
where object sizes are homogeneous [19, 23, 32–34, 40, 43,
44]. In order to obtain an advanced performance in the case
of heterogeneous object-size cache, some algorithms utilize
the object-size information to perform cache admission, such
as LRU-S [52] and AdaptSize [13], or conduct cache eviction
such as GSD [17], LHD [7], SegCache [67] and S3-FIFO [68].
By preventing or evicting large but cold objects from the
cache, AdaptSize [13] and LHD [7] maximize the OHR under
a specified cache size. Segcache [67] groups objects with
similar creation and expiration times, reduces per-object
metadata, and performs segment-level bulk expiration and
eviction. S3-FIFO’s [68] key insight lies in utilizing a small
FIFO queue to swiftly evict objects that are expected to have
only one-time accesses, thereby ensuring efficient demotion
and high precision.

AI-assisted caching algorithms [11, 69] have outperformed
traditional cache policies in recent advancements. These AI-
enhanced cache algorithms leverage AI techniques to either
enhance domain-specific cache performance in a data-driven
manner [28, 37, 51, 61, 64, 65] or adapt to achieve higher
performance across diverse workloads [48, 58].

FLOWS is not a cache algorithm but rather a method that
efficiently acquires the cache performance model and guides
the management of limited cache resources. By doing so, it
contributes to improved overall performance.
MRC Profiling Methods. Due to the importance and lim-
ited availability of cache resources in computer systems,
MRC has been extensively studied as a quantitative model
for cache resources by researchers [4, 15, 18, 24, 27, 30, 59,
60, 62, 72]. Denning [21] was one of the first to investigate
the cache miss ratio as a function of cache size. Methods for
constructing MRCs can be categorized into several types,
including those based on reuse distance [4, 18, 60], reuse
time [24, 30, 72], sampling-replay [59], and machine learn-
ing [27]. The focus of these studies has been on reducing
modeling errors, improving modeling speed, and extending

to non-LRU methods. Recent studies Cuki [26] and Kosmo
[49] have focused on the profiling of OMRC for heteroge-
neous object-size cache systems, rather than addressing the
profiling of BMRC.

In this study, we aim to address the imbalanced accuracy
of BMRC and OMRC profiling in cache systems with hetero-
geneous object-size and content popularity. Unlike previous
methods, our approach incorporates the principle of “load
balancing” to achieve more precise MRC profiling.

8 Conclusion
Spatial sampling-based MRC profiling often faces challenges
due to the heterogeneity caused by variations in content
popularity and object sizes. To address this issue, we pro-
pose 𝐹𝐿𝑂𝑊𝑆 , a load-balancing solution based on two novel
techniques: Cache Filter andWeighted Sampling. 𝐹𝐿𝑂𝑊𝑆 en-
ables the construction of equally accurate BMRC and OMRC
while reducing the BMRC and OMRC profiling error by 16×
and 3× compared to state-of-the-art approaches, respectively.
Our cache allocation experiments demonstrate that 𝐹𝐿𝑂𝑊𝑆

effectively balances BHR and OHR, resulting in a maximum
improvement of 26.5% in overall hit rate compared to other
methods. Furthermore, it maintains the same space and time
complexity as existing methods. As a versatile performance
evaluation tool, 𝐹𝐿𝑂𝑊𝑆 can be easily integrated into web
caching services, where both BMRC and OMRC are of par-
ticular importance. This approach will also contribute to
achieving a more flexible and efficient multi-objective cache
optimization in web cache systems.

Acknowledgments
We would like to express our profound gratitude to the re-
viewers for their insightful comments and suggestions. Our
sincere thanks also go to our shepherd, Vasily Tarasov, for his
invaluable guidance and support throughout the revision pro-
cess. This work was supported by the National Key Research
and Development Program Grant No.2023YFB4502701, and
the National Natural Science Foundation of China (Grant
No.62172180, No.62232007, No.61821003).

References
[1] 2023. Evaluating SSD hardware for Facebook work-

loads. https://cachelib.org/docs/Cache_Library_User_Guides/
Cachebench_FB_HW_eval. Accessed: October 7, 2023.

[2] 2023. Key eviction. https://redis.io/docs/reference/eviction/. Accessed:
February 20, 2024.

[3] 1a1a11a. 2023. libCacheSim. https://github.com/1a1a11a/libCacheSim.
[4] George Almási, Cǎlin Caşcaval, and David A Padua. 2002. Calculat-

ing stack distances efficiently. In Proceedings of the 2002 workshop on
Memory system performance. 37–43.

[5] Nirav Atre, Justine Sherry, Weina Wang, and Daniel S. Berger. 2020.
Caching with Delayed Hits. In Proceedings of the Annual Confer-
ence of the ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Protocols for Com-
puter Communication (Virtual Event, USA) (SIGCOMM ’20). Asso-
ciation for Computing Machinery, New York, NY, USA, 495–513.

434

https://cachelib.org/docs/Cache_Library_User_Guides/Cachebench_FB_HW_eval
https://cachelib.org/docs/Cache_Library_User_Guides/Cachebench_FB_HW_eval
https://redis.io/docs/reference/eviction/
https://github.com/1a1a11a/libCacheSim

FLOWS: Balanced MRC Profiling for Heterogeneous Object-Size Cache EuroSys ’24, April 22–25, 2024, Athens, Greece

https://doi.org/10.1145/3387514.3405883
[6] Thomas Barnett, Shruti Jain, Usha Andra, and Taru Khurana. 2018.

Cisco visual networking index (vni) complete forecast update, 2017–
2022. Americas/EMEAR Cisco Knowledge Network (CKN) Presentation
(2018).

[7] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. 2018. LHD: Im-
proving Cache Hit Rate by Maximizing Hit Density. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18). USENIX Association, Renton, WA, 389–403. https://www.usenix.
org/conference/nsdi18/presentation/beckmann

[8] Lorenzo Beretta and Jakub Tětek. 2022. Better Sum Estimation via
Weighted Sampling. In Proceedings of the 2022 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). SIAM, 2303–2338.

[9] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya
Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann,
Mor Harchol-Balter, and Gregory R. Ganger. 2020. The CacheLib
Caching Engine: Design and Experiences at Scale. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, 753–768. https://www.usenix.org/conference/
osdi20/presentation/berg

[10] Erik Berg and Erik Hagersten. 2004. StatCache: A probabilistic ap-
proach to efficient and accurate data locality analysis. In IEEE Inter-
national Symposium on-ISPASS Performance Analysis of Systems and
Software, 2004. IEEE, 20–27.

[11] Daniel S Berger. 2018. Towards lightweight and robust machine learn-
ing for cdn caching. In Proceedings of the 17th ACM Workshop on Hot
Topics in Networks. 134–140.

[12] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and
Mor Harchol-Balter. 2018. RobinHood: Tail Latency Aware Caching –
Dynamic Reallocation from Cache-Rich to Cache-Poor. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18). USENIX Association, Carlsbad, CA, 195–212. https://www.usenix.
org/conference/osdi18/presentation/berger

[13] Daniel S. Berger, Ramesh K. Sitaraman, and Mor Harchol-Balter. 2017.
AdaptSize: Orchestrating the Hot Object Memory Cache in a Content
Delivery Network. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). USENIX Association, Boston,
MA, 483–498. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/berger

[14] Jacob Brock, Chencheng Ye, Chen Ding, Yechen Li, Xiaolin Wang,
and Yingwei Luo. 2015. Optimal cache partition-sharing. In 2015 44th
International Conference on Parallel Processing. IEEE, 749–758.

[15] Daniel Byrne. 2018. A Survey of Miss-Ratio Curve Construction Tech-
niques. ArXiv abs/1804.01972 (2018).

[16] Daniel Byrne, Nilufer Onder, and Zhenlin Wang. 2018. mPart: miss-
ratio curve guided partitioning in key-value stores. In Proceedings of the
2018 ACM SIGPLAN International Symposium on Memory Management.
84–95.

[17] Pei Cao and Sandy Irani. 1997. Cost-Aware WWW Proxy
Caching Algorithms. In USENIX Symposium on Internet Tech-
nologies and Systems (USITS 97). USENIX Association, Monterey,
CA. https://www.usenix.org/conference/usits-97/cost-aware-www-
proxy-caching-algorithms

[18] Damiano Carra and Giovanni Neglia. 2020. Efficient Miss Ratio Curve
Computation for Heterogeneous Content Popularity. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20). USENIX Association,
741–751. https://www.usenix.org/conference/atc20/presentation/
carra

[19] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti.
2016. Cliffhanger: Scaling Performance Cliffs in Web Memory Caches.
In 13th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 16). USENIX Association, Santa Clara, CA, 379–
392. https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/cidon

[20] Carlos Cunha, Azer Bestavros, andMark Crovella. 1995. Characteristics
of WWW Client-Based Traces. Technical Report. USA.

[21] Peter J Denning. 1968. The working set model for program behavior.
Commun. ACM 11, 5 (1968), 323–333.

[22] Nick Duffield, Carsten Lund, and Mikkel Thorup. 2007. Priority sam-
pling for estimation of arbitrary subset sums. Journal of the ACM
(JACM) 54, 6 (2007), 32–es.

[23] Gil Einziger, Roy Friedman, and Ben Manes. 2017. Tinylfu: A highly
efficient cache admission policy. ACM Transactions on Storage (ToS)
13, 4 (2017), 1–31.

[24] David Eklov and Erik Hagersten. 2010. StatStack: Efficient modeling
of LRU caches. In 2010 IEEE International Symposium on Performance
Analysis of Systems & Software (ISPASS). IEEE, 55–65.

[25] Bin Fan, Hyeontaek Lim, David G Andersen, and Michael Kaminsky.
2011. Small cache, big effect: Provable load balancing for randomly
partitioned cluster services. In Proceedings of the 2nd ACM Symposium
on Cloud Computing. 1–12.

[26] Rong Gu, Simian Li, Haipeng Dai, Hancheng Wang, Yili Luo, Bin Fan,
Ran Ben Basat, Ke Wang, Zhenyu Song, Shouwei Chen, et al. 2023.
Adaptive online cache capacity optimization via lightweight working
set size estimation at scale. In 2023 USENIXAnnual Technical Conference
(USENIX ATC 23). 467–484.

[27] Yibin Gu, Yifan Li, Hua Wang, Li Liu, Ke Zhou, Wei Fang, Gang Hu,
Jinhu Liu, and Zhuo Cheng. 2022. LPCA: Learned MRC Profiling Based
Cache Allocation for File Storage Systems. In Proceedings of the 59th
ACM/IEEE Design Automation Conference (San Francisco, California)
(DAC ’22). Association for Computing Machinery, New York, NY, USA,
511–516. https://doi.org/10.1145/3489517.3530662

[28] Yu Guan, Xinggong Zhang, and Zongming Guo. 2019. Caca: Learning-
based content-aware cache admission for video content in edge
caching. In Proceedings of the 27th ACM International Conference on
Multimedia. 456–464.

[29] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Yingwei Luo, Chen
Ding, Song Jiang, and ZhenlinWang. 2015. LAMA: Optimized Locality-
awareMemoryAllocation for Key-value Cache. In 2015 USENIXAnnual
Technical Conference (USENIX ATC 15). USENIX Association, Santa
Clara, CA, 57–69. https://www.usenix.org/conference/atc15/technical-
session/presentation/hu

[30] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Chen Ding,
and Zhenlin Wang. 2016. Kinetic Modeling of Data Eviction in
Cache. In 2016 USENIX Annual Technical Conference (USENIX ATC
16). USENIX Association, Denver, CO, 351–364. https://www.usenix.
org/conference/atc16/technical-sessions/presentation/hu

[31] Kaiyi Ji, Guocong Quan, and Jian Tan. 2018. Asymptotic miss ratio of
LRU caching with consistent hashing. In IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, 450–458.

[32] Song Jiang and Xiaodong Zhang. 2002. LIRS: An efficient low inter-
reference recency set replacement policy to improve buffer cache
performance. ACM SIGMETRICS Performance Evaluation Review 30, 1
(2002), 31–42.

[33] Theodore Johnson, Dennis Shasha, et al. 1994. 2Q: a low overhead high
performance bu er management replacement algorithm. In Proceedings
of the 20th International Conference on Very Large Data Bases. Citeseer,
439–450.

[34] Ramakrishna Karedla, J Spencer Love, and Bradley G Wherry. 1994.
Caching strategies to improve disk system performance. Computer 27,
3 (1994), 38–46.

[35] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. 2004. Fair cache
sharing and partitioning in a chip multiprocessor architecture. In
Proceedings. 13th International Conference on Parallel Architecture and
Compilation Techniques, 2004. PACT 2004. IEEE, 111–122.

[36] Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-
Balter. 2010. Thread cluster memory scheduling: Exploiting differences

435

https://doi.org/10.1145/3387514.3405883
https://www.usenix.org/conference/nsdi18/presentation/beckmann
https://www.usenix.org/conference/nsdi18/presentation/beckmann
https://www.usenix.org/conference/osdi20/presentation/berg
https://www.usenix.org/conference/osdi20/presentation/berg
https://www.usenix.org/conference/osdi18/presentation/berger
https://www.usenix.org/conference/osdi18/presentation/berger
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/berger
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/berger
https://www.usenix.org/conference/usits-97/cost-aware-www-proxy-caching-algorithms
https://www.usenix.org/conference/usits-97/cost-aware-www-proxy-caching-algorithms
https://www.usenix.org/conference/atc20/presentation/carra
https://www.usenix.org/conference/atc20/presentation/carra
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/cidon
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/cidon
https://doi.org/10.1145/3489517.3530662
https://www.usenix.org/conference/atc15/technical-session/presentation/hu
https://www.usenix.org/conference/atc15/technical-session/presentation/hu
https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu

EuroSys ’24, April 22–25, 2024, Athens, Greece Xiaojun Guo, Hua Wang, Ke Zhou, Hong Jiang, Yaodong Han, Guangjie Xing

in memory access behavior. In 2010 43rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. IEEE, 65–76.

[37] Vadim Kirilin, Aditya Sundarrajan, Sergey Gorinsky, and Ramesh K
Sitaraman. 2020. Rl-cache: Learning-based cache admission for content
delivery. IEEE Journal on Selected Areas in Communications 38, 10
(2020), 2372–2385.

[38] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim,
Vladimir Braverman, Xin Jin, and Ion Stoica. 2019. DistCache: Provable
Load Balancing for Large-Scale Storage Systems with Distributed
Caching. In 17th USENIX Conference on File and Storage Technologies
(FAST 19). USENIX Association, Boston, MA, 143–157. https://www.
usenix.org/conference/fast19/presentation/liu

[39] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger.
1970. Evaluation techniques for storage hierarchies. IBM Systems
journal 9, 2 (1970), 78–117.

[40] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-
Tuning, Low Overhead Replacement Cache. In 2nd USENIX Conference
on File and Storage Technologies (FAST 03). USENIX Association, San
Francisco, CA. https://www.usenix.org/conference/fast-03/arc-self-
tuning-low-overhead-replacement-cache

[41] Meta. 2023. Partition cache into pools. https://cachelib.org/docs/
Cache_Library_User_Guides/Partition_cache_into_pools/#stats-api.

[42] Rajeev Motwani, Rina Panigrahy, and Ying Xu. 2007. Estimating
sum by weighted sampling. In International Colloquium on Automata,
Languages, and Programming. Springer, 53–64.

[43] Elizabeth J O’neil, Patrick E O’neil, and Gerhard Weikum. 1993. The
LRU-K page replacement algorithm for database disk buffering. Acm
Sigmod Record 22, 2 (1993), 297–306.

[44] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo Kim, and
Joonwon Lee. 2006. CFLRU: a replacement algorithm for flash mem-
ory. In Proceedings of the 2006 international conference on Compilers,
architecture and synthesis for embedded systems. 234–241.

[45] Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and Ion Stoica.
2016. FairRide: Near-Optimal, Fair Cache Sharing. In 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
16). USENIX Association, Santa Clara, CA, 393–406. https://www.
usenix.org/conference/nsdi16/technical-sessions/presentation/pu

[46] Moinuddin K Qureshi and Yale N Patt. 2006. Utility-based cache
partitioning: A low-overhead, high-performance, runtime mechanism
to partition shared caches. In 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06). IEEE, 423–432.

[47] Martin Raab and Angelika Steger. 1998. “Balls into bins”—A simple
and tight analysis. In International Workshop on Randomization and
Approximation Techniques in Computer Science. Springer, 159–170.

[48] Liana V. Rodriguez, Farzana Yusuf, Steven Lyons, Eysler Paz, Raju Ran-
gaswami, Jason Liu, Ming Zhao, and Giri Narasimhan. 2021. Learning
Cache Replacement with CACHEUS. In 19th USENIX Conference on
File and Storage Technologies (FAST 21). USENIX Association, 341–354.
https://www.usenix.org/conference/fast21/presentation/rodriguez

[49] Kia Shakiba, Sari Sultan, and Michael Stumm. 2024. Kosmo: Efficient
Online Miss Ratio Curve Generation for Eviction Policy Evaluation.
In 22nd USENIX Conference on File and Storage Technologies (FAST 24).
89–105.

[50] D. Sleator. [n. d.]. An implementation of top-down splaying with sizes.
ftp://ftp.cs.cmu.edu/usr/ftp/usr/sleator/splaying/top-down-splay.c.

[51] Zhenyu Song, Daniel S. Berger, Kai Li, andWyatt Lloyd. 2020. Learning
Relaxed Belady for Content Distribution Network Caching. In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). USENIX Association, Santa Clara, CA, 529–544. https:
//www.usenix.org/conference/nsdi20/presentation/song

[52] David Starobinski and David Tse. 2001. Probabilistic methods for web
caching. Performance evaluation 46, 2-3 (2001), 125–137.

[53] Aditya Sundarrajan, Mingdong Feng, Mangesh Kasbekar, and
Ramesh K Sitaraman. 2017. Footprint descriptors: Theory and prac-
tice of cache provisioning in a global cdn. In Proceedings of the 13th
International Conference on emerging Networking EXperiments and
Technologies. 55–67.

[54] Aditya Sundarrajan, Mangesh Kasbekar, Ramesh K. Sitaraman, and
Samta Shukla. 2020. Midgress-aware traffic provisioning for content
delivery. In 2020 USENIX Annual Technical Conference (USENIX ATC 20).
USENIX Association, 543–557. https://www.usenix.org/conference/
atc20/presentation/sundarrajan

[55] David K Tam, Reza Azimi, Livio B Soares, and Michael Stumm. 2009.
RapidMRC: approximating L2 miss rate curves on commodity systems
for online optimizations. ACM Sigplan Notices 44, 3 (2009), 121–132.

[56] Terracotta, Inc. Accessed: 2023. Ehcache. https://www.ehcache.org/.
[57] Michail-Antisthenis I Tsompanas, Christoforos Kachris, and Geor-

gios Ch Sirakoulis. 2016. Modeling cache memory utilization on mul-
ticore using common pool resource game on cellular automata. ACM
Transactions on Modeling and Computer Simulation (TOMACS) 26, 3
(2016), 1–22.

[58] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez, Steven
Lyons, Jason Liu, Raju Rangaswami, Ming Zhao, and Giri Narasimhan.
2018. Driving Cache Replacement with ML-based LeCaR. In 10th
USENIX Workshop on Hot Topics in Storage and File Systems (HotStor-
age 18). USENIX Association, Boston, MA. https://www.usenix.org/
conference/hotstorage18/presentation/vietri

[59] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad, and Nohhyun
Park. 2017. Cache Modeling and Optimization using Miniature Simu-
lations. In 2017 USENIX Annual Technical Conference (USENIX ATC 17).
USENIX Association, Santa Clara, CA, 487–498. https://www.usenix.
org/conference/atc17/technical-sessions/presentation/waldspurger

[60] Carl A. Waldspurger, Nohhyun Park, Alexander Garthwaite, and Ir-
fan Ahmad. 2015. Efficient MRC Construction with SHARDS. In
13th USENIX Conference on File and Storage Technologies (FAST 15).
USENIX Association, Santa Clara, CA, 95–110. https://www.usenix.
org/conference/fast15/technical-sessions/presentation/waldspurger

[61] Hua Wang, Xinbo Yi, Ping Huang, Bin Cheng, and Ke Zhou. 2018.
Efficient SSD caching by avoiding unnecessary writes using machine
learning. In Proceedings of the 47th International Conference on Parallel
Processing. 1–10.

[62] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas J. A. Harvey,
and Andrew Warfield. 2014. Characterizing Storage Workloads with
Counter Stacks. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). USENIX Association, Broomfield,
CO, 335–349. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/wires

[63] Xiaoya Xiang, Bin Bao, Chen Ding, and Yaoqing Gao. 2011. Linear-time
modeling of programworking set in shared cache. In 2011 International
Conference on Parallel Architectures and Compilation Techniques. IEEE,
350–360.

[64] Gang Yan and Jian Li. 2020. Rl-Bélády: A unified learning frame-
work for content caching. In Proceedings of the 28th ACM International
Conference on Multimedia. 1009–1017.

[65] Juncheng Yang, Ziming Mao, Yao Yue, and KV Rashmi. 2023. {GL-
Cache}: Group-level learning for efficient and high-performance
caching. In 21st USENIX Conference on File and Storage Technologies
(FAST 23). 115–134.

[66] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2020. A large scale analysis
of hundreds of in-memory cache clusters at Twitter. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, 191–208. https://www.usenix.org/conference/
osdi20/presentation/yang

[67] Juncheng Yang, Yao Yue, and Rashmi Vinayak. 2021. Segcache: a
memory-efficient and scalable in-memory key-value cache for small
objects. In 18th USENIX Symposium on Networked Systems Design and

436

https://www.usenix.org/conference/fast19/presentation/liu
https://www.usenix.org/conference/fast19/presentation/liu
https://www.usenix.org/conference/fast-03/arc-self-tuning-low-overhead-replacement-cache
https://www.usenix.org/conference/fast-03/arc-self-tuning-low-overhead-replacement-cache
https://cachelib.org/docs/Cache_Library_User_Guides/Partition_cache_into_pools/##stats-api
https://cachelib.org/docs/Cache_Library_User_Guides/Partition_cache_into_pools/##stats-api
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/pu
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/pu
https://www.usenix.org/conference/fast21/presentation/rodriguez
ftp://ftp.cs.cmu.edu/usr/ftp/usr/sleator/splaying/top-down-splay.c
https://www.usenix.org/conference/nsdi20/presentation/song
https://www.usenix.org/conference/nsdi20/presentation/song
https://www.usenix.org/conference/atc20/presentation/sundarrajan
https://www.usenix.org/conference/atc20/presentation/sundarrajan
https://www.ehcache.org/
https://www.usenix.org/conference/hotstorage18/presentation/vietri
https://www.usenix.org/conference/hotstorage18/presentation/vietri
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wires
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wires
https://www.usenix.org/conference/osdi20/presentation/yang
https://www.usenix.org/conference/osdi20/presentation/yang

FLOWS: Balanced MRC Profiling for Heterogeneous Object-Size Cache EuroSys ’24, April 22–25, 2024, Athens, Greece

Implementation (NSDI 21). 503–518.
[68] Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue, and Rashmi

Vinayak. 2023. FIFO queues are all you need for cache eviction. In
Proceedings of the 29th Symposium on Operating Systems Principles.
130–149.

[69] Jiahui Ye, Zichun Li, Zhi Wang, Zhuobin Zheng, Han Hu, and Wenwu
Zhu. 2021. Joint cache size scaling and replacement adaptation for
small content providers. In IEEE INFOCOM 2021-IEEE Conference on
Computer Communications. IEEE, 1–10.

[70] Ailing Yu, Yujuan Tan, Congcong Xu, Zhulin Ma, Duo Liu, and Xi-
anzhang Chen. 2021. DFShards: effective construction of MRCs online
for non-stack algorithms. In Proceedings of the 18th ACM International
Conference on Computing Frontiers. 63–72.

[71] SeyedMajid Zahedi and Benjamin C Lee. 2014. REF: Resource elasticity
fairness with sharing incentives for multiprocessors. ACM SIGPLAN
Notices 49, 4 (2014), 145–160.

[72] Yu Zhang, Ping Huang, Ke Zhou, Hua Wang, Jianying Hu, Yongguang
Ji, and Bin Cheng. 2020. OSCA: An Online-Model Based Cache Alloca-
tion Scheme in Cloud Block Storage Systems. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20). USENIX Association, 785–798.
https://www.usenix.org/conference/atc20/presentation/zhang-yu

[73] Yutao Zhong, Xipeng Shen, and Chen Ding. 2009. Program locality
analysis using reuse distance. ACM Transactions on Programming
Languages and Systems (TOPLAS) 31, 6 (2009), 1–39.

[74] Ke Zhou, Si Sun, Hua Wang, Ping Huang, Xubin He, Rui Lan, Wenyan
Li, Wenjie Liu, and Tianming Yang. 2018. Demystifying cache policies
for photo stores at scale: A tencent case study. In Proceedings of the
2018 International Conference on Supercomputing. 284–294.

Appendix
A Proof of Theorem 3.1: the size of Cache Filter

In a spatial sampling process with a sample rate of 𝑟 ,
each object 𝑖 has a content popularity of ℎ𝑖 , ranging
from 0 ≤ ℎ𝑖 ≤ 1. If the number of objects 𝑀 in the
trace is significantly larger than 1

𝑟
log 1

𝑟
, by caching the

𝐿 most popular objects, the relative bias of the sampled
content popularity in spatial sampling is consistently
bounded with a probability of (1 −𝑂 (𝑟 2)). The value
of 𝐿 is determined by the following equation:

𝐿 = 𝑂 (1
𝑟
log

1
𝑟
). (9)

Assume we have 𝑀 objects, each object 𝑖 has a content
popularity ℎ𝑖 , where

∑𝑀
𝑖=1 ℎ𝑖 = 1. Without loss of generality,

we assume that:

ℎ1 ≥ ℎ2 ≥ · · · ≥ ℎ𝑀 ≥ 0. (10)

We have a small cache of size 𝐿, which always caches 𝐿 ob-
jects that have the highest content popularity. For uncached
objects, we sample them with a sampling rate 𝑟 . Our goal is
to find a cache size 𝐿 that can bound the relative bias in the
total popularity of the sampled objects to a constant, without
considering the number of objects𝑀 and the distribution of
content popularity.

For independent boolean random variables 𝑋1, 𝑋2, . . . , 𝑋𝑀

where 𝑋𝑖 ∈ {0, 1} is to represent whether object 𝑖 is sampled.

As the first 𝐿 object is cached, the sampled content popularity
𝐻 is given by the following equation:

𝐻 =

𝑀∑︁
𝑖=𝐿+1

𝑋𝑖ℎ𝑖 . (11)

When 𝐿 = 0, the sum popularity of sampled objects is:

𝐻 =

𝑀∑︁
𝑖=1

𝑋𝑖ℎ𝑖 . (12)

It is evident thatE(𝐻) = 𝑟 ∑𝑀
𝑖=1 ℎ𝑖 = 𝑟 . We use the variance

of 𝐻 to analyze which popularity distribution will result in
the sampling process having the maximum relative bias. The
variance of 𝐻 is:

𝑉𝑎𝑟 [𝐻] = 𝑉𝑎𝑟 [
𝑀∑︁
𝑖=1

𝑋𝑖ℎ𝑖] =
𝑀∑︁
𝑖=1

ℎ2𝑖𝑉𝑎𝑟 [𝑋𝑖] = 𝑟 (1 − 𝑟)
𝑀∑︁
𝑖=1

ℎ2𝑖 .

(13)
We use an example to illustrate how cache size 𝐿 and

popularity distribution interact with each other. Easy to see
when ℎ1 = 1 and all other objects have zero popularity, the
variance of 𝐻 reaches the maximum 𝑟 (1 − 𝑟). But if we have
𝐿 = 1, the hottest object will be cached and the variance of
𝐻 becomes 0.

When 𝐿 ≠ 0, the variance of 𝐻 is:

𝑉𝑎𝑟 [𝐻] = 𝑉𝑎𝑟 [
𝑀∑︁

𝑖=𝐿+1
𝑋𝑖ℎ𝑖] =

𝑀∑︁
𝑖=𝐿+1

ℎ2𝑖𝑉𝑎𝑟 [𝑋𝑖] = 𝑟 (1−𝑟)
𝑀∑︁

𝑖=𝐿+1
ℎ2𝑖 .

(14)
In Lemma .1 and Lemma .2, we will explore the object

popularity distribution that maximizes the variance of 𝐻 or
the relative bias.

Lemma .1. The content popularity of 𝐿 cached objects should
be equal to make the sampled content popularity 𝐻 have the
highest variance. Which means:

ℎ1 = ℎ2 = · · · = ℎ𝐿 ≥ ℎ𝐿+1 ≥ · · · ≥ ℎ𝑀 . (15)

Proof. Assuming the popularity of cached requests varies,
that is, there exists adjacent cached objects, ℎ𝑖 > ℎ𝑖+1, where
1 ≤ 𝑖 ≤ 𝐿 − 1. At this point, we do the following process to
make the variance of 𝐻 greater:
1. Reduce the popularity of ℎ𝑖 to ℎ𝑖+1, which will not

change the order of objects;
2. Distribute the reduced popularity ℎ𝑖 − ℎ𝑖+1 to uncached

objects without making them exceed ℎ𝐿 , which will not
change the order of objects.
After that, the variance of 𝐻 is increased. If we continue

to do this repeatedly by iterating 𝑖 from 𝐿− 1 to 1, eventually
the popularity of the cached objects will become equal.

□

437

https://www.usenix.org/conference/atc20/presentation/zhang-yu

EuroSys ’24, April 22–25, 2024, Athens, Greece Xiaojun Guo, Hua Wang, Ke Zhou, Hong Jiang, Yaodong Han, Guangjie Xing

Lemma .2. When the variance of 𝐻 is maximized, there will
be 𝑥 objects with content popularity equal to 1

𝑥
, and other

objects have 0 content popularity.

1
𝑥
= ℎ1 = ℎ2 = · · · = ℎ𝐿 = ℎ𝐿+1 = · · · = ℎ𝑥 > ℎ𝑥+1 = · · · = ℎ𝑀 = 0

(16)

Proof. For uncached keys 𝑖 and 𝑗 such that ℎ𝐿 > ℎ𝑖 > ℎ 𝑗 > 0.
We can change the popularity to ℎ𝑖 +𝛿 and ℎ 𝑗 −𝛿 to increase
the variation of the popularity sampled, where 𝛿 = min(ℎ𝐿 −
ℎ𝑖 , ℎ 𝑗).

If we continue to execute this process and according to
Lemma .1, eventually only 𝑥 objects will have the same pop-
ularity 1

𝑥
. □

Lemma .3. Suppose there are𝑚 objects, and we sample them
with a sample rate of 𝑟 , where each object is independently
and randomly sampled. The number of sampled objects is a
random variable 𝑋 . If𝑚 ≫ 1

𝑟
· log 1

𝑟
, we have the following

equation:

P

(
|𝑋 − 𝑟 ·𝑚 | ≥ 𝛼

√︂
𝑟 ·𝑚 · 𝑙𝑜𝑔 1

𝑟

)
≤ 𝑂 (𝑟 2), (17)

which implies the number of sampled objects have a cer-

tainty of 1−𝑂 (𝑟 2) to have a difference less equal than𝛼
√︃
𝑟 ·𝑚 · 𝑙𝑜𝑔 1

𝑟
.

Proof. For independent randomvariable𝑋1, 𝑋2, . . . , 𝑋𝑚 , where
𝑋𝑖 ∈ {0, 1} to represent whether the object 𝑖 is sampled. Let
𝑋 =

∑𝑚
𝑖=1𝑋𝑖 as the total sampled objects, and 𝜇 = E(𝑋) =

𝑟 ·𝑚:
Based on Chernoff Bounds, for 0 < 𝛿 < 1,

P(𝑋 ≥ (1 + 𝛿)𝜇) ≤ exp(−𝜇𝛿
2

3
) (18)

P(𝑋 ≤ (1 − 𝛿)𝜇) ≤ exp(−𝜇𝛿
2

2
) (19)

Let 𝛿∗ =
√︃

1
𝑟
log 1

𝑟

𝑚
, as𝑚 ≫ 1

𝑟
· log 1

𝑟
, we have:

0 <
√
6𝛿∗ < 1. (20)

Let’s substitute this value into the Chernoff Bounds:

P(𝑋 ≥ (1 +
√
6𝛿∗)𝜇) ≤ exp(−𝜇 (

√
6𝛿∗)2

3
) (21)

P(𝑋 ≥ (1 +
√
6𝛿∗)𝜇) ≤ exp(−2𝜇𝛿∗2) (22)

P(𝑋 ≥ (1 +
√
6𝛿∗)𝜇) ≤ exp(−2𝑟 ·𝑚

log 1
𝑟

𝑟 ·𝑚) (23)

P(𝑋 ≥ (1 +
√
6𝛿∗)𝜇) ≤ exp(−2log 1

𝑟
) (24)

P(𝑋 ≥ (1 +
√
6𝛿∗)𝜇) ≤ 𝑟 2 . (25)

Similarly, we have:

P(𝑋 ≥ (1 − 2𝛿)𝜇) ≤ 𝑟 2. (26)
So for a consistent 𝛼 , we have:

P

(
|𝑋 − 𝑟 ·𝑚 | ≤ 𝛼

√︂
𝑟 ·𝑚 · log 1

𝑟

)
≤ 𝑂 (𝑟 2),

□

According to Lemma .2, when the variance of the sampled
popularity is maximized, it is similar to the sample 𝑥 homo-
geneous popularity objects with sampling rate 𝑟 . Next, we
will derive the values of 𝑥 that maximize the relative bias
and use them to determine the value of cache size 𝐿, such
that even in the case of maximum relative error, the error
remains bounded.

Based on Lemma .3, let us assume that there are a total of
𝑥−𝐿 objects that can be sampled, where𝑚 = 𝑥−𝐿 ≫ 1

𝑟
log 1

𝑟
.

The number of sampled objects 𝑋 satisfies the following
condition:

P

(
|𝑋 − 𝑟 · (𝑥 − 𝐿) | ≤ 𝛼

√︂
𝑟 · (𝑥 − 𝐿) log 1

𝑟

)
≥ 1 −𝑂 (𝑟 2),

(27)
Each object has a popularity of 1

𝑥
, so 𝐻 = 𝑋

𝑥
and 𝑟 (𝑥−𝐿)

𝑥
is

the expect value of 𝐻 . Let’s divide by the sampling rate 𝑟 to
obtain the relative bias:����𝐻𝑟 − 𝑥 − 𝐿𝑥 ���� ≤ (𝛼√︂𝑥 − 𝐿

𝑥2
1
𝑟
log

1
𝑟
). (28)

We want to find the value of 𝑥 that maximizes the bias for
|𝐻
𝑟
− 𝑥−𝐿

𝑥
|, which is 𝑥 = 2𝐿. Let us substitute this value into

the equation: ����𝐻𝑟 − 𝑥 − 𝐿𝑥 ���� ≤ 𝛼√︂ 1
4𝐿

1
𝑟
log

1
𝑟
. (29)

In the equation, 𝛼 represents a constant term. When 𝐿 =

𝑂 (1
𝑟
log 1

𝑟
), we find that |𝐻

𝑟
− 𝑥−𝐿

𝑥
| is independent of 𝑟 . In

this case, it is also independent of the number of requests𝑀
and the distribution of content popularity, as the following
equation: ����𝐻𝑟 − 𝑥 − 𝐿𝑥 ���� ≤ 𝛼2 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 . (30)

Therefore, it allows us to maintain a constant relative bias
in sampling the content popularity. □

B Proof of Theorem 3.2
For a trace with𝑀 distinct objects, we use spatial sam-
pling with sampling rate 𝑟 to sample a subset of objects.
We use the sum sampled size divided by 𝑟 , denoted as
𝑊𝑆𝑆𝑠 , to estimate the original working set size𝑊𝑆𝑆 .

438

FLOWS: Balanced MRC Profiling for Heterogeneous Object-Size Cache EuroSys ’24, April 22–25, 2024, Athens, Greece

The estimation error of𝑊𝑆𝑆𝑠 can be calculated accord-
ing to the following coefficient of variation equation:

𝐶𝑣 [𝑊𝑆𝑆𝑠] =

√︄
1 − 𝑟
𝑟𝑀
× E[𝑠

2]
E2 [𝑠] , (31)

whereE[𝑠] represents the average object size, andE[𝑠2]
represents the average square of the object size. This
implies the error of spatial sampling is correlated with
the distribution of object size.

Proof. Let X𝑖 be a Bernoulli random variable that indicates if
object 𝑖 is sampled with probability 𝑟 , such that:

𝑓𝑋𝑖
(𝑥) =

{
𝑟 x = 1
1 − 𝑟 x = 0.

(32)

We calculate the estimated unique bytes𝑊𝑆𝑆𝑠 as follows:

𝑊𝑆𝑆𝑠 =

𝑀∑︁
𝑖

𝑋𝑖𝑠𝑖/𝑟 . (33)

𝑋𝑖 and 𝑠𝑖 are independent, so the value of E[𝑊𝑆𝑆𝑠] and
variation 𝑉𝑎𝑟 [𝑊𝑆𝑆𝑠] is:

E[𝑊𝑆𝑆𝑠] =E[
𝑀∑︁
𝑖

𝑋𝑖𝑠𝑖/𝑟] (34)

=E[
𝑀∑︁
𝑖

𝑋𝑖/𝑟] × E[
𝑀∑︁
𝑖

𝑠𝑖] (35)

=𝑀 × E[𝑠], (36)

𝑉𝑎𝑟 [𝑊𝑆𝑆𝑠] =
𝑀∑︁
𝑖

𝑉𝑎𝑟 [𝑋𝑖𝑠𝑖/𝑟] (37)

=

𝑀∑︁
𝑖

𝑠2𝑖 /𝑟 2 × 𝑟 (1 − 𝑟) (38)

=(1 − 𝑟)/𝑟 ×𝑀 × E[𝑠2] . (39)

The coefficient of variation 𝐶𝑣 [𝑊𝑆𝑆𝑠] introduced by spa-
tial sampling is:

𝐶𝑣 [𝑊𝑆𝑆𝑠] =
√︁
𝑉𝑎𝑟 [𝑊𝑆𝑆𝑠]
E[𝑊𝑆𝑆𝑠]

=

√︄
1 − 𝑟
𝑟𝑀
× E[𝑠

2]
E2 [𝑠] . (40)

□

C Proof of Theorem 3.3
For a trace with 𝑀 distinct objects, we use Weighted
Sampling with sampling rate 𝑟 to sample a subset of
objects. We use𝑊𝑆𝑆𝑤𝑠 to estimate the original work-
ing set size𝑊𝑆𝑆 . The estimation error of𝑊𝑆𝑆𝑤𝑠 can
be calculated according to the following coefficient of
variation equation:

𝐶𝑣 [𝑊𝑆𝑆𝑤𝑠] ≤
√︂

1 − 𝑟
𝑟𝑀

. (41)

This implies the error of Weighted Sampling is inde-
pendent of object size distribution.

Proof. Let X𝑖 be a Bernoulli random variable that indicates if
object 𝑖 is sampled, but the sampling rate is weighted by a
function of 𝑠𝑖 , such that:

𝑓𝑋𝑖
(𝑥) =

{
𝑝 (𝑠𝑖) x = 1
1 − 𝑝 (𝑠𝑖) x = 0,

(42)

where 𝑝 (𝑠𝑖) is the weighting function and E[𝑠] hereafter is
the average object size:

𝑝 (𝑠𝑖) =
𝑟 × 𝑠𝑖
E[𝑠] . (43)

The total sampling number𝑀𝑤𝑠 is:

𝑀𝑤𝑠 =

𝑀∑︁
𝑖

𝑋𝑖 (44)

=

𝑀∑︁
𝑖

𝑟 × 𝑠𝑖
E[𝑠] = 𝑟 ×

∑𝑀
𝑖 𝑠𝑖

E[𝑠] (45)

=𝑟 ×𝑀, (46)

which is equal to spatial sampling. The estimated unique
bytes E[𝑊𝑆𝑆𝑤𝑠] and variance 𝑉𝑎𝑟 [𝑊𝑆𝑆𝑤𝑠] are as follows:

E[𝑊𝑆𝑆𝑤𝑠] =E[
𝑀∑︁
𝑖

𝑋𝑖𝑠𝑖/𝑝 (𝑠𝑖)] (47)

=E[
𝑀∑︁
𝑖

𝑋𝑖/𝑝 (𝑠𝑖)]E[
𝑀∑︁
𝑖

𝑠𝑖] (48)

=𝑀 × E[𝑠] = E[𝑊𝑆𝑆𝑠], (49)

𝑉𝑎𝑟 [𝑊𝑆𝑆𝑤𝑠] =
𝑀∑︁
𝑖

𝑉𝑎𝑟 [𝑋𝑖𝑠𝑖/𝑝 (𝑠𝑖)] (50)

=

𝑀∑︁
𝑖

(𝑠2𝑖 /𝑝2 (𝑠𝑖) × 𝑝 (𝑠𝑖) (1 − 𝑝 (𝑠𝑖))) (51)

=

𝑀∑︁
𝑖

(E
2 [𝑠]
𝑟 2
× (𝑟 × 𝑠𝑖/E[𝑠]) (1 − 𝑟 × 𝑠𝑖/E[𝑠]))

(52)

=

𝑀∑︁
𝑖

(𝑠𝑖) (E[𝑠]/𝑟 − 𝑠𝑖) (53)

=
𝑀

𝑟
× E2 [𝑠] −𝑀 × E[𝑠2] . (54)

The value of E[𝑊𝑆𝑆𝑤𝑠] is equal to spatial sampling re-
sults, which is unbiased, but Weighted Sampling has a dif-
ferent variance. Finally, we get the coefficient of variation

439

EuroSys ’24, April 22–25, 2024, Athens, Greece Xiaojun Guo, Hua Wang, Ke Zhou, Hong Jiang, Yaodong Han, Guangjie Xing

𝐶𝑣 [𝑊𝑆𝑆𝑤𝑠] of Weighted Sampling:

𝐶𝑣 [𝑊𝑆𝑆𝑤𝑠] =
√︁
𝑉𝑎𝑟 [𝑊𝑆𝑆𝑤𝑠]
E[𝑊𝑆𝑆𝑤𝑠]

(55)

=

√︁
𝑀/𝑟 × E2 [𝑠] −𝑀 × E[𝑠2]

𝑀 × E[𝑠] (56)

=

√︄
1
𝑟𝑀
− E[𝑠

2]
𝑀E2 [𝑠] (57)

≤
√︂

1 − 𝑟
𝑟𝑀

. (58)

□

A Artifact Appendix
A Abstract
The artifact of this paper contains the source code of FLOWS
and our implementation of SHARDS, HCPP, and LPCA. We
use open-source object storage or cache traces to evaluate
the accuracy of these methods.

B Description & Requirements
B.1 How to access. We open source our code on a GitHub
repository:

https://github.com/JasonGuo98/FLOWS-Balanced-MRC-
Profiling-for-Heterogeneous-Object-Size-Cache

B.2 Hardware dependencies.
• RAM: 32GB
• Storage: 1TB

B.3 Software dependencies.
• Compiler: GCC version 8.5.0
• Python 3.8.10

B.4 Benchmarks.
• We have summarized the publicly available traces in
Table 2.

C Set-up
The compilation, trace file downloading, and processing, as
well as the plotting scripts for this artifact, are thoroughly
explained in the README.md file of the repository.

D Evaluation workflow
D.1 Major Claims.
• (C1): With a sampling rate of 0.01, FLOWS reduces the
error of BMRC profiling by a factor of 16 compared to
Carra’s method and a factor of 3 in OMRC profiling.
This conclusion is illustrated in Figure 12.
• (C2): With a fixed sample number of 8K, 16K, and 32K,
FLOWS reduces the error of BMRC profiling by a factor
of 6 compared to Carra’s method. This conclusion is
illustrated in Figure 14.

D.2 Experiments.
Experiment (E1): [Fixed sampling rate evaluation]: compare
MRC profiling methods using a fixed sampling rate and obtain
the error compared to the ground truth trace.
[Preparation] According to the instructions in the README.md,
download all the required trace files and proceed with the steps
of decompression and formatting. Setup environments and
compile necessary tools. This step will require approximately
800GB of storage space.

[Execution] According to the "Run Evaluations" section in the
README.md file, execute all methods except for the FIX_NUM
part. The MRCs will be saved in the results folder in CSV for-
mat. Run the script to plot Figure 12 and obtain the results.

[Results] Carra’s method exhibits an average modeling error
of 7.29% for BMRC, while FLOWS achieves an average BMRC
modeling error of 0.44%. For OMRC, Carra’s method has an
average modeling error of 1.33%, while FLOWS achieves an
average OMRC modeling error of 0.43%

Experiment (E2): [Fixed sampling number evaluation]: com-
pare sampling based MRC profiling methods using a fixed
sampling number.

[Preparation] Same as E1

[Execution] According to the "Run Evaluations" section in the
README.md file, execute all methods related to FIX_NUM.
The MRCs will be saved in the results folder in CSV format.
Run the script to plot Figure 14 and obtain the results.

[Results] In BMRC profiling, FLOWS reduces the averageMAEQ
by 6× (from 0.060 to 0.010) compared to the HCPP method.

440

https://github.com/JasonGuo98/FLOWS-Balanced-MRC-Profiling-for-Heterogeneous-Object-Size-Cache
https://github.com/JasonGuo98/FLOWS-Balanced-MRC-Profiling-for-Heterogeneous-Object-Size-Cache

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 MRC Profiling Methods
	2.2 Web Cache System
	2.3 Cache Resource Management
	2.4 Our Work

	3 System model
	3.1 From Load Balance to MRC Profiling
	3.2 Popularity Heterogeneity with Cache Filter
	3.3 Low-Variance Byte Estimation via Weighted Sampling

	4 FLOWS
	4.1 Algorithm Design
	4.2 Applying to Non-LRU Policies
	4.3 Multi-Objective Optimization

	5 Evaluation
	5.1 Evaluation Methodology
	5.2 Real-World Trace Evaluation
	5.3 Cache Allocation Evaluation
	5.4 Space and Time Complexity Analysis
	5.5 MRC Profiling under Non-LRU Policies

	6 Discussion
	6.1 How production CDN benefits from MRC
	6.2 Miniature Simulation of real cache systems with Weighted Sampling

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 3.1: the size of Cache Filter
	B Proof of Theorem 3.2
	C Proof of Theorem 3.3

	A Artifact Appendix
	A Abstract
	B Description & Requirements
	C Set-up
	D Evaluation workflow

