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In large-scale information systems, storage device performance continues to improve while workloads expand
in size and access characteristics. This growth puts tremendous pressure on caches and storage hierarchy
in terms of concurrent throughput. However, existing cache eviction policies often struggle to provide
adequate concurrent throughput due to their reliance on coarse-grained locking mechanisms and complex
data structures.

This paper presents a practical approach to cache eviction algorithm design, called Mobius, that optimizes
the concurrent throughput of caches and reduces cache operation latency by utilizing lock-free data structures,
while maintaining comparable hit ratios. Mobius includes two key designs. First, Mobius employs two lock-free
FIFO queues to manage cache items, ensuring that all cache operations are executed efficiently in parallel.
Second, Mobius integrates a consecutive detection mechanism that merges multiple modifications during
eviction into a single operation, thereby reducing data races. Extensive evaluations using both synthetic
and real-world workloads from high-concurrency clusters demonstrate that Mobius achieves a concurrent-
throughput improvement ranging from 1.2× to 8.5× over state-of-the-art methods, while also maintaining
lower latency and comparable cache hit ratios. The implementation of Mobius in CacheLib and RocksDB
highlights its effectiveness in enhancing cache performance in practical scenarios.
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1 Introduction
Caches store frequently accessed data in fast but limited storage to expedite data retrieval and
optimize resource utilization [26, 78]. With a history spanning over 60 years [8], the cache tech-
nology has evolved as an integral part of the computer technology, underscoring its widespread
importance. Initially, caches served as bridges between fast CPUs and slow storage in processor
designs [47, 51, 52]. Nowadays, the cache technology has been utilized across various domains,
including file systems [16, 80], databases [72, 76], web servers [7], and middleware components
[24].
Caches studied in this paper are tailored for large-scale information systems such as content

delivery networks (CDNs) [27], parallel file systems [80], and databases [72]. In such environments,
data often resides in large, sluggish storage devices like tapes, hard disks, and SSDs, collectively
known as the backend storage. Because of the inefficiency of accessing data directly from the
backend storage, caches are introduced, which are typically built upon fast storage mediums like
DRAM [21], NVM [70], and flash memory [40, 57, 62]. The generalized caches for large-scale
information systems include CacheLib [3], Memcached [21, 43], Redis [5, 55], and Ehcache [59, 71],
which are popular in production systems.

The effectiveness of a cache system is commonly measured by two metrics: hit ratio and through-
put. The hit ratio, or cache hit ratio, has traditionally been the most important metric for cache
systems [2, 46, 66], representing the percentage of requests satisfied by the cache without accessing
the backend storage. Since caches are much faster than the backend, cache hits can significantly
accelerate data accesses [1]. The key to enhancing hit ratio is using advanced cache eviction policy.
When the cache reaches its maximum capacity, the eviction policy is responsible for evicting old
items to make room for new ones. Most existing cache eviction policies are based on least-recently-
used (LRU) queues. The LRU-based policies manage the historical access order of cache items and
evict the least recently used ones [11]. Due to the careful maintenance of access order, LRU-based
policies can generally achieve relatively high hit ratios [45, 56, 58].
The other important metric is cache throughput. In large-scale information systems, multiple

processes or threads typically execute tasks concurrently. Therefore, in this paper, throughput
refers to concurrent throughput, which denotes the number of requests a cache system can handle
simultaneously from multiple tasks within a given time frame. This metric was often underap-
preciated in the past. Caches typically outperformed backend storage by a much wider margin
than they do in today’s large-scale information systems, making cache performance less likely
to become a bottleneck. However, as storage innovations have narrowed the performance gap
between caches and backend storage, and as workloads continue to scale, cache throughput can
no longer be overlooked [54, 74]. Similarly, cache latency, which reflects the time cost for a single
cache request, has gained attention as the latency gap between caches and backend storage shrinks.
As a result, the First-In-First-Out (FIFO) eviction policy has emerged as a new focus of research
due to its high throughput and low latency [18, 28, 74].
Unlike the LRU-based eviction policy, which evicts items based on access order, FIFO evicts

items in the order they were inserted. The simplicity of the FIFO policy helps improve throughput
and reduce latency, but it is not optimal for achieving high cache hit ratios. Recent research has
proposed several innovative FIFO-based eviction policies that aim to strike a better balance. While
these policies achieve comparable or even better hit ratios than LRU-based policies, they come with
trade-offs. For instance, S3FIFO [75] and QDLP [73] use multiple queues to improve hit ratios, but
at the cost of increased memory footprint and operational latency. SIEVE [79], on the other hand,
evicts items from the cache queue using exclusive locks as the concurrency control mechanism,
which impedes throughput.
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This paper focuses on optimizing the concurrent throughput of cache eviction while maintaining
an optimal hit ratio and low cache latency. It emphasizes the importance of cache throughput and
identifies locking mechanisms as a key factor limiting scalability. To address this, we introduce
Mobius, a lock-free cache eviction design that builds on SIEVE with two key design innovations to
substantially enhance throughput. First, Mobius employs lock-free FIFO queues as its core data
structures, significantly improving cache throughput while preserving SIEVE’s eviction algorithm.
Second, Mobius incorporates a consecutive detection mechanism to minimize data races during
eviction victim selection. These novel designs makeMobius significantly different from and superior
to SIEVE.
We implement Mobius in CacheLib [3, 42] and RocksDB [12, 13, 49, 64] as the cache eviction

policy, and compare its performance against state-of-the-art cache eviction policies (i.e., SIEVE[79],
S3FIFO[75], CLOCK[10], OPTLRU and TinyLFU[14]) under both synthetic and real-worldworkloads.
The evaluation results indicate that, on CacheLib, Mobius outperforms state-of-the-art policies in
terms of concurrent throughput by 1.2 × −8.5×, while achieving better latency and maintaining
comparable cache hit ratio. On RocksDB, Mobius outperforms the original implementation in the
throughput of two primary read operations: point-read and range-read. A point-read retrieves
the value of a single specific key, while a range-read (also called a range scan) retrieves multiple
key-value pairs within a specified key range. Mobius increases range-read throughput by 14% and
point-read throughput by 4%. To the best of our knowledge, Mobius is the first caching scheme to
achieve a fundamentally balanced and satisfactory performance across hit ratio, cache throughput,
and cache latency.
The rest of the paper is structured as follows. We begin with the background of existing cache

eviction policies (§2). Then, we delve into the motivation behind this paper (§3). Next, we discuss
the design of Mobius (§4). Subsequently, we detail the entire evaluation process for Mobius (§5).
Finally, we conclude the paper (§6).

2 Background
In this section, we provide the necessary background for our research. First, we explore why cache
throughput has garnered more attention recently (§2.1). Second, we introduce several popular
cache eviction policies most relevant to the proposed Mobius policy (§2.2). Third, we assess their
performance in the CacheLib platform to gain important insight for our research (§2.3).

2.1 Cache throughput
Cache throughput was not a major concern in earlier cache systems. However, it has gained
increasing tractions in recent years [19]. In 2022, developers of RocksDB observed that the block
cache was limiting the performance of RocksDB due to its poor concurrency capabilities [23].
In response, the developers implemented a new cache with highly concurrent throughput in
multi-threaded environments, albeit at the expense of a lower hit ratio. Testing revealed that the
new cache significantly improved RocksDB’s performance across various workloads. Similarly,
researchers found that the existing page cache in the Linux kernel could decrease throughput
in high-performance computing (HPC). Direct access to the backend storage is sometimes more
efficient than using the cache due to its poor concurrent throughput [53]. Cache throughput has
become increasingly important in system performance because of the following two reasons:

Faster backend storage. Innovations in storage media and interfaces, such as 3D-XPoint [25],
3D-NAND flash [22], and the NVMe protocol [39], have popularized all-flash storage (or solid-state
storage) in academic and industrial sectors [35, 44]. Solid-state drives (SSDs) composed of flash
memory chips offer high throughput and low latency. Mainstream enterprise NAND SSDs can
achieve 1.1M IOPS for random reads [60], while Intel Optane SSDs have reached 1.5M IOPS [30]. As
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observed in our tests (Section 2.3), the maximum throughput of CacheLib (a DRAM cache system) in
its default configuration is around 3 MOPS. The throughput gap between the backend storage and
cache systems has narrowed. If caches offer no significant performance advantage, their practical
application may be questioned.

Highly concurrent workloads. The proliferation of data-intensive applications, such as large
language model (LLM) [48], big data analytics [15], and real-time processing [38], imposes greater
I/O demands on storage systems and caches. These applications generate highly concurrent requests
for processing and analysis. For instance, in a social graph cache of Meta, there were 1.5M requests
every two minutes at peak traffic times [3]. In HPC platforms, the I/O throughput generated by
a single job may reach 10 TB/s and 100 MOPS, involving millions of processes [31]. At the CDN
company Cloudflare, the peak throughput reaches 55 million requests per second. [67]. This surge of
concurrent requests strains cache systems’ throughput capabilities, necessitating robust solutions.
As high throughput has become an important design goal in the last few years, some notable

solutions have been proposed to improve the scalability of cache systems. One solution is cache
sharding and fine-grained locking, which is used in RocksDB block cache[74] and Segcache[74].
The cache is split into multiple shardings managed by independent cache queue, mitigating global
contention between shardings. Another solution is designing novel cache eviction policies, of which
we introduce a few most relevant to our Mobius study next.

2.2 Eviction policy
In cache systems, the eviction policy plays a pivotal role in managing the limited cache space. It
determines which data item is least likely to be accessed in the future and thus evicts it when the
cache reaches its full capacity. The eviction policy significantly influences hit ratios and can become
a bottleneck for cache throughput. Therefore, studying eviction policies is crucial for addressing
throughput issues.

FIFO
Insert

Evict
(a)

LRU
Insert

Evict(b)

Access

CLOCK
Insert

(c) Evict

SIEVE
Insert

(d) Evict

hand

RightLeft

Promotion

Promotion

Fig. 1. Principles of FIFO, LRU, CLOCK, and SIEVE.

Most eviction policies fall into two categories: FIFO-based [32, 73, 75] and LRU-based [11, 34, 45].
The FIFO eviction policy evicts the oldest data item in the cache, while the LRU eviction policy
evicts the least recently accessed data item. The FIFO policy, depicted in Figure 1a, manages data
based on insertion order. New cache items are inserted on the left of the queue and oldest items are
evicted from the right. Differently, the LRU policy, shown in Figure 1b, promotes an accessed data
item to prolong its stay in the cache.

FIFO’s simplicity can result in inefficient caching decisions. The CLOCK algorithmwas introduced
to retain FIFO’s simplicity while approximating the LRU cache replacement policy. The principle of
CLOCK is illustrated in Figure 1c. In CLOCK, each cache item is associated with a reference bit.
When a cache hit occurs, the item’s reference bit is set to 1. During eviction, the algorithm examines
the oldest item from the right of the queue. If the item’s reference bit is 1, it is granted a "second
chance" to remain in the cache. The reference bit is then reset to 0, and the item is treated as a new
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entry, effectively re-inserting it at the left of the queue. The CLOCK algorithm continues searching
for an item with a reference bit of 0, which is selected as the eviction victim. This "second-chance"
mechanism is what sets CLOCK apart from the classic FIFO policy.

Derived from CLOCK, SIEVE [79] is a novel FIFO-based policy that introduces a key modification
to the eviction process. Unlike CLOCK, SIEVE retains accessed cache items in their original positions
rather than reinserting them into the queue. As shown in Figure 1d, the eviction process in SIEVE
is managed by a scanning hand that identifies eviction candidates. When the scanning hand
encounters an item with a reference bit set to 1 (indicating that it has been accessed), SIEVE clears
the reference bit and moves the hand to the next item, scanning from right to left. This process
continues until an unaccessed item with a reference bit of 0 is found, which is then evicted from
the queue. New items are always inserted at the left end of the queue, ensuring a clear separation
between newly added and retained items. By performing evictions directly within the queue, SIEVE
effectively maintains a balance between simplicity and improved cache management.
Extensive evaluations in prior research have highlighted SIEVE’s superior performance. As

reported in [79], SIEVE surpasses nine state-of-the-art algorithms in cache hit ratio for over 45% of
the 1,559 tested traces. This strong cache performance is attributed to its ability to rapidly evict
unpopular data, enabled by the continuous movement of the eviction hand. Quick eviction has
been recognized as an effective strategy for handling scan workloads and widely used in cache
eviction design, including LHD[2], ARC[41], LRU-K[45], and S3FIFO[75]. Hence, SIEVE efficiently
handles scan requests and large-scale transient workloads, freeing up space for hot data.
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Fig. 2. Performance analysis of LRU, Optimized LRU, TinyLFU, 2Q, FIFO, CLOCK, and SIEVE in CacheLib
with synthetic workloads following Zipfian distributions. (a) Hit ratio in a single thread. (b) Throughput
across 1-32 threads.

The four cache eviction policies can serve as building blocks for designing advanced policies
with higher cache hit ratios. LRU-K (typically with K=2) enhances LRU with a more aggressive
eviction strategy. LRU-2 maintains a history of the last two accesses for each item, prioritizing the
eviction of items accessed only once, followed by those with the oldest second access timestamp.
This approach enables LRU-K to quickly remove cold data. TwoQ [34] employs a FIFO queue as an
access history buffer to enforce stricter admission control. MQ [81] utilizes multiple LRU queues to
classify items based on their access frequency. LIRS [33] combines LRU for frequently accessed items
with FIFO for recently accessed but less frequently used items. Furthermore, replacing FIFO/LRU
queues in these policies with CLOCK or SIEVE can yield more advanced eviction strategies. For
instance, substituting LRU with SIEVE in TwoQ improves the cache hit ratio while also increasing
throughput [79].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 44. Publication date: June 2025.



44:6 Chao Dong, Fang Wang, Hong Jiang, and Dan Feng

2.3 Performance analysis.
In this section, we report and analyze our performance evaluation of seven popular or state-of-the-
art eviction policies, including four LRU-based policies (LRU [11], Optimized LRU, TinyLFU [14],
2Q [34]) and three FIFO-based policies(FIFO, CLOCK [10], and SIEVE[79]). Tests were conducted
using CacheLib with a dataset comprising 1M unique objects. The cache size is 10% of the dataset
size. Workloads are 100M generated reads to the dataset, following Power-law (generalized Zipfian)
distributions [9] with skewness 𝛼 = 1. The Zipfian distribution represents the majority of real-world
workloads [4, 63, 77].

Figure 2(a) illustrates the cache hit ratios of the seven eviction policies in a single-thread test,
and Figure 2(b) shows the cache throughput as a function of the thread count from 1 to 32. The
FIFO-based policies are marked in reddish colors, and the LRU-based policies are marked in blueish
ones. From Figure 2(a), we observe that most FIFO-based policies exhibit a lower hit ratio in the
single-thread test. Among them, SIEVE demonstrates outstanding performance, maintaining a
competitive hit ratio compared to Tiny-LFU. However, as depicted in Figure 2(b), although the
concurrent throughput of SIEVE is higher than LRU-based policies, it is much lower than that of
CLOCK and FIFO. With the thread count of eight, SIEVE reaches a maximum throughput of 5.9
MOPS, which is only 68.6% of that of FIFO and CLOCK. This observation motivates us to investigate
into the factors contributing to SIEVE’s inferior throughput performance to FIFO and CLOCK.

3 Motivation
A cache system operates through three fundamental actions: access, insert, and evict. When a user
reads data from the cache, an access operation is triggered. Two scenarios are possible: if the cache
hits, the data is returned directly to the user; if the cache misses, the system first evicts a stale cache
item if the cache is full, and then inserts the new item into the cache. These three fundamental
actions form the foundation of all cache operations. For example, a cache remove operation can
be implemented by marking the target cache item as unreadable. Since the item can no longer
be accessed, it eventually becomes an eviction candidate. Similarly, a replace operation combines
insert and remove behaviors. These three actions are the cornerstone of cache management, directly
impacting the efficiency and performance of cache eviction policies.
In LRU-based eviction policies, items are frequently moved from their original positions upon

access, a process known as promotion [73]. To enable efficient promotion from any position, LRU-
based policies are typically implemented using doubly linked lists [21, 34, 41]. However, promotion
from a doubly linked list requires modifying the pointers of neighboring items. Concurrent promo-
tions from the same list can lead to race conditions, compromising the consistency of the list. As
a result, LRU-based policies rely on coarse-grained locks as the concurrency control mechanism,
which ensures the correct executions of concurrent promotions while maintaining data consis-
tency, integrity, and isolation. Unfortunately, coarse-grained locks significantly hinder concurrent
throughput. To mitigate the overhead associated with promotion, CacheLib adopts Optimized LRU
(OPTLRU) as its default eviction policy. OPTLRU limits the number of promotions within a given
time frame, thereby reducing lock contention and improving throughput.

SIEVE outperforms LRU-based policies by eliminating the need for locks during data access. In
SIEVE, accessing a cache item only involves changing its reference bit, without altering its position.
However, the doubly linked list and locking are still required for evictions. SIEVE employs a hand
to select eviction victims cyclically within the queue. Item removal of SIEVE, akin to the promotion
of LRU-based policies, is inside the queue, necessitating locks to keep the consistency of the doubly
linked list.
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On the other hand, the FIFO and CLOCK eviction policies are simpler than their counterparts.
These policies do not remove items inside the queue but only involve two primary types of data
movements: enqueue and dequeue. Implementation of these operations is typically a lock-free FIFO
queue based on a singly linked list [61, 68]. As depicted in Figure 3, enqueue operations are linking
new data at the tail of the list, while dequeue operations remove old data from the head of the list.

…

tailhead EnqueueDequeue

Dequeue ( ):

repeat:

oldHead ← head

until CAS_head (oldHead, 
oldHead.next) is true

return oldHead

Enqueue (node):

repeat:

oldTail ← tail

until CAS_tail (oldTail, node) 
is true

oldTail.next ← node

Fig. 3. Lock-free FIFO queue implementation using a singly linked list to support enqueue and dequeue
operations. Enqueue inserts new data at the tail of the list, while dequeue removes old data from the head of
the list.

The lock-free implementation depicted in Figure 3 relies on single-word compare-and-swap
(CAS) atomic primitives, which are atomic instructions to achieve efficient concurrency control
without using locks [29]. These primitives compare the content of a memory location with a given
value and atomically modifying it if they match. For example, in the instruction CAS_tail(oldTail,
node), tail, oldTail, and node are all single-word pointers (memory addresses) of cache items. This
atomic instruction first compares tail to oldTail. If they are the same, set tail to node and return
true. If they are different, do nothing but return false. CAS primitives are widely supported across
different platforms and are significantly more efficient than exclusive locks.
To intuitively illustrate the concurrency control overhead of different cache eviction policies,

we further evaluate LRU, OptLRU, SIEVE, and CLOCK in CacheLib using 16 threads. The testing
method and data traces align with those in Section §2.3. We measure the time for access, insert, and
evict operations to assess their overhead, which is divided into two parts: the concurrency control
cost for locks or CAS primitives and the remaining cost associated with operating data structures.
The results are presented in Figure 4.
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Fig. 4. Overhead of access, insert, and evict operations in different cache eviction policies. All results are
normalized to the total overhead of LRU.

In the figure, there are three groups of bars representing the overhead of access, insert, and
evict operations, respectively. Each group contains four bars corresponding to the four eviction
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policies. The red sections of the bars indicate the concurrency control overhead (Lock/CAS), while
the blue sections represent the remaining operational overhead (Op). LRU serves as the baseline,
with its overhead set to 1 in each group. The overhead of the other policies is normalized to the
total overhead of LRU. From the figure, we can draw four observations.

a) Lock contention constitutes over 90% of LRU ’s overhead in the 16-thread tests, highlighting it
as the primary scalability bottleneck for current cache eviction algorithms.
b) OptLRU exhibits lower access overhead than LRU. The result aligns with its design goal of

reducing promotions during accesses and mitigating lock contentions. However, its insert and evict
overhead remains high.

c) SIEVE shows far less access overhead due to its lack of cache queue updates, which enhances
throughput compared to LRU-based policies. However, its insert and evict operations still incur
high overhead due to locking mechanisms.
d) CLOCK exhibits notably lower overhead, particularly in concurrency control costs during

insert and evict operations, being only 10% of LRU. This efficiency is attributed to its lock-free
design, contributing to its superior performance.
SIEVE reduces lock contention during access but cannot alleviate it during eviction. This lim-

itation is shared by several recent policies. For instance, the FrozenHot cache [54] periodically
constructs a read-only, lock-free hash table to index hot cache items, avoiding locks during cache
hits. However, FrozenHot uses an LRU-based list to manage missed cache items, which still leads
to lock contention during cache misses and evictions. Furthermore, the cache hit ratio periodically
decreases when the hash table is being rebuilt.
A more effective approach is to use lock-free data structures exclusively for managing cache

items. LearnStore [36, 69] randomly selects cache items and pushes them into a FIFO queue as
eviction candidates, avoiding lock contention during cache operations. However, this approach
struggles to evict stale cache items promptly, resulting in wasted cache space and a reduced hit
ratio. S3FIFO [75] employs three lock-free FIFO queues for cache management, achieving optimal
hit ratio and scalable throughput. However, its complex design and use of multiple data structures
increase the latency of all cache operations.
Existing research does not offer an optimal solution across all dimensions of hit ratio, cache

latency, and throughput. To address this, we propose Mobius, a lock-free version of SIEVE, which
retains the optimal hit ratio and latency of SIEVE while enhancing throughput. The key features of
Mobius include the use of lock-free data structures with CAS primitives instead of coarse-grained
locks, and the incorporation of a consecutive detection mechanism to minimize data races.

4 Design of Mobius
Mobius incorporates two key design features for highly concurrent throughput, making it signifi-
cantly different from SIEVE on which it is built . First, Mobius leverages two separate lock-free
FIFO queues to manage cache items, thus eliminating the need for locks in all cache operations
(§4.1). Second, Mobius employs a consecutive detection mechanism to minimize the occurrence of
enqueue and dequeue operations, thereby mitigating data races (§4.2).

4.1 Two lock-free FIFO queues in rotation
SIEVE resorts to using throughput-impeding locks due to the inherent complexity of removing items
within the queue. To circumvent this problem, Mobius introduces a novel approach by splitting the
single queue with locks used in SIEVE into two lock-free FIFO queues. One queue is responsible for
storing newly inserted data, called the active queue. The other queue holds retained items, termed
the dormant queue. When the cache reaches its full capacity, Mobius dequeues items from the active
queue. If the dequeued item has been recently accessed, Mobius enqueues it to the dormant queue.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 44. Publication date: June 2025.



Using Lock-Free Design for Throughput-Optimized Cache Eviction 44:9

When the active queue is almost empty, the two queues switch roles. In doing so, the active queue
receives new cache items while the dormant queue stores previously accessed items, achieving the
same purpose of the original SIEVE algorithm but without any locks. As a result, and importantly,
the eviction process, which consists of enqueuing and dequeuing items from the two FIFO queues,
remains lock-free.

Q0 (Active)

Q1 (Dormant )

tail_0 head_0

tail_1 head_1

Q0 (Dormant)

Insert
Q1 (Active)

tail_0 head_0

tail_1 head_1 Evict

Queue 1 is almost 
empty

Insert Evict

(a)

(b)

① ②

③

④ ⑤
⑥

Queue 0 is almost 
empty

Fig. 5. Principle of Mobius’s two FIFO queues. Mobius alternates cyclically between states (a) and (b).

Figure 5 illustrates the functionality of the two FIFO queues in Mobius. As shown in Figure 5a,
initially, Queue 0 (𝑄0) serves as the active queue, while Queue 1 (𝑄1) acts as the dormant queue.
New cache items are inserted into 𝑄0 (①). As the cache fills up, eviction operations are triggered.
If an item dequeued from 𝑄0 has not been accessed recently (with the reference bit of 0), Mobius
evicts it (②). Conversely, if the item has been accessed (with the reference bit of 1), Mobius clears
its reference bit and enqueues it into 𝑄1 (③). It’s worth noting that the maximum cache capacity is
fixed, meaning the total size of𝑄0 and𝑄1 remains constant from this point onward. As cache items
are moved from 𝑄0 to 𝑄1, 𝑄1 grows while 𝑄0 shrinks. Once 𝑄0 is almost empty, Mobius switches
the roles of the two queues: 𝑄1 becomes the new active queue and 𝑄0 is the new dormant queue,
as shown in Figure 5b. New cache items are inserted into 𝑄1 (④). Eviction candidates are dequeued
from 𝑄1 (⑤) while accessed items are re-added into 𝑄0 (⑥).

Mobius employs simple and effective methods to keep data consistency in concurrent operations.
All operations in Mobius rely on enqueue and dequeue actions. Races between enqueue and enqueue
(or dequeue and dequeue) are protected by CAS primitives. The main challenge, however, is handling
races between enqueue and dequeue. As shown in Figure 3, enqueue operates on the tail of the
FIFO queue, while dequeue operates on the head. As long as the queue is not empty, the tail and
head point to different memory addresses, allowing concurrent enqueue and dequeue operations to
proceed without interfering with each other, ensuring thread safety. However, there are still two
situations where conflicts may arise between enqueue and dequeue.

The first occurs when the queue is empty. Assuming there are two threads, denoted by𝑇1 and𝑇2,
where 𝑇1 launches an enqueue operation and 𝑇2 launches a dequeue operation to the same empty
queue. Since the queue is empty, the enqueue requires changing the head and tail simultaneously.
An inconsistency may occur as follows:𝑇1 first updates the head due to the enqueue. Then𝑇2 clears
the head because of the dequeue. Thereafter, 𝑇1 updates the tail to finish the enqueue. In this case,
the head is cleared, but the tail is not, resulting in an inconsistent state. To address this issue,
Mobius performs enqueue operations by updating the tail first, and then modifying the head.

The second case arises when the queue is close to becoming empty. Consider the scenario where
𝑇1 is about to dequeue the last item from the queue, while 𝑇2 simultaneously initiates an enqueue
operation. This creates a complex situation. The head and tail may point to the enqueue item and
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dequeue item respectively, leading to an inconsistent state for the queue. To address this, Mobius
optimizes the process by ensuring that the two queues never become empty after initialization.
When the active queue contains only a single element, Mobius blocks all dequeue actions to that
queue. The queue is then switched to become a dormant one, and the dequeue actions are redirected
to the new active queue, as illustrated by the rotation from Figure 5a to 5b. By ensuring that queues
never become empty after initialization, Mobius guarantees consistency even in multi-threaded
workloads. The associated pseudo-code and detailed discussion can be found in the APPENDIX A.

4.2 Eviction with consecutive detection
Mobius uses CAS primitives as the concurrency control mechanism in the enqueue and dequeue
operations on FIFO queues. Although CAS incurs less overhead compared to exclusive locks, it can
still lead to data races at the head and tail of the FIFO queue, which becomes the primary factor
limiting concurrent throughput. To reduce the frequency of these data races, we introduce a second
critical design element of Mobius: eviction with consecutive detection.

Figure 6a illustrates a typical eviction scenario involving three cache items. First, Mobius dequeues
the cache item from the head of the active queue (①). Since the item has been accessed, Mobius
enqueues it into the dormant queue (②). Then, Mobius repeats the operations for the second item
which is also accessed (③, ④). Finally, Mobius dequeues an unaccessed item (⑤), which is the
eviction victim. In this process, Mobius dequeues items three times and enqueues items twice,
totaling 5 operations.

…

head_0
tail_1

Active Q Dormant Q

①

head_0
②

tail_1

head_0

③
④

Evict

…

tail_1⑤

head_0

(a) Conventional eviction

…

head_0
tail_1

Active Q Dormant Q

②

Evict

…

tail_1

①

head_0

(b) Consecutive detection of eviction

Fig. 6. Process comparison between two eviciton methods. The count of dequeue and enqueue in (a) is 5, and
in (b) it is only 2.

However, we can optimize the eviction process by reducing the total number of operations.
Notice that the two enqueue operations are consecutive, as are the three dequeue operations. By
merging the consecutive enqueue or dequeue operations into a single engueue or dequeue operation
respectively, we introduce the concept of eviction with consecutive detection.

The process of the new eviction method is shown in Figure 6b. Mobius first detects consecutive
dequeue candidates from the head of the active queue. If the current item has been accessed, Mobius
skips it and moves to the next one. This detection continues until the first unaccessed item is
encountered. Then, Mobius dequeues all detected items as a sub-list (①). The last node of the
sub-list is the eviction victim. After removing the eviction victim, Mobius sets the items in the
sub-list as unaccessed, and enqueues them into the dormant queue (②). With this approach, Mobius
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dequeues items once and enqueues items once, reducing the total number of operations from 5 to
2. Eviction with consecutive detection proves to be more efficient than the conventional eviction
process.

The efficiency of consecutive detectionmechanism is affected by the cache hit ratio. The higher the
cache hit ratio, themore accessed items in the cache, and themore frequent the consecutive detection.
In the worst-case scenario where the cache hit ratio is so low that there are no accessed items in the
cache, the eviction with consecutive detection degrades to the conventional eviction process. This
implies that the eviction with consecutive detection is never inferior to the conventional eviction.
The associated pseudo-code and detailed discussion can be found in the APPENDIX B.

5 Evaluation
5.1 Evaluation Setup
This section introduces the experimental setup. All experiments are conducted on the same com-
mercial machine, equipped with 2 CPUs and 512 GB of memory. Each CPU has 26 cores. As shown
in Table 1, the machine runs Ubuntu 20.04.5 and utilizes GCC 9.4.0 as the compiler.

We implement Mobius in CacheLib [42] and rocksDB [49] to evaluate its throughput and cache hit
ratio 1. The evaluation encompasses four aspects: performance comparisonwith the state-of-the-arts
in synthetic workloads (§5.2), performance breakdown analysis to assess effectiveness of Mobius’
individual design features (§5.3), performance evaluation of Mobius in real-world workloads (§5.4),
and performance gain of applying Mobius to RocksDB (§5.5).

Table 1. Environment Configuration

CPU Intel(R) Xeon(R) Gold 5320 (26 cores)
Memory 512 GB
Disk Intel D7-P5510 Series NVMe SSD 3.84TB
OS Ubuntu 20.04.5 LTS
Kernel 5.15.0-91-generic

We utilize CacheLib as the platform to evaluate the performance of Mobius and comparison
schemes. CacheLib is a high-throughput, low-overhead caching service that provides a thread-
safe API [3]. We adopt the code publicized by previous work [65, 75], which implemented some
novel cache eviction policies in CacheLib. Building upon this codebase, we implement Mobius and
comparison schemes in CacheLib to facilitate multi-threaded tests.
Workloads. Two types of workloads are used to evaluate the performance of Mobius. The

first type comprises synthetic workloads. We create 1 million objects with unique keys, where
the keys are 64-bit unsigned integers, and the values are 4KB in size. Subsequently, we generate
100M requests to the dataset following a heavy-tailed power-law distribution (also known as a
generalized Zipfian distribution) with a skewness parameter of 𝛼 = 1 [4]. The second type is
real-world workloads from Meta [50].
Comparison Schemes. Several cache eviction policies are implemented for comparison with

Mobius. The first is SIEVE [79], the precursor to Mobius. The second is S3FIFO [75], a FIFO-based
eviction policy that utilizes multiple FIFO queues. Both S3FIFO and Mobius utilize multiple FIFO
queues, but for different purposes. In S3FIFO, three lock-free FIFO queues are used to enhance
1The code is available at https://github.com/Anonymous-chaos/Cachelib-with-Mobius and https://github.com/Anonymous-
chaos/RocksDB-with-Mobius
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cache hit ratio. Queue 1 filters one-hit data, Queue 2 stores multi-hit data, and Queue 3 is a ghost
queue that retains metadata of recently evicted items. While the ghost queue improves hit ratios,
it also incurs additional memory overhead. The third scheme is FIFO, and the fourth is CLOCK
[10]. These two policies are implemented with lock-free mechanisms. Additionally, OPTLRU and
TinyLFU [14] are included for comparison purposes. OPTLRU is selected as it serves as the default
eviction policy of CacheLib, balancing throughput and hit ratio. In OPTLRU, cache items can only
be promoted once within a certain time period, reducing data races during access. TinyLFU is
chosen due to its demonstrated high cache hit ratio in our pretesting, as shown in Figure 2.

5.2 Mobius under Synthetic workloads
This section uses synthetic workloads to evaluate Mobius in terms of throughput and cache hit
ratio. We employ a Zipfian distribution with a skewness parameter 𝛼 = 1 to generate synthetic
traces. Each thread accesses the same trace, but with a unique prefix added to the keys to scale
the datasets. The size of the shared cache increases as the number of threads grows. We set the
cache size to 40 MB per thread, constituting 1% of the dataset size (1M * 4 KB). We then vary the
thread count from 1 to 16 within the same NUMA node and record the corresponding throughput
and cache hit ratio. Subsequently, we repeat the test with a cache size of 400 MB per thread while
keeping other configurations constant. In the second test, the cache size accounts for 10% of the
dataset size.

5.2.1 Throughput. Figure 7 presents the throughput results. In Figure 7a, the left graph illustrates
throughput as a function of thread count when the cache size is 1% of the dataset. The right graph
depicts single-thread throughput. Figure 7b shows throughput when the cache size is 10% of the
dataset. From these figures, we can draw three observations.
1) Mobius consistently achieves the highest throughput in multi-thread evaluations. As shown

in Figure 7a, when the cache size is 1% of the dataset, Mobius peaks at 11.82 MOPS with 11
threads, surpassing SIEVE by 2.83× and OPTLRU by 4.67×. S3FIFO comes closest, achieving a peak
throughput of 10.46 MOPS, still 12% less than Mobius. With a cache size of 10% of the dataset, the
performance gap widens further. Mobius peaks at 16.29 MOPS, surpassing OPTLRU by 5.3× and
S3FIFO by 1.27×. Mobius’s superior performance stems from its lock-free design and consecutive
detection of eviction.
2) Mobius also exhibits the highest single-thread throughput. As shown in Figure 7a, when

the thread count is 1 and the cache size is 1% of the dataset, Mobius achieves a throughput of
2.72 MOPS, while SIEVE follows closely at 2.53 MOPS, ranking as the top two eviction policies.
Mobius outperforms SIEVE due to its use of a singly linked list and no locks. Compared to the
doubly linked list that SIEVE uses, a lock-free singly linked list incurs lower update overhead.
Additionally, Mobius and SIEVE outperform other policies due to their simplicity and efficiency.
LRU-based policies, such as TinyLRU and OPTLRU, induce data structure updates even on cache
hits, resulting in the lowest single-thread throughput. CLOCK, FIFO, and S3FIFO perform better
because they do not move cache items on cache hits. However, CLOCK and FIFO exhibit lower
cache hit ratios, leading to more frequent enqueue and dequeue operations than SIEVE and Mobius.
Similarly, S3FIFO’s operation on multiple queues increases the frequency of enqueue and dequeue
operations, resulting in inferior throughput to SIEVE and Mobius.
3) SIEVE outperforms LRU-based policies (OPTLRU and TinyLFU) but lags behind other FIFO-

based policies. In Figure 7a, SIEVE achieves a maximum throughput of 4.17 MOPS, surpassing
OPTLRU by 1.64× and TinyLFU by 2.64×. This outcome aligns with expectations, as SIEVE outper-
forms LRU-based policies due to its lock-free cache hits. However, SIEVE’s requirement for locking
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Fig. 7. Multi-thread throughput comparison of Mobius, Sieve, S3FIFO, FIFO, CLOCK, OPTLRU, and TinyLFU
under two cache size scenarios. (a) 1% of dataset size, and (b) 10% of dataset size. Thread count ranges from 1
to 16.

on cache misses lowers its throughput compared to lock-free eviction policies like Mobius, S3FIFO,
FIFO, and CLOCK.

5.2.2 Hit Ratio. Next, we analyze cache hit ratio. We record the cache hit ratio of Mobius and
comparison schemes when the cache size constitutes 1% and 10% of the dataset size respectively.
Specifically, we record the cache hit ratio of each policy when the thread count is 1. The results are
depicted in Figure 8. Notably, in single-thread evaluation, since Mobius and SIEVE share the same
algorithm, Mobius and SIEVE always exhibit the same cache hit ratio.

Although cache hit ratio is not the primary focus of this paper, we observe that Mobius, SIEVE,
S3FIFO, and TinyLFU have similar hit ratios higher than other eviction policies. SIEVE and Mo-
bius demonstrate high cache efficiency, consistent with previous research [79]. This efficiency is
attributed to SIEVE’s ability to fast remove unpopular cache items.

5.2.3 Latency. Finally, we analyze the latency of different cache eviction policies. We record the
latency of each request in a 16-thread test when the cache size constitutes 10% of the dataset size.
Then, we sort the latency values for each policy and compute the Cumulative Distribution Function
(CDF) of latency, as shown on the left side of Figure 9. The Y-axis represents latency, from the lowest
to the highest values on a logarithmic scale, while the X-axis shows the percentage of requests
whose latency is below the corresponding value, ranging from 0 to 1. To facilitate comparison, we
also display the P50, P90, P99, and P999 tail latencies on the right side of Figure 9. Here, the P50
value indicates that 50% of the requests have a latency lower than this threshold.
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Fig. 9. Latency comparison of Mobius, Sieve, S3FIFO, CLOCK, TinyLFU, 2Q, and OPTLRU with the cache
size at 10% of the dataset size and 16 threads.

From the analysis, we observe that the latency of Mobius is significantly lower than that of the
comparison schemes at all measured percentiles. In the left figure, Mobius consistently shows the
lowest latency. In the right figure, the P99 latency of Sieve and S3FIFO is 2.3× and 1.6× higher than
Mobius, respectively, while the P999 latency is 4.6× and 1.9× higher. The low latency of Mobius is
attributed to its simple and lock-free implementation.

5.3 Effectiveness of Mobius Design Features
In this section, we evaluate how each design feature of Mobius contributes to the overall throughput
of Mobius. Mobius incorporates two key designs: lock-free FIFO queues and consecutive detection of
eviction. Since these designs operate independently, we can assess the impact of each one separately.
We use the original implementation of SIEVE as the baseline for comparison. We conduct tests
on Mobius with and without consecutive detection to isolate the effects of each design feature,
denoted by Mobius and Mobius-w/d, respectively. We also include S3FIFO, a cache eviction policy
with state-of-the-art throughput optimization, for comparison purposes.

Because the effectiveness of consecutive detection is influenced by the cache hit ratio, we adjust
the cache size to vary the hit ratio. We conduct tests with cache sizes ranging from 10% to 90% of
the dataset size. For each test, we scale the number of threads from 1 to 32 and record the maximum
throughput. The workloads consist of 100 million requests to 1 million objects, each sized at 4 KB.
The maximum memory footprint remains below 115.2 GB (1 million objects * 4 KB/object * 32
threads * 90%), which is within the 512 GB physical memory limit.
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Fig. 10. Performance comparison of Mobius, Mobius without consecutive detection, SIEVE, and S3FIFO.
(a) Maximum throughput in multi threads as cache size ranges from 10% to 90% of the dataset size. (b)
Single-thread throughput with cache size from 10% to 90%. (c) Single-thread cache hit ratio with cache size
from 10% to 90%.

We present the maximum throughput and single-thread throughput during the tests, as shown
in Figures 10a and 10b, respectively. Additionally, Figure 10c illustrates the cache hit ratio in the
single-thread test. From these figures, we draw five main observations.
1) Mobius consistently outperforms other schemes. When sorting schemes in Figure 10a by

throughput from highest to lowest, Mobius with both lock-free structure and consecutive detection
ranks highest, followed by Mobius without consecutive detection, and then S3FIFO or SIEVE. This
indicates that both design features of Mobius contribute to its superiority across various cache
sizes.
2) The performance gap between Mobius and SIEVE is more obvious when the cache size is

not too large. At a cache size of 10% of the dataset size in Figure 10a, the maximum throughput
of Mobius in multi-thread evaluations is 2.6× higher than SIEVE’s. However, as the cache size
approaches 90% of the dataset size, the maximum throughput of Mobius is only 1.15× higher than
that of SIEVE. Mobius outperforms SIEVE due to its lock-free structure with two FIFO queues.
When the cache size is smaller, the cache hit ratio is lower, and data races are more frequent. Mobius
is more efficient than SIEVE in handling frequent data races.
3) Consecutive detection shows greater effectiveness with larger cache sizes. As depicted in

Figure 10a, when the cache size is small (10% of the dataset size), the impact of consecutive
detection on Mobius’ throughput is minimal. As the cache size increases, the maximum throughput
of Mobius with consecutive detection becomes noticeably higher than that of Mobius without
consecutive detection (Mobius-w/d). When the cache size is 90% of the dataset size, the maximum
throughput of Mobius is 8% higher. This is because consecutive detection takes effect when the
cache hit ratio is high. From Figure 10c, we can observe that the cache hit ratio increases as
the cache size grows larger. With a higher cache hit ratio, more items are accessed in the cache.
Consequently, consecutive detection reduces the frequency of enqueues and dequeues in eviction,
thereby increasing throughput.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 44. Publication date: June 2025.



44:16 Chao Dong, Fang Wang, Hong Jiang, and Dan Feng

4) S3FIFO consistently underperformsMobius in all tests, particularly in single-thread evaluations
and with larger cache sizes (90%). This is attributed to the complex operations involved in S3FIFO,
which require more metadata management than other eviction policies. In scenarios with fewer
data races for eviction, such as single-thread or large cache sizes, S3FIFO’s performance suffers.
This evaluation demonstrates that both designs of Mobius contribute significantly to its per-

formance superiority. The lock-free structure is more effective when cache hit ratio is low, while
consecutive detection is more effective when cache hit ratio is high. These two designs complement
each other, making Mobius efficient in different scenarios.

5.4 Mobius under real-world workloads
In this section, we evaluate the throughput of Mobius using four types of real-world workloads
sourced from Meta [50]. The four workloads were collected from high-concurrency clusters with
thousands of hosts. The first trace spans 5 consecutive days from Meta’s key-value cache cluster in
2022, referred to as KV-1 in this paper. The second trace, KV-2, is collected from the same cluster in
2024. The third trace, CDN, originates from Meta’s CDN cache cluster over a 7-day period in 2023.
Lastly, the Block trace comes from a Meta block storage cluster over 5 days in 2023. The numbers
of requests in the four workloads range from 65 million to 1 billion. Similar to the evaluations with
synthetic workloads, we scale the traces by adding a unique prefix to the keys in each thread. We
vary the thread count from 1 to 16. The size of the shared cache is increased by the number of
threads. Each thread corresponds to 4,000 MB cache space (as well as 1M cached items) to keep the
cache size less than 5% of the dataset size. We repeat the evaluations for each dataset to measure
their throughput.

Table 2. Features of Meta’s traces

#Req #Obj Cache / Data
KV-1 1B 54M 1.85%
KV-2 782M 63M 1.59%
CDN 250M 86M 1.16%
Block 65M 30M 3.33%

5.4.1 Throughput. We compare Mobius with SIEVE, S3FIFO, and OPTLRU. Figure 11 shows the
throughput as a function of thread count. The results mirror those of the synthetic workloads.
Mobius consistently outperforms other eviction policies, with a peak throughput more than twice
that of SIEVE and three times that of OPTLRU across all traces. Only S3FIFO shows comparable
performance. Compared to S3FIFO, Mobius achieves a 10% higher maximum throughput in the KV-1
and KV-2 traces, and a slightly higher performance in the CDN and Block traces. These findings
indicate that Mobius performs well under real-world workloads.

5.4.2 Hit Ratio. Next, we measure the hit ratio of Mobius in real-world workloads, comparing it
with S3FIFO, CLOCK, OPTLRU, TinyLFU, and 2Q. The cache hit ratio is recorded using a single
thread. Since SIEVE shares the same hit ratio as Mobius in a single thread, we exclude it from the
test. The results are depicted in Figure 12. We draw two observations from the figure:

1) The cache hit ratios of the evaluated cache eviction policies are closely aligned. For instance,
under the KV-1 workload, 2Q achieves the highest cache hit ratio at 84.34%, while CLOCK records
the lowest at 82.82%. The difference between the highest and lowest hit ratios is 1.8%, which is
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an inconspicuous gap whose performance impact (latency) may be relatively mild compared to
throughput, especially as the performance gap between storage and cache narrows.
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Fig. 11. Throughput comparison of Mobius, SIEVE, S3FIFO, and OPTLRU across four real-world traces: (a)
KV-1, (b) KV-2, (c) CDN, (d) Block.

2) Under the block trace, the hit ratio of Mobius is slightly higher than 2Q (+0.2%). Given that
the block trace includes a significant number of scan requests, and since 2Q is designed as a scan-
resistant eviction policy, the fact that Mobius outperforms 2Q suggests that Mobius is also effective
in resisting scan-related performance issues.

5.5 Mobius in RocksDB
Finally, we apply Mobius to RocksDB [49]. RocksDB is a high-performance embedded key-value
database widely used in production systems at Meta [49], Yahoo[17], LinkedIn[20], Alluxio[37],
and others[6]. RocksDB utilizes a cache to accelerate read performance, known as the block cache,
with LRU cache being its default eviction scheme implementation. We replace the LRU cache in
RocksDB with Mobius to create a Mobius cache. We benchmark the performance of the modified
RocksDB against the original one.
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5.5.1 Cache benchmark. First, we evaluate the throughput of different versions of block cache
using 𝑐𝑎𝑐ℎ𝑒_𝑏𝑒𝑛𝑐ℎ. 𝐶𝑎𝑐ℎ𝑒_𝑏𝑒𝑛𝑐ℎ is a benchmark tool embedded in RocksDB’s source code for
testing the block cache’s performance. The block cache in RocksDB supports cache shards for
higher scalability, with each cache shard having its own eviction queues. To explore the scalability
of the eviction policy, we set the number of cache shards to 1. The cache occupies 1 GB of memory,
capable of containing a maximum of 127K cache entries. We vary the thread count from 2 to 20,
with each thread issuing 10M read requests to the cache. 95% of the requests are insertions and
accesses, while the remaining are other operations such as erasing. All other configurations are
kept at defaults in 𝑐𝑎𝑐ℎ𝑒_𝑏𝑒𝑛𝑐ℎ. We plot the throughput as a function of the number of threads in
Figure 13.
As the number of threads increases, the throughput of the LRU cache remains at 0.5 MOPS.

The peak throughput of LRU cache is 0.65 MOPS when the thread count is 4. In contrast, Mobius
exhibits better scalability. Its throughput increases continuously with the number of threads. When
the thread count is 20, the throughput reaches its maximum value, around 2.3 MOPS, which is 3.4×
that of the LRU cache. The 𝑐𝑎𝑐ℎ𝑒_𝑏𝑒𝑛𝑐ℎ test further confirms Mobius’s high throughput.
The poor scalability of LRU cache is due to its locking mechanism. As the number of threads

increases, data races become more frequent, leading to increased lock contention in LRU cache.
Benefiting from the lock-free design, Mobius cache demonstrates better scalability. In fact, the
developers of RocksDB have already noticed the poor scalability of LRU cache. In the latest version
of RocksDB, the block cache offers an alternative implementation with a variant of CLOCK, known
as CLOCK cache, designed for high throughput scenarios.
We also evaluate the performance of the CLOCK cache in Figure 13. The CLOCK cache out-

performs Mobius in throughput due to its hash-based design. Specifically, RocksDB implements
the CLOCK cache using a lock-free hash table, rather than FIFO or LRU queues. The inherent
concurrency advantages of hash tables, compared to lists, contribute to the higher throughput of
the CLOCK cache. However, these hash table advantages come at the expense of not preserving
the insertion order of cached items. As a result, the CLOCK cache can only evict items based on
their hash order, rather than their insertion order, which reduces the cache hit ratio. This limitation
explains why the CLOCK cache is not yet the default block cache in RocksDB.

The evaluation with 𝑐𝑎𝑐ℎ𝑒_𝑏𝑒𝑛𝑐ℎ demonstrates that the Mobius cache has better scalability than
the LRU cache. Moreover, unlike the CLOCK cache, Mobius maintains a higher cache hit ratio than
the LRU cache in extensive evaluations [79]. The combination of high throughput and cache hit
ratios suggests that the Mobius cache has the potential to be the candidate for the block cache in
RocksDB.

5.5.2 System Performance. We evaluate the overall performance of RocksDB with Mobius cache
using db_bench, the official benchmark tool embedded in RocksDB. Before running the tests, we
pre-create a database with 8 billion objects on our disk. Since the block cache primarily targets reads,
we utilize three types of read-only workloads: randomized single-point reads without skewness
(randread with 𝑟𝑒𝑎𝑑_𝑟𝑎𝑛𝑑𝑜𝑚_𝑒𝑥𝑝_𝑟𝑎𝑛𝑔𝑒 = 0), randomized single-point reads with high skewness
(randread with 𝑟 .𝑟 .𝑒 .𝑟 . = 10), and randomized range reads for 10 adjacent objects (fwdrange). We set
the number of cache shards to 16 and the thread count to 64. All tests run for 4,000 seconds, with
other configurations set to their default values in the embedded script 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘.𝑠ℎ. We compare
the performance against the original RocksDB with LRU cache.
The throughput measurement of RocksDB with the Mobius cache and LRU cache over 4,000

seconds is depicted in Figure 14. The results of single-point reads are illustrated in Figure 14a, and
those of range reads are shown in Figure 14b. The tail latency comparison is shown in Figure 15.
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Figure 15a depicts the tail latency of single-point reads while Figure 15b illustrates the tail latency
of range reads. From these figures, we can draw three observations.

1) The throughput of RocksDB with the Mobius cache consistently surpasses that with the LRU
cache. As depicted in Figure 14a, the throughput of the former during single-point reads ranges
from 95 KOPS to 102 KOPS, while that of the latter hovers around 92 KOPS. On average, the former
is 4% higher than the latter, demonstrating that Mobius enhances overall system performance.

2) As shown in Figure 15, the tail latency of the Mobius cache are also lower than the LRU cache.
3) The improvement brought by Mobius is particularly noticeable during range reads. As shown

in Figure 14b, the throughput of RocksDB with the Mobius cache is around 2 KOPS, while that with
the LRU cache is less than 1.8 KOPS. On average, the former is 14% higher than the latter. Figure 15b
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also shows that the Mobius cache reduces 20-30% P99 latency compared to the LRU cache. This may
be attributed to the fact that range reads often access the same cache item repeatedly. In the block
cache, cache items are blocks, which are typically larger than individual objects. Consequently, a
single block may contain multiple adjacent objects. A range read operation may access the same
block multiple times, resulting in significant contention in LRU cache. However, Mobius, being free
from data races during cache access, proves more efficient in range reads.

6 Conclusions
This paper focuses on studying the scalable throughput of cache eviction policies. From our
preliminary research and evaluations, we identified scalability as a key factor and found that the
primary bottleneck is the locking mechanism. To address this, we replace the locking mechanism
with a lock-free design, by introducing Mobius, which is built on SIEVE - a recent eviction policy
known for its high cache efficiency but limited scalability due to its use of locks [79]. Unlike SIEVE,
Mobius uses lock-free data structures with two FIFO queues and improves scalability by selecting
eviction victims through consecutive detection. Compared to other cache eviction policies, Mobius
achieves a high hit ratio, better concurrent throughput, and lower latency. As demonstrated by its
implementation in CacheLib and RocksDB, Mobius shows potential for broad application.
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APPENDIX
A Pseudo-code of two FIFO queues

Algorithm 1:Mobius - two FIFO queues in rotation
/* The modified enqueue function in Mobius. */

1 Function 𝐸𝑛𝑞𝑢𝑒𝑢𝑒(𝑖𝑡𝑒𝑚):
2 𝑖𝑡𝑒𝑚.𝑛𝑒𝑥𝑡 = null;
3 repeat
4 𝑜𝑙𝑑𝑇𝑎𝑖𝑙 ← 𝑡𝑎𝑖𝑙 ;
5 until CAS_tail(𝑜𝑙𝑑𝑇𝑎𝑖𝑙 , 𝑖𝑡𝑒𝑚) is True;
6 if 𝑜𝑙𝑑𝑇𝑎𝑖𝑙 is null then
7 ℎ𝑒𝑎𝑑 ← 𝑖𝑡𝑒𝑚;
8 else
9 𝑜𝑙𝑑𝑇𝑎𝑖𝑙 .𝑛𝑒𝑥𝑡 ← 𝑖𝑡𝑒𝑚;

10 return;
/* This function inserts a cache item into Mobius. */

11 Function 𝐼𝑛𝑠𝑒𝑟𝑡(𝑖𝑡𝑒𝑚):
12 𝑖𝑡𝑒𝑚.𝑖𝑠𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 ← 0;
13 𝑄 [𝑤ℎ𝑖𝑐ℎ𝑄].𝐸𝑛𝑞𝑢𝑒𝑢𝑒(𝑖𝑡𝑒𝑚);
14 return;

/* This function evicts a cache item from Mobius. */

15 Function 𝐸𝑣𝑖𝑐𝑡():
16 𝑤 ← 𝑤ℎ𝑖𝑐ℎ𝑄 ;
17 Using 𝑎𝑐𝑡𝑖𝑣𝑒𝑄 represents 𝑄 [𝑤];
18 Using 𝑑𝑜𝑟𝑚𝑎𝑛𝑡𝑄 represents 𝑄 [!𝑤];
19 while True do
20 repeat
21 repeat
22 𝑖𝑡𝑒𝑚 ← 𝑎𝑐𝑡𝑖𝑣𝑒𝑄.ℎ𝑒𝑎𝑑 ;
23 until item is not null;
24 if Item is the last element in activeQ then
25 𝐶𝐴𝑆_𝑤ℎ𝑖𝑐ℎ𝑄 (𝑤, !𝑤);
26 return 𝐸𝑣𝑖𝑐𝑡();
27 until 𝑎𝑐𝑡𝑖𝑣𝑒𝑄 .CAS_head(𝑖𝑡𝑒𝑚, 𝑖𝑡𝑒𝑚.𝑛𝑒𝑥𝑡 ) is True;
28 if 𝑖𝑡𝑒𝑚.𝑖𝑠𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 is 1 then
29 𝑖𝑡𝑒𝑚.𝑖𝑠𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 ← 0 ;
30 𝑑𝑜𝑟𝑚𝑎𝑛𝑡𝑄 .𝐸𝑛𝑞𝑢𝑒𝑢𝑒(𝑖𝑡𝑒𝑚);
31 else
32 return 𝑖𝑡𝑒𝑚;

Algorithm 1 outlines the pseudocode for the Insert and Evict operations of Mobius. The Access
operation is not included here because it is straightforward, which simply updates a reference bit.
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Mobius consists of three data members: two FIFO queues and an atomic boolean variable indicating
the active queue. In the pseudocode, the queues are referred to as Q[0] and Q[1], and the variable is
called whichQ. Each FIFO queue manages its own head and tail.
First, lines 1-10 depict the modified Enqueue operation. We’ve added a condition to check if

the queue is empty. After inserting an item into the queue, Mobius checks if the original tail is
null, indicating an empty queue (line 6). If so, Mobius sets the head to the item (line 7) to ensure
subsequent dequeues function properly. If the queue is not empty, Mobius links the item after the
original tail (line 9).

Lines 11-14 illustrate the Insert operation in Mobius. Mobius initializes the reference bit (line 12)
and then enqueues the item into the active queue (line 13).
The Evict function is the most complex part of Mobius, as shown in lines 15-32. Mobius first

determines the active queue and the dormant queue based on the whichQ variable (lines 16-18).
Then, Mobius enters a loop to find the eviction victim. Within the loop, Mobius dequeues the oldest
cache item from the head of the active queue (lines 20-27). This dequeue operation is modified to
handle boundary cases. At lines 21-23, Mobius repeats the check for the tail of the active queue
until a valid candidate is found, avoiding dequeuing from an empty queue. At line 24, Mobius
checks if the dequeued candidate is the last element in the active queue. The decision basis is
that: If the next item after the candidate is null (𝑖𝑡𝑒𝑚.𝑛𝑒𝑥𝑡 𝑖𝑠 𝑛𝑢𝑙𝑙), and the candidate is the head
of the active queue (𝑖𝑡𝑒𝑚 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒𝑄.ℎ𝑒𝑎𝑑), it is the last element in the active queue. In this case,
Mobius switches the active queue by negating the value of whichQ (line 25). Then, Mobius calls the
Evict function again to find the eviction victim from the new active queue (line 26). If the active
queue contains more than one element, Mobius continues to dequeue cache items until it succeeds
(line 27). Once the modified dequeue operation is completed, the remaining process is similar to
that of CLOCK. Mobius checks the reference bit of the dequeued item (line 28). If the item has
been accessed, Mobius clears its reference bit (line 29), inserts it into the dormant queue (line 30),
and continues the loop for the next candidate. If the item has not been accessed, it is deemed the
eviction victim (line 32).
The races between Enqueues are thread-safe. The critical resource involved in multi-thread

Enqueues is the tail, with its atomic updates ensured by the CAS_tail instruction (line 4). Therefore,
we only need to consider the remaining parts of Mobius. The critical resources in Mobius are the
boolean variable whichQ, and the head and tail of the two queues. Lines 20-27 in function Evict is
the associated code block other than Enqueue, referred to as the Evict for brevity. We’ll discuss two
possible race conditions: between Enqueue and Evict, and between two Evicts.
The first race condition may occur when Enqueue and Evict operate on the same empty active

queue. This scenario aligns with the boundary cases we’ve discussed. Since Enqueue updates the
head last (line 7), and Evict keeps blocking until the head is valid (lines 21-23), Evicts always occur
after the first Enqueue, preventing inconsistency. After initialization, the queues are never empty,
ensuring thread safety.
The second race condition arises from multiple Evicts. Evicts (lines 20-27) involve two critical

resources:whichQ and the head of the active queue. Mobius operates onwhichQ at line 25, switching
the active queue by assigning the logical negation of w to whichQ. The CAS primitive ensures a
consistent result in parallel. Even if multiple threads run the code simultaneously, only one thread
can update whichQ, while other threads will fail because the updated whichQ is not equal to w.
Thus, the update to whichQ is thread-safe. Similarly, the head is also thread-safe due to the CAS
primitives at line 27. The thread safety of Mobius is confirmed.
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B Pseudo-code of consecutive detection
Algorithm 2 presents the pseudo-code for the operations with consecutive detection. In comparison
to the previous methods outlined in Algorithm 1, we make adjustments to the functions of Enqueue
and Evict to support range operations. The modified Enqueue function is depicted in lines 1-10.
It now accepts two parameters, beginItem and endItem. beginItem represents the first item of a
sub-list, while endItem signifies the end. This function links the sub-list to the tail of a FIFO queue.
Notably, if beginItem and endItem are the same, this Enqueue operation merely inserts one item,
degenerating to the previous version. Thus, the modification of Insert involves only changing the
parameter count of Enqueue from one to two (line 13).

The Evict function (lines 15-39) is more complex, involving a two-level loop. Several issues must
be addressed within the Evict function. The first issue is how to identify a sub-list from the head of
the active queue. This sub-list should consist of consecutive accessed items, with the next cache
item after the sub-list being unaccessed. The solution is depicted in the internal loop (lines 21-34)
in Algorithm 2.

Within the loop, Mobius first initializes associated variables (lines 23-25). It records the head of
the active queue in a local variable, referred to as oldHead (line 23). oldHead represents the head of
the original queue and the beginning item of the operated sub-list. The search begins from the head
(line 24). If the active queue is empty (𝑖𝑡𝑒𝑚 𝑖𝑠 𝑛𝑢𝑙𝑙 ), or it contains only one element (line 26), Mobius
updates whichQ to switch the active queue (line 27) and restarts the eviction process (line 29). The
criterion for identifying the last element is as follows: the next item after the candidate is null
(𝑖𝑡𝑒𝑚.𝑛𝑒𝑥𝑡 𝑖𝑠 𝑛𝑢𝑙𝑙 ), and OldHead remains the head of the active queue (𝑂𝑙𝑑𝐻𝑒𝑎𝑑 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒𝑄.ℎ𝑒𝑎𝑑).
When Mobius determines that there’s no need to switch the active queue, it checks the reference
bit of the current item (line 30). If this item is accessed, Mobius records it in the variable prev (line
31), which represents the end item of the operated sub-list. Subsequently, Mobius searches for the
next item (line 32). The internal loop continues until the first unaccessed cache item is found (lines
33, 34), which serves as the eviction victim. The sub-list to be enqueued into the dormant queue is
then determined, starting from oldHead and ending at prev.

The second issue in the Evict function is how to dequeue the sub-list from the active queue. The
solution is the external loop (lines 19, 35). After identifying the sub-list, Mobius utilizes the CAS
primitive to update the head of the active queue. If head differs from OldHead, it indicates that the
current sub-list has been dequeued by another thread. Mobius re-enters the internal loop (lines
21-34) to find the next sub-list. If the head remains the same as oldHead, Mobius updates the head
to the next item after the eviction victim (line 35) and proceeds to the subsequent step.

The third issue is how to enqueue the sub-list into the dormant queue. The solution is depicted
in lines 36-39. Mobius first checks the variable prev (line 36). If prev is valid, it indicates that the
sub-list contains at least one element. Mobius sets the cache items in the sub-list to unaccessed
(line 37) and enqueues the sub-list into the dormant queue (line 38). If prev is null, it signifies that
the sub-list is empty, and no Enqueue operation is necessary. Finally, the eviction victim is returned
(line 39). It is worth noting that the reference bits are cleared in batches in the new Evict function.
There are two conditions for clearing the reference bits. The first condition is at line 37. When a
thread identifies an eviction victim, it should clear the reference bits in the corresponding sub-list.
The second condition is at line 28. When a thread searches for the last element and successfully
switches the active queue, it should set the searched items as unaccessed.
There are new race conditions introduced by the consecutive detection mechanism. Assuming

two threads invoke the Evict function simultaneously, and they are detecting the same sub-list. The
first thread (denoted by𝑇1) has dequeued the sub-list from the active queue (after line 35), while the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 44. Publication date: June 2025.



Using Lock-Free Design for Throughput-Optimized Cache Eviction 44:27

Algorithm 2:Mobius - consecutive detection
/* Modified enqueue function in Mobius */

1 Function 𝐸𝑛𝑞𝑢𝑒𝑢𝑒(𝑏𝑒𝑔𝑖𝑛𝐼𝑡𝑒𝑚, 𝑒𝑛𝑑𝐼𝑡𝑒𝑚):
2 𝑒𝑛𝑑𝐼𝑡𝑒𝑚.𝑛𝑒𝑥𝑡 = null;
3 repeat
4 𝑜𝑙𝑑𝑇𝑎𝑖𝑙 ← 𝑡𝑎𝑖𝑙 ;
5 until CAS_tail(𝑜𝑙𝑑𝑇𝑎𝑖𝑙 , 𝑒𝑛𝑑𝐼𝑡𝑒𝑚) is True;
6 if 𝑜𝑙𝑑𝑇𝑎𝑖𝑙 is null then
7 ℎ𝑒𝑎𝑑 ← 𝑏𝑒𝑔𝑖𝑛𝐼𝑡𝑒𝑚;
8 else
9 𝑜𝑙𝑑𝑇𝑎𝑖𝑙 .𝑛𝑒𝑥𝑡 ← 𝑏𝑒𝑔𝑖𝑛𝐼𝑡𝑒𝑚;

10 return;
/* Insert a cache item into Mobius. */

11 Function 𝐼𝑛𝑠𝑒𝑟𝑡(𝑖𝑡𝑒𝑚):
12 𝑖𝑡𝑒𝑚.𝑖𝑠𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 ← 0;
13 𝑄 [𝑤ℎ𝑖𝑐ℎ𝑄].𝐸𝑛𝑞𝑢𝑒𝑢𝑒(𝑖𝑡𝑒𝑚, 𝑖𝑡𝑒𝑚);
14 return;

/* Evict a cache item from Mobius */

15 Function 𝐸𝑣𝑖𝑐𝑡():
16 𝑤 ← 𝑤ℎ𝑖𝑐ℎ𝑄 ;
17 Using 𝑎𝑐𝑡𝑖𝑣𝑒𝑄 represents 𝑄 [𝑤];
18 Using 𝑑𝑜𝑟𝑚𝑎𝑛𝑡𝑄 represents 𝑄 [!𝑤];
19 repeat
20 𝑖𝑡𝑒𝑚 ← null;
21 while True do
22 if item is null then
23 𝑜𝑙𝑑𝐻𝑒𝑎𝑑 ← 𝑎𝑐𝑡𝑖𝑣𝑒𝑄.ℎ𝑒𝑎𝑑 ;
24 𝑖𝑡𝑒𝑚 ← 𝑜𝑙𝑑𝐻𝑒𝑎𝑑 ;
25 𝑝𝑟𝑒𝑣 ← null;
26 if 𝑖𝑡𝑒𝑚 is null or item is the last element in activeQ then
27 if 𝐶𝐴𝑆_𝑤ℎ𝑖𝑐ℎ𝑄 (𝑤, !𝑤) then
28 Clear reference bits from 𝑜𝑙𝑑𝐻𝑒𝑎𝑑 to 𝑖𝑡𝑒𝑚;
29 return 𝐸𝑣𝑖𝑐𝑡();
30 if 𝑖𝑡𝑒𝑚.𝑖𝑠𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 is 1 then
31 𝑝𝑟𝑒𝑣 ← 𝑖𝑡𝑒𝑚;
32 𝑖𝑡𝑒𝑚 ← 𝑖𝑡𝑒𝑚.𝑛𝑒𝑥𝑡 ;
33 else
34 break;

35 until 𝑎𝑐𝑡𝑖𝑣𝑒𝑄 .CAS_head(𝑜𝑙𝑑𝐻𝑒𝑎𝑑 , 𝑖𝑡𝑒𝑚.𝑛𝑒𝑥𝑡 ) is True;
36 if 𝑝𝑟𝑒𝑣 is not null then
37 Clear reference bits from 𝑜𝑙𝑑𝐻𝑒𝑎𝑑 to 𝑝𝑟𝑒𝑣 ;
38 𝑑𝑜𝑟𝑚𝑎𝑛𝑡𝑄 .𝐸𝑛𝑞𝑢𝑒𝑢𝑒(𝑜𝑙𝑑𝐻𝑒𝑎𝑑 , 𝑝𝑟𝑒𝑣);
39 return 𝑖𝑡𝑒𝑚;
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second thread (denoted by 𝑇2) is still detecting along the sub-list (in lines 21-34). There are three
possible conditions.

In the first condition, 𝑇1 has cleared the reference bits (after line 37), so 𝑇2 finds the current item
in the sub-list unaccessed (line 30). In this case,𝑇2 will attempt the CAS primitive (line 33). Since the
head of the active queue has been changed by 𝑇1, the CAS of 𝑇2 will always fail. 𝑇2 will re-initialize
the detection (line 20) and start from the latest head (lines 22-25), ensuring thread safety when CAS
fails.
In the second condition, 𝑇1 has not updated the reference bits (after line 35 and before line 37),

while 𝑇2 has arrived at the last item of the sub-list and checked the reference bit (after line 30).
Then, 𝑇1 runs to line 2 and makes the next item null. In this scenario, 𝑇2 will fetch a null item (line
32) and continue the loop. The invalid item will trigger re-initialization at lines 22-25, avoiding
incorrect results.
The third condition is similar to the second. When 𝑇1 has not updated the reference bits (after

line 35 and before line 37),𝑇2 has checked the reference bit (after line 30). However,𝑇1 then finishes
the Evict function and enqueues the sub-list to the dormant queue (line 38). Since the sub-list is
linked to the dormant queue, 𝑇2 will detect the dormant queue for the eviction victim, which is an
undesired behavior. Nevertheless, 𝑇2 will eventually find an unaccessed item and attempt the CAS
primitive (line 35). Since the head has been changed by 𝑇1, this CAS primitive will always fail. 𝑇2
will re-initialize the detection from the latest head of the active queue. In all three conditions, the
Evict behavior eventually becomes consistent.
In addition to the possible inconsistencies, the consecutive detection mechanism may lead to

another boundary case. After initialization and before the first eviction, new cache items are inserted
into 𝑄0, while 𝑄1 remains empty. There is a probable condition where all cache items in 𝑄0 have
been accessed. In this case, the first Evict behavior cannot find a victim after consecutively detecting
𝑄0. Mobius can only switch the active queue to search in𝑄1 (lines 27-28), which, however, is still an
empty queue. To ensure the Evict function correctly runs on an empty active queue, we modify line
26. If the current active queue is empty, Mobius cannot obtain a valid item (𝑖𝑡𝑒𝑚 is null). Mobius
then switches the active queue to search in another queue (lines 27-28).
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