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ABSTRACT

Compute eXpress Link (CXL) based Solid-State Drives (CXL-

SSDs), such as the Samsung CMM-H model, promise to offer

CXL.mem memory and CXL.io block dual-mode interfaces.

Nonetheless, whether and how cloud applications with di-

verse and varying access patterns benefit from such dual-

mode CXL-SSD remains an open question for academia and

industry.

This paper proposes RomeFS, the first CXL-SSD aware file

system, handling file operations by synergistically yet pref-

erentially utilize complementary CXL.mem and CXL.io data

paths. To this end, RomeFS presents key enabling techniques

including 1) dual-path data layout to statically partitionmeta-

data and file data into CXL.mem and CXL.io data-zones re-

spectively; 2) dual-path access for file data using the two

data paths synergistically at runtime; 3) hybrid parallel file

indexing for efficient per-file mapping to locate dispersed

file data across the two data paths; 4) data defragmentation

to merge dispersed file data to the CXL.io data-zone; and 5)

metadata journaling and synergistic dual-path transactional

write to ensure crash consistency with low overhead. We im-

plement and evaluate RomeFS under two emulated hardware

platforms. The experiments show that RomeFS outperforms
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state-of-the-art block-based file systems and PM-based file

systems by up to 14.24× and 4.89× respectively.

CCS CONCEPTS

• Computer systems organization → Heterogeneous (hy-

brid) systems.

KEYWORDS

CXL-SSD, File system, Storage architecture, IO scheduling

ACM Reference Format:

Yekang Zhan, Haichuan Hu, Xiangrui Yang, Shaohua Wang, Qiang

Cao, Hong Jiang, and Jie Yao. 2024. RomeFS: A CXL-SSD Aware

File System Exploiting Synergy of Memory-Block Dual Paths. In

ACM Symposium on Cloud Computing (SoCC ’24), November 20–

22, 2024, Redmond, WA, USA. ACM, New York, NY, USA, 17 pages.

https://doi.org/10.1145/3698038.3698539

1 INTRODUCTION

Compute eXpress Link (CXL) [43] via PCI-express (PCIe)

interconnects processors, accelerators, memory, and IO de-

vices, driving memory scalability, disaggregation, and pool-

ing in cloud datacenters [25]. Emerging CXL-based Solid-

State Drives (CXL-SSDs) [15, 41, 55], which integrate the fore-

end build-in DRAM and the backend large-capacity flash,

utilize the CXL.mem interface to offer a scalable and cost-

effective memory expansion akin to a persistent memory

but attached to PCIe bus instead of traditional memory bus

[7, 11, 15, 20, 39, 55].

However, for thememory expansion, when theDRAM/flash

capacity ratio is low, completely hiding the long latency

of the backend flash (e.g., 2TB) is challenging, due to the

huge latency gap and granularity mismatch between DRAM

and flash, and agnostic application-behaviors [55]. The CXL-

SSDs such as Samsung CMM-H [7, 39] promise dual-mode

interfaces of CXL.mem and CXL.io and internally partition
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the backend large-capacity flash into the memory area and

SSD area to store the data from such two interfaces respec-

tively. This means that the CXL-SSD can support thememory

and block-based data paths simultaneously. Nevertheless, so

far, CXL-SSD only exists the form of a conceptual protocol

without consensual specifications and implementation de-

tails. More importantly, whether and how such dual-mode

CXL-SSD can improve the performance of diverse applica-

tions in cloud remains an unexplored question for academia

and industry.

To better understand the performance characteristics of

the dual-mode CXL-SSD, we analyze the bandwidth and

latency performance of its two data paths. Table 1 lists the

bandwidths of CXLmemory (similar to accessing the build-in

DRAM of the CXL-SSD via the CXL.mem path), representing

the ideal performance of the memory expansion mode, and

PCIe SSDs, representing the performance of the SSD mode.

The CXL memory does not possess an overwhelming band-

width advantage over the PCIe SSDs. Meanwhile, existing

studies demonstrate that the access latency of different CXL

memory implementations [25, 28, 48] ranges from 140ns to

300ns, which is significantly lower than that of the SSDs (e.g.,

several 𝜇s to tens of 𝜇s for 4KB block [40]).

These observations provide two key insights : 1) large-size

data accesses can be efficiently handled by the CXL.io data

path to directly exploit SSD’s high internal parallelism, avoid-

ing passing through the small-size yet expensive build-in

DRAM cache; 2) small-size data accesses hit in the cache

can be fast processed by the CXL.mem data path. Therefore,

compared to either the memory expansion mode only via the

CXL.mem path or the SSD mode only via the CXL.io path,

synergistically using the two data paths of dual-mode is ex-

pected to achieve the best of both worlds. Unfortunately,

existing storage systems cannot utilize the memory and

block-based data paths simultaneously in a synergistic and

complementary manner.

This paper proposes RomeFS, the first CXL-SSD aware file

system, to proactively exploit the unique dual-path access

feature of the CXL-SSD to efficiently serve cloud applications

with high intensity and varying access patterns. RomeFS

proactively converts each file request to one or multiple data

sub-requests, which are executed via their own preferred

data paths in parallel. Specifically, RomeFS designs a dual-

path data layout to provide static and coarse-grained data-

zone allocation, storing all metadata in the CXL.mem data-

zone and storing file data cross the CXL.mem and CXL.io

data-zones. RomeFS further allocates large block-aligned file

sub-writes to the CXL.io data path while writing small or

the residual block-unaligned file sub-writes to the CXL.mem

data path, thus synergistically utilizing the two data paths

to efficiently handle various file data requests at runtime.

RomeFS with such a synergistic dual-path architecture is

fundamentally different from traditional file systems special-

ized to a single type of data path, such as the block-based

data path (block-based file systems [19, 22, 31, 34, 38, 49])

and the memory-semantic data path (PM-based file systems

[2, 5, 16, 17, 53, 58, 60, 61]). Additionally, existing cross-media

hybrid file systems [21, 37, 52, 57] employ caching or tiering

architectures to use memory-semantic devices to acceler-

ate the underlying block IOs, like the memory expansion

mode of CXL-SSDs does, mainly focusing on the memory-

semantic data path. Therefore, existing file systems are not

able to exploit the CXL.mem and CXL.io paths of CXL-SSD

synergistically and efficiently.

RomeFS overcomes two key challenges introduced by the

synergistic dual-path architecture: 1) file fragmentation and

2) crash consistency. First, the synergistic dual-path access

tends to distribute file data across the memory area and

SSD area of CXL-SSD, causing file fragmentation and poten-

tially impacting read performance. To address this challenge,

RomeFS introduces a hybrid parallel file indexing scheme

to efficiently locate the file data distributed across the two

areas. RomeFS further designs merge-on-write (MOW) and

per-block data log write-back (LWB) mechanisms to mitigate

file data fragmentation and timely release the memory area

of CXL-SSD. Second, a user write can induce multiple read

and write IOs upon both data paths, potentially increasing

the complexity of write transaction and crash consistency.

Therefore, RomeFS uses a metadata journaling and synergis-

tic dual-path transactional write mechanism to ensure write

atomicity and crash consistency with low overhead.

We implement and evaluate RomeFS on two emulated

hardware flatforms (i.e., DRAM + SSD and PM + SSD) of the

CXL-SSD under a variety of benchmarks and workloads. The

experiments show that RomeFS outperforms the block-based

file systems (EXT4 [31], CJFS [34], BTRFS [38] and F2FS

[22]) by up to 14.24× and 9.44× in latency and throughput

respectively, and outperforms the PM-based file systems

(NOVA [53] and WineFS [17]) by up to 4.89× and 4.23× in

latency and throughput respectively.

In summary, this paper makes the following contributions:

• The first CXL-SSD aware file system that adaptively and

jointly utilizes the CXL.mem and CXL.io data paths of CXL-

SSD to handle various file requests in a synergistic and

complementary manner.

• Several novel enabling techniques such as dual-path data

layout, synergistic dual-path access, hybrid parallel file in-

dexing, data defragmentation and dual-path transactional

write, to overcome the challenges arising from synergistic

dual-path operations.

• Implementing and evaluating RomeFS on two emulated

hardware platforms with a variety of workloads.
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The remainder of this paper is organized as follows. Sec-

tion 2 presents necessary background on CXL protocols and

CXL-SSD model details, as well as our motivation. Section 3

describes the challenges arising from the synergistic dual-

path architecture and presents the design and implemen-

tation of RomeFS. Section 4 analyzes the rationality and

feasibility of our emulation methodology for CXL-SSDs, and

evaluates the performance of RomeFS. We discuss related

works in Section 5, and conclude in Section 6.

2 BACKGROUND AND MOTIVATION

2.1 Compute eXpress Link (CXL)

Compute eXpress Link (CXL) over PCIe is an emerging in-

terconnect protocol integrating CPUs, accelerators, memory,

and IO devices into a unified resource pooling with low syn-

chronization overheads and high scalability [15, 25, 28, 48].

The CXL standard defines three separate protocols of CXL.io,

CXL.cache, and CXL.mem. The CXL.io protocol uses proto-

col features of the PCIe to provide standard block interface

and is also compatible with the legacy NVMe interface. The

CXL.cache and CXL.mem protocols are used for the device

to access the CPU’s memory and for the CPU to access the

device’s memory, respectively [4].

CXL supports three types of devices (Type-1/2/3). CXL

Type-1 devices, such as an accelerator without any attached

memory, implement the CXL.io and CXL.cache protocols.

CXL Type-2 devices, such as accelerators with attached mem-

ory, support all three protocols [43]. CXL Type-3 devices

implement the CXL.io and CXL.mem protocols, and are ex-

pected to be used for memory expansion. CXL memory [48],

CXL-PM [12] and CXL-SSD [7, 15, 39, 55] are primary CXL

Type-3 devices. This work focuses on CXL-SSD.

2.2 CXL-SSD model

Research on CXL-SSD study is an open and active area

[7, 11, 15, 20, 39, 55]. A CXL-SSD generally comprises the

fore-end build-in DRAM and the backend large-capacity

flash. The capacity of the build-in DRAM is generally lim-

ited due to constraints on budgets of cost, power consump-

tion, and physical size, but the flash can be easily scaled.

The memory expansion mode of CXL-SSDs offers load/store

interface via the CXL.mem path, which first accesses the

build-in DRAM cache and then accesses the flash if the cache

misses. Nevertheless, low capacity-ratio, huge latency gap,

and granularity mismatch between DRAM and flash limit the

performance of the memory expansion mode of CXL-SSDs.

The memory expansion mode has to resort to application-

aware caching and prefetching mechanisms to hide long

internal flash-access latencies [15, 20, 55].

Samsung proposes a CMM-H (CXL Memory Module - Hy-

brid) CXL-SSD model, to provide the CXL.io and CXL.mem

CXL-SSD
HOST

Chip Chip Chip

Chip Chip Chip

PCIe PHY

Chip Chip Chip

Chip Chip Chip

Chip Chip Chip

Memory
Area

SSD
Area

DRAM
Cache

Figure 1: CXL-SSD dual-mode architecture.

interfaces simultaneously, called "dual-mode" [42]. A CMM-

H prototype comprises 16GB build-in DRAM and 2TB flash

but without the detailed implementation and specification.

Combining existing studies and public information, we sum-

marize a general dual-mode architecture of the CXL-SSD

in Figure 1. Both the CXL.io and CXL.mem data paths ex-

ternally share the same underlying PCIe channel. A large

portion of the build-in DRAM and (configurable) a portion of

the flash are used as the memory area, while the remaining

DRAM and flash are used as the SSD area. The memory area

and SSD area are exclusively accessed by the CXL.mem and

CXL.io interfaces respectively. The two areas also share the

SSD-internal flash IO channel between the DRAM and flash.

Due to high bandwidth of modern PCIe and high internal

parallelism within the flash, the CXL.mem and CXL.io paths

are relatively independent in performance.

Compared to block storage, such as high-performance

SSDs, and slow memory device, such as persistent memory

(PM), dual-mode CXL-SSDs possess the following new fea-

tures: 1) dual-mode support for load/store memory interface

and block IO interface simultaneously; 2) small granularity

access, allowing for data transfers of a minimum size of 64B;

and 3) crash-persistence guarantee, e.g., supporting the flush-

on fail with CXL2.0 GPF (Global Persistent Flush) feature

and providing external battery for the build-in DRAM cache

[7, 39].

For the CXL.mem path, CPU canmap the CXL-SSD’s mem-

ory area into its own address space (by updating page tables)

for memory expansion, and load/store data in the memory

area in a cache-coherent fashion. For the CXL.io path, the

CXL-SSD supports the legacy block IO stack composed of

VFS, page cache, file system, block layer and device driver

[23]. In addition, for simplicity yet universality for the dual-

mode architecture, we logically assume that the memory

area and SSD area are separately mapped to distinct flash

zones. Within the CXL-SSD, both areas can be dynamically

and transparently mapped to different physical flash zones

to ensure wear leveling.

To better understand the performance characteristics of

the CXL-SSD, we analyze the bandwidth and latency of its

behavior-similar CXL memories and PCIe SSDs. Table 1 lists

the bandwidth of CXL memory (similar to accessing the

build-in DRAM of the CXL-SSD via the CXL.mem path), rep-

resenting the ideal performance of the memory area, and

NVMe SSDs, representing the performance of the SSD area.
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Table 1:Maximumeffective bandwidth of CXLmemory

and NVMe SSDs.
CXL memory (reported by [48]) NVMe SSD [40]

Bandwidth

(GB/s)

CXL-A

(DDR5)

CXL-B

(DDR4)

CXL-C

(DDR4)

PCIe5.0

SSDs

PCIe4.0

SSDs

Read 17.7 9.0 4.9 10–14 5–7

Write 11.9 3.6 4.4 6–12 3–6

The CXL-A/B/C are three true CXLmemory devices reported

by [48]. The CXLmemory does not possess an overwhelming

bandwidth advantage over the SSDs with large capacity and

sufficient internal parallelism. However, the access latency

of CXL memory, 140ns-300ns reported by recent studies

[25, 28, 48], is significantly lower than that of the SSDs (e.g.,

several 𝜇s to tens of 𝜇s for 4KB block [40]). These observa-

tions suggest that the two data paths are complementary in

that, while the build-in DRAM cache via the CXL.mem data

path favors small-size data accesses, the CXL.io data path is

friendly to large-size data accesses to effectively exploit flash’s

IO parallelism. Therefore, synergistically using the two data

paths is expected to achieve the best of both worlds.

Cloud applications exhibit various, mixed, and fluctuating

load patterns, such as small and large, random and sequen-

tial, block-aligned and block-unaligned, single IO stream

and multiple IO streams [29, 33, 51, 63]. The questions of

whether and how these applications can benefit from such

two complementary data paths provided by the CXL-SSD

remain unanswered.

2.3 Motivation

File systems offer a common file/directory view via POSIX

interface for upper applications to access data in the under-

lying storage. This implies that file systems can identify pre-

ferred data paths for different data access behaviors, thereby

exploiting the two data paths of CXL-SSDs.

However, most file systems are specialized to a single type

of data path, such as block-based data path (block-based

file systems [19, 22, 31, 34, 38]) and memory-semantic data

path (PM-based file systems [17, 53, 61]). Some cross-media

hybrid file systems [21, 37, 52, 57] employ caching or tiering

architectures with persistent memory devices to accelerate

the underlying block IOs, like the memory expansion mode

of CXL-SSDs does. Therefore, these file systems are unable

to exploit the CXL.mem and CXL.io paths synergistically.

We are motivated to design a CXL-SSD aware file system

supporting synergistic dual-path exploitation.

3 DESIGN AND IMPLEMENTATION

We propose the first CXL-SSD aware file system, RomeFS,

to fully exploit the synergy between the two heterogeneous

data paths of CXL-SSD by designing a novel dual-path ar-

chitecture. Inspired by the key insight of "the CXL.io path

POSIX Applications

RomeFS open [p]read [p]write[f]stat fsync

Transaction journaling

Hybrid parallel
 file indexing (  3.4)B R

Dual-path collaborative access (  3.3)Metadata updates

R/W data blocksR/W data logs
Metadata 

Area Data Block Area

Data Defragmentation (  3.5)

Transaction
Journal Area Data log Area 

Dual-path data layout (  3.2) MOW LWB

Memory area SSD area

Figure 2: RomeFS overview.

is friendly to large-size accesses and the CXL.mem path

favors small-size accesses" (§ 2.2), the design principle of

RomeFS is to adaptively utilize the CXL.mem data path with

low latency but limited capacity to handle latency-sensitive

small-size tasks while leveraging the CXL.io data path to

handle bandwidth-sensitive large-size tasks to fully exploit

the internal parallelism of SSDs.

RomeFS faces three key challenges (Cs) of 1) dual-path

selection and synergization (C1), 2) data fragmentation (C2),

and 3) crash consistency (C3). For C1, RomeFS needs to

decide how to use either or both of the two data paths for

file operations according to the design principle. For C2,

dual-path RomeFS synergizing tends to distribute file data

across the memory area and SSD area of CXL-SSDs, thereby

causing file fragmentation and potentially impacting read

performance. For C3, a user write can induce multiple read

and write IOs upon both data paths, potentially increasing

the complexity of write transaction and crash consistency.

3.1 Overview

Figure 2 shows the architecture of RomeFS designed to ad-

dress these three challenges. For dual-path selection and

synergization (C1), RomeFS designs a dual-path data lay-

out (§ 3.2) to explicitly divide all metadata into the memory

area and file data into the data log area of memory area and

the data block area of SSD area respectively. This means all

metadata operations are handled via the CXL.mem data path

and file data are placed in data logs in the memory area and

data blocks in the SSD area. RomeFS further proposes a dual-

path access mechanism (§ 3.3) to determine how the two

data paths synergistically handle various file data accesses

at runtime. RomeFS only writes block-aligned file data to the

SSD area to exploit the parallelism of the flash while writing

block-unaligned file data into the memory area to avoid its

induced read-modify-write operations of the CXL.io path

[1, 10, 45]. To overcome file fragmentation (C2), RomeFS

introduces a hybrid parallel file indexing scheme (§ 3.4) to

effectively index the data distributed across the two areas.
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RomeFS further designs merge-on-write (MOW) and per-

block data log write-back (LWB) mechanisms (§ 3.5) to miti-

gate file data fragmentation and timely release the memory

area of CXL-SSD. To ensure crash consistency (C3), RomeFS

uses metadata journaling (§ 3.2) and synergistic dual-path

transactional write mechanism (§ 3.3) to ensure write atom-

icity with low overhead.

3.2 Dual-path Data Layout

RomeFS first designs a unified dual-path data layout to man-

age the memory area and SSD area of CXL-SSD, which con-

sists of memory zone (i.e., the address space of the memory

area) and block zone (i.e., the address space of the SSD area).

The memory zone consists of small-size pages (e.g., 4KB)

and is further divided into metadata area, transaction jour-

nal area and data log area. The metadata area includes su-

perblocks, bitmaps, inode tables, file mapping structures, etc.

The transaction journal area is used to record metadata up-

dates and file operations. The data log area is designed to

absorb small and subblock file writes. The block zone con-

sists of large-size data blocks (e.g., 64KB) that exclusively

constitute the data block area. Most file data are stored in

the data block area, but a few file data can be temporarily

placed in the data log area conditionally. This data layout

also improves metadata locality, thereby improving the per-

formance of metadata access via the CXL.mem path. This is

because benefiting from the CXL.mem protocol, data fetched

from and written to the metadata area can be cached in the

cache hierarchy in the CPU [28]. In addition, the memory

zone and block zone are exclusively accessed by the CXL.mem

path and the CXL.io path respectively, thereby eliminating

potential data-incoherency between the two data paths.

Metadata journaling. A metadata update can induce

multiple write-IOs upon the CXL.mem path, hence RomeFS

processes metadata updates using a metadata journaling ap-

proach (like XFS [49]) to provide transactional guarantees

for metadata operations while persisting the journal imme-

diately. Specifically, RomeFS records each metadata update

as a transaction in a journal and writes the journal via the

CXL.mem path to the transaction journal area. Then, RomeFS

updates the corresponding metadata structure in host mem-

ory only. At checkpointing, RomeFS finally applies these

updates to the metadata area via the CXL.mem path based

on the recorded journals. The internal caching mechanism

[55] and crash-persistence guarantees (e.g., CXL2.0 GPF fea-

ture and external battery for the build-in DRAM cache) of

CXL-SSD can ensure crash consistency between the build-in

DRAM cache and backend flash of the CXL.mem path.

The crash-persistence guarantee of CXL-SSDs brings about

a great leap forward for the consistency mode of file sys-

tems. Traditional file systems without the CXL.mem path

suffer from slow per-journal persistence and IO amplifica-

tions due to performing numerous slow sync-and-ordered

small-writes. Therefore, traditional file systems often do not

actively persist journals but only do so in scenarios such as

journal timeouts, journal buffer full, file system unmounting,

and applications demand (e.g., fsync() call), thus sacrificing

some consistency for performance. In comparison, CXL-SSD

aware file systems can fast store each journal to the memory

area with persistence, thus providing stronger consistency.

3.3 Synergistic Dual-path Access

RomeFS proposes a synergistic dual-path write mechanism

to adaptively allocate tasks to the CXL.mem andCXL.io paths

at runtime, i.e., keeping the CXL.io path for always handling

(large) block-aligned writes without extra slow read-modify-

writes, and utilizing the two paths in parallel. Moreover, to

ensure write atomicity, the write mechanism is designed to

be transactional.

Write request splitting.When receiving a write request,

RomeFS converts it into 1) block-aligned sub-writes and

2) residual subblock sub-writes based on a write splitting

threshold. The (large) block-aligned sub-writes can be effi-

ciently handled via the CXL.io path directly without extra

read-modify-writes. The residual subblock sub-writes are

handled via the CXL.mem path with low latency. In this way,

RomeFS can efficiently process both types of sub-writes in

parallel to fast handle requests while fully considering the

limited capacity of the build-in DRAM. In addition, this cost-

effective use of the CXL.mem path makes it easier for the

build-in DRAM cache to hide the access latency of the back-

end flash, thereby potentially improving the performance of

the CXL.mem path.

Write splitting threshold. The write splitting threshold

is a key parameter for determining both write ranges and

workloads upon the two data paths. This threshold selec-

tion represents a trade-off in usage between the CXL.mem

data path and the CXL.io data path. When the threshold is

too low, most of the file writes are allocated into the block

zone via the CXL.io data path, resulting in high latency of

small writes. When the threshold is too high, most of the

file writes are judged as subblock writes and processed by

the CXL.mem data path, resulting in frequent out-of-space

and flushing to flash of the build-in DRAM cache. Therefore,

RomeFS needs to set the threshold carefully based on the

actual effective performance of the CXL.mem and CXL.io

data paths. RomeFS supports flexible configuration of the

threshold at initialization. In this paper, RomeFS sets the

threshold to 64KB by default because the write latencies of

the CXL.mem and CXL.io data paths in our emulated devices

are closest when the IO size is 64KB.

Synergistic dual-path transactional write. After write

request splitting, a user write can induce multiple sub-writes
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Figure 3: An example of synergistic dual-path write.

upon the CXL.mem and CXL.io data paths. To provide write

atomicity guarantees, RomeFS designs a synergistic dual-

path transactional write mechanism. This write mechanism

first converts user writes into multiple sub-writes by the

write request splitting mechanism, then handles these sub-

writes transactionally and in parallel.

Figure 3 shows an example of the synergistic dual-path

transactional write. RomeFS processes the write request in

six stages. 1© RomeFS first creates a write transaction in

a new journal. The journal only records metadata updates

and transaction information. Specifically, RomeFS records

transaction header, corresponding metadata updates and sub-

write properties (e.g., type, merge or not) to this journal. The

write request is logically split immediately for the purpose

of convenient recording of the journal. 2© RomeFS creates

and updates the corresponding write request structures in

the host memory based on the request splitting result, and

sends them to the corresponding data paths. RomeFS handles
3© subblock sub-writes and 4© block-aligned sub-write in

parallel. Among them, subblock sub-writes are executed seri-

ally by default. The low-latency CXL.mem path can quickly

complete these small writes. Enabling parallel processing

of subblock sub-writes introduces additional overhead and

resource consumption, so it is optional. Note that, for sim-

plicity and clarity, merge-on-write (MOW) (§ 3.5.1) is not

introduced in this example. In reality, RomeFS uses the MOW

approach to handle each subblock sub-write atomically. The

block-aligned sub-write can be stored directly and atomically

in data blocks without the need for copy-on-write [38]. 5©
For each completed sub-write, RomeFS commits a sub-write

transaction via the CXL.mem path. 6© After completing all

sub-writes, RomeFS atomically updates this journal tail to

commit the write transaction and updates its metadata struc-

ture in host memory accordingly.

The "H/L/B/T" in Figure 3 means transaction header (H),

log (L) / block (B) sub-write transaction, and transaction

tail (T), respectively. For the dual-path commit communica-

tion, RomeFS pre-creates several dedicated IO threads for

the CXL.io path. Each IO thread takes responsibility the ded-

icated address space range in an interleaved manner. After

entering kernel and then completing the write splitting, a

user thread sends the split block-aligned sub-writes to the

corresponding IO threads based on their addresses, then con-

tinues to execute the tasks of the CXL.mem path. After the

tasks of the CXL.mem path are completed, the user thread

waits for the IO threads to finish by polling a semaphore,

and finally performs the corresponding commits. Multiple

user threads are handled in a similar manner.

In this way, the transactional overheads are borne by the

low-latency CXL.mem data path while the CXL.io data path

effectively handles block-aligned sub-writes without addi-

tional transactional overhead.

When RomeFS commits a journal, a portion of the data is

placed in data logs and is not immediately written back to

improve performance. Although this increases file fragmen-

tation, it is a worthwhile option for CXL-SSDs. Because the

low-latency CXL.mem data path can ensure the efficiency

of reading data logs. Our evaluation also proves this (e.g.,

Figure 8). RomeFS further uses the per-block data log write-

back mechanism (LWB) (§ 3.5.2) to complete the write-back

of merged data logs, thus reducing the double write overhead

of journaling. Moreover, most file data is directly written to

data blocks, thus eliminating a large amount of file-write data

writeback. In addition, this transactional write mechanism

is also used to ensure atomicity of LWB.

In comparison, traditional journaling file systems [31, 34]

complete the write-back of all file-write data on commit, thus

incurring expensive double writes and high transactional

overhead. Overall, the synergistic dual-path transactional

write mechanism enables RomeFS to fast persist user write

requests of arbitrary patterns atomically (e.g., various request

sizes, request offsets and load intensities) and enhances the

load adaptability of RomeFS.

Synergistic dual-path read. RomeFS passively selects

data paths based on the location of the requested data to

handle read requests in parallel. Specifically, RomeFS uses

the hybrid parallel file indexing scheme (§ 3.4) to efficiently

look up the data logs and data blocks relevant to read requests

and process reads.

3.4 Hybrid Parallel File Indexing

Write splitting and data logging of RomeFS distribute file

data across data logs and data blocks at different granularities.

Therefore, RomeFS needs a uniform and efficient indexing

mechanism to fast locate requested data in the data logs,

the data blocks, or both in parallel. To this end, RomeFS

designs a hybrid parallel file indexing scheme for per-file

mapping, combining a B+tree [3] indexing the data logs with

random and sparse addresses and a radix tree [24] indexing

the address-contiguous data blocks, respectively.

File mapping. The data log always keeps the latest data

for a file if it exists. When locating file data, a naive scheme

of reading data after locating data for the two data areas
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Algorithm 1 Early termination mechanism for parallel file

indexing

Require: File logical offset and size of a read request: offset, size.

1: procedure early_termination_mechanism(offset, size)

2: DS ← 0

3: Call get_B+tree(offset, size) and get_radixtree(offset, size) in parallel

4: while true do

5: if the radix tree completes the data locating && DS == 0 then

6: Wait for get_B+tree(offset, size)

7: if the B+tree locates all the required data then

8: DS← 1

9: Stop get_radixtree(offset, size)

10: Read the data logs according to get_B+tree(offset, size)

11: else if the B+tree completes the locating of data then

12: DS ← 2

13: #Execute the following statements in parallel:

14: Read the data logs according to get_B+tree(offset, size)

15: Read the residual requested data according to the locating of

both trees via the CXL.io data path

16: if DS == 1 or DS == 2 then

17: break

may introduce a long and unnecessary waiting delay. For

example, the requested data is entirely located in the data

log area but requires waiting for old-data indexing in the

data block area, or the requested data is entirely located in

the data block area but requires waiting for null-indexing in

the data log area. Therefore, we design an early termination

mechanism to adaptively terminate unnecessary waiting in a

data log first manner. As shown in Algorithm 1, the dedicated

semaphore (DS) is first reset to 0 when receiving a request

(line 2), indicating that the locating of the B+tree has not

yet completed, making the radix tree wait if it completes

first (line 5-6). If the B+tree locates all the required data

for a request, the DS is set to 1 to indicate that there is no

need to read data blocks located by the radix tree (line 7-10).

Otherwise, the DS is set to 2 to indicate that the requested

data is distributed across both data logs and data blocks (line

12-15). The located data logs can be read directly without

waiting for the radix tree after the B+tree completes the

locating (line 11 and 14), while the determination of which

data blocks to read is based on the B+tree’s locating results,

thereby avoiding reading outdated data (line 15).

When updating index structures, RomeFS uses the meta-

data journaling (§ 3.2) to record updates to a journal, and

modifies the B+tree and radix tree in host memory according

to their respective methods. The B+tree and radix tree are

kept in host memory to speedup file operations. At check-

pointing, RomeFS applies these updates to the metadata area

based on the recorded journal. Besides, we employ legacy

range locks [56, 61] on both trees to ensure data consistency

of dual-path accesses and concurrent accesses.

Optimized B+tree. Reading the latest data of a data block

may require locating multiple data logs. To � limit the num-

ber of data logs corresponding to a data block and � reduce

the indexing overheads for per-block data log write-back

(LWB) (§ 3.5.2), which requires locating all data logs corre-

sponding to a data block, we modified the B+tree leaf nodes

to ensure that each leaf node is dedicated to indexing data

logs belonging to a single data block. In this way, setting

the number of index entries for the leaf node can achieve

�, and each LWB only needs to look up a single leaf node

thus achieving �. The modified leaf node contains 16 index

entries by default. Each index entry contains an 8B logical

address of a data log. Moreover, after each LWB, RomeFS

does not reclaim the empty leaf node but instead reclaims all

empty leaf nodes in a batch at checkpointing thus avoiding

frequent B+tree reconstruction. Such delayed reclaiming is a

trade-off between performance and memory-usage, which is

typically worthwhile because writing data logs (and updating

corresponding leaf nodes) is more frequent than LWB.

In addition, MOW (§ 3.5.1) requires the file logical offset

and size of merged data logs. To effectively obtain the in-

formation required by MOW, RomeFS records them to the

index entry of the B+tree leaf node. In this way, MOW can

obtain the information directly after accessing the B+tree,

which is a necessary process for file writes, thereby avoiding

additional accesses for MOW.

3.5 Data Defragmentation

When the small-size updates are increasingly placed in the

data logs, RomeFS suffers from the file data fragmentation

problem, which introduces increased random reads, and

more complex file mapping and memory zone space clean-

ing. Therefore, RomeFS proposes a merge-on-write (MOW)

approach for data logs to mitigate data fragmentation in

memory zone, which ensures atomic data log write by out-

of-place write. Moreover, to release the memory zone space

timely and eventually eliminate file data fragmentation be-

tween the two zones, RomeFS proposes a per-block data log

write-back mechanism (LWB) to write (random) data logs

back to (large and continuous) data blocks.

3.5.1 Merge-on-write (MOW). The key idea of MOW is to

merge new data log writes with existing address-overlapping

data logs on write. Benefiting from the optimized B+tree

(§ 3.4), MOW can obtain the data log properties for merging

without additional accesses.

Algorithm 2 describes the MOW process. RomeFS first

looks up the B+tree to locate all data logs involved in the

data log write block by block (line 2). RomeFS attempts to

sequentially merge those address-overlapping data logs into

a new data log write, but not immediately modify the data

(line 3-7). Next, RomeFS scans the corresponding leaf node of

B+tree to determine if there are enough free index entries for

the merged data log write. If yes, the merge is successful, and

RomeFS persists this merged write into empty data log pages

(out-of-place write for atomicity) and releases the outdated
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Algorithm 2 Merge-on-write

Require: offset and size of the new data log write: newoffset, newsize

1: procedure𝑀𝑂𝑊 (newoffset, newsize)

2: indexentries[][] ← Search B+tree to get locations of relevant logs

3: for each leaf_indexentries[] in indexentries[][] do

4: for each (logoffset,logsize) in leaf_indexentries[] do

5: if the data log overlaps with the new data log write then

6: Merge the data log to the new data log write

7: Update newoffset and newsize, and invalid the data log

8: if the available index entries are sufficient then

9: Update the leaf node and perform the merged data log write

10: else Write all data logs back to corresponding data block

11: Update newoffset and newsize for the next logical block merge

data log pages. Otherwise, the new data log write and those

data logs are forced to be written back to the corresponding

data block (line 8-10). Note that, to simplify the merge, a data

log is only stored in a single page, so a merged data log write

may be placed in multiple pages. RomeFS continues to merge

the data logs of the next data block until all relevant data

logs are processed (line 3 and 11). Figure 4 (left) illustrates a

data block example of MOW. This data log write’s 6KB-8KB

logical address area is merged with the first data log, its 8KB-

12KB area is logged as a new data log, and its 12KB-14KB

area is merged with the second data log. In addition, if a data

log write is an append to a data log, this write will be directly

appended to the end of this log (if the page containing this

log has sufficient space), thereby avoiding the need to rewrite

the entire merged data again.

3.5.2 Per-block data log write-back (LWB). For a file that

is being written to, a naive coarse-grained (e.g., per-file)

write-back mechanism must either rely on complex lock

mechanisms for consistency or strictly prohibit writeback for

this file. Moreover, a coarse-grainedwrite-back operation can

take a considerable amount of time and cause the dual-path

write to be blocked during this period when memory zone

space is insufficient. Therefore, RomeFS uses a fine-grained

per-block writeback mechanism to overcome these issues,

thereby 1) limiting the update region of each writeback to

a single data block and leveraging the simple range locks

of hybrid parallel file indexing (§ 3.4) to ensure consistency,

and 2) quickly clearing out available memory zone space

to maintain the dual-path write and allowing RomeFS to

perform well even under heavy loads.

LWB is triggered whenMOW fails or when availablemem-

ory zone space is insufficient. Figure 4 (right) illustrates an

example of LWB triggered by a failed MOW. The data block

contains 16 data logs that are totally dispersed. The data log

write cannot be merged with existing data logs and all 16

index entries of the B+tree leaf node are occupied, thus LWB

is triggered. Specifically, RomeFS first reads the data block

via the CXL.io data path and its corresponding data logs via
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Figure 4: A data block example of merge-on-write

(MOW) of data logs and per-block data log write-back

(LWB) triggered by a failed MOW.

the CXL.mem data path, then merges and writes them into

a newly allocated block (for atomic writing) via the CXL.io

data path. The number of index entries of the B+tree leaf

node is configurable, and setting more index entries means

LWB is triggered less frequently, but reading the latest data

of a data block may require reading more data logs. LWB is

efficient because it reads (small) data logs via the CXL.mem

data path, and reads and writes the entire (large) data block

via the CXL.io data path.

Moreover, when the available memory zone space is less

than a predefined threshold, LWB is triggered by RomeFS

directly. By default, RomeFS prioritizes writing the data logs

of a data block that occupies the most memory zone space

back to the data block when the availablememory zone space

is less than 10%. The priority policy for write-back and the

predefined threshold are configurable.

3.6 Crash consistency

RomeFS provides both atomic metadata and data operations.

RomeFS ensures crash consistency by metadata journaling

(§ 3.2) and synergistic dual-path transactional write (§ 3.3).

After a crash (e.g., power outage), RomeFS recovers the state

in two steps: (1) it rolls back to the latest consistent check-

point by scanning the metadata in the memory zone, and (2)

it performs roll-forward recovery by redoing the operations

recorded on the transaction journals serially.

Consistency mode. Benefiting from fast persistence and

byte access granularity of PM, PM-based file systems persist

user writes immediately by default. In comparison, block-

based file systems tend to write back page cache without

persistence, and suffer from slow data persistence, especially

metadata updates.

Owing to the crash-persistence guarantees of CXL-SSDs

(§ 2.2), CXL-SSD aware file systems can fast persist meta-

data updates. However, due to the limited capacity of the

build-in DRAM cache within CXL-SSDs, it is difficult for

CXL-SSD aware file systems to fast persist all data updates

via the CXL.mem path like PM-based file systems. Nonethe-

less, RomeFS can fast persist data updates via the CXL.io

path. This is because RomeFS always allocates (large) block-

aligned writes to the CXL.io path, which eliminates the IO
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Table 2: Experimental setup.
Setup Devices for emulation File systems for evaluation

CXL-SSD A
10GB DRAM with additional latency

and 3.84TB SAMSUNG PM9A3 SSD

EXT4, CJFS, BTRFS,

F2FS, RomeFS

CXL-SSD B
20GB Intel Optane DC PMM and

3.84TB SAMSUNG PM9A3 SSD

NOVA, WineFS,

RomeFS-PM

amplification overhead during data persistence, especially for

slow read-modify-write operations. Furthermore, consider-

ing the increasingly high bandwidth and internal parallelism

of SSDs, RomeFS can even be more efficient than PM-based

file systems when persisting large writes. Therefore, RomeFS

persists all metadata updates (as journals) immediately by de-

fault, while making persisting all data updates immediately

as an option for buffered IO [36].

4 EVALUATION

In this section, we evaluate the performance of RomeFS with

two CXL-SSD emulation hardware configurations (DRAM +

SSD and PM + SSD) under various load patterns. We analyze

the advantages and innovations of RomeFS relative to main-

stream block-based and PM-based file systems. Specifically,

in § 4.1, we describe our experimental setup and emulation

configurations, and discuss the rationality and feasibility of

our emulation methodology for CXL-SSDs. In § 4.2, we eval-

uate the write and read performance of RomeFS under loads

with various IO-size ranges and numbers of user threads.

Moreover, we also analyze a write performance breakdown

of RomeFS. In § 4.3, we evaluate the performance of RomeFS

under loads with mixed reads and writes, and mixed meta-

data and data accesses. In § 4.4, we evaluate the performance

of RomeFS under real-application loads with mixed small

and large, reads and writes.

4.1 Experimental Setup

Environment. Our evaluation machine has two Intel Xeon

Gold 6348 processors (2.60 GHz, 28 CPUs) and 256GB of

DDR4 DRAM to run Ubuntu 20.04 with Linux kernel 5.18.18

for CXL-SSD A and 5.1.0 for CXL-SSD B, detailed in Table 2

and Figure 5. For all experiments, we pin threads to the cores,

disable CPU frequency scaling, and clear the kernel cache

before each run. All experimental results are the average of

at least three runs.

Emulation. Currently, we have no access to any com-

modity CXL-SSD products because none is available on the

market to the best of our knowledge. We use separated

DRAM/PM and SSD to mimic the performance character-

istics of the dual-mode CXL-SSD, as shown in Figure 5.

The CXL-SSD A uses a DDR4 DRAM with additional ac-

cess latency to mimic the performance characteristics of

accessing the build-in DRAM cache of the memory area via

the CXL.mem path, reflecting the best performance of the

CXL.mem path without synchronously writing the flash. We

DRAM cache

NAND flash
CXL-SSD architecture CXL-SSD A

DRAM

SSD

NAND flash

CXL-SSD architecture CXL-SSD B

SSD

Intel Optane PM

Memory area SSD area Overall
performance

Memory area

SSD area

DRAM cache

Memory area SSD area
Additional

Latency Memory area

SSD area

Emulate
CXL memory

Figure 5: Emulation methodology for the CXL-SSDs.

Table 3: The average random access latency of the em-

ulated build-in DRAM of CXL-SSD A.
Latency (𝜇s) 4KB 16KB 64KB 256KB 1MB

Write 2.56 6.83 23.41 81.93 308.40

Read 2.93 5.85 17.25 59.58 227.95

follow the access latency of a real DDR4 CXL memory (re-

ported in [48]) to configure the access latency of the DDR4

DRAM, as shown in Table 3. Note that, although different

real CXL memories may not exhibit the same performance

due to their own hardware configurations such as FPGA or

ASIC [28, 48], we focus on the representative latency and

bandwidth of the CXL memory. The CXL-SSD B uses an Intel

Optane PM [54] to mimic the performance characteristics of

accessing the memory area of the CXL-SSD via the CXL.mem

path, reflecting the actual performance of the CXL.mem path

with internal (black-box) persistence delay. In both config-

urations, the backend SSD is the 3.84TB Samsung PM9A3

SSD (PCIe4.0) [13] with the 6.8GB/s read and 4GB/s write

bandwidths.

Note that, although both the DRAM of CXL-SSD A and the

PM of the CXL-SSD B are not actually connected to a physical

PCIe bus, they are set to similar performance characteristics

of existing CXL memory and memory area of CXL-SSDs,

respectively. An intuitive concern is that there may be poten-

tial interference in the external PCIe and internal flash bus

between the CXL.io and CXL.mem paths. This can be largely

neglected for the following reasons. First, the CXL-SSD em-

ploys PCIe5.0 with a bandwidth twice that of PCIe4.0. We set

both bandwidths of the two paths not to exceed PCIe4.0 X4

(i.e., 8GB/s). Second, the CXL-SSD can asynchronously flush

the cached data into the flash in background. Moreover, the

flash has high internal parallelism. These allow the CXL-SSD

to flexibly schedule the flash IOs from both the CXL.mem and

CXL.io paths to avoid IO contention. Therefore, we argue

that our emulation can reasonably reflect the performance

characteristics of future real dual-mode CXL-SSDs.

File systems on CXL-SSDs. To demonstrate the per-

formance of file systems running on the CXL-SSDs under

different loads, we set the available sizes of the DRAM of

CXL-SSD A to 10GB and the PM of CXL-SSD B to 20GB

by default, and adjust the load sizes to indirectly represent

different memory-area usage of CXL-SSDs.
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Figure 6: Normalized average write latency of file systems under different request size and the amount of data

written. We set the performance of RomeFS(-PM) as the normalized reference, the same applies below.

We compare RomeFS against mainstream block-based file

systems: EXT4 [31], CJFS [34], BTRFS [38] and F2FS [22],

and PM-based file systems: NOVA [53] and WineFS [17].

EXT4, BTRFS and F2FS are mature and widely used real-

world block-based file systems. CJFS is the state-of-the-art

block-based journaling file system. EXT4-DJ/CJFS-DJ refers

to EXT4/CJFS enabling data journal. Note that, EXT4-DJ,

CJFS-DJ, BTRFS, F2FS and RomeFS ensure atomic opera-

tions for both metadata and data, but EXT4 and CJFS ensure

only atomic metadata operations, which are used to present

a more comprehensive comparison. NOVA is a highly ac-

claimed in-kernel PM-based file system. WineFS is the state-

of-the-art in-kernel PM-based file system. Both NOVA and

WineFS are configured to ensure both atomic metadata and

data operations consistent with RomeFS.

For RomeFS, both CXL-SSDs are configured as dual-mode.

RomeFS uses the DRAM/PM as thememory area and uses the

SSD as the SSD area. Because the block-based file systems

cannot run on the memory device, we compare RomeFS

against them on CXL-SSD A, which is transparently used

as an SSD using the build-in DRAM as cache via the CXL.io

path only. We compare RomeFS against the PM-based file

systems on CXL-SSD B, labeling RomeFS on CXL-SSD B

by RomeFS-PM for distinction. The PM-based file systems

transparently use CXL-SSD B as the memory device via the

CXL.mem path only. Note that, the block-based file systems

cannot actively keep all metadata in the build-in DRAM

of CXL-SSDs because they can use the CXL.io interfaces

only. In contrast, the PM-based file systems and RomeFS can

explicitly keep the metadata in the memory area.

The questions of how block-based file systems utilize the

DRAM of CXL-SSD A and how PM-based file systems run

after the PM of CXL-SSD B (i.e., memory area) is exhausted

are unanswered. To this end, we employ a classic caching

strategy for these baseline file systems to perform the passive

data switch between the DRAM/PM and the backend SSD.

The incoming data are first written to the DRAM/PM and

then are conditionally flushed into the backend SSD. A read

missing in the DRAM/PM is replaced from the backend SSD

to the DRAM/PM using Least Recently Used (LRU) strategy.

When the cache is exhausted, incoming writes are written

to the backend SSD directly. Although the cache strategy

is relatively simple, it has a similar overall effectiveness to

sophisticated cache strategies undermoderate or heavy loads.

Note that, due to limited 10GB/20GB-sized memory area, the

additional overhead of the caching strategy is insignificant

compared to IOs.

4.2 Microbenchmarks

We first evaluate the write and read performances of RomeFS.

For a fair comparison, under the write-only evaluations (i.e.,

Figure 6 and Figure 9), we use a single flush thread for each of

the baseline file systems to actively flush cached data in the

background after the DRAM/PM is exhausted, so as to make

fuller use of the DRAM/PM. Note that, after verification, the

single-threaded flushing not only does not harm the write

performance of the baseline file systems but also makes them

perform better.

4.2.1 Single-Threaded Performance. For both write and read

evaluations, we set the amount of data of the evaluated loads

to 50GB and 100GB for CXL-SSD A and B respectively (i.e.,

memory area capacity : load size = 1 : 5) to represent a con-

tinuous mid-term load, and 100GB and 200GB for CXL-SSD

A and B respectively (i.e., memory area capacity : load size

= 1 : 10) to represent a continuous long-term load. The file

size is consistent with the load size.

Write performance. Initially, the file is placed in the back-

end SSD (area). We perform six types of block-unaligned ran-

dom writes with different request sizes, representing various

write-load patterns. Specifically, the corresponding request

size fluctuates by ±10% but the mean is fixed. The (0, 1MB)

case means randomly generating values within this range

as the request size and the mean is 512KB. We call fsync() to

persist writes after each request.

The results are shown in Figure 6. RomeFS is faster (with

shorter latency) than block-based file systems: EXT4-DJ,
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Figure 7: RomeFS write breakdown. The bars on the

left and right are the time breakdown and file-write

data breakdown, respectively.

CJFS-DJ, BTRFS and F2FS by up to 4.14×, 6.59×, 14.24×, and

4.31×, respectively. RomeFS-PM is faster than PM-based file

systems: NOVA andWineFS by up to 3.89× and 4.89×, respec-

tively. The advantages of RomeFS stem from four aspects. 1)

RomeFS ensures that writes to the backend SSD are always

block-aligned, preventing slow read-modify-writes and po-

tential increased atomicity overheads. In comparison, the

baseline file systems have to endure slow read-modify-writes

after the DRAM/PM is exhausted. Similarly, an intuitive ap-

proach of directly sending large writes to the backend SSD

[14, 62] also suffers from slow read-modify-writes, regard-

less of whether DRAM/PM is available or not. 2) RomeFS

always keeps metadata in the DRAM/PM, allowing metadata

operations (which often involve small writes and reads) to

be quickly completed at the DRAM/PM speed. In compari-

son, part of the metadata operations of the block-based file

systems are slowly handled on the backend SSD. 3) RomeFS

adaptively writes converted sub-requests in the two data

paths in parallel. In comparison, the baseline file systems can

only process the entire request using a single type of data

path without the opportunity of splitting requests to match

the respective advantages of the two data paths of CXL-SSDs.

4) RomeFS can keep efficient dual-path writes by using the

effective LWB and matched MOW (§ 3.5), without degrading

to writing to the backend SSD directly. For small-write loads,

LWB can efficiently write back merged data logs in aligned

large blocks (e.g., 64KB). For large-write loads, most data

are efficiently stored to the backend SSD directly, LWB only

needs to handle a small amount of data.

RomeFS performs comparably between the 1:5 case and

the 1:10 case, because RomeFS, which benefits from MOW

and LWB (§ 3.5), only requires a small amount of data log

area, in addition to accommodating metadata, to run effec-

tively. The small performance difference (about 5%) between

RomeFS and RomeFS-PM in the (0, 1MB) case illustrates that

under workloads with a large variation in IO size, the perfor-

mance of RomeFS is less dependent on the performance of the

memory area. Such workloads are common on cloud nodes

[29, 51]. The significant advantage of RomeFS over the base-

line file systems in the (0, 1MB) case further demonstrates

RomeFS’s load adaptability. Moreover, RomeFS outperforms

Table 4: Sensitivity study of write splitting threshold

to dual-path write proportion.
Write size (±10%) 4KB 16KB 64KB 256KB 1MB (0,1MB)

Threshold Write proportions of the CXL.mem and CXL.io paths (%)

4KB 97.0 / 3.0 24.8 / 75.2 6.2 / 93.8 1.6 / 98.4 0.4 / 99.6 0.8 / 99.2

16KB 100.0 / 0.0 97.0 / 3.0 24.8 / 75.2 6.2 / 93.8 1.6 / 98.4 3.1 / 96.9

64KB 100.0 / 0.0 100.0 / 0.0 97.0 / 3.0 24.8 / 75.2 6.2 / 93.8 12.4 / 87.6

256KB 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 97.0 / 3.0 24.8 / 75.2 50.1 / 49.9

1MB 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 97.0 / 3.0 100.0 / 0.0

EXT4 and CJFS in almost all write cases, even though the

latter do not ensure the atomicity of data operations. This in-

directly demonstrates the efficiency of synergistic dual-path

transactional write (§ 3.3).

Overall, the baseline file systems degenerate to writing to

the backend SSD directly for most requests under continu-

ous mid-term and long-term loads, thereby suffering from

slow read-modify-write operations on the backend SSD. The

single-path baseline file systems cannot leverage dual-path

synergy to avoid rapid DRAM/PM exhaustion and unaligned

writes for the backend SSD. In comparison, RomeFS uses the

CXL.mem path to handle subblock sub-writes, ensuring that

the CXL.io path always processes large block-aligned sub-

writes, thereby maximizing the CXL.io path performance.

Through such dual-path synergy, RomeFS is able to quickly

process and persist various writes with diverse sizes and

offsets, even under long-term loads.

Write performance breakdown. To better understand

how RomeFS benefits from its synergistic dual-path write,

we perform a breakdown analysis on randomwrites with suf-

ficient build-in DRAM capacity of CXL-SSD A, as shown in

Figure 7. To facilitate a proportional display, we stack the log-

write time and block-write time together, although in reality,

data logs and data blocks are written in parallel. As the size

of write requests increases, the proportion of data handled by

the backend SSD becomes larger, such as in the 1024KB case,

approximately 94% of the data is directly written to the back-

end SSD. Moreover, when the write request size is greater

than or equal to 128KB, RomeFS uses the CXL.io path to pro-

cess more data with less time overhead compared to using

the CXL.mem path. This demonstrates that the synergistic

dual-path write of RomeFS fully utilizes the performance of

the CXL.io path by leveraging the CXL.mem path to handle

subblock sub-writes.

Sensitivity study of write splitting threshold. We fur-

ther measure the write proportions of the CXL.mem and

CXL.io paths for the above random write experiments with

sufficient memory area capacity under different thresholds,

as shown in Table 4. The larger the threshold size, the more

writes are judged as subblock writes and processed by the

CXL.mem path. This implies that in order to maximize over-

all performance, the threshold selection needs to take into

account the capacity of the build-in DRAM cache, the per-

formance of both paths, as well as access patterns of applica-

tions. Especially, the CXL.mem path suffers from significant
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(a) 4KB-aligned random reads with direct IO mode. 50GB and 100GB read for

CXL-SSD A and CXL-SSD B respectively for the evaluation of memory area

capacity : load size = 1 : 5.
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Figure 8: Normalized average read latency of file systems under different request size and the amount of data read.
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Figure 9: Multi-threaded write throughput with the request size range of (0, 1MB) and direct IO mode.

performance degradation after the build-in DRAM cache is

exhausted. Therefore, RomeFS with a default 64KB thresh-

old tends to allocate most write-data to the CXL.io path for

medium to large writes, even if it may result in the CXL.mem

path waiting after completing its tasks. Nevertheless, the

threshold selection is a complex but worthwhile topic to

further explore in future works.

Read performance. Initially, 10GB and 20GB file data

are placed in the DRAM and PM respectively, while the

remaining file data are stored in the backend SSD. RomeFS

performs dual-path writes with the IO size of 512KB ± 10%

to generate the file with conditional write-backs to maintain

only 10GB/20GB of the DRAM/PM usage. We perform 4KB-

aligned (i.e., corresponding request size ±10% and rounded

to 4KB-aligned) random reads with direct IO mode to bypass

page cache for evaluation. We are unable to perform reads

with direct IO mode on EXT4-DJ and CJFS-DJ.

The results are shown in Figure 8. RomeFS is faster (shorter

latency) than block-based file systems EXT4, CJFS, BTRFS

and F2FS by up to 6.52×, 6.89×, 7.80×, and 6.44×, respectively.

RomeFS-PM is faster than PM-based file systems NOVA

and WineFS by up to 7.39× and 7.49×, respectively. The

advantages of RomeFS stem from three aspects. 1) Dual-path

RomeFS does not perform LRU replacements of CXL-SSDs

but rather reads data from where it is, without the overhead

of replacement (i.e., reading missed request data from the

backend SSD and then writing it to the DRAM/PM). The

baseline file systems only use a single type of data path and

cannot avoid LRU replacements. An intuitive concern is that

for the read loads with high locality, RomeFS might degener-

ate to reading only from the backend SSD. Simply enabling

page cache for RomeFS can efficiently handle such loads. 2)

The file data reads in the two data paths of RomeFS are par-

allel. RomeFS’s hybrid parallel file indexing scheme (§ 3.4)

further accelerates dual-path reads. 3) MOW (§ 3.5.1) effec-

tively mitigates file fragmentation caused by data logs, thus

improving read efficiency. Besides, the overhead of a small

amount of file fragmentation is hidden by the low-latency

CXL.mem path and dual-path reads in parallel.

4.2.2 Multi-Threaded Performance. For both write and read

evaluations, we set both the file size and the total amount of

load data to 100GB and 200GB for CXL-SSD A and CXL-SSD

B respectively. To evaluate RomeFS’s concurrency capability,

multiple IO streams are directed to a single file, and we

measure the aggregate throughput. We perform 4KB-aligned

random writes/reads with the request size range of (0, 1MB)

and enable direct IO mode to exclude the interference of page

cache under multiple IO streams [32, 35].

Concurrent writes. Initially, the file is placed in the back-

end SSD (area). As shown in Figure 9, RomeFS outperforms

block-based EXT4-DJ, CJFS-DJ, BTRFS and F2FS by up to

6.06×, 9.44×, 1.31×, and 1.47×, and RomeFS-PM outperforms

PM-based NOVA and WineFS by up to 1.30× and 1.33× in

throughput respectively.

BTRFS performs second only to RomeFS because it em-

ploys the copy-on-write mechanism that is friendly to 4KB-

aligned writes, without additional IO amplification. EXT4-

DJ and CJFS-DJ employ the legacy journaling mechanism,
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Figure 10: Multi-threaded read throughput with the request size range of (0, 1MB) and direct IO mode.

thus inducing double writes and other costly overheads for

crash consistency. Interestingly, even EXT4 and CJFS, which

without double writes, are still inferior to RomeFS. This im-

plies that RomeFS’s synergistic dual-path transactional write

remains efficient under concurrent writes, largely because

RomeFS’s novel commit strategy, which commits a journal

without immediately writing back data logs (§ 3.3).

BTRFS, F2FS, NOVA and WineFS saturate the backend

SSD with a small number of threads, so as threads increase,

their throughputs do not continue to increase. In comparison,

RomeFS utilizes the two data paths of CXL-SSD synergis-

tically to handle user requests in parallel, thus achieving

a higher saturated throughput. Moreover, RomeFS always

writes to the backend SSD in the large and block-aligned

pattern, thus it more effectively exploits the bandwidth of

the backend SSD. Overall, this amply demonstrates the effi-

ciency and effectiveness of RomeFS’s synergistic dual-path

architecture under concurrent writes.

Concurrent reads. Initially, 10GB / 20GB file data are

placed in the DRAM/PM, while the remaining file data are

stored in the backend SSD. RomeFS’s multi-threaded read

throughput is comparable to that of the block-based file

systems, as shown in Figure 10(a).

The block-based file systems can quickly complete LRU

replacements due to large average IO size (i.e., 512KB) and

low-latency DRAM, and their saturated throughput mainly

depends on the backend SSD. BTRFS performs the worst,

which may be due to its design for write optimization, re-

sulting in small random reads becoming the throughput bot-

tleneck. RomeFS stores less than 10% file data in the DRAM,

and there is a slight overhead of dual-path read thread inter-

action, thus RomeFS’s saturation throughput is only slightly

higher than the block-based file systems. RomeFS-PM out-

performs NOVA and WineFS by up to 4.23× and 3.79× in

multi-threaded read throughput respectively, as shown in

Figure 10(b). Because under heavy loads, the LRU replace-

ments between the SSD area and the memory area become

the throughput bottleneck for these single-path PM-based

file systems, especially writing the memory area (i.e., the

PM). In comparison, dual-path RomeFS can avoid the passive

data switch. This indicates that a file system solely using the

CXL.mem path is highly reliant on the performance of the

memory area of CXL-SSDs. RomeFS with synergistic dual-

path architecture avoids this strict dependency. Moreover,

RomeFS can further utilize page cache of the CXL.io path

directly to speedup reads. Therefore, RomeFS can also work

well on CXL-SSDs with different performance levels.

4.3 Macrobenchmarks

We use Filebench [50] with three representative workloads:

Fileserver, Webproxy, and Varmail to evaluate the overall

performance of RomeFS, i.e., mixed reads and writes, and

mixed metadata and data accesses. Table 5 summarizes the

characteristics of these workloads. We call fsync() to persist

writes after each file-write and enable page cache for the

backend SSD. To evaluate the overall performance of these

file systems under different memory-area usage of CXL-SSDs,

rather than evaluation of processing all requests on the mem-

ory area only, we set the available sizes of the DRAM/PM to

512MB for the three workloads with file-data space occupa-

tion of 2.44GB, 19.53GB and 0.61GB, respectively.

For the three workloads, RomeFS requires only 200MB

DRAM/PM or less space to store metadata, affording suffi-

cient remaining DRAM/PM space for RomeFS to work well.

The baseline file systems write to backend SSD directly after

the DRAM/PM is full, and perform LRU replacements when

reads miss on the DRAM/PM.

The results are shown in Figure 11. For write-heavy File-

server, the read hit rates of the DRAM/PM of the baseline

file systems are approximately 20%. The performance of the

block-based file systems is mainly limited by their slow meta-

data operations on backend SSD. The performance of the

PM-based file systems is mainly limited by LRU replacements.

Therefore, RomeFS(-PM) outperforms the block-based file

systems and the PM-based file systems by 2.05×-4.98× and

2.59×-2.64× in throughput, respectively. Besides, the perfor-

mance difference between RomeFS and RomeFS-PM under

the Fileserver is less than 7%. This implies that RomeFS not

only does not require a large-capacity memory area but also

does not depend on the performance of the memory area

under the typical and common workloads of a file server.
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Table 5: Filebench workload characteristics.
Workload #Files Avg. File size Total File size IO size (r/w) R/W

Fileserver 10K 256KB 2.44GB 1MB/256KB 1:2

Webproxy 10K 2MB 19.53GB 1MB/256KB 5:1

Varmail 10K 64KB 0.61GB 1MB/64KB 1:1
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Figure 11: Throughput of Filebench.

For read-heavy Webproxy, the read hit rates of the DRAM

/PM of the baseline file systems are approximately 3%. The

block-based file systems process fewer metadata, thus per-

forming better than under Fileserver. The PM-based file sys-

tems suffer from more severe LRU replacement overhead,

thus performingworse than under Fileserver. RomeFS, which

does not have passive data switch, can significantly benefit

from page cache. Therefore, RomeFS(-PM) outperforms the

block-based file systems and the PM-based file systems by

3.17×-6.34× and 18.10×-18.98× in throughput, respectively.

For metadata-intensive Varmail, the read hit rates of the

DRAM/PM of the baseline file systems are approximately

83%. Interestingly, despite most metadata operations being

handled in the DRAM, the block-based file systems still per-

form poorly due to their slow metadata operations on back-

end SSD. The PM-based file systems experience far less LRU

replacement overhead, but their passive data switches still

significantly restrict their performance. Therefore, RomeFS(-

PM) outperforms the block-based file systems and the PM-

based file systems by 4.82×-7.94× and 1.91×-1.94× in through-

put, respectively. Overall, this demonstrates that RomeFS

only requests a small memory area to perform well under

mixed reads and writes, and metadata and data operations.

Therefore, RomeFS can be well and widely used on future

CXL-SSD models with different build-in DRAM capacities.

4.4 Real-World Application

GridGraph [63] is a system for processing large-scale graphs

on a single machine. We utilize GridGraph as a real-world

application to further evaluate the performance of RomeFS

in serving emerging applications. Following GridGraph, we

preprocess the Livejournal [47], Twitter [18], and Friendster

[46] datasets and then execute the Pagerank algorithm [8]

with an 8GB memory limit (emulating scenarios of large-

scale graph processing), running 20 iterations on each graph.

We trace all file operations during the processing and eval-

uate the replay times of file systems. Table 6 presents the

workload characteristics for each dataset. Initially, the DRAM

and PM are empty.

Table 6: Graph processing workload characteristics.

Dataset |V| |E|
Dataset

Size
Writes Reads

Average

Write Size

Average

Read Size

LiveJournal 4.85M 69.0M 539MB 1.8GB 12.8GB 123.1KB 16.5MB

Twitter 61.6M 1.5B 11.5GB 35.4GB 25.5GB 1.02MB 4.9MB

Friendster 68.3M 2.6B 28.2GB 86.8GB 93.4GB 129.4KB 11.0MB

Figure 12: Normalized replay time of graph processing.

Similarly, we set the available capacity of both DRAM and

PM to be 10GB to reflect different memory-area usage in

the three workloads. We call fsync() after each file-write to

ensure data persistence. Unlike the microbenchmark with

completely random reads, the reads in these three workloads

have some locality. To stress test the performance of RomeFS

without benefiting locality, we disable its page cache under

these workloads with locality. In contrast, due to LRU re-

placements, the baseline file systems can significantly benefit

from such workloads with locality, even though bypassing

page cache. For this purpose, we use read with direct IO mode

to bypass page cache. Specifically, for unaligned reads, we

read data outside the user buffer up to the alignment bound-

ary. Although this may introduce some read amplification,

it is negligible for these large-read workloads.

The results are shown in Figure 12. Apart from the Live-

Journal load, RomeFS outperforms EXT4, CJFS, BTRFS and

F2FS by up to 3.28×, 3.71×, 3.19×, and 2.08× respectively,

and RomeFS-PM outperforms NOVA and WineFS by up to

2.32× and 2.48× in replay time respectively.

For the LiveJournal load, after the DRAM/PM is filled, the

baseline file systems complete most (more than 95%) requests

in the DRAM/PM. In comparison, RomeFS(-PM) only uses

less than 1GB DRAM/PM. Therefore, the replay times of

PM-based file systems are about half that of RomeFS-PM.

The block-based file systems still handle a small amount of

metadata operations on the backend SSD, so their replay

times are comparable to RomeFS. This indicates that, despite

RomeFS not switching data to the memory area for reads,

its performance remains competitive even under such small

read-heavy loads with locality.

For the Twitter load, RomeFS only uses less than 7GB

DRAM/PM, but still significantly outperforms the baseline

file systems. Although the latter can benefit from reads with

locality, it is difficult for them to efficiently handle writes,

similar to the write evaluation of microbenchmarks.

For the Friendster load, it is heavier than the Twitter load

and has higher read locality. Due to more metadata updates,
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the DRAM exhaustion has a more severe impact on the per-

formance of the block-based file systems. The PM-based file

system performs better under this load than under Twitter

load due to Friendster’s higher read locality, but their replay

times are still significantly longer than RomeFS-PM. This

indicates that even when running the real application with

some read locality, dual-path RomeFS remains superior to

the legacy single-data-path file systems. Enabling page cache

for RomeFS will significantly amplify this advantage.

5 RELATED WORK

CXL memory. Pond [25] utilizes CXL memory to improve

DRAM memory pooling in cloud environments. TPP [30]

proposes a novel OS-level application-transparent page place-

ment mechanism for CXL memory. Caption [48] comprehen-

sively evaluates a true CXL-ready system with three CXL

memory devices and proposes a CXL-memory-aware dy-

namic page allocation policy to more efficiently use CXL

memory as a bandwidth expander. DirectCXL [9] connects

host processors with external DRAM via CXL in real hard-

ware and develops a software runtime to directly access

the resources. Liu et al. [28] study how HPC applications

and large language models can benefit from the CXL mem-

ory, and study the interplay between memory tiering and

page interleaving. Intel Flat Memory Mode [59] combines

hardware-managed tiering with software-managed perfor-

mance isolation to improve performance of the memory tiers

system for CXL. Due to the similarity between the build-in

DRAM cache of CXL-SSDs and CXL memory, RomeFS can

indirectly draw inspiration and benefit from these works.

CXL-SSD. A main body of CXL-SSD research focuses

on the memory expansion mode via the CXL.mem path

[11, 15, 20, 55]. Myoungsoo Jung [15] advocates combining

CXL and SSD to expand host memory. CXL-flash [55] and

ExPAND [20] further study the cache policies and prefetch-

ing algorithms to hide long internal flash-access latencies of

CXL-SSD. RomeFS is orthogonal to these works and benefits

from these works directly to improve the performance of the

CXL.mem path.

Block-based file systems, such as EXT4 [31], XFS [49],

BTRFS [38] and F2FS [22], are dedicated to block devices and

the block-based data path via the legacy IO stack [23]. The

latest works mainly focus on the scalability of file systems.

For example, CJFS [34] introduces concurrent journaling

based on EXT4, MAX [27] proposes multicore-accelerated

optimization based on F2FS, and IPLFS [19] develops a log-

structured file system that is free from garbage collection

based on F2FS. In addition, RomeFS’s journal commit strat-

egy is orthogonal to FastCommit [44]. RomeFS decouples

data and metadata committing on the basis of "logical jour-

naling". FastCommit performs "logical journaling" for simple

and frequent modifications, while relying on JBD2 for more

complex and rare modifications.

PM-based file systems, such as PMFS [6] and NOVA

[53], are designed specifically for byte-addressable persistent

memory and the memory-semantic data path. The latest

WineFS [17] is a hugepage-aware PM-based file system and

designed to eliminate the aged effect, and OdinFS [61] is a

NUMA-aware scalable datapath PM-based file system and is

used for parallelizing the access tomultiple PM across NUMA

nodes. In addition, many PM-based file systems focus on

further bypassing the kernel and accessing PM in userspace,

at a potential compromise for security and consistency, such

as SplitFS [16], ZoFS [5], KucoFS [2], ctFS [26] and MadFS

[58]. The latest ArckFS [60] is designed for enabling high-

performance and secure userspace simultaneously. For a

fair comparison, we compare (in-kernel) RomeFS against

in-kernel NOVA and WineFS, rather than the userspace file

systems mentioned above.

Cross-media hybrid file systems tend to deploymemory-

semantic devices (e.g., PM) and block devices using caching

or tiering architectures. NVMFS [37] uses PM to store hot

data while using SSD to store cold data. Strata [21] and Ziggu-

rat [57] are tiered file systems and consider PM as the upper

performance tier and disks as the lower capacity tier. The lat-

est SPFS [52] further exploits the VFS cache of the underlying

block-based file system for non-synchronous writes. Overall,

they focus on the memory-semantic data path and use PM

and SSD by various caching strategies without considering

per-request dual-path synergy, like the memory expansion

mode of CXL-SSDs does.

6 CONCLUSION AND FUTUREWORK

This paper presents RomeFS, the first CXL-SSD aware file

system, that utilizes the CXL.mem and CXL.io data paths

of CXL-SSD simultaneously by synergistically and prefer-

entially handling file requests in parallel, thus improving

overall performance. Experimental results show that, com-

pared to the file systems which only use a single type of data

path, RomeFS has notably superior performance across a

wide range of load evaluations.

Our future work plans to explore the dynamic write split-

ting threshold based on the memory area capacity, dual-path

performance, and access patterns of applications.
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