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Abstract—Graph embedding, which maps graph nodes to low-
dimensional vectors, is a widely used technique for graph represen-
tation learning. However, most existing graph embedding models
suffer from high memory consumption, limiting their scalability
to large graphs. Heterogeneous memory systems that combine
DRAM and Persistent Memory (PM) offer new opportunities
for scaling up memory capacity. Despite this advantage, the
performance gap (on the order of 5×) between DRAM and PM
is magnified (by 3.3-4.2×) under non-uniform memory access
(NUMA) architecture. Additionally, the inherent sparsity of graphs
induces numerous random accesses in the fundamental Sparse
Matrix and Dense Matrix Multiplication (SpMM) operations of
graph embedding, hindering high-performance heterogeneous
memory processing.

To address these challenges, this paper presents OMeGa that
focuses on Optimizing heterogeneous Memory processing for
large-scale Graph embedding. OMeGa leverages an entropy-aware
thread allocation, simultaneously achieving workload balancing
and tail latency reduction across threads. It also incorporates a
workload feature-aware prefetcher to alleviate random accesses
during streaming heterogeneous processing. In addition, OMeGa
devises a NUMA-aware data placement, aiming to minimize
the adverse impact of NUMA on heterogeneous memory. The
experiments conducted on billion-scale graphs demonstrate
that OMeGa exhibits an average acceleration of 32.03× with
strong scalability. This pioneering capability enables the efficient
generation of large-scale graph embeddings, free from the memory
size constraints and performance disparities typically encountered
in heterogeneous memory systems.

Index Terms—Graph Embedding; Heterogeneous Memory;
NUMA Architecture; SpMM Operations

I. INTRODUCTION

Over the past decade, graph embeddings have been proven
extremely effective in graph representation learning in appli-
cations across many domains including link prediction [1],
classification [2], clustering [3], and recommendation [4]. In
these applications, graphs can have millions of nodes and
billions of edges. For instance, the Twitter-2010 graph includes
over 41 million user nodes and more than one billion edges,
on top of which it is required to perform tasks such as link
prediction and classification tasks [5]. As another example, the
graph representing users and products at Alibaba also consists
of more than two billion user-product edges, forming a giant
bipartite graph for its recommendation tasks [6]. This has in
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Fig. 1: DRAM-based solutions are efficient but limited by capacity
and cost, PM-based solutions balance cost and capacity but face
efficiency challenges, and SSD-based solutions offer high capacity
but suffer from expensive I/O overhead. OMeGa achieves both high
performance and large capacity on low-cost heterogeneous memory.

turn challenged the efficiency and scalability of the state-of-
the-art graph embedding models on large-scale graphs. For
example, it would take weeks for LINE [7] and months for
DeepWalk [8] / node2vec [9] to learn embeddings for a graph
with 100 million nodes and 500 million edges using 20 threads
on a modern server [10]. Recently, a fast and scalable graph
embedding method ProNE [10] is proposed, outperforming
Deepwalk, node2vec and LINE by 10-400×. However, it
achieves its performance supremacy at the cost of more than
500 GB of active working memory for learning due to the
expensive matrix factorization operations, far exceeding the
32-256 GB working memory of an ordinary commercial server.
Although employing memories in a distributed or SSD-based
manner, like DistGER [11], DistDGL [12], ZeRO-Infinity [13],
and Ginex [14], can partially alleviate this capacity limitation
and improve scalability, their performance is constrained by
high communication costs among networked clusters/nodes
or high I/O overhead during memory interactions. The large
memory consumption also limits the availability of training to
the system since DRAM is close to its physical process limit
[15] and faces severe scalability issues [16].

The emerging high-density memory devices, specifically,
Persistent Memory (PM), are poised to meet ever-increasing
demands for memory capacity PM [17] offers up to 2.1× lower
price per capacity than DRAM [18]. PM leverages the byte-
addressable memory technology with the same form factor
as DDR4, and when fully populated, can offer up to 12 TB

3369

2025 IEEE 41st International Conference on Data Engineering (ICDE)

2375-026X/25/$31.00 ©2025 IEEE
DOI 10.1109/ICDE65448.2025.00252



of capacity [19] due to the high memory density, and it is
starting to be deployed in datacenters and clouds to boost
the performance of memory-hungry applications [20]–[22].
However, PM exhibits a substantial performance disparity with
DRAM, with 1/6 and 1/3 the bandwidth of DRAM in terms of
writes and reads, respectively [23], which significantly drags
down the efficiency of graph embedding on PM. For example,
when running ProNE [10] on Twitter graph (|V | = 11.3 M
and |E| = 127 M), PM’s capacity/price advantage of 2× over
DRAM (785$ on DRAM vs. 312$ on PM) is more than offset
by its performance slowdown of 4.96× compared to DRAM. To
achieve both large capacity and high performance, a promising
solution is to pair PM with DRAM to form a heterogeneous
memory system [24]–[26], leveraging their complementary
strengths while mitigating individual weaknesses.

Overcoming the physical limitations of heterogeneous mem-
ories and adapting to the running characteristics of graph
embedding are crucial for providing efficient heterogeneous
memory processing. On the one hand, modern commodity multi-
core machines have shifted toward the non-uniform memory
access (NUMA) architecture [27], where the CPU cores and
DRAM/PM are grouped into nodes that are interconnected
via inter-node links, creating an access asymmetry between
intra- and inter-node memory access latencies. Compared with
DRAM, PM further exacerbates the asymmetry of memory
access latencies in NUMA systems [16]. As a result, the remote
and local latencies are 3.3× and 4.2× higher than the DRAM-
base system, respectively, indicating that the performance gap
between DRAM and PM is further amplified under the NUMA
architecture. On the other hand, Sparse Matrix and Dense
Matrix Multiplication (SpMM) is the fundamental linear algebra
kernel for graph embedding [28]–[30], accounts for nearly 70%
of the total overhead [10]. The inherent sparsity of most real-
world graphs introduces numerous random memory accesses
in SpMM operations, which increases the risk of workload
imbalance and tail latency in thread allocation while further
diminishing the efficiency of graph embedding computations
on heterogeneous memory architectures.

To address the above challenges and achieve efficient and
scalable graph embeddings, we present a new graph embedding
system, OMeGa, which focuses on Optimizing heterogeneous
Memory processing for large-scale Graph embedding. First and
foremost, OMeGa takes into account both workload balancing
and tail latency reduction for SpMM operations. It leverages an
entropy-aware thread allocation scheme (EaTA), which first
measures the graph’s inherent sparsity based on entropy theory
[31], and then adaptively generates the optimal workload for
each thread to improve the efficiency of parallel computations.
Second, to further mitigate the data movements caused by
random accesses in SpMM, OMeGa introduces a workload
feature-aware prefetcher (WoFP). During streaming processing
between DRAM and PM, WoFP identifies frequently accessed
data objects and places them in DRAM, thus achieving high-
performance heterogeneous memory processing. Last but not
least, we start with a quantitative analysis to understand the
access characteristic of the PM on NUMA architecture and then
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Fig. 2: Schematic diagram of graph embedding technologies.

design a NUMA-aware data placement (NaDP) that maintains
global sequential read and local write access principles during
SpMM operations to minimize the adverse impact of NUMA to
heterogeneous memory processing. Figure 1 shows the design
objectives of OMeGa, which aims to achieve both large capac-
ity and high performance on low-cost heterogeneous memory,
thereby providing efficient and scalable graph embedding.

Our contributions and roadmap are summarized below.
• We propose an efficient, scalable graph embedding

system, OMeGa, which, to our best knowledge, is the first
graph embedding framework designed and implemented for
heterogeneous memory.
• We design an entropy-aware thread allocation scheme

(EaTA) that focuses on workload balancing and tail latency
reduction in parallel computations for graph embedding.
• We devise a workload feature-aware prefetcher (WoFP)

to alleviate data movement and achieve high-performance
heterogeneous memory processing.
• We introduce NUMA-aware data placement (NaDP) that

minimizes the adverse impact of NUMA to heterogeneous
memory and bridges the performance gap between PM and
DRAM.
• We conduct extensive experiments to confirm that OMeGa

achieves much better efficiency (32.03× speedup on average)
and scalability than our baselines.

II. PRELIMINARIES

A. Graph Embedding

Given an undirected graph G = (V,E) with V as the node
set and E as the edge set, the problem of graph embedding
aims to learn a mapping function φ : V → Rd that projects
each node to a d-dimensional space (d << |V |) to capture the
structural properties of a graph. As shown in Figure 2, existing
graph embedding technologies roughly fall into three categories:
those based on random walk, matrix factorization, and graph
neural networks. Random walk-based techniques are inspired by
the well-known natural language processing model, word2vec
[32]. By conducting sufficient random walks on graphs,
substantial graph structural information is collected and fed into
the word2vec model (Skip-Gram) to generate node embeddings.
Matrix factorization (MF)-based techniques [10], [33]–[36]
construct feature representations based on the adjacency or
Laplacian matrix. In theory, it is equivalent to random walk-
based embedding methods [8], [9], [37], [38], because the

3370



PM

 (512x6GB)

DRAM (32x6GB)

Node 0

LLC 

L1&L2 

IMCs IMCs

L1&L2 

... C36C1

L1&L2 L1&L2 

... C72C37

PM

 (512x6GB)

DRAM (32x6GB)

Node 1

CPU chipset

Directed Mapped Cache (4KB blocks)

Addressable Memory

CPU chipset

Addressable Memory

Addressable Memory

IMC

Memory Mode App-directed Mode
(a) (b) 

P
M

P
M

P
M

P
M

P
M

P
M

IMC

D

R

A

M

D

R

A

M

P
M

P
M

P
M

D

R

A

M

D

R

A

M

D

R

A

M

P
M

P
M

P
M

D

R

A

M

IMCIMC

D

R

A

M

D

R

A

M

D

R

A

M

D

R

A

M

D

R

A

M

D

R

A

M

Fig. 3: (a) Memory hierarchy of our two sockets machine, and (b)
Configuration mode of PM: Memory and App-directed.

latter can be viewed as an implicit matrix factorization [35].
Graph neural networks (GNN) [39]–[42] focus on generalizing
graphs into semi-supervised or supervised learning by using
message-passing kernels to aggregate information from a
vertex’s neighbors. Compared with GNN, the MF-based models
are parameter-free, eliminating the need to set suitable tuning
learning rates or GNN layers, which can be sensitive to the
GNN-based models [43].

During the embedding generation, Sparse Matrix and Dense
Matrix Multiplication (SpMM) is fundamental and essential for
various computations, such as PageRank [44] calculation in
random walks, message aggregation in GNN, and matrix oper-
ations ubiquitous in MF. In the most notable and representative
MF-based model ProNE [10], SpMM operations are executed
in parallel within the randomized t-SVD (truncated Singular
Value Decomposition) [45] and Chebyshev polynomials [46],
constituting nearly 70% of the total overhead.

B. Persistent Memory

Persistent memory (PM), also known as non-volatile memory
(NVM), combines the byte-addressability and low latency of
DRAM with the persistence and large capacity of SSDs. PMs
are in the form of standard byte-addressable DDR4 DIMMs
on the CPU memory bus, similar to DRAM DIMMs. They
communicate with memory controllers via a custom protocol
that is mechanically and electrically compatible with DDR4.
However, PM modules have a higher capacity than DRAM,
with options of 128/256/512 GB per DIMM. In addition, similar
to non-uniform memory access (NUMA) systems that divide
memory into sockets, PM modules are also distributed among
sockets. Figure 3(a) shows an example of a two-socket-node
machine with a 6 TB of PM and 384 GB of DRAM split
between sockets. Each processor has two integrated memory
controllers (iMCs) supporting six channels each, pairing six
DRAM and six PM modules per socket.

PM typically operates in two modes as shown in Figure 3(b).
Memory Mode: In this mode, PM expands the main memory
capacity without providing persistence, while DRAM acts as a
direct-mapped write-back cache (with a block size of 4 KB)
for the PM modules. This cache mechanism is transparent to
the user, allowing the system to automatically manage the flow
of data between DRAM and PM for optimized performance.
App-directed Mode: In contrast, app-directed mode treats
PM as a separate byte-addressable persistent memory that is
outside the traditional main memory hierarchy. Unlike memory
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Fig. 4: The workflow of OMeGa.

mode, there is no DRAM cache in this configuration. Instead,
a file system is used to manage the device, and applications
can directly access the PM using load and store instructions,
while employing ordering facilities to enforce consistency
and ensure crash recovery [17]. The app-directed mode gives
applications the ability to selectively store data in either DRAM
or PM, offering fine-grained control over where data is placed.
This configuration is particularly beneficial for workloads that
require explicit control over memory allocation or need to
store large datasets persistently [47]. In this work, we focus
on using the PM in the App-directed mode and compare our
optimizations with PM-only and DRAM-only environments,
respectively (§IV).

III. DESIGN OF OMEGA

We design an efficient and scalable graph embedding
framework under the emerging DRAM-PM hybrid storage
architecture, called OMeGa, aiming to provide large capacity
and high performance heterogeneous memory processing.
Figure 4 summarizes our proposed OMeGa workflow. Initially,
the graph data is represented by compressed sparse degree-
block (CSDB, §III-A) format. To launch SpMM in graph
embedding, OMeGa first utilizes an entropy-aware thread
allocation scheme (EaTA) to adaptively generate the optimal
workload for each thread (§III-B). Subsequently, a NUMA-
aware data placement (NaDP) minimizes the detrimental
effects of NUMA (§III-D). During streaming heterogeneous
memory processing, OMeGa introduces a workload feature-
aware prefetcher (WoFP, §III-C) to avoid unnecessary data
movement and asynchronous adaptive streaming loading (ASL,
§III-E) to support streamlined execution.

A. Compressed Sparse Degree-Block Format

Existing graph data structures fall short in reaching high data
scalability. Given an example graph (|V |=7, |E|=11) shown
in Figure 5(a), the node list is [v0, v1, v2, v3, v4, v5, v6], the
column list (col list) in a matrix which is constructed by
graph indicates the corresponding edge list, and edge weight
list (i.e., non-zero data list in a matrix, nnz list) is assigned
by the weight of each edge (initially set to 1). Although the
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Fig. 5: The compressed graph data format CSDB in OMeGa.

widely used CSR [48] can represent the graph data well in
some cases, the size of required indices increases proportionally
with the number of nodes in a graph (i.e., O(|V |)).

Considering the skewness in the degree distribution of real-
world graphs, OMeGa introduces a new compressed graph data
representation, the compressed sparse degree-block (CSDB)
format, designed to efficiently handle this structural imbalance.
CSDB uses two index arrays, Deg list and Deg ind, as
shown in Figure 5(b), to represent the graph structure in a more
compressed way. Specifically, Deg list denotes the unique
degree list for a graph, while Deg ind represents the starting
offset of the node block with the same node degree in the degree
list. The sizes of Deg list and Deg ind are far smaller than
the number of nodes in real-world graphs (i.e., O(|Degree|)).
For the example graph in Figure 5(a), Deg list and Deg ind
in CSDB are [4, 3, 2, 0] and [0, 3, 5, 7], respectively. Suppose
that we need to access the neighbors of node v1 (get all non-
zero elements of the row 1 in the adjacency matrix). We note
that the index of v1 is 1, with node degree block index ∈
[Deg ind(0), Deg ind(1)). Then, according to Deg list(0),
the degree of v1 is 4 (i.e., Degree(v1)). The starting offset
Deg ptr in col list or nnz list for vi can be defined as:

Deg ptr(vi) =
i∑

i=1

Degree(vi−1) (1)

Then, Deg ptr(v1) is 4, and thus the neighbors of v1 can be
generated from col list by Deg ptr(v1) and Degree(v1) as
[v0, v3, v4, v6], as well as getting the weight of the correspond-
ing edge from nnz list.

To ensure compatibility with matrix calculations, we have
also developed various operators based on CSDB, encom-
passing multiplication, addition, subtraction, and transposition.
Given the sequential access pattern during matrix computations,
the lightweight CSDB format ensures high performance with
minimal overhead (§IV-I).

B. Entropy-aware Thread Allocation

Sparse Matrix and Dense Matrix Multiplication (SpMM)
represents fundamental operations in graph embedding. For
instance, in ProNE, SpMM is executed in parallel and accounts
for nearly 70% of the total overhead. Specifically, the sparse
matrix is composed of the graph data with V as the node
set and E as the edge set, while the dense matrix is initially
randomly generated with a |V | × |V | size, and its elements are
iteratively updated in subsequent calculations.

Cost analysis for the parallel SpMM. Thread allocation is
a critical step in parallel computing which involves assigning
threads to process the components of a computation task

Algorithm 1 The execution of SpMM at a allocated workload

Input: sparse matrix A, dense matrix B, block start bst, row start rst, row
end red, result matrix C

Output: result matrix C
1: for column t in B do
2: ind = bst // Initial index for the workload allocated from A.
3: for row j in [rst, red) do
4: start = ind, end = ind+A.degree[j] //➊
5: tmp = 0 // Intermediate result for C.
6: while start ̸= end do
7: get sparse nnz = A.nnz list[start] //➋
8: get dense nnz = B(A.col list[start], t) //➌
9: tmp += get sparse nnz × get dense nnz //➍

10: start++
11: C(j, t) = tmp //➎
12: ind += A.degree[j]

in optimizing the performance and resource utilization. The
parallel SpMM in our scenarios involves assigning rows of
a graph matrix to different threads and multiplying by each
column of a dense matrix. Given a graph matrix A, represented
by our proposed graph data format CSDB (detailed in §III-A),
the column list (col list) in a matrix, constructed from the
graph, indicates the corresponding edge list, while the edge
weight list (i.e., non-zero data list in a matrix, nnz list)
is assigned by the weight of each edge, initially set to 1.
Algorithm 1 shows the execution of a portion of the overall
workload at a thread, where rst and red determine the
rows allocated for SpMM. The cost at one thread can be
considered as the total overhead of ➊ read index (Line 4),
➋ get sparse nnz (Line 7), ➌ get dense nnz (Line 8),
➍ accumulation (Line 9) and ➎ write result (Line 11).
Since SpMM works based on the indices of the non-zero
elements (nnz) in the sparse matrix represented by CSDB
format, ➊ and ➋ are sequential operations. However, due
to the sparsity of A, the corresponding elements fetched in
the dense matrix B will have discontinuous row indices (i.e.,
A.col list[start]). As a result, the throughput of ➌ cannot
sufficiently utilize the sequential bandwidth, leading to the
risk of random access occurrence. Similar to the dense matrix
B, the resulting matrix C is stored in column-major order by
default, which enables the sequential updating of elements in ➎.
The cost of ➍ is dependent on both the allocated workload and
the physical CPU throughput. Therefore, suppose a workload
Wi is allocated to a thread pi, where Wi is defined as the set
of all nnzs in a subset of rows (Rowsi) from the sparse matrix
A, then the overhead at pi can be further derived as:

T (pi)=
Rowsi

BWr seq

➊

+
Wi

BWr seq

➋

+
Wi

BWr seq×W i
sca

➌

+
Wi

BWCPU
➍

+
Wi

BWw seq

➎

, (2)

where BWr seq, BWw seq, and BWCPU are the bandwidth
of sequential read, sequential write, and CPU cumulative,
respectively. W i

sca is the inherent scatter factor of Wi, deter-
mined by the scattered degree of column indices in the sparse
matrix. W i

sca captures the discontinuity of corresponding row
indices (i.e., A.col list[start]) from the dense matrix, affecting
the throughput of ➌ get dense nnz operation. W i

sca can be
defined as the average number of non-zero element indices
per row in the allocated workload divided by |V | (i.e., total
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number of columns). The smaller the value of W i
sca, the more

scattered the access to the contiguous data of the dense matrix
stored on the chip, reducing the computational efficiency.

Considering the thread allocation scheme, the widely used
parallel development kit adopts the round-robin manner to
allocate the workload to each thread by default, as shown in
Figure 6(a), where p1, p2 and p3 are assigned workload of 9, 5,
5, respectively. However, the irregularity of the matrix leads to
an unbalanced workload across threads and naturally overlooks
the inherent scatter factor of the workload. Figure 6(b) shows
another common solution that applies a workload-balancing
thread allocation strategy (WaTA) to let each thread have
the same workload (Wi) [49], where the workload refers
to the number of matrix elements of the sparse matrix A
allocated to a thread. Formally, the WaTA scheme assigns
total workload

#threads to each thread, such that in Figure 6(b), p1, p2
and p3 are assigned workloads of 7, 6, and 6, respectively.
However, the inherent scatter factor of the workload may lead
to high tail latency (i.e., a long completion time of the last
straggler thread). To explain, Figure 7(a) displays the cost
analysis of each operation in SpMM, clearly observing that
the ➌ get dense nnz dominantly affects the efficiency of
parallel multiplications. Since each assigned Wi on WaTA
may have different W i

sca, the efficiency for each workload can
be distinct, and thus WaTA may not guarantee the balanced-
computing among threads (refers to Figure 13(a)). Figure 7(b)
further exhibits the throughput and the workload inherent scatter
factor of the ➌ get dense nnz for different threads (plotted
as circles) by WaTA on PM and DRAM, and recall that the
throughput is the amount of nnzs fetched per second. It can
be observed that both curves have the same trend, and the
more inherently scattered the workload, the lower the thread’s
bandwidth, resulting in higher tail latency due to insufficient
utilization of sequential bandwidth caused by the occurrence of
random accesses. In addition, the inherent scattered factor W i

sca

also plays a significant role in determining the number of rows
that are allocated in Wi (i.e., Rowsi in Equation 2). When the
Wi among threads is fixed, the more scattered the indices, the
more rows are allocated to Wi (i.e., Rowsi ∝ Wi

W i
sca

), and hence
the cost of the ➊ read index operation can be approximated
as Wi

BWr seq×W i
sca

.
Our proposed solution. To consider both workload balance

and tail latency reduction, OMeGa incorporates a novel
entropy-aware thread allocation (EaTA) scheme that first
measures the sparsity inherent in the matrix based on the
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entropy theory [31], and then adaptively generates the optimal
workload for each thread. Entropy is typically used to measure
the degree of random access communication [50] or quantify the
property in the random walk process on graph [51]. In our case,
a smaller W i

sca indicates more random accesses are introduced
in the allocated workload Wi. As a result, the throughput of pi
used to fetch the indices or nnz (i.e., ➌ get dense nnz) will
be reduced from sequential bandwidth (BWr seq) to random
bandwidth (BWr rand). Figure 7(c) exhibits the relationship
between running time (T (pi)) and the workload entropy (Hi)
for each thread, where the dashed red line is fitted by the
least square loss with a slope K. We observe that the two
variables show a strong linear relationship represented as
T (pi) = K ·Hi, where Hi is:

Hi =

m∑
j=n

−
|Rowj |
Wi

log
|Rowj |
Wi

(3)

n and m are the starting and ending indices of Wi (i.e., rst and
red in Algorithm 1) in sparse matrix A, respectively. |Rowj |
denotes the number of non-zero elements (nnz) in Rowj .

Based on our previous analysis, W i
sca is a key factor affecting

computational efficiency (Figure 7(a) and (b)), i.e., for a thread
pi, T (pi) ∼ Wi

BWr seq×W i
sca

, and hence the measurement of
T (pi) can be further quantified as:

Wi

BWr seq ×W i
sca

= K ·Hi (4)

In term of access impact, the relation of Hi and W i
sca is:

W i
sca = 1− Z(Hi) + β · Z(Hi) (5)

where Hi is normalized by Z(Hi) =
Hi

log|V | (0 ≤ Hi ≤ log|V |),
and β represents BWr rand

BWr seq
. Intuitively, for the term BWr seq×

W i
sca, if Z(Hi) is close to 1, it results in a large number of

random accesses, with the bandwidth determined by BWr rand.
Conversely, when Z(Hi) approaches 0, the access pattern
becomes fully sequential, and the bandwidth corresponds to
BWr seq . From Equations 4 and 5, Wi can be expressed as:

Wi = K ·Hi ·BWr seq · (1− Z(Hi) + β · Z(Hi)) (6)

The optimal workload W p
i for each thread pi is generated

by the optimized workload-balancing scheme with the entropy-
aware measurement as follows:

Wi

W p
i

=
Hi · (1− Z(Hi) + β · Z(Hi))

Hp
i · (1− Z(Hp

i ) + β · Z(Hp
i ))

=⇒ W p
i = Wi ·

Hp
i · (1− Z(Hp

i ) + β · Z(Hp
i ))

Hi · (1− Z(Hi) + β · Z(Hi))
(7)
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Equation 7 adjusts the initial workload Wi based on the
entropy measure Hi and its optimized version Hp

i for each
thread. By leveraging both Hi and Hp

i , this scheme adapts
the workload to reduce tail latency, ensuring that threads
with higher randomness (larger Z(Hi)) have their allocated
workloads adjusted more, achieving both balance and efficiency.

Implementation of EaTA. Algorithm 2 shows the proce-
dure for our proposed solution. Here, EaTA gets Wi as the
initial workload by a dynamic workload-balancing scheme
(unallocated Workload

unallocated threads ) and then derives Hi based on Equation 3
(Lines 2, 4 and 11). To reduce the tail latency brought
by the inherent scatter factor in the workload, the inherent
scatter factor of each workload should be relatively close,
and hence EaTA leverages a dynamic average Hp

i among
workloads ( allocated Hp

i

allocated threads ) to calculate the optimal workload
W p

i allocated to each thread based on Equation 7 (Lines 6,
9 and 12). Initially, Hp

i is defined as the average entropy
for a given number of threads, i.e.,

∑|V |
j=0 −pj log(pj), where

pj =
|Rowj |

|V |/threads num (Line 2). EaTA operates online as an
efficient lightweight scheme with O(|V | ·Wi) complexity.

Algorithm 2 Entropy-aware thread allocation scheme in OMeGa
Input: threads num, total workload W total, sparse matrix A
Output: Wpos(rst, bst) //Starting index of row and element in A.
1: i = 1, rst = 0, bst = 0
2: Wi =

W total
threads num

, Hp
i //Initialize the Wi and Hp

i .
3: while rst <A.|V | do
4: Get the Hi according to the Wi //Eq. 3
5: Generate rst and bst of Wi

6: W p
i = Wi ·

H
p
i ·(1−Z(H

p
i )+β·Z(H

p
i ))

Hi·(1−Z(Hi)+β·Z(Hi))
// Eq. 7

7: Update rst and bst according to W p
i

8: Generate W p
i
′ and Hp

i
′ based on the updated rst

9: Wi tmp+=W p
i
′, Hp

i tmp+=Hp
i
′, i++

10: Wpos.push back(rst, bst)//Write back rst and bst of Wi to Wpos.
11: Wi =

W total−Wi tmp
threads num−i

//Update the initial Wi.

12: Hp
i =

H
p
i tmp

i
//Update the objective Hp

i .

C. Workload Feature-aware Prefetcher

While EaTA addresses workload balancing and tail latency,
the data movement induced by random access continues
to impede the efficiency of graph embedding, especially in
heterogeneous memory scenarios with performance gaps. To
this end, OMeGa further introduces the workload feature-
aware prefetcher (WoFP) on top of EaTA to optimize memory
access patterns within each allocated workload.

Basic idea of WoFP. Conventional hardware-managed
caches are limited in capacity and respond passively to access
patterns, which may result in frequent PM accesses when
handling large-scale graph workloads. WoFP identifies the
frequently accessed data objects during SpMM operation
based on workload features and places them in DRAM,
thereby minimizing unnecessary data movement during the
streaming processing between DRAM and PM. As analyzed
in Algorithm 1, the sparsity of the graph matrix A results
in discontinuous row indices for the corresponding elements
fetched in the dense matrix B (i.e., A.col list[start]), leading
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Fig. 8: WoFP performs prefetching based on frequency (left panel)
and in-degree (right panel), respectively.

to random access and thus decreased memory access perfor-
mance. Since each column t in B needs to be multiplied
by every row j in the workload allocated from A, there is
a possibility of reusing the B(A.col list[start], t) in each
loop. In light of this locality, WoFP tailors the prefetcher for
each allocated workload, optimizing memory access without
altering the workload distribution determined by EaTA, thereby
enhancing execution efficiency without introducing imbalance.

As shown in Figure 8, WoFP utilizes a hashmap struc-
ture to store the identified frequently accessed elements.
Specifically, it uses row indices (A.col list[start]) as keys
and pairs them with corresponding elements from the dense
matrix (B(A.col list[start], t)) along with the prefetching
measurement values as values, thereby constructing a key-value
mapping. In each loop iteration, it selects the top-M frequently
accessed key-value pairs to be placed in DRAM, enabling rapid
retrieval from the prefetcher during parallel SpMM operations,
thus mitigating random accesses and reducing unnecessary data
movements in the DRAM-PM streaming processing.

Implementation of WoFP. To improve the prefetching
efficiency, WoFP introduces a hybrid prefetcher based on
the feature of workload allocated by EaTA. For workloads
with a higher average number of row indices, WoFP employs
prefetching based on the frequency of row index occurrences
within the loop (frequency-based prefetcher). For workloads
with a lower average number of row indices, it utilizes
the in-degree of the vertex (i.e., the number of non-zero
element indices per column in A) as the metric (degree-based
prefetcher). This is because a higher in-degree suggests a higher
probability that the associated row indices are the same. Given
that real-world graphs usually adhere to a power-law degree
distribution, most workloads have fewer row indices on average,
and it is more convenient to count in-degrees.

The specific execution of WoFP is as follows: given
the allocated workload for a thread as Wi, WoFP initially
determines the type of prefetcher to employ based on the
condition defined as Wi

Rows ≥ |V | · η, where Rows represents
the number of rows in the allocated workload, |V | denotes
the size of the vertex set (i.e., the total rows of the graph
matrix A), and η is an empirical parameter used to establish
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the prefetcher type selection criterion. This judgment condition
|V | · η means the reference base for the number of indices in
each row, and it can be adjusted adaptively according to the
size of the graph dataset. If the allocated workload meets the
above condition, WoFP selects the frequency-based prefetcher,
otherwise, it uses the degree-based prefetcher.

Subsequently, WoFP constructs the prefetcher with a size
of M = Wi · σ for each allocated workload, where σ denotes
the prefetching size parameter. It accommodates the frequently
accessed objects in the top-M key-value structure. Different
from the degree-based prefetcher, which statically utilizes the
descending in-degree of the vertex to populate the prefetcher
(i.e., key: A.col list[start], value: B(A.col list[start], t)),
the frequency-based prefetcher dynamically selects the top-
M most frequently used row indices for prefetching. It counts
the frequency of row index occurrences during the execution of
the SpMM in a back-end thread, and updates them together with
the corresponding element values as the values into the top-M
prefetcher (i.e., key: A.col list[start], value1: B(A.col list
[start], t), value2: frequency). Although dynamic prefetcher
entails eviction and insertion operations for objects in the
Top-M, as aforementioned, only a small portion of workloads
necessitates such prefetching, and the benefits of placing them
in high-performance DRAM are substantial (§IV-D).

D. NUMA-aware Data Placement

Non-uniform memory access (NUMA) is a shared memory
system that aims to overcome the poor scalability of the tradi-
tional uniform memory access system architecture. However,
the performance gap between DRAM and PM is further am-
plified under the NUMA architecture, which is undesirable for
large-capacity and high-performance heterogeneous memory.

Observational analysis of the access characteristics for PM.
Figure 9 reports the sequential/random read and write
bandwidth of local/remote PM for different numbers of threads
on our test system (3 PMs and 18 CPU cores per NUMA
node). The results are collected by the NUMACTL [52] and
FIO [53] tools. As shown in the results, regarding the read
operations, the peak bandwidth of sequential remote accesses
is comparable to that of local sequential and is much higher
than that of random local and random remote ones (2.41×
and 2.45×, respectively). This finding is in line with the
previous study conducted on DRAM-based systems [54]. For
the write operations, regardless of whether they are sequential
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Fig. 10: NUMA-aware data placement on two-socket nodes.

or random, local write operations are always better than those
remote ones. The peak bandwidth of the remote PM write is
decreased to 69.2% compared with the local ones. Especially,
the peak bandwidth of sequential local writes is greater than
sequential remote and random remote ones by 3.23× and
4.99×, respectively. More importantly, we also note that the
remote and local read latencies are 3.3× and 4.2× higher
than the DRAM-base system by the Intel Memory Latency
Checker [55], respectively. Based on these observations, we
conclude that a high-performance DRAM-PM system should
prioritize global sequential read and local write accesses,
thereby minimizing the adverse impact of NUMA.

Running characteristics of the operator. Although EaTA
(§III-B) and WoFP (§III-C) improve the efficiency of parallel
SpMM for graph embedding generation, the performance is
still bounded by the impact of remote access under the NUMA
architecture. We statistically analyze the local and remote
accesses (including read and write operations) of OMeGa
with components of EaTA and WoFP on two sockets (using
30 threads), collected using the Intel VTune Profiler [56]. It
can be found that the portion of the average remote access is
more than 43% on our evaluated graphs. Given that the remote
latency and local latency on PM are higher than the DRAM-
base system, respectively, the efficiency of SpMM operation
on PM is 4.5× slower than DRAM.

In addition, from Algorithm 1, the indices in sparse matrix
represented by our proposed CSDB (detailed in §III-A), such
as Deg list, Deg ind, col list and nnz list, are sequentially
incorporated to perform the get sparse nnz operation in
SpMM (Line 3-9). Although the get dense nnz operation
is affected by the non-continuous row indices (Line 8), EaTA
and WoFP schemes can mitigate the impact and ensure the
balanced-computing among threads. For the intermediate data,
such as the temporary value that is written to the result matrix
(Line 11), it is a sequential write operation due to the column-
major order stored organization for the result matrix. Therefore,
OMeGa takes into consideration both the hardware features
and the running characteristics of the operators to design a
NUMA-aware data placement (NaDP) solution.

Basic idea of proposed NaDP. Existing OS-provided NUMA
allocation policies [57], such as Local (allocating memory
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on a specified node and using other nodes if the preferred
node has insufficient memory) and Interleaved (interleaving
memory allocation across nodes in a round-robin fashion),
which do not consider the adverse impacts of PM and lack
fine-grained NUMA-aware allocation to meet the application-
specific requirements. In contrast, our proposed approach,
NaDP, achieves the NUMA access principle of global se-
quential read and local write by manually allocating memory
within the application and using the binding-threads on different
sockets to touch the memory pages.

The fundamental idea behind NaDP consists of three main
aspects: (1) NUMA-aware memory allocation: The sparse
and dense matrices are partitioned according to the number of
socket nodes to improve data locality and balance the workload,
which is essential for efficient parallel execution. (2) CPU-
binding based computing: Threads are bound to specific CPUs,
enabling them to sequentially fetch sub-sparse matrices, either
locally or remotely, and perform computations on the locally
stored sub-dense matrices, ensuring global sequential access.
(3) Local-priority based updating: Intermediate data is written
into local two-dimensional arrays constructed for each sub-
matrix multiplication, ensuring efficient local write operations.
As explained earlier in §III-B, the get sparse nnz operation
is strictly sequential, ensuring sequential reads across socket
nodes, regardless of whether the access is local or remote. This
guarantees global sequential reading. At the same time, the
write operations remain local and sequential, as the intermediate
matrices are stored locally on each socket node, with temporary
values sequentially written to the result matrices.

Figure 10 exhibits an example of the NUMA-aware data
placement (NaDP) on two-socket nodes (N0 and N1) during
SpMM operation. Given a sparse matrix M(7, 7) and a dense
matrix L(7, 7), ➊ NaDP partitions M and L as M1(3, 7),
M2(4, 7), L1(7, 4) and L2(7, 3), respectively, where M1 and
L1 are placed on N0, and M2 and L2 are placed on N1. To
hold the intermediate data, NaDP also constructs R11(3, 4)
and R21(4, 4) on N0, and R22(4, 3) and R12(3, 3) on N1,
respectively. ➋ Based on EaTA, suppose that the number
of threads is 8 (P01, P02, P03, and P04 are bound to N0,
and P11, P12, P13, and P14 are bound to N1), then for the
M1 × L1 operation, P01 and P02 locally fetch the non-zero
element (nnz) from M1 in a sequential manner, followed by
performing the multiplication with L1. Additionally, WoFP
is utilized to enhance processing efficiency. ➌ Meanwhile,
the intermediate data are sequentially written into R11. For
the M2 × L1 operation, P03 and P04 remotely fetch the nnz
of M2 from another node N1 in a sequential manner and
then execute the multiplication operations with L1 at N0. We
note that the results are also sequentially written into R21.
For the M2 × L2 and M1 × L2 operations, P11, P12, P13,
and P14 use the same execution mechanism to complete the
multiplication operations. Finally, NaDP simply combines
the sub-matrices (R11, R21, R22, R12) across N1 and N0 to
generate the result matrix R(7, 7). Although this step produces
few remote accesses, NaDP minimizes the remote write
operation in the above calculation procedure.
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Fig. 11: Asynchronous adaptive streaming loading for OMeGa.

E. Implementation of OMeGa

Alongside the aforementioned optimizations, OMeGa further
introduces systematic enhancements asynchronous adaptive
streaming loading (ASL) on heterogeneous memory.

Considering that the dense matrices and intermediate data
generated during the graph embedding process far exceed the
scale of the sparse matrix composed of graph data, making it
challenging to store them directly in DRAM, the data needs
to be streaming loading between DRAM and PM. To address
this, OMeGa introduces the asynchronous adaptive streaming
loading (ASL) strategy on top of the NaDP proposed in §III-D,
further enhancing heterogeneous memory processing with large
capacity and high performance.

Specifically, as shown in Figure 11, to maximize the
utilization of the high-performance DRAM’s processing capa-
bilities, ASL adaptively divides the dense matrix data allocated
to each NUMA node based on available memory capacity.
Subsequently, it asynchronously loads batches of data from PM
to DRAM for computation. For determining the granularity of
the streaming data adaptation, ASL analyzes the peak memory
consumption during running time, as follows:

Ml +Mal +Ms +Mr +Mri +Mli ≤ Mtotal (8)

Here, Ml, Ms, and Mr represent the memory size of the stream-
ing data, the sparse matrix, and the results matrix, respectively.
Mri and Mli denote the memory size of intermediate results
for Mr and Ml, respectively. Mal refers to the asynchronous
streaming data. Mtotal represents the available capacity of
DRAM. Suppose the partitions for the dense matrix are denoted
by n, and the dimension of the matrix is represented by d (also
known as the dimensional space of the generated embedding).
Then, the memory sizes Ml, Mal, and Mli can be expressed
as d

n · |V | · size(type). Mr and Mri are d · |V | · size(type),
and Ms corresponds to the memory footprint of our proposed
CSDB format. Here, size(type) refers to the data type. The
optimal n can be derived as:

n ≥
3d · |V | · size(type)

Mtotal −Ms − 2d · |V | · size(type)
(9)

IV. EXPERIMENTAL RESULTS

We evaluate the efficiency of our proposed framework,
OMeGa, by comparing it against various baselines, including
OMeGa-DRAM (ideal baseline), OMeGa-PM (the worst
baseline), ProNE-DRAM [10], heterogeneous memory-based
ProNE (ProNE-HM), Ginex [14] and MariusGNN [58]. We
also analyze the contributions of key optimizations, such as
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TABLE I: Datasets statistics.

Graph #nodes #edges #degrees
PK 1.63 M 44.60 M 803
LJ 4.85 M 85.70 M 1 641
OR 3.07 M 234.47 M 2 863
TW 11.32 M 127.11 M 5 373

TW-2010 41.65 M 2.41 B 15 760
FR 65.61 M 3.61 B 3148

TABLE II: Running time of EaTA
and competitors for performing SpMM.

Graph RR WaTA EaTA
PK 16.23 s 3.76 s 2.16 s
LJ 36.52 s 10.15 s 7.12 s
OR 77.60 s 24.27 s 18.91 s
TW 40.17 s 7.43 s 7.17 s

TW-2010 1565.38 s 316.95 s 295.29 s
FR 16566.25 s 2530.97 s 2432.11 s
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Fig. 12: Overall performance of OMeGa and competitors.

CSDB (III-A), EaTA (§III-B), WoFP (§III-C), and NaDP
(§III-D). Additionally, we evaluate OMeGa’s scalability,
demonstrate its potential as an alternative to distributed
frameworks (DistGER [11] and DistDGL [12]), compare its
SpMM performance against state-of-the-art methods (SEM-
SpMM [59] and FusedMM [60]), and analyze its parameter
sensitivity. Our codes and datasets are available at [61].

A. Experimental Setup
Environment. We conduct experiments on two-socket Op-

tane DIMM 1 with 2.60GHz Intel(R) Xeon(R) Gold 6240 CPU
(36 cores, hyper-threading). Each socket is equipped with 96GB
DRAM (3×32GB) and 768GB PM (3×256GB). Additionally,
the machine has a 3.84TB Intel P5510 NVMe SSD.

Datasets. We use six widely-used real-world graphs: soc-
Pokec (PK) [62], soc-LiveJournal (LJ) [63], Com-Orkut (OR)
[64], Twitter (TW) [65], Twitter-2010 (TW-2010) [66], and
Com-Friendster (FR) [67]. These datasets span both sparse and
dense graph structures, as summarized in Table I. To further
evaluate scalability across different graph densities, we also
use synthetic graphs generated by an RMAT generator [68].

Baselines. Besides demonstrating the merit of OMeGa, we
first compare it against the same type graph embedding system
ProNE [10] on DRAM (ProNE-DRAM) and heterogeneous
memory (ProNE-HM, a DRAM-PM implementation, where
matrix operations are handled on DRAM), respectively, to
show our key improvements. We also implement two baselines
for OMeGa, one is on top of DRAM-only (OMeGa-DRAM)
which is served as the ideal baseline, whereas the other is
on top of PM-only (OMeGa-PM) to show the performance
comparison between DRAM and PM. We further benchmark
OMeGa against recent SSD-based graph embedding systems,
Ginex [14] and MariusGNN [58] (both utilize NVIDIA V100
GPU), as well as distributed systems, DistGER [11] and
DistDGL [12], emphasizing the advantages of heterogeneous
memory processing. Finally, we evaluate OMeGa’s SpMM
performance against state-of-the-art SpMM-oriented systems,
including the SSD-based SEM-SpMM [59] and the in-memory-
based FusedMM [60].

B. Overall Performance

Figure 12 gives a comprehensive running time comparison
between OMeGa and the other six alternatives on six real-
world graphs. The reported executed time includes the running

1The only PM product accessible in this study, but OMeGa is expected to
be equally effective in other PM products like CXL when available.

time of the graph reading and embedding generation procedure.
The results show that OMeGa significantly outperforms the
competitors on all these graphs, except for OMeGa-DRAM due
to it serving as our ideal baseline. Overall, OMeGa achieves
an average acceleration of 32.03×. Note that we fail to run
the DRAM-only based systems ProNE-DRAM and OMeGa-
DRAM on the billion-scale graph datasets (TW-2010 and FR)
because the inherent memory-dependency of the models is the
bottleneck of their performance.

Recall that OMeGa is a specialized design on heterogeneous
memory for graph embedding and our key improvements are
discussed in §III. Compared with ProNE-DRAM and ProNE-
HM (where SpMM constitutes nearly 70% of the total overhead),
Figure 12 shows that our system OMeGa achieves an average
speedup of 3.45× and 33.65×, respectively. Even for the
DRAM-only environment, OMeGa-DRAM is also on average
4.99× faster than ProNE-DRAM. Due to the performance
gap between DRAM and PM, OMeGa-PM is on average
146.67× slower than OMeGa on PK and LJ graphs. For the
remaining larger-scale graphs, it does not terminate in one
day. Compared to the DRAM-PM implemented ProNE-HM,
OMeGa-PM performs all operations in a PM-only setting,
resulting in worse performance. OMeGa aims to achieve the
large-capacity and high-performance heterogeneous processing,
compared to OMeGa-DRAM and OMeGa-PM, it significantly
narrows the performance gap between PM and DRAM from
orders of magnitude scale to an average of 54.9%.

Additionally, compared to state-of-the-art NVMe SSD-based
graph embedding systems, our proposed OMeGa, operating
on a DRAM-PM heterogeneous memory architecture, achieves
an average speedup of 5.49× over Ginex [14] and 2.07× over
MariusGNN [58] with both competitors requiring over a day
to process the largest graph FR. These results demonstrate that,
despite their powerful GPU acceleration, SSD-based systems
are bottlenecked by high I/O overhead (e.g., SSD latency
and bandwidth limitations), further underscoring the benefits
of heterogeneous memory. We also extend our evaluation
by comparing OMeGa with distributed graph embedding
systems (DistGER [11] and DistDGL [12]) and SpMM-
oriented systems (SEM-SpMM [69] and FusedMM [60]), as
detailed in the §IV-G and §IV-H. For the quality of embeddings,
since OMeGa uses ProNE as the model prototype and provides
system support on heterogeneous memory, it maintains the
effectiveness of graph representation of ProNE.
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Fig. 13: Distribution of thread running times for
OMeGa equipped with WaTA (a) and EaTA (b).
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Fig. 14: Running time of SpMM
with and without WoFP.
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Fig. 15: The effect of NaDP for overall performance
(a) and SpMM (b) on five real-world graphs.

C. Thread Allocation

To evaluate the performance of the proposed entropy-aware
thread allocation scheme EaTA in OMeGa, we first compare
the efficiency of EaTA with two alternatives: the Round-Robin
(RR) and workload-balancing thread allocation (WaTA) for
the parallel SpMM, which is an indispensable operation for
graph embedding. Table II shows the execution time for each
scheme to perform one SpMM operation. EaTA significantly
outperforms RR and WaTA on all graphs, achieving a speedup
ranging from 1.04× to 7.51×, with an average acceleration
of 3.50×. RR is the default thread allocation scheme in the
threads library. Although it is a simpler approach, it overlooks
the skewness inherent in most real-world graphs, leading to an
imbalanced workload distribution among the allocated threads.
WaTA divides the workload evenly among the threads, and
hence this scheme can alleviate the skewness problem of RR.
Nevertheless, it still increases the risk of long tail latency since
the inherent sparsity of the graph matrix.

In Figure 13, we present the distribution of thread running
times on the soc-LiveJournal graph for OMeGa with WaTA
(a) and EaTA (b), respectively. A comparison reveals that
EaTA outperforms WaTA in reducing tail latency, with thread
execution times becoming more evenly distributed, indicating
a better alignment of workload distribution. Specifically, the
standard deviation for EaTA is 0.78, much smaller than the
1.52 for WaTA. Furthermore, EaTA achieves a 31% reduction
in P99 (99th percentile latency) and a 24% reduction in P95
(95th percentile latency) tail latency compared to WaTA. Our
results show thread allocation overhead is negligible, under
1% of runtime (as shown in Figure 14). Overall, EaTA is a
lightweight scheme with substantial benefits.

D. Prefecher Performance

Considering the inherent sparsity of the graph leads to
numerous random accesses, OMeGa introduces the workload
feature-aware prefetcher (WoFP) to achieve high-performance
heterogeneous memory processing. To evaluate the effect
of WoFP on OMeGa, we report the execution time of
all SpMM operations with and without WoFP (denoted as
OMeGa and OMeGa-w/o-WoFP, respectively) on top of our
proposed EaTA thread allocation policy. Note that the reported
execution time includes the overhead of thread allocation
(EaTA), prefetching (WoFP), and SpMM. Figure 14 shows the
efficiency of OMeGa and OMeGa-w/o-WoFP on all evaluated
graph datasets. The results indicate that OMeGa achieves a
37.28% average performance improvement, with particularly
significant gains on the OR graph, where our solution is 52%
faster than OMeGa-w/o-WoFP. Additionally, we observed

that the overhead introduced by EaTA and WoFP constitutes a
minimal fraction of the total execution time, averaging less than
3.17% across all datasets. Given the significant performance
improvements, these overheads are negligible and do not affect
the overall efficiency of OMeGa. We further evaluated the
impact of the parameters used in WoFP, as discussed in §IV-I.
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Fig. 16: Throughput of SpMM on five real-world graphs (a) and
with different threads on soc-LiveJournal graph (b).

E. NUMA-aware Data Placement

Figure 15 exhibits the performance of NUMA-aware data
placement (NaDP) for our proposed framework OMeGa. To
access the effect of NaDP on improving the performance
of PM for NUMA, we prepare a version of OMeGa without
NaDP (using OS-provided Interleave NUMA allocation policy,
known for its benefits in parallel computing [57]), denoted
as OMeGa-w/o-NaDP. In Figure 15(a), we report the effect
of NaDP for overall performance and compare it with the
ideal baseline OMeGa-DRAM. As we reasoned in §III-D, the
performance gap between DRAM and PM is further amplified
under the NUMA architecture due to the slower PM accesses
than DRAM. The results show that OMeGa-w/o-NaDP is on
average 2.98× slower than OMeGa-DRAM. Hence, OMeGa
takes into consideration both the hardware features and the
running characteristics of the operator, aiming to minimize
the adverse impact of NUMA to PM. As a result, OMeGa
significantly outperforms OMeGa-w/o-NaDP on all these
graphs, achieving an average speedup of 1.95×. Considering
that parallel SpMM is directly influenced by the NUMA
architecture, we further access the performance of NaDP on
SpMM operation as shown in Figure 15(b). As an ideal baseline,
although OMeGa-DRAM presents the best performance in
most cases, it can not handle the billion-scale graph Twitter-
2010 due to memory limitation. Compared to OMeGa-w/o-
NaDP, benefiting from NaDP, OMeGa can achieve an
acceleration ranging from 2.42× to 3.59×, especially reducing
the performance gap with OMeGa-DRAM to 40.17% on
average. We also report the throughput of the SpMM operation
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Fig. 17: The scalability performance of OMeGa with the increasing
number of threads (a) and the size of a synthetic graph (b).

(million nnzs fetched per second) for OMeGa-w/o-NaDP and
OMeGa on all graphs using 30 threads in Figure 16(a), as well
as the throughput of the SpMM operation with different numbers
of threads on the soc-LiveJournal graph in Figure 16(b). The
results show that our proposed NaDP can better utilize the
parallel capability of computational resources.

F. Scalability

Figure 17(a) shows the running time of overall performance
(blue line) and SpMM (red line) for OMeGa on the soc-
LiveJournal graph. (Due to space limitations, we omit results
on other graphs, which exhibit similar trends). The results
indicate that the running time decreases linearly with the
number of threads. To further evaluate the scalability of
OMeGa and its performance across diverse graph structures,
we generate synthetic graphs using the RMAT generator [68].
RMAT enables control over both graph sparsity and density
by adjusting parameters such as edge distribution and the
average degree per node. The generated graphs exhibit varying
structural properties, with node counts ranging from 104 to 109,
reaching the billion-node scale. In Figure 17(b), we report the
running times for overall performance and the SpMM operation
on these synthetic graphs using 30 threads. The results confirm
that OMeGa scales efficiently with graph size and performs
robustly across both sparse and dense graphs.

G. Efficient Alternatives to Distributed Systems

To address the memory capacity limitations for large-scale
graph embeddings, aside from the out-of-core systems, such as
SSD-based Ginex, another conventional choice is to use dis-
tributed systems. We report the end-to-end running times of the
recent distributed graph embedding systems DistGER [11] and
DistDGL [12] on six real-world graphs, using a cluster of four
machines (identical hardware to OMeGa but excluding PM), as
shown in Figure 18(a). The reported end-to-end time includes
both the graph reading and embedding generation procedures.
OMeGa achieves comparable or superior performance in most
cases. Specifically, it outperforms DistDGL on all datasets,
with an average speedup of 4.31×, primarily due to the high
overhead of graph sampling (accounts for approximately 80%
of the runtime) and the synchronization overhead for gradient
updates. While DistGER employs information-oriented random
walks for efficient and scalable feature learning, outperforming
DistDGL, OMeGa proves competitive by being 1.58× faster
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Fig. 18: Performance comparison of OMeGa with distributed graph
embedding systems: DistGER [11] and DistDGL [12] (a), and with
SpMM-optimized systems for SpMM operation execution: SEM-
SpMM [69] and FusedMM [60] (b).

on the small graph soc-Pokec and delivering comparable
performance on larger graphs. Due to the high financial costs
and significant computational resources required by distributed
setups, the heterogeneous memory-based OMeGa offers a
cost-effective alternative to traditional distributed solutions.

H. OMeGa’s SpMM w.r.t Competitors

Recognizing the critical role of SpMM in embedding
generation, we benchmark OMeGa’s SpMM performance
against representative SpMM-optimized systems: the SSD-
based SEM-SpMM [69] and the in-memory FusedMM [60]. In
our evaluation, we measure the running time of a single SpMM
operation across six real-world graphs, as shown in Figure 18(b).
The results reveal that OMeGa consistently outperforms both
systems, particularly on the larger graphs. SEM-SpMM ad-
dresses memory capacity limitations in large-scale graph SpMM
operations by utilizing semi-external memory configurations.
Compared to SEM-SpMM, OMeGa achieves an average
speedup of 15.69×, thank to the superiority of heterogeneous
memory architecture and the SpMM optimizations. While
FusedMM consolidates SpMM operations into a single unified
kernel for graph embedding, OMeGa delivers a speedup
ranging from 2.11× to 3.26×. Notably, we were unable
to run FusedMM on the billion-scale Twitter-2010 graph
due to memory limitations. A similar memory bottleneck is
evident in GPU-based approaches, which prioritize efficiency
optimizations. For example, the GPU-based Ge-SpMM [30]
encounters out-of-memory issues with large graphs like Twitter-
2010 and Com-Friendster. In contrast, OMeGa successfully
handles these billion-scale graphs, showcasing its large capacity
and high performance via heterogeneous memory processing.

I. Graph Format and Parameter Sensitivity

We report the processing efficiency of CSDB (i.e. graph
reading procedure) and compare with CSR [48] (default
storage format of popular graph embedding approaches) in
Figure 19(a). The results exhibit that CSDB not only carries
out a light-weighted graph data representation, but also presents
a 1.35× acceleration compared to CSR. In addition, we also
investigate how different parameter choices in WoFP impact
the performance of OMeGa, specifically focusing on prefetcher
type selection (µ) and prefetching size (σ). We report the
normalized execution time of OMeGa on PK graph, except
for the tested parameters, all the other parameters are set
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Fig. 19: The graph reading performance of OMeGa (a) and the
parameter sensitive analysis for the prefetcher used in OMeGa (b).

as default in the experiments. η determines the prefetcher
type selection in WoFP. As illustrated in Figure 19(b), when
η is too small, most loads are directed to use frequency-
based prefetcher, which incurs a relatively large overhead.
However, as η increases, the preference shifts towards degree-
based prefetcher. Nevertheless, ensuring the effectiveness of
prefetching becomes challenging with higher η, leading to
performance degradation. σ directly dictates the prefetching
size (i.e. top-M). Similarly, Figure 19(c) demonstrates that as
σ increases, the prefetcher becomes more active. However, an
excessively large σ will escalate the prefetching costs.

V. RELATED WORK

Typical graph embedding systems. Recently, several sys-
tems are developed from the CPU-GPU architecture perspective,
such as Legion [70], MariusGNN [58], Seastar [71] and
TGLite [72]. However, computing gaps between CPUs and
GPUs and the limited memory of GPUs still plague the
efficiency of graph embedding. Other approaches attempt to
scale graph embeddings from a distributed perspective, such
as AliGraph [73], ByteGNN [74], DistGNN [75], DistDGL
[12], HET-KG [76], DistGER [11] and DistGER-Pipe [77].
Nonetheless, considering the high financial cost of consuming
large amounts of computational resources, this is not consumer-
friendly for the general public. There are also approaches
attempting to address computational efficiency challenges with
new hardware, such as GLIST [78], Ginex [14], SmartSAGE
[79], ReGNN [80] and BeaconGNN [81]. While these
solutions enable training on larger datasets or offer greater
acceleration, their compatibility remains challenging.

Tackle memory-dependency challenges with heteroge-
neous memory. A few approaches are attempting to address
the memory-dependency challenges via DRAM-PM-based
heterogeneous memory (HM). PETPS [82] proposes the
first HM-enabled parameter server that achieves both fast
recovery and low storage costs for huge embedding models.
Sentinel [25] automatically optimizes tensor management
on HM systems to address challenges on tensor migration
and allocation for DNN training. HNGraph [16] is an HM
processing framework focused on traditional graph applications,
aiming to reduce random accesses to both local and remote PM
nodes. XPGraph [83] is an HM-based graph storage system
designed to efficiently manage large-scale evolving graphs
using XPLine-Friendly techniques. Given that target scenarios
and graph applications are different from the above situations,
and few approaches focus on HM-based graph embedding, this

motivates us to develop a dedicated HM-based framework for
efficient and scalable graph embedding.

SpMM acceleration in general-purpose scenarios. Nu-
merous domain-specific systems and accelerators have been
proposed for SpMM [28]–[30], [60], [69], [84]–[86]. SPADE
[28] is a hardware accelerator for SpMM and SDDMM that
integrates processing elements with CPU cores to avoid data
transfers, using a tile-based ISA for flexibility. DTC-SpMM
[87] presents a framework incorporating efficient compression
formats, reordering techniques, and pipeline optimizations to
accelerate general SpMM on GPUs. The scalability of SpMM
was investigated in Intel’s PIUMA architecture, addressing
challenges of large memory footprints, sparse computational
patterns, and irregular memory accesses for graph analytics
[88]. FusedMM [60] is an in-memory optimization framework
that integrates multiple SpMM operations into a single, unified
kernel, specifically designed to accelerate graph embedding
tasks. SEM-SpMM [69] keeps sparse matrix on SSDs, dense
matrices in memory, and incorporates numerous in-memory op-
timizations for SpMM at scale. OMeGa focuses on optimizing
SpMM specifically for high-performance and large-scale graph
embedding using heterogeneous memory processing, which is
orthogonal to these techniques.

VI. CONCLUSIONS AND DISCUSSION

We proposed OMeGa, a novel heterogeneous memory-oriented
graph embedding framework. OMeGa leverages an entropy-
aware thread allocation (EaTA), achieving workload balancing
and tail latency reduction among threads. It further proposes
a workload feature-aware prefetcher (WoFP) to avoid un-
necessary data movement during heterogeneous processing.
OMeGa invents a NUMA-aware data placement (NaDP),
minimizing NUMA’s adverse impact on PM. Additionally, it
incorporates a compressed sparse degree-block (CSDB) graph
format and asynchronous adaptive streaming loading (ASL) for
heterogeneous memory processing. Experimental results show
OMeGa outperforms state-of-the-art systems in efficiency and
scalability. Notably, OMeGa is highly flexible and adaptable
to diverse storage hierarchies. Its EaTA and WoFP optimize
SpMM parallel efficiency for graph embedding, applicable to
any storage system. While NUMA architectures face remote-
local access gaps, NaDP remains effective across alternative
hierarchies. The rise of CXL enables the integration of PM
into scalable memory architectures, further advancing high-
performance graph embedding.
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