
LearnGraph: A Learning-Based Architecture for
Dynamic Graph Processing

Lingling Zhang∗, Yijian Wu, Hong Jiang‡, Ziyu Zhou, Tiancheng Lu
Capital Normal University, ‡University of Texas at Arlington

∗Corresponding author: 7089@cnu.edu.cn

Abstract—Dynamic graph processing systems using conven-
tional array-based architectures face significant throughput limi-
tations due to inefficient memory access and index management.
While learned indexes improve data structure access, they strug-
gle with interconnected graph data. We present LearnGraph, a
novel architecture with an adaptive tree-based memory manager
that dynamically optimizes for graph topology and access pat-
terns. Our design integrates two key components: a hierarchical
learned index optimized for graph topology to predict vertex and
edge locations, and an adaptive tree structure that automatically
reorganizes memory regions based on access patterns. Evaluation
results demonstrate that LearnGraph outperforms state-of-the-
art dynamic graph systems, achieving 3.4× higher throughput
on average and reducing processing time by 1.7× to 11× across
standard graph workloads.

I. INTRODUCTION

Graphs are powerful tools for expressing object relation-
ships through vertices and edges [1], [2]. With the expo-
nential growth of dynamic graph data, traditional architec-
tural approaches to graph storage and access are becoming
increasingly inadequate [3], [4]. Efficient graph processing
architectures are crucial for various applications [5], [6],
from recommendation systems to natural language processing.
Current graph processing architectures rely on conventional
index structures using sorted arrays - for instance, Teseo [7]
employs hash table-based adjacency lists, while Sortledton [8]
uses compressed sparse row-like structures. However, these
traditional architectures face fundamental limitations: first,
maintaining sorted arrays becomes computationally prohibitive
when processing millions of edge mutations per second [9];
second, accessing vertices or edges in large, dense arrays
inherently incurs significant latency [10], [11]. These archi-
tectural constraints create performance bottlenecks in dynamic
graph processing, suggesting the need for a fundamentally new
approach to system design.

Learning-based architectures have emerged as a promis-
ing direction for overcoming traditional graph processing
limitations, offering both space efficiency and rapid access
performance [12], [13]. These architectures integrate learned
models to predict data positions, replacing conventional index
structures with intelligent position-mapping functions [14],
[15]. By learning to map keys directly to memory locations
within densely packed arrays, these architectures fundamen-
tally reimagine data structure design. Compared to traditional
B-tree architectures, learning-enhanced designs have demon-

strated significant performance advantages, achieving at least
1.5× higher throughput on large datasets [16].

However, existing learning-based architectures prove inade-
quate for dynamic graphs due to two fundamental architec-
tural limitations. First, these architectures are designed for
independent data placement [17], [18], lacking mechanisms
to optimize position prediction for interconnected data refer-
ences. This architectural constraint fails to support efficient
operations on connected data [19], which is crucial for graph
applications where algorithms fundamentally depend on vertex
relationships [2]. Second, current architectures employ static
learning models [20], [21], making them unsuitable for dy-
namic graphs where vertex and edge distributions continuously
evolve. These architectural limitations highlight the need for
a new learning-enhanced system design specifically optimized
for dynamic graph processing.

In this paper, we present LearnGraph, a novel graph pro-
cessing architecture that integrates learned models into its
fundamental data organization and access patterns. Our archi-
tecture departs from traditional sorted array structures by using
learned models to predict and optimize data placement, access
patterns, and memory management decisions. The system
architecture is built around a learning-enhanced adaptive tree
structure that continuously optimizes the trade-off between
memory efficiency and access performance. Specifically, this
paper makes the following contributions:

• Learning-based hierarchical architecture: LearnGraph
employs a two-level learned model architecture - vertex po-
sition prediction and edge location optimization. The design
combines lightweight neural models for vertex access with
learned sparse arrays and bitmap-based indexing for edge po-
sition prediction, creating a learning-driven memory hierarchy.

• Adaptive learning-guided memory management: The
architecture features a self-optimizing tree structure where
learning models guide both data organization and access
patterns. This learned tree maintains logical adjacency list
views while dynamically adapting its structure through a cost-
sensitive model that learns optimal node split/merge decisions.
The learning-based adaptation ensures efficient memory uti-
lization without compromising access performance or algo-
rithm compatibility.

• Comprehensive evaluation: We systematically evaluate
LearnGraph’s architectural design using real-world and syn-
thetic graph datasets, measuring operation throughput and end-
to-end analytical processing performance. Our experimental

results demonstrate that LearnGraph’s learning-based archi-
tecture achieves 3.4× higher throughput and reduces execution
time by 3.5× on average compared to state-of-the-art systems
Teseo [7] and Sortledton [8].

II. BACKGROUND AND MOTIVATION

A. Graph Structure

A graph G is represented by G(V,E), where V is the set of
vertices and E is the set of edges. Real-world graphs exhibit
sparse connectivity patterns where |E| << |V |2 [22], [23], a
property that influences our learning model design. Traditional
adjacency lists organize these relationships by grouping edges
by vertex, forming neighborhood structures. As illustrated in
Figure 1, (a) shows an example graph while (b) demonstrates
its adjacency list representation, where each vertex maintains
references to its edge array sized by vertex degree. While
graph systems may use different physical storage strategies,
they preserve this logical adjacency view [7] to support
algorithm execution. Understanding these structural properties
is crucial for designing learning models that can efficiently
predict and optimize both vertex and edge access patterns.

1

2

8

5

3

7

4 6

11
22
333
444
555
666
777
8

2 7 82
1 5 811
22
222
2 722
777
1 5 811
1

5
2 7

(b) Adjacency Lists (a) Example Graph

11

Vertex

array

7 88

Edge

array

77
3

7777
6

88
4

Fig. 1. Example graph and its adjacency lists.

B. Related Work

Research on dynamic graph processing has explored various
fundamental data structures: CSR combined with sparse arrays
[24], trees [25], [26], and hash tables [27]. However, these
basic approaches achieve limited throughput, particularly when
handling frequent updates. To address this limitation, hybrid
solutions emerged - systems like Terrace [28] and GraphOne
[2] adopted multiple data structures to balance graph update
and analytics performance. More recently, LSGraph [6] fo-
cused on data locality optimization in real-world streaming
scenarios but at the cost of increased memory overhead and
system complexity. Graph processing algorithms (e.g., PageR-
ank and BFS) in modern streaming applications require both
efficient sequential and random access patterns to vertices and
edges [29]. To meet these requirements, various optimization
strategies have been proposed: hybrid edge-vertex structures
[2], sparse arrays with tree-based indexing [7], [26], and CSR-
like organizations [8]. While these approaches achieve reason-
able lookup performance, they face scalability challenges with
large, dynamic graphs due to their reliance on maintaining
dense array structures. These limitations motivate exploring
learning-based approaches for dynamic graph processing.

C. Motivation

Learning-based indexing represents an architectural innova-
tion that achieves efficient data access through position predic-
tion models. However, current architectures are fundamentally
designed for independent data placement, lacking mechanisms
to handle interconnected data structures. This architectural
limitation prevents effective verification and navigation of re-
lationships between data elements. Graph processing presents
unique challenges for these architectures due to its inherently
connected nature, where edges create complex relationships
between vertices that must be efficiently accessed and main-
tained. While adapting existing architectures to treat edges as
independent keys might seem viable, such an approach fails
to capture the fundamental requirements of graph processing.

Youtube
Wiki-Talk Orkut

Graph500-24

Graph500-260

1M

2M

3M

4M

T
hr

ou
gh

pu
t [

ed
ge

s/
se

c] Teseo ALEX

Fig. 2. Lookup
throughput

This architectural approach fails to
efficiently support neighborhood access
patterns, as treating edges independently
fragments the critical vertex-neighbor
relationships. Such a design cannot
maintain coherent adjacency list views
that graph algorithms fundamentally re-
quire. To quantify these architectural
limitations, we evaluated a representa-
tive learning-based system, ALEX [30],
against Teseo [7], a specialized graph processing architecture.
Using five in-memory graphs (detailed in Section IV), our
experiments in Figure 2 demonstrate that ALEX’s architecture
not only fails to provide benefits but actually degrades lookup
throughput by up to 4× on large graphs compared to Teseo’s
graph-aware design. These results highlight the need for a
learning-based architecture specifically designed to optimize
neighborhood access patterns.

Beyond their limitations with connected data, current
learning-based architectures employ model designs unsuitable
for dynamic graph processing. These architectures typically
follow two approaches: (1) CDF-based designs that learn
static data distributions [17], and (2) RMI-based hierarchical
architectures where models form a fixed prediction hierarchy
[30], [31]. Both architectural approaches have fundamen-
tal limitations: CDF-based designs assume fixed-length data
structures, while RMI architectures restrict learning to single
property mappings. Neither design can effectively adapt to
the dynamic nature of graph data, where vertex and edge
distributions continuously evolve. This architectural mismatch
motivates the need for a new learning-enhanced design specifi-
cally optimized for dynamic graphs—one that maintains high-
throughput operations on logical adjacency lists while adapting
to evolving graph properties.

III. LEARNGRAPH FRAMEWORK

A. Overview

LearnGraph implements a learning-driven two-layer archi-
tecture that optimizes graph processing through intelligent
position prediction and adaptive memory management. As
illustrated in Figure 3, at the top, the Model Layer integrates

two specialized learned models: a Vertex Model that learns
and predicts storage positions by adapting to vertex insertion
patterns, and an Edge Model that learns position prediction
based on dynamic neighborhood relationships. The Data Layer
beneath implements a learning-guided hierarchical tree struc-
ture with three specialized node types: Internal Nodes that
maintain model parameters and learned routing information,
Vertex Nodes using learned position-aware fixed-size arrays,
and Edge Nodes employing fixed-size arrays and learned
sparse arrays with bitmap tracking for optimized edge oper-
ations. This hierarchical design enables the learning models
to continuously adapt and optimize both data placement and
access patterns throughout the graph structure.

Vertex Model Edge Model

Internal Node
Model-related data

Vertex Node

Fixed-size array

Edge Node
Fixed-size+Sparse +

Bitmap arrays

Tree Structure Organization
Cost-sensitive model for dynamic adjustment

Fig. 3. LearnGraph Architecture.

Figure 4(a) illustrates LearnGraph’s memory architecture
using the example graph from Figure 1(a). The architecture
uses learned models at two levels: a vertex model for position
prediction and edge models for neighbor access optimization.
Figure 4(b) shows the logical tree structure, where the root
node employs the learned vertex model for indexing, while
vertex nodes maintain edge models for efficient neighbor
management. This architecture enables efficient graph ac-
cess through continuous model adaptation. The following
subsections detail how our two-layer design achieves high
performance through learned vertex prediction and neighbor
access optimization. To ensure usability, we provide modular
interfaces that allow existing graph algorithms to leverage
LearnGraph’s optimizations without modification.

Vertex model

Edge model

POS1

1

POS8

8

...

...

2 7 8

POS11

1 2 7

POS81...

...

1 2 ... 8

Edge node

2 7 ...8 1 2 7

1 82 ...
Vertex node

Ed d

Internal node

(a) In-memory structure of the example graph using LearnGraph

Vertex model

Edge model

POS1

1

POS8

8

......

...

2 7 822 77 88

POS11

1 2 711 22 77

POS81...

....

V d

Internal node

(b) Logical view of LearnGraph

1

2

8

1 78... ...

Root node

...

...

...

VM VM

EM . EM

Model layer Data layer

Fig. 4. The in-memory architecture and logic view of the example graph in
Figure 1(a) using LearnGraph.

B. Model Layer

LearnGraph introduces a novel learning model architec-
ture for dynamic graph processing, as traditional learned
indexes like recursive model indexes (RMI) and CDF-based
approaches prove insufficient for dynamic graphs (Section II).
Our architecture builds upon RMI principles due to their inher-
ent adaptability to growing and evolving data, but fundamen-

tally reimagines their implementation for graph workloads.
The architecture employs specialized linear regression models
(F (key) = a(key) + b) for RMI-based insertions, with two
key architectural innovations over existing RMI designs:

Graph-aware parameter optimization: Unlike existing
RMI implementations like ALEX [30] that use arbitrary pa-
rameters leading to non-uniform memory distribution, Learn-
Graph’s architecture carefully determines a and b based on
graph properties. This design ensures uniform data distribu-
tion, reducing memory management overhead and improving
access patterns.

Training-free model adaptation: While traditional RMI
approaches rely heavily on training data selection and distri-
bution, our architecture eliminates training set dependencies
entirely. Instead, the vertex model learns from insertion or-
der patterns, while the edge model adapts based on current
neighborhood structures.

To support efficient graph operations, the architecture main-
tains two coordinated learning models: a vertex position pre-
dictor using insertion patterns and an edge locator leveraging
neighborhood information. This dual-model design enables
accurate position prediction for both vertices and edges while
maintaining adaptivity to graph mutations.

1) Vertex model: For a vertex µ to be inserted, let Num(µ)
represent its insertion order and D denote the capacity of a
vertex or edge node. The vertex model determines the target
vertex node for inserting µ using a function F (µ) as defined
below.

F (µ) = ⌊Num(µ)

D
⌋+ ⌈Num(µ)

D
⌉ ×D (1)

2) Edge model: Edges fundamentally represent vertex
neighborhoods. In undirected graphs, inserting an edge in-
volves adding each vertex as a neighbor of the other, while
in directed graphs, it requires adding just one vertex as a
neighbor. Let CurDeg(µ) denote the current neighbor count
of vertex µ. The edge model determines which edge node will
store µ’s neighbor ν, using a function M [e(µ, ν), ν] defined
in Equation (2).

M [e(µ, ν), ν] = ⌊CurDeg(µ)

D
⌋+ ⌈CurDeg(µ)

D
⌉ ×D (2)

3) The specific insertion position: Vertex insertion follows
a two-step process: first determining the target vertex node,
then identifying the specific array position within that node.
For a vertex µ, if ⌊Num(µ)

D ⌋ = T , then Num(µ) falls within
[TD, (T + 1)D). This means µ will be stored in the T th

vertex node, which has capacity D. After determining the
vertex node, the specific array position is calculated using
Mod(Num(µ)

D), which gives the remainder when Num(µ)
is divided by D. Edge insertion follows a similar process
for determining the target edge node. Once the edge node
is identified, exponential search locates the specific insertion
position as detailed in Section III-D2.

C. Data Layer
LearnGraph organizes in-memory graph data using a tree

structure comprising internal nodes, vertex nodes, and edge

nodes. As shown in Figure 5, each vertex or edge node
contains a model value (′MV ′) used to determine element
positions within that node. The data structure employs vertex
arrays, sparse arrays, and bitmap arrays to store both vertex-
related and edge-related data. To represent vertex neighbor-
hoods, vertices in vertex nodes maintain neighbor reference
arrays that point to their corresponding edge nodes.

Root

Vertex

node

Edge

node

Internal

node
VM EM VM EM

MV

MV

MV MV

MV MV MV

MV

Sparse array

Bitmap array

Neighbor reference

VM

EM

Vertex model

Edge model

Sparse array

Bitmap array

Neighbor referenceN

VM

EM

Vertex model

Edge model

Vertex array

MV

Fig. 5. The structure of the data layer in LearnGraph.

1) Internal node: An internal node maintains references
to vertex nodes, edge nodes, and other internal nodes as its
children. The model value range of a parent internal node
encompasses those of all its child data nodes. Beginning from
the second level of the tree (with total height K), we constrain
the maximum number of internal nodes at the ith level to
ti−1, where t is an integer ≥ 2 and 2 ≤ i ≤ K − 2.
Internal nodes at the same level maintain an equal number of
references to next-level nodes, with this reference count being
dynamically configurable in LearnGraph. These internal nodes
serve to implement recursive model indexes, providing flexible
management of vertex and edge nodes.

2) Vertex node and edge node: Vertex and edge nodes
store model values for position prediction. Each vertex node
maintains a fixed-size array of capacity D to store vertices and
a separate array for neighbor references. Since many nodes
have few neighbors in a graph, we use a fixed-size array of
capacity 10 to store the earliest arriving neighbors in sorted
order. When neighbor counts exceed this fixed array size, edge
nodes switch to sparse arrays that contain deliberate gaps to
accommodate insertions. Following established practices [7],
[30], we maintain 75% occupancy in sparse arrays, reserving
the remaining space as gaps to optimize search operations.
Each gap is populated with its closest right neighbor, enabling
efficient exponential search with O(logD) time complexity
for vertex lookups, where D is the sparse array size [30].
Edge nodes also maintain a bitmap array matching the sparse
array’s size to mark occupied positions, allowing searches to
skip gaps efficiently.

D. Basic algorithms

The algorithms for vertex operations (lookups, insertions,
and deletions) in LearnGraph are straightforward since vertex
positions can be directly computed from their arrival order.
Edge operations, particularly in learned sparse arrays with
bitmap tracking, require more detailed examination. While op-
erations on neighbors stored in fixed-size arrays are efficiently

handled using quicksort, we focus on the algorithms for edge
lookup, insertion, and deletion in learned sparse arrays.

1) Lookup: Edge lookup begins by verifying that both
vertices of the edge exist in vertex nodes. If confirmed, we
locate the root node of vertex neighbors using one vertex’s
starting pointer. Since LearnGraph implements model-based
insertions, we first check the edge’s model value. A non-
existent model value indicates the edge hasn’t been inserted,
resulting in a null record return. Otherwise, edge models are
recursively applied from the root node, predicting positions at
each level until reaching the edge node. If the edge is found at
the predicted position, the lookup returns that record. If not,
exponential search is initiated from the predicted position to
locate the edge’s actual position.

2) Insert: The edge insertion process in LearnGraph fol-
lows a structured approach utilizing both sparse arrays and
bitmap arrays. As shown in Figure 6, starting from the initial
state, where the sparse array maintains ordered destination
vertex IDs of edges (e.g., edges (0, 2), (0, 5), (0, 8), (0, 9),
where Vertex 0 is the source vertex) with intentional gaps
and a corresponding bitmap array (1, 1, 0, 1, 0, 1) tracking
occupied positions, the LearnGraph system employs a four-
step process for edge insertion: First, the system verifies both
vertices exist in vertex nodes using vertex models, and inserts
any missing vertices into vertex nodes at positions determined
according to Section III-B3. Second, the edge model is applied
to compute the model value and predict the target position -
insertion proceeds only if no model value exists. Third, for
each neighbor vertex insertion (one for directed graphs, two
for undirected graphs), the system traverses internal nodes
following edge models from the root node to reach the target
edge node.

Root Node

Step 1: Vertex lookup

Using Vertex Model

Insert missing vertex

Step 2: Edge model

Compute model value

Predict target position

Step 3: Node traversal

Follow edge models

Reach target edge node

Step 4: Edge insertion

Find gap in sparse array

Update bit map array

Edge Node StructureEdg
2

gge Ndgg
22 5

Noe N
5

ode No
7

e Strde
77 8

trucStr
88

cturuc
9

reur
99

1 1 000 1 1 000 1 0

Fig. 6. Insertion process using LearnGraph.
Finally, when inserting an edge, e.g., (0, 7), representing

a connection from vertex 0 to vertex 7, if inserting at the
predicted position maintains the edge node’s sparse array
ordering, the insertion succeeds immediately; otherwise, ex-
ponential search locates the correct insertion position. When
inserting at the final position between existing destination
vertices (between 5 and 8), the system identifies an available
gap using the bitmap array (0 indicates available gap) for direct
placement, or shifts elements to the nearest rightward gap if
the position is occupied. Once the position is determined, the
destination vertex ID 7 is inserted into the sparse array, and the
corresponding bitmap position is updated from 0 to 1 to reflect
the occupied status. If a model value falls outside internal

node ranges, the ranges and references must be adjusted,
though this is typically prevented by setting sufficiently large
initial ranges. This process maintains both the sorted order of
edge destinations and the target 75% utilization rate, while
preserving gaps for future insertions, ensuring efficient edge
search and insertion operations through the combination of
model-based prediction and bitmap-assisted position tracking.

3) Delete and update: Edge deletion employs the lookup
algorithm to locate edge positions within the edge node. Once
found, the position is converted to a gap by clearing it and
setting the corresponding bitmap position to ’0’, followed
by removing the edge’s model values. Edge updates are
straightforward, simply writing new edge values into positions
identified by the lookup algorithm.

E. Cost-sensitive model

First, we analyze the time complexity and overhead of con-
structing our learning-based architecture before considering
the cost-sensitive model. This analysis applies to any input
graph with |V | nodes and |E| edges. The time complexity is
primarily determined by data access operations. Our tree-based
data structure requires O(logK) time for internal lookups
and O(logD) time for vertex searches. In terms of space
complexity, internal nodes consume O((|V |+2|E|)/H) space,
while vertex and edge nodes require O((|V |+2|E|)/(0.75D))
space, plus negligible overhead from a few small fixed-size
arrays that store the first-arrival neighboring nodes. Here,
K denotes the tree height, D represents the fixed-size array
capacity, and H (64MB) specifies the maximum size of each
internal node’s subtree.

Since vertex operations involve simple computations with
minimal overhead, we focus our cost-sensitive model on edge
operations. The model relies on historical statistics of edge
lookups and insertions. For any vertex µ, LearnGraph monitors
two key metrics: numTraµ, which counts nodes traversed
from root to edge nodes, and numSearchµ, which counts
exponential searches in edge nodes. The ratio between these
metrics guides our dynamic tree structure adjustments, with
numTraµ indicating memory usage for storing µ’s neighbors
and tree height, while numSearchµ reflects the computational
costs of neighbor operations and tree width.

Using a threshold ϵ = 0.2, we implement a dynamic
adjustment strategy. When numTraµ

numSearchµ
≤ ϵ, we optimize for

computation time by increasing the RMI-based edge models’
height from K to K+1 and evenly distributing the Kth level
node references across new (K+1)th level nodes. Conversely,
when the ratio exceeds ϵ, we consolidate the structure by
removing the last level of internal nodes and connecting
second-last level nodes directly to edge nodes.

IV. EVALUATION

We perform experiments on a machine equipped with
Intel(R) Xeon(R) Silver 4110 CPU @2.10GHz and 256GB
memory. Our evaluation examines both operation throughputs
(lookups, inserts, and deletes) and processing times for five

common graph algorithms: breadth-first search (BFS), PageR-
ank (PR), local triangle counting (LCC), weakly connected
components (WCC), and single-source shortest path (SSSP).
We compare LearnGraph against two state-of-the-art graph
structures: Teseo [7] and Sortledton [8], using three real-
world datasets and two synthetic graphs as shown in Table
I. While all three systems support multithreading, we evaluate
LearnGraph (with maximum array size 100 for vertex and edge
nodes) and Teseo using single-thread execution to simplify
comparisons and minimize hardware configuration effects.
Sortledton, being specifically designed for multithreaded en-
vironments, is evaluated with multiple threads for optimal
performance.

TABLE I
SUMMARY OF GRAPH DATASETS, WHERE |V | DENOTES THE NUMBER OF

THE VERTICES IN THE VERTEX SET V, |E| THE TOTAL NUMBER OF THE
EDGES IN THE EDGE SET E.

Graph |V | |E|
Youtube 1,134,890 2,987,624

Wiki-Talk 2,394,385 5,021,410
Orkut 3,072,441 117,184,899

Graph500-24 8,870,942 26,037,952
Graph500-26 32,804,978 1,051,922,853

A. Throughput

Lookup throughput. We evaluate lookup performance by
measuring the total time required to search all edges in
random order across each input graph. As shown in Figure
7, LearnGraph achieves an average 2.1X higher throughput
compared to Teseo and Sortledton across the five datasets. This
performance advantage stems from LearnGraph’s architectural
approach: while Teseo and Sortledton rely on a two-step
process of vertex table lookup followed by binary search
through adjacency list-like structures, LearnGraph employs
learning models to directly predict vertex and edge positions,
using exponential search only for final verification.

Youtube
Wiki-Talk Orkut

Graph500-24
Graph500-26

0

5

10

15

No
rm

aliz
ed

Th
rou

ghp
ut

 Teseo(Lookup) Sortledton(Lookup) LearnGraph(Lookup)
 Teseo(Insert) Sortledton(Insert) LearnGraph(Insert)
 Teseo(Delete) Sortledton(Delete) LearnGraph(Delete)

Fig. 7. The throughput of LearnGraph compared to competitors.

Insert throughput. We evaluate insertion performance by
measuring random-order edge insertions into the input graph.
Figure 7 demonstrates that LearnGraph achieves at least 7X
higher insertion throughput than Teseo and Sortledton across
the five datasets. This significant performance gap arises from
fundamental structural differences: Teseo utilizes a modified
B+ tree (fat tree) with leaf nodes storing the vertex table
alongside a hash table, while Sortledton employs dual-level

BFS PR LCC WCC SSSP0

5

10

15

20
Pr
oc
es
si
ng

 ti
m
e
(s
ec
on

ds
) Teseo

Sortledton
LearnGraph

(a) Youtube

BFS PR LCC WCC SSSP0

7

14

21

28

35

Pr
oc
es
si
ng
 ti
m
e
(s
ec
on
ds
) Teseo

Sortledton
LearnGraph

(b) Wiki-Talk

BFS PR LCC WCC SSSP0

500

1k

1.5k

2k

Pr
oc

es
si
ng

 ti
m
e
(s
ec

on
ds

) Teseo
Sortledton
LearnGraph

(c) Orkut

BFS PR LCC WCC SSSP0

1k

2k

3k

4k

5k

Pr
oc

es
si
ng

 ti
m

e
(s

ec
on

ds
) Teseo

Sortledton
LearnGraph

(d) Graph500-24

BFS PR LCC WCC SSSP0

1k

2k

3k

4k

5k

Pr
oc

es
si
ng

 ti
m

e
(s

ec
on

ds
) Teseo

Sortledton
LearnGraph

(e) Graph500-26
Fig. 8. Processing time of graph algorithms with different analytic systems.

adjacency list-like and CSR-like structures. Both competitors
require extensive structure traversal to locate proper insertion
positions, whereas LearnGraph leverages vertex and edge
models to directly predict insertion positions, resulting in
substantially shorter traversal paths.

Delete throughput. Figure 7 demonstrates that LearnGraph
achieves at least 5X higher deletion throughput compared to
existing graph analytic systems. This superior performance is
attributed to LearnGraph’s learning model approach, which
quickly predicts vertex and edge positions, in contrast to Teseo
and Sortledton’s requirement to traverse vertex tables and
associated structures for element location.

B. Processing time of Graph analysis

Figure 8 demonstrates that LearnGraph processes the five
algorithms on average 3.5X faster and reduces processing time
by 1.7× to 11× over Teseo and Sortledton across all datasets.
Most notably, LearnGraph executes BFS up to 10X faster than
its competitors, as BFS and LCC operations require extensive
vertex and neighbor traversal, which LearnGraph accomplishes
in O(logD) time using learning models, while Sortledton
requires O(D) time with vertex table scans. For PR and WCC,
which also depend heavily on vertex and neighbor access,
LearnGraph achieves an average 2.5× speedup over Teseo
and Sortledton, whose performance is limited by hashmap
lookup and skip list traversal costs. SSSP execution is at least
5X faster in LearnGraph, benefiting from its superior lookup
throughput. These performance improvements across various
graph algorithms demonstrate LearnGraph’s effectiveness in
accelerating operation throughput.

0.0 0.2 0.4 0.6 0.8 1.0
105

106

107

108

0.0 0.2 0.4 0.6 0.8 1.0

105

106

107

108

T
hr

ou
gh

pu
t[

ed
ge

s/
se

c]

Edge ratio

(b) Wiki-Talk(a) Youtube

 Teseo(Lookup) Teseo(Insert) Teseo(Delete)
 Sortledton(Lookup) Sortledton(Insert) Sortledton(Delete)
 LearnGraph(Lookup) LearnGraph(Insert) LearnGraph(Delete)

T
hr

ou
gh

pu
t [

ed
ge

s/
se

c]

Edge Ratio

Fig. 9. LearnGraph keeps high and steady throughput with a growing ratio
of edges.

C. Evaluation on Cost-sensitive Model
We evaluate our cost-sensitive model’s effectiveness through

scalability analysis, measuring edge-process throughput as a
function of edge ratio in dynamic graph processing. Edge-
process throughput represents operations (lookups, insertions,
and deletions) per second on sequentially processed edges,
while edge ratio indicates the proportion of processed edges
to total graph edges. Figure 9 demonstrates that LearnGraph
achieves 3.4× higher throughput on average compared to
Teseo and Sortledton across increasing edge ratios on Youtube
and Wiki-Talk datasets. This performance advantage stems
from our cost-sensitive model’s ability to adapt to varying
workload characteristics. Particularly in Youtube and Wiki-
Talk graphs, where neighbor counts [32], [33] exceed the
capacity of an edge node rooted at an internal node, the cost-
sensitive model stabilizes throughput fluctuations during edge
insertions and deletions by dynamically adjusting data struc-
ture configurations and optimizing memory allocation patterns.
Teseo achieves moderately higher throughput than Sortledton,
primarily because Sortledton’s versioning-based concurrency
mechanisms introduce unnecessary overhead during sequential
edge processing. Overall, Figure 9 validates that LearnGraph’s
cost-sensitive model enables consistent and superior operation
throughput when handling dynamic graphs through balanced
operation costs across different graph regions.

V. CONCLUSION

This paper introduces LearnGraph, a learning-based archi-
tecture for dynamic graph processing. Our system integrates
learned models into the system architecture through a hierar-
chical approach: a vertex prediction model for optimal data
placement and an edge model for efficient neighbor access,
both built into an adaptive tree structure. The architecture em-
ploys a learning-based cost model that continuously optimizes
tree organization based on operation patterns. Experimental
evaluation across five diverse graph datasets demonstrates that
LearnGraph’s architecture outperforms state-of-the-art systems
Teseo and Sortledton, achieving throughput improvements of
2.1× for lookups, 7× for insertions, and 5× for deletions.
When evaluating five common graph algorithms, LearnGraph’s
learning-enhanced architecture delivers performance gains of
3.5× over existing competitors.

VI. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers. This work
is supported by the NSFC (Natural Science Foundation of
China) under Grant No.62302043.

REFERENCES

[1] Zhuo et al., “Graphq: Scalable pim-based graph processing,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019.

[2] Kumar et al., “Graphone: A data store for real-time analytics on evolving
graphs,” in ACM Transactions on Storage, 2020.

[3] K. Ammar, F. McSherry, S. Salihoglu, and M. Joglekar, “Distributed
evaluation of subgraph queries using worst-case optimal low-memory
dataflows,” Proceedings of the VLDB Endowment, vol. 11, no. 6, pp.
691–704, 2018.

[4] M. Besta, M. Fischer, V. Kalavri, M. Kapralov, and T. Hoefler, “Practice
of streaming processing of dynamic graphs: Concepts, models, and sys-
tems,” IEEE Transactions on Parallel and Distributed Systems, vol. 34,
no. 6, pp. 1860–1876, 2021.

[5] Asgari et al., “Fafnir: Accelerating sparse gathering by using efficient
near-memory intelligent reduction,” in 2021 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA), 2021.

[6] H. Qi, Y. Wu, L. He, Y. Zhang, K. Luo, M. Cai, H. Jin, Z. Zhang,
and J. Zhao, “Lsgraph: a locality-centric high-performance streaming
graph engine,” in Proceedings of the Nineteenth European Conference
on Computer Systems, 2024, pp. 33–49.

[7] Leo et al., “Teseo and the analysis of structural dynamic graphs,” in
Proceedings of the VLDB Endowment, 2021.

[8] Fuchs et al., “Sortledton: a universal, transactional graph data structure,”
in Proceedings of the VLDB Endowment, 2022.

[9] Sahu et al., “The ubiquity of large graphs and surprising challenges of
graph processing,” in Proceedings of the VLDB Endowment, 2017.

[10] M. N. Bojnordi and F. Nasrullah, “Retagger: An efficient controller for
dram cache architectures,” in Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1–6.

[11] X. Chen, T. Huang, S. Xu, T. Bourgeat, C. Chung, and A. Arvind,
“Flexminer: A pattern-aware accelerator for graph pattern mining,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2021, pp. 581–594.

[12] P. Li, Y. Hua, P. Zuo, Z. Chen, and J. Sheng, “{ROLEX}: A scal-
able {RDMA-oriented} learned {Key-Value} store for disaggregated
memory systems,” in 21st USENIX Conference on File and Storage
Technologies (FAST 23), 2023, pp. 99–114.

[13] H. Qi, Y. Zhang, L. He, K. Luo, J. Huang, H. Lu, J. Zhao, and H. Jin,
“Psminer: A pattern-aware accelerator for high-performance streaming
graph pattern mining,” in 2023 60th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2023, pp. 1–6.

[14] Nathan et al., “Learning multi-dimensional indexes,” in Proceedings of
the 2020 ACM SIGMOD international conference on management of
data, 2020.

[15] Wu et al., “Updatable learned index with precise positions,” in arXiv
preprint arXiv:2104.05520, 2021.

[16] Kraska et al., “The case for learned index structures,” in Proceedings of
the 2018 international conference on management of data, 2018.

[17] Tang et al., “Xindex: a scalable learned index for multicore data storage,”
in Proceedings of the 25th ACM SIGPLAN symposium on principles and
practice of parallel programming, 2020.

[18] Wei et al., “Fast {RDMA-based} ordered {Key-Value} store using
remote learned cache,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), 2020.

[19] Ma et al., “Film: A fully learned index for larger-than-memory
databases,” in Proceedings of the VLDB Endowment, 2022.

[20] Yu et al., “Treeline: an update-in-place key-value store for modern
storage,” in Proceedings of the VLDB Endowment, 2022.

[21] Yang et al., “{GL-Cache}: Group-level learning for efficient and high-
performance caching,” in 21st USENIX Conference on File and Storage
Technologies (FAST 23), 2023.

[22] Zhang et al., “Depgraph: A dependency-driven accelerator for efficient
iterative graph processing,” in 2021 IEEE International Symposium on
High-Performance Computer Architecture, 2021.

[23] P. Kumar and H. H. Huang, “G-store: high-performance graph store
for trillion-edge processing,” in SC’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2016, pp. 830–841.

[24] M. A. Bender and H. Hu, “An adaptive packed-memory array,” ACM
Transactions on Database Systems (TODS), vol. 32, no. 4, pp. 26–es,
2007.

[25] M. Besta, M. Fischer, V. Kalavri, M. Kapralov, and T. Hoefler, “Practice
of streaming processing of dynamic graphs: Concepts, models, and
systems,” arXiv preprint arXiv:1912.12740, 2019.

[26] L. Dhulipala, G. E. Blelloch, and J. Shun, “Low-latency graph stream-
ing using compressed purely-functional trees,” in Proceedings of the
40th ACM SIGPLAN conference on programming language design and
implementation, 2019, pp. 918–934.

[27] M. A. Awad, S. Ashkiani, S. D. Porumbescu, and J. D. Owens,
“Dynamic graphs on the gpu,” in 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2020, pp. 739–748.

[28] P. Pandey, B. Wheatman, H. Xu, and A. Buluc, “Terrace: A hierarchical
graph container for skewed dynamic graphs,” in Proceedings of the 2021
international conference on management of data, 2021, pp. 1372–1385.

[29] Zhao et al., “Tdgraph: a topology-driven accelerator for high-
performance streaming graph processing,” in Proceedings of the 49th
Annual International Symposium on Computer Architecture, 2022.

[30] Ding et al., “Alex: an updatable adaptive learned index,” in Proceedings
of the 2020 ACM SIGMOD International Conference on Management
of Data, 2020.

[31] Li et al., “Finedex: a fine-grained learned index scheme for scalable and
concurrent memory systems,” in Proceedings of the VLDB Endowment,
2021.

[32] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” in Proceedings of the ACM SIGKDD workshop
on mining data semantics, 2012, pp. 1–8.

[33] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and
negative links in online social networks,” in Proceedings of the 19th
international conference on World wide web, 2010, pp. 641–650.

