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Abstract—Hash indexes are widely used in key-value storage
systems due to their ability to perform rapid single-point queries.
The persistent memory (PM) technology has received signifi-
cant attention in both academia and industry due to its high
performance, non-volatility, and large capacity characteristics.
Currently, hash indexes tailored for persistent memories have
been extensively researched. However, through an in-depth ex-
perimental study, we have discovered that existing persistent hash
indexes suffer from low query performance. This is primarily due
to persistent memory’s higher read latency than DRAM’s, which
reduces the performance of both positive and negative queries in
persistent hash indexes. Additionally, the former’s higher read
lock overhead further diminishes query performance.

To address the above problems, we propose in this paper a
Read-Optimized Persistent Hash Index, referred to as ROPHI,
based on fingerprint filtering and lock-free prefetching. By
employing a fingerprint filtering method, ROPHI introduces a
DRAM-based Cuckoo filter to store fingerprints of keys on top
of the PM-based hash table, effectively mitigating the time-
consuming access overhead of persistent memory hash tables
by accessing only the DRAM-based filter. Additionally, ROPHI
employs lock-free prefetching for positive query acceleration,
utilizing lock-free optimistic concurrent read techniques to avoid
read lock overhead and high-speed cache prefetching techniques
to reduce access overhead to persistent memory. Experimental
results on the Intel Optane DC Persistent Memory Module
(DCPMM) platform demonstrate that ROPHI significantly im-
proves query performance over existing persistent hash index
schemes. Specifically, ROPHI achieves an improvement of 2.67x-
13.59x in negative query performance and 1.72x-7.86x in positive
query performance. ROPHI outperforms the state-of-the-art
SmartHT in positive query throughput by 34.5%, and in insertion
and deletion throughput by 9.20% and 19.87% respectively, while
sacrificing only 1.93% of negative query throughput. Addition-
ally, it achieves a 5.07x improvement in recovery efficiency.

Index Terms—persistent memory, PM-based hash index, over-
all query performance, multi-threaded scalability

This work was supported by National Key R&D Program of China (No.
2023YFB4502100), NSFC (No. 61821003, 62262042, U22A2027), Jiangxi
Provincial Natural Science Foundation (No. 20224BAB202017), the Open
Project Program of WNLO (No. 2021WNLOKF012), and Key Laboratory of
Information Storage System Ministry of Education of China.

I. INTRODUCTION

With continuous technological and research advances, the
persistent memory (PM) technology is poised to effectively
bridge the chasm between traditional volatile memory and
non-volatile storage paradigms. Unlike its volatile counterpart,
which succumbs to data loss upon power cessation, persistent
memory upholds data integrity even in the absence of power.
This distinguishing trait promises numerous advantages, en-
compassing expedited boot times, fortified system resilience,
and augmented data longevity. Moreover, persistent memory
unlocks novel prospects in data-intensive applications by en-
abling expansive, byte-addressable storage for direct access by
the CPU, obviating the latency encumbrance of conventional
storage solutions.

Hash indexes, known for their rapid point-query lookup
performance at a consistent pace, are pivotal components in
memory-driven key-value (KV) storage systems such as Mem-
cached and Redis. In instances where multiple keys converge
to a singular location, triggering hash conflicts, measures such
as rehashing or resizing become imperative when the hash
table reaches capacity. The advent of PM has spurred a wave
of research endeavors aimed at crafting efficient PM-based
hash indexes. Notable among these innovations are CCEH [1],
Dash [2], Level hashing [3], Clevel [4], PCLHT [5], and
SmartHT [6].

When conducting queries in a hash table, a negative query
verifies the absence of an element, while a positive query
locates an existing element. The overall query functionality
accommodates both negative and positive queries. However,
the aforementioned persistent hash indexes still suffer from
low query throughput performance. Our experimental inves-
tigation in Section II-C on end-to-end query performance
indicates that persistent hash indexes exhibit lower query
throughput than their DRAM-based counterparts. The negative
query throughput of existing persistent hash indexes in DRAM
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exceeds their PM counterparts by 2.38x to 5.76x. The higher
read latency of PM and the longer query path increase the time
needed for negative queries, leading to lower performance.
Similarly, the positive query throughput of persistent hash
indexes in DRAM far surpasses that in PM, ranging from
2.18x to 4.58x higher. This discrepancy is due to PM’s elevated
read latency and increased read lock overhead, resulting in
reduced positive query throughput for persistent hash indexes.

Motivated by the above analysis, we aim to propose a read-
optimized persistent hash index, or ROPHI, to overcome the
above performance shortfalls of PM-based hash indexes, en-
suring high query performance for both negative and positive
queries. ROPHI accelerates negative queries by employing
a fingerprint filtering method. It introduces a DRAM-based
Cuckoo filter alongside the PM-based hash table to store
key fingerprints, effectively mitigating the time-consuming
access overhead of persistent hash tables. To speedup positive
queries, ROPHI employs lock-free prefetching, utilizing lock-
free optimistic concurrent read techniques to avoid read lock
overhead and high-speed cache prefetching techniques to re-
duce access overhead to PM. Experimental results on the Intel
Optane DCPMM platform reveal that ROPHI significantly
enhances query performance over existing persistent hash
index schemes. ROPHI achieves substantial improvements,
ranging from 2.67x to 13.59x in negative query performance
and 1.72x to 7.86x in positive query performance. Moreover, it
increases insertion throughput by 1.60x to 24.88x and deletion
throughput by 3.73x to 16.95x. ROPHI outperforms the state-
of-the-art SmartHT in positive query throughput by 34.5%
while only sacrificing 1.93% of negative query throughput.
Additionally, it increases the insertion and deletion through-
puts by 9.20% and 19.87%, respectively, alongside a notable
5.07x improvement in recovery efficiency.

II. BACKGROUND AND MOTIVATION

A. Persistent Hash Indexes

Advanced PM-based persistent hash indexes, exemplified
by CCEH [1], Dash [2], Level hashing [3], Clevel [4],
PCLHT [5], and SmartHT [6], surpass traditional memory
hash indexes by overcoming capacity limitations and data loss
issues. CCEH [1] expands dynamically via segment splitting
to avoid full-table resizing but faces lower load factors.
Dash [2] deals with the challenge of frequent segment splitting
by adopting balanced strategies for insertion, replacement,
and stashing, resulting in improved load factor albeit with
increased PM reads. Level hashing [3] achieves economical
resizing and minimal data consistency overhead with log-free
failure atomicity operations tailored for persistent memory.
Clevel [4] improves upon Level hashing with lock-free con-
currency and non-blocking read-resizing. PCLHT [5] enhances
read concurrency with a lock-free mode and maintains write
concurrency correctness using bucket locks. SmartHT [6] is
a persistent hash index that utilizes a hybrid DRAM-PM
memory architecture, enhancing negative query performance
with a DRAM-based Bloom filter.
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Fig. 1. Comparison of 32-threaded query throughput of different persistent
hash indexes in both DRAM and PM memory.

The current PM-based persistent hash indexes excel in
either negative or positive query optimization. However, none
effectively addresses the challenge of optimizing both types
of queries simultaneously, resulting in low overall query
performance. Hence, there is a critical need for research to
prioritize resolving the issue of overall query optimization.

B. Cuckoo Filter

The Cuckoo Filter [7] is a data structure that employs
partial-key cuckoo hashing [8] to store item fingerprints,
characterized by low storage overhead and efficient query
performance. We utilize a simple four-slot hash bucket cuckoo
filter, where each item can be stored in eight slot positions
corresponding to two hash functions. In contrast to traditional
single-slot cuckoo hashing, the Cuckoo filter sacrifices some
query efficiency by exploring more alternative positions to
enhance insertion efficiency and space utilization. Similar to
traditional single-slot cuckoo hashing, Cuckoo filter insertion
operates by directly inserting into idle alternative positions,
or by performing a kick-out operation before insertion if
no free positions are available. Because Cuckoo filters store
only partial keys (fingerprints) of items rather than their full
keys, they exhibit minimal storage overhead. A Cuckoo filter
can determine key existence through fingerprint matching,
enabling direct identification of non-existent keys. However,
since different keys may have identical fingerprints, a false
positive detection may occur where a key thought to exist
does not correspond to actual data.

C. Overall Query Analysis

Existing persistent memory hash indexes such as Level
Hashing, Clevel, CCEH, Dash, and PCLHT primarily face
the challenge of insufficient overall query performance, en-
compassing both positive and negative query operations. For
instance, in Figure 1, we compare the query performance of
CCEH, Level, and PCLHT when entirely stored in DRAM or
PM, with specific analysis as follows.

Observation 1. Reduced performance in negative queries
for persistent hash indexes. The analysis in SmartHT [6]
indicates that existing PM-based hash indexes achieve negative
query performance ranging from 45.1% to 79.8% of their
positive query counterparts. This discrepancy arises from the
longer search paths inherent in negative queries. Furthermore,
Intel Optane Persistent Memory exhibits higher read latency
compared to DRAM, with sequential read latency being twice
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that of DRAM and random read latency three times greater [9].
Figure 1 illustrates that the DRAM negative query throughput
of existing persistent hash indexes surpasses that of PM by
2.38 to 5.76 times. This difference can be attributed to the
increased read latency of Intel Optane Persistent Memory,
which extends the time required for negative queries in hash
indexes utilizing this technology, ultimately resulting in re-
duced negative query performance.

Observation 2. Lower concurrent performance of positive
queries for persistent hash indexes. The increased latency in
persistent memory reads and the greater overhead of read locks
diminish the concurrent performance of persistent hash indexes
for positive queries. Figure 1 illustrates that the positive query
throughput of the current persistent hash index in DRAM is
2.18 to 4.58 times higher than in PM. This discrepancy arises
from the fact that PM’s read latency is 2 to 3 times greater
than that of DRAM [9]. Since positive queries target elements
stored in the PM-based hash index, each query operation
incurs multiple instances of heightened persistent memory read
access overhead, thereby reducing query efficiency. Moreover,
the added overhead of lock-based concurrency control [4] fur-
ther dampens the concurrent performance of positive queries.

The cuckoo filter excels in dynamic insertion and deletion,
facilitating rapid queries on larger-scale indexes. Leveraging
insights from SmartHT [6], situating the filter in DRAM re-
duces path length and optimizes read lock overhead, achieving
a balance between positive and negative queries to elevate
overall query performance.

III. THE DESIGN OF ROPHI

This section explores the design of ROPHI, a read-optimized
persistent hash index that combines fingerprint filtering and
lock-free prefetching to accelerate overall queries.

A. ROPHI Overview

ROPHI is a persistent hash table designed for hybrid mem-
ory consisting of both DRAM and PM. The Cuckoo filter is
placed in DRAM to store fingerprints, accelerating negative
query operations. Meanwhile, the chained hash table is placed
in PM to facilitate fast persistence of key-value pairs. Figure 2
illustrates the architecture of the ROPHI system based on
hybrid memory.

The DRAM-based Cuckoo filter of ROPHI uses a cuckoo
hashing structure with each hash bucket containing four slots.
Each element is mapped to the Cuckoo filter through two inde-
pendent hash functions. The first hash function computes the
hash value, h1, of the element, while the second hash function
computes the hash value, h2, by performing an XOR operation
on h1 and the hash value of the element’s fingerprint. By
XORing the hash value of the element’s fingerprint, elements
are distributed more evenly throughout the Cuckoo filter. In the
Cuckoo filter, if the feedback is that an element does not exist,
it is determined that the element indeed does not exist, thereby
eliminating false negatives. However, if the feedback indicates
that the element exists, there is a degree of uncertainty because
different elements may have the same fingerprint, thus there
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Fig. 2. The architecture of ROPHI.
is a possibility of false positives. Therefore, when the Cuckoo
Filter reports the existence of an element, further confirmation
through the PM-based hash table is necessary to verify whether
the corresponding element truly exists.

The PM-based hash table of ROPHI adopts the same struc-
ture as SmartHT [6], utilizing chained hashing to resolve hash
collisions. To ensure correctness in multi-threaded concur-
rency, the system employs a mutex write-lock mechanism. To
reduce the overhead of data consistency guarantees, an atomic
merge-flush mechanism is introduced. Additionally, optimiza-
tion is performed by designing the head bucket to shorten the
average chain length, thereby enhancing the positive query
performance of the PM-based hash table. ROPHI utilizes
lock-free optimistic read technology to avoid additional read
lock overhead and employs prefetching techniques to reduce
accesses to the PM-based hash table, enhancing positive query
concurrency performance.

Each hash bucket has a size of 64 bytes, comprising three
key-value pair slots (each with a size of 8 bytes for key and
value), one 8-byte bucket pointer (BP) to the next bucket, and
three 1-byte tokens. Furthermore, there are 5 bytes of padding
information to maintain alignment.

B. Overall Query Acceleration Method

To synergistically optimize both negative and positive query
performance and enhance overall query performance, ROPHI
proposes an overall query acceleration method based on fin-
gerprint filtering and lock-free prefetching.

1) Negative Query Acceleration Based on Fingerprint
Filtering: Fingerprints are generated by using a simplified
representation of keys, such as using one or two-byte partial
keys to represent the full key. Traditional Bloom filters slightly
outperform Cuckoo filters in negative query efficiency due
to their efficient bit array structure. However, they do not
support dynamic deletion operations for elements. Instead,
ROPHI utilizes a space-efficient Cuckoo filter [7] that supports
dynamic deletion operations to store fingerprints. This filter
not only offers high space utilization efficiency but also
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achieves slightly higher positive query efficiency compared to
traditional Bloom filters. The Cuckoo filter efficiently supports
fingerprint insertion, deletion, and query operations through
cuckoo hashing of its partial keys.

Since inserting into the Cuckoo filter may trigger a large
number of eviction operations, resulting in additional writes,
storing the filter in PM is not ideal. Therefore, ROPHI adopts a
memory-aware filter placement strategy by storing the Cuckoo
filter in DRAM instead of PM. This not only leverages the
lower read latency of DRAM to enhance query performance
but also alleviates the issue of write amplification in the
Cuckoo filter, thus helping to maintain the longevity of the
persistent memory system.

When inserting elements into ROPHI, the key-value pairs
are first inserted into the hash table in PM, followed by
inserting the fingerprints of the keys into the Cuckoo filter in
DRAM. Since the Cuckoo filter always returns true for cases
where an element is determined to not exist, eliminating false
negatives, ROPHI can execute negative query operations by
only querying the Cuckoo filter in DRAM. This allows ROPHI
to return a result indicating that the element does not exist
without accessing the higher-latency PM-based hash table.

The relationship between the number of fingerprint bits in
the Cuckoo filter and the false positive rate and load factor
is represented by Equation 1, where b denotes the number
of fingerprint bits per entry, p denotes the false positive rate,
and α represents the load factor of the Cuckoo filter. In this
study, fingerprints of 1.5 bytes (i.e., b = 12) size are stored
in the Cuckoo filter instead of storing the full keys, ensuring
high query performance while maintaining a low false positive
rate. With a load factor of 95% for this Cuckoo filter storing
200 million elements, with each bucket having a size of 4
slots, Equation 1 yields a false positive rate p of approximately
0.00296. Since different keys may have the same fingerprint,
further confirmation in the PM-based hash table is required
when the Cuckoo filter indicates that a key exists.

b =
(log2(

1
p ) + 3)

α
(1)

2) Positive Query Acceleration through Lock-Free
Prefetching: ROPHI employs lock-free prefetching to boost
positive query performance in the hash table. Unlike SmartHT,
which relies on shared read locks in PM-based hash tables
for multi-threaded read concurrency, ROPHI’s PM-based hash
table adopts a lock-free optimistic read approach, eliminating
additional overhead from read locks. Specifically, during each
read thread, a copy of the element to be read is first stored.
Upon return, if the read value matches the copy, the lookup is
successful; otherwise, if other threads have modified the value,
a re-lookup is required. Given the higher read latency overhead
of PM, ROPHI employs a prefetching technique to minimize
access to higher-latency PM by utilizing lower-latency cache.

C. ROPHI Operations

1) Search: The search process in ROPHI begins by query-
ing the DRAM-based Cuckoo filter using fingerprint filtering.

Subsequently, it determines whether to proceed with retrieving
the PM-based hash table utilizing lock-free prefetching. If the
Cuckoo filter indicates that the key to be searched does not
exist, it returns NONE directly; otherwise, a search in the
PM-based hash table is necessary to prevent false positives.
Since the read latency of DRAM is lower than that of
PM, ROPHI can access only the DRAM-based Cuckoo filter
during negative queries, thereby accelerating negative query
performance by reducing accesses to the higher-latency PM-
based hash table. When the Cuckoo filter indicates that the
key exists, the lock-free prefetching method is employed to
enhance the query performance of the PM-based hash table.
The pseudocode for the search operation of ROPHI is shown
in Algorithm 1.

Algorithm 1: Search

1 if the Cuckoo filter (CF) contains the key then
2 Compute the hash value (HV) and bucket number

(BN) based on the provided key.;
3 bucket PTR = &Buckets[BN];
4 while bucket PTR != NULL do
5 for i← 0 to 2 do
6 copy val = bucket PTR→slot[i].value;
7 if bucket PTR→token[i] == 1 and

bucket PTR→slot[i].key == key then
8 if bucket PTR→slot[i].value ==

copy val then
9 return bucket PTR→slot[i].value;

10 end
11 else
12 return NONE;
13 end
14 end
15 end
16 bucket PTR = bucket PTR→next;
17 if bucket PTR != NULL then
18 builtin prefetch(bucket PTR, 0, 0);
19 end
20 end
21 end
22 return NONE;

2) Insertion: ROPHI first inserts the key-value pair into
the PM-based hash table, followed by inserting the fingerprint
of the key into the Cuckoo filter in DRAM. Each hash
bucket in the PM-based hash table can hold a maximum of
3 key-value pairs, with each key and value being 8 bytes
in size. The insertion process begins by hashing the key to
determine the corresponding hash bucket and then locking the
bucket area where the hash bucket resides. The entire insertion
process of the PM hash table adopts an ordered atomic
persistence method to ensure data consistency. This involves
using memory fence (MFENCE) instructions to order the
flushing sequence of cache lines with CLFLUSH instructions.
ROPHI ensures the correctness of insertion through lock-based
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concurrency control. Algorithm 2 provides the pseudocode for
the insertion operation of ROPHI.

Algorithm 2: Insert

1 Calculate specific BN based on the given key;
2 bucket PTR = &Buckets[BN];
3 if Is Exists in ROPHI(bucket PTR, key) then
4 return False;
5 end
6 // Insert the key-value pair into ROPHI if it is not exist
7 (bucket PTR, emptySlotNum) = Find EmptySlot();
8 lock(Locks[BN/LockSize]);
9 if bucket PTR != NULL and Is Valid(emptySlotNum)

then
10 bucket PTR→slot[emptySlotNum].value=value;
11 bucket PTR→slot[emptySlotNum].key = key;
12 bucket PTR→token[emptySlotNum] = 1;
13 Persist this bucket to PM using CLFLUSH;
14 Ensure persistent ordering of PM using MFENCE;
15 CuckooFilter Insert(key’s fingerprint);
16 unlock(Locks[BN/LockSize]);
17 return True;
18 end
19 unlock(Locks[BN/LockSize]);
20 return False;

3) Deletion: The deletion operation in ROPHI involves
first setting the token of the key-value pair to be deleted
in the PM-based hash table to 0. Then, a cache line flush
instruction is used to persist the token value to PM. Finally,
the fingerprint of the key is removed from the Cuckoo filter
in DRAM to prevent misjudgment. Similar to the insertion
operation, ROPHI utilizes hash bucket area locks to achieve
multi-threaded concurrency control. Before locking the spe-
cific hash bucket area, the Is Exists in ROPHI function is
used to determine if the key to be deleted exists. This function
employs an optimization strategy for the DRAM Cuckoo filter;
if the key does not exist, it returns directly. If the key exists,
it is searched for in the specific hash bucket chain and then
deleted.
D. Consistency Guarantee and Recovery

Consistency Guarantee: To address data inconsistency
issues caused by CPU out-of-order writes, ROPHI must ensure
data consistency in the event of system failures. However,
due to performance optimizations, the sequence of flushing
volatile cache lines to PM may not align with the program’s
write order, necessitating measures for consistency assurance.
In ROPHI, where keys and values are both 8 bytes, aligning
with the atomic write unit of persistent memory, cache line
flush and memory fence instructions are employed to regulate
the update sequence of key-value pairs, ensuring consistency
during data writes to PM.

Recovery: To ensure correct recovery in the event of system
failures, ROPHI adopts an ordered persistence atomic method,
similar to previous research such as Clevel [4]. Memory fence

instructions are added after cache line flush instructions to
ensure ordered persistence of write operations. ROPHI inherits
the PM-based hash table from SmartHT [6] to ensure data
consistency in insertion and deletion operations. After a failure
occurs, the fingerprints stored in the Cuckoo filter in DRAM
are lost, requiring scanning of the entire PM-based hash table
to rebuild the Cuckoo filter in DRAM. During recovery from a
failure, ROPHI can scan the entire hash table, release unused
persistent memory space, and reinsert the fingerprints of valid
key-value pairs into the Cuckoo filter in DRAM.

IV. PERFORMANCE EVALUATION

A. Experiment Setup
Server Hardware Configuration: Intel Optane DCPMM

were chosen as the persistent memory medium, with the
evaluation encompassing ROPHI and existing persistent hash
indexes. The evaluation was conducted on a Linux server
featuring 2 CPU sockets, each accommodating 18 CPU cores.
The server architecture comprised 2 Intel Xeon Gold 6240M
CPUs, operating at 2.6GHz, complemented by 4 modules of
128GB DCPMM, 128GB of DRAM memory, and a 24.75MB
last-level L3 cache. Ubuntu 20.04.1 served as the operating
system, leveraging kernel version 5.15.0. The total memory
capacity of the DCPMM totaled 512GB. All experiments were
executed utilizing the ext4 Direct Access (DAX) file system
and the application direct mode of Intel Optane DCPMM. To
mitigate NUMA effects, all PM modules were consolidated
within a single CPU socket. The implementation of ROPHI
incorporated the libvmem library provided by the Persistent
Memory Development Kit (PMDK).

Comparisons: We compared CCEH [1], Dash [2], Level
Hashing [3], Clevel [4], and PCLHT [5], utilizing implemen-
tations outlined in HashEvaluation [10]. Both ROPHI and
SmartHT [6] were implemented using the libvmem library.
However, while SmartHT optimizes negative queries, ROPHI
optimizes both positive and negative queries, resulting in
higher overall query performance.

Workloads: The experiment used the PiBench [11]
benchmark framework to generate workloads similar to
SmartHT [6], incorporating two overall query workloads. This
benchmark assessed the performance of positive queries (keys
exist) and negative queries (keys do not exist), as well as multi-
threaded concurrent insertions and deletions. Furthermore,
the Processor Counter Monitor (PCM) interface from the
processor counter monitoring library was utilized to scrutinize
various operations from a low-level viewpoint, including read
and write byte counts and cache hit rates. Details of the
operation workloads are provided below.

• Positive Query. In the loading phase, insert 200 million
key-value pairs. In the running phase, replace all inserts
with queries.

• Negative Query. The loading phase set is identical to
that of positive queries. During the running phase, query
200 million key-value pairs that are not in the hash table.

• Overall Query A and B. Insert 200 million key-value
pairs during the loading phase, and execute 200 million
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query operations during the running phase. Overall query
A consists of 30% positive queries and 70% negative
query operations, while overall query B consists of 70%
positive queries and 30% negative query operations.

• Insertion. During the loading phase, do not insert any
key-value pairs. During the running phase, insert 200
million key-value pairs.

• Deletion. Change all insert operations from the afore-
mentioned insertion workload to deletion operations. The
number of operations remains 200 million KV pairs.

All latency and throughput tests are based on the average of
five consecutive runs, with a skew factor of 0.2 for all skewed
workloads. Both key and value sizes are set to 8 bytes.

B. Query Performance Under Different Workloads

Figures 3 and 4 evaluate the query performance of various
persistent hash indexes under different query workloads with
uniform and skewed distributions.

In terms of parallel positive queries, ROPHI demonstrates
superior performance compared to existing persistent hash
indexes under both uniform and skewed distributions. Fig-
ures 3(a) and 4(a) illustrate that ROPHI achieves positive
query throughputs of 60.12 Mops/s and 105.06 Mops/s with 64
threads, respectively, representing a performance improvement
of 1.72x-7.86x over existing persistent hash indexes. The
superior positive query performance of ROPHI is attributed
to its PM-based hash table, which enhances positive query
performance through lock-free prefetching techniques.
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Fig. 3. Multi-threaded query scalability for uniform workloads.
In terms of parallel negative queries, ROPHI significantly

outperforms existing persistent hash indexes, as illustrated
in Figures 3(b) and 4(b). With 64 threads, ROPHI achieves
negative query throughputs of 112.82 Mops/s and 122.02
Mops/s under uniform and skewed distributions, respectively,
representing performance improvements of 2.67x-13.59x over
existing persistent hash indexes. The superior negative query
performance of ROPHI stems from its fingerprint-based nega-
tive query acceleration strategy, which reduces accesses to the
high-latency PM hash table by solely accessing the DRAM
cuckoo filter. This cuckoo filter can proactively determine the
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Fig. 4. Multi-threaded query scalability for skewed workloads.
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Fig. 5. The number of read/write bytes to PM and last-level cache (LLC)
misses for each operation in various persistent hash indexes.

non-existence of key-value entries, resulting in zero data reads
from persistent memory and favorable last-level cache misses,
as depicted in Figure 5. However, existing persistent hash
indexes suffer from longer access paths to persistent memory
hash tables, leading to lower efficiency in negative queries.

In Overall Query A, comprising 30% positive queries and
70% negative queries, ROPHI exhibits outstanding query
performance, surpassing existing persistent hash indexes, as
detailed in Figures 3(c) and 4(c). With 64 threads, ROPHI
achieves mixed query throughputs of 57.85 Mops/s and
82.35 Mops/s under uniform and skewed distributions, respec-
tively, representing performance improvements of 1.84x-7.63x
over existing persistent hash indexes. Similarly, Figures 3(d)
and 4(d) demonstrate ROPHI’s high query performance in
Overall Query B, with mixed query throughputs of 53.75
Mops/s and 91.34 Mops/s under uniform and skewed distribu-
tions with 64 threads, respectively, representing performance
improvements of 1.84x-7.55x over existing persistent hash
indexes. ROPHI achieves superior mixed query performance
by employing an overall query acceleration strategy based
on fingerprint filtering and lock-free prefetching, effectively
optimizing both negative and positive queries.

C. Insertion and Deletion Performance

Insert. In terms of insertion parallelism, ROPHI demon-
strates high performance under both uniform and skewed
distributions, as illustrated in Figures 6(a) and 7(a). With 64
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Fig. 6. Multi-threaded insertion and deletion scalability for uniform work-
loads.

8 1 6 2 4 3 2 4 0 4 8 5 6 6 410
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2
2 4

 
 

Th
rou

ghp
ut 

(M
ops

/s)

( a )  I n s e r t

 C C E H    D a s h       L e v e l
 C l e v e l    P C L H T    R O P H I

N u m b e r  o f  T h r e a d s 8 1 6 2 4 3 2 4 0 4 8 5 6 6 410
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

 

 
Th

rou
ghp

ut 
(M

ops
/s)

( b )  D e l e t e

 C C E H    D a s h       L e v e l
 C l e v e l    P C L H T    R O P H I

N u m b e r  o f  T h r e a d s

Fig. 7. Multi-threaded insertion and deletion scalability for skewed workloads.

threads, ROPHI achieves insertion parallel throughputs of 9.5
Mops/s and 19.9 Mops/s under uniform and skewed distribu-
tions, respectively, representing performance improvements of
1.60x-24.88x over existing persistent hash indexes. Although
under uniform distribution, ROPHI’s insertion performance
may be slightly lower than CCEH and Dash, particularly below
16 threads, due to the overhead of inserting cuckoo filter
fingerprints. However, in multi-threaded scenarios, especially
with 64 threads, ROPHI exhibits superior insertion perfor-
mance due to its excellent query performance and optimized
merge-flushing of insertion operations.

Delete. Figures 6(b) and 7(b) illustrate the deletion con-
current throughput of various persistent hash indexes. Under
64 threads, ROPHI achieves deletion performance of 43.44
Mops/s and 95.93 Mops/s under uniform and skewed distribu-
tions, respectively. Compared to CCEH, Dash, Level, Clevel,
and PCLHT, ROPHI’s deletion performance is enhanced by
a factor of 3.73x-16.95x. This enhancement can be attributed
to ROPHI’s superior query performance and its efficient lazy
deletion mechanism, which minimizes the amount of data
written to PM. This mechanism involves resetting tokens to
0 and atomically persisting them, as illustrated in Figure 5(a).

D. Query Tail Latency

In storage systems, reducing tail latency is crucial for
enhancing user experience. This study evaluates the query tail
latency of persistent hash indexes across various percentiles
under 32 threads, as depicted in Figure 8.

ROPHI demonstrates relatively lower tail latency in posi-
tive queries, with its p99.99 positive query tail latency effi-
ciency being approximately 99.27% of PCLHT’s. Compared
to CCEH, Dash, Level, and Clevel, ROPHI improves p99.99
positive query tail latency efficiency by 1.25 to 7.42 times,
as illustrated in Figure 8(a). ROPHI excels in negative query
tail latency, as depicted in Figure 8(b), with tail latencies of
1.02 microseconds and 3.96 microseconds at p99.9 and p99.99,
respectively. This represents improvements of 5.24x-30.43x
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Fig. 8. Tail latency of queries at various percentiles in a uniform distribution
scenario with 32 threads.

and 2.59x-12.95x over existing persistent hash indexes. The
primary reason for ROPHI’s high negative query tail latency
performance lies in its fingerprint filtering-based negative
query optimization strategy, which effectively reduces the
access overhead of the PM-based hash table.

Additionally, Figure 8(c) demonstrates ROPHI’s excellent
tail latency efficiency in Overall Query A, with a p99.99 query
tail latency of 6.58 microseconds, representing improvements
of 1.46x-7.61x over existing persistent hash indexes. Simi-
larly, Figure 8(d) also illustrates ROPHI’s favorable query tail
latency efficiency in Overall Query B, with a p99.99 query
tail latency of 6.89 microseconds, which is 1.34x-7.68x higher
than existing persistent hash indexes.

E. Comparative Analysis against SmartHT
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Fig. 9. Performance of ROPHI and SmartHT under uniform distribution with
multiple threads.

1) Throughput Evaluation: The ROPHI and the state-of-
the-art SmartHT methods each have their own strengths and
weaknesses, as illustrated in Figures 9. Under the uniform
distribution scenario, compared to SmartHT, ROPHI demon-
strates higher concurrency in insertions, positive queries, and
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deletions, but slightly lags in negative query performance.
Specifically, with 64 threads as an example, ROPHI improves
positive query throughput by 34.50% and insertion through-
put by 9.20%, while also enhancing deletion throughput by
19.87%, at the expense of only a 1.93% decrease in negative
query throughput compared to SmartHT.

2) Failure Recovery: During system failures or power
outages, it is necessary to restore the filter metadata in the
DRAM of both ROPHI and SmartHT. A comparative analysis
of the recovery time for ROPHI and SmartHT at the scale of
inserting 50 million, 100 million, 150 million, and 200 million
key-value pairs is presented in Figure 10. ROPHI demon-
strates improved recovery performance compared to SmartHT.
Specifically, the recovery times for ROPHI at the scale of 50
million, 100 million, 150 million, and 200 million key-value
pairs are 4.6 seconds, 11.3 seconds, 19.1 seconds, and 29.9
seconds, respectively. These represent efficiency improvements
of 5.07x, 4.31x, 3.94x, and 3.42x over SmartHT, respectively.
ROPHI’s superior recovery performance is attributed to its
enhanced positive query and insertion efficiency.
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Fig. 10. Comparison of Recovery Time between ROPHI and SmartHT.

V. RELATED WORK

PM-based Hash Indexes. Similar to Dash [2], OP-
HMEH [12] and EEPH [13] are also variants of scalable
hash tables based on DCPMM. While PCLHT [5], like other
persistent hash indexes, primarily optimizes positive query
performance at the expense of neglecting improvements in
negative query performance, and SmartHT [6] primarily opti-
mizes negative query performance with limited improvement
in positive query performance, our work focuses on enhancing
both positive and negative queries to provide high overall
query performance. Inspired by SmartHT, our approach sig-
nificantly improves negative query performance by placing
a cuckoo filter in DRAM while optimizing positive query
performance.

Hybrid DRAM-PM Memory Key-Value Stores.
ChameleonDB [14] and Halo [15] all employ a hybrid
DRAM-PM memory architecture, leveraging the low-latency
access performance of DRAM and the fast persistence features
of PM. However, while these systems boost performance by
placing all indexes in DRAM, they incur additional recovery
time overhead. Similarly, ROPHI adopts this hybrid memory
architecture, but it utilizes only a small-sized DRAM to store
cuckoo filters, optimizing hash table operation performance
while reducing recovery overhead.

VI. CONCLUSION

To tackle the challenge of low overall query performance in
persistent hash indexes, we propose ROPHI, a read-optimized
persistent hash index method leveraging fingerprint filtering
and lock-free prefetching. ROPHI boosts overall query per-
formance by optimizing both negative and positive queries.
For enhancing negative query efficiency, ROPHI employs a
fingerprint filtering-based acceleration approach. Additionally,
ROPHI integrates a lock-free prefetching strategy to expedite
positive queries. The experimental results clearly illustrate
ROPHI’s superiority in achieving significantly improved over-
all query performance compared to existing persistent hash
indexes.
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