
This paper is included in the Proceedings of the
23rd USENIX Conference on File and Storage Technologies.

February 25–27, 2025 • Santa Clara, CA, USA
ISBN 978-1-939133-45-8

Open access to the Proceedings
of the 23rd USENIX Conference on

File and Storage Technologies
is sponsored by

Rethinking the Request-to-IO Transformation
Process of File Systems for Full Utilization of

High-Bandwidth SSDs
Yekang Zhan, Haichuan Hu, Xiangrui Yang, and Qiang Cao, Huazhong University of
Science and Technology; Hong Jiang, University of Texas at Arlington; Shaohua Wang

and Jie Yao, Huazhong University of Science and Technology
https://www.usenix.org/conference/fast25/presentation/zhan

Rethinking the Request-to-IO Transformation Process of File Systems for Full
Utilization of High-Bandwidth SSDs

Yekang Zhan1, Haichuan Hu1, Xiangrui Yang1, Qiang Cao1∗, Hong Jiang2, Shaohua Wang1 and Jie Yao1

1Huazhong University of Science and Technology,
2University of Texas at Arlington

Abstract
The capacity and bandwidth of modern Solid-State Drives

(SSDs) have been steadily increasing in recent years. Unfortu-
nately, existing SSD file systems that transform user requests
to memory-page aligned homogeneous block IOs have by and
large failed to make full use of the superior write bandwidth
of SSDs even for large writes. Our experimental analysis iden-
tifies three main root causes of this write inefficiency, namely,
1) SSD-page alignment cost, 2) page caching overhead, and
3) insufficient IO concurrency.

To fully exploit the potentials offered by modern SSDs,
this paper proposes a heterogeneous-IO orchestrated file sys-
tem with an alignment-based write-partition, or OrchFS, that
leverages a small-size NVM (Non-Volatile Memory) to max-
imize SSD performance. OrchFS extends and improves the
request-to-IO transformation functionality of file systems to
proactively transform file-writes into SSD-page aligned SSD-
IOs and/or remaining SSD-page unaligned NVM-IOs, and
then to perform these IOs via their respective optimal data
paths and in an explicit multi-threaded manner. To this end,
OrchFS presents several novel enabling techniques, including
heterogeneous-unit data layout, alignment-based file write
partition, unified per-file mapping structure and embedded
parallel IO engine. The experimental results show that Or-
chFS outperforms 1) EXT4 and F2FS on SSD, 2) NOVA,
OdinFS and ArckFS on NVM, and 3) Strata, SPFS and PHFS
on hybrid NVM-SSD by up to 29.76× and 6.79× in write
and read performances, respectively.

1 Introduction
Solid-State Drives (SSDs) with increasing capacity and per-
formance are supplementing and poised to replace Hard
Disk Drives (HDDs) as primary block storage. SSD file sys-
tems [6, 33, 37, 44, 50, 57, 68] maintain a general file/directory
abstraction for a myriad of applications while internally per-
forming request-to-IO transformation to generate one or more
memory-page aligned block IOs (bios) and then sending them
to the underlying SSD.

∗Corresponding author. Email: caoqiang@hust.edu.cn

PCIe4.0 SSD PCIe5.0 SSD
0

2

4

6

Th
ro

ug
hp

ut
 (

G
B/

s) EXT4 F2FS XFS

(a) Write size range: 1B - 2MB
PCIe4.0 SSD PCIe5.0 SSD

0

2

4

6

Th
ro

ug
hp

ut
 (

G
B/

s) BTRFS OrchFS

(b) Write size range: 0.9MB - 1.1MB

Figure 1: Random write throughput of four representative
SSD file systems and OrchFS with FIO [3] single-threaded
benchmark (ioengine=psync) on a PCIe4.0 SSD [59] and a
PCIe5.0 SSD [58], respectively. In all cases, OrchFS writes
less than 5% of the data into NVM.

However, existing SSD file systems fail to keep pace with
the significant advances in write performance of SSDs. Real-
world data-intensive applications, e.g., graph processing [90],
scientific computing [54], and cloud computing [74] gener-
ally perform writes with diverse offsets and sizes. Figure 1(a)
shows that the throughput of random writes, under four repre-
sentative SSD file systems of EXT4 [6], F2FS [37], XFS [68]
and BTRFS [57], are only about 1/3 and 1/4 of the raw-
bandwidth of the PCIe4.0 and PCIe5.0 SSDs, respectively.
Even for large random writes of size 1MB ± 10%, as shown
in Figure 1(b), their throughput is still less than 1/2 of the
corresponding SSD raw bandwidth. This means that the write
inefficiency is not solely caused by small writes.

We conduct a set of experiments to holistically identify
and analyze root causes of the write inefficiency of existing
SSD file systems (detailed in § 2.4) and draw three key obser-
vations. Observation #1 reveals that SSD-page (e.g., 16KB)
unaligned writes suffer from high alignment costs, e.g., by
up to 10.71× higher latency than aligned writes. Although
page cache can cache reads and buffer writes to reduce the
alignment cost, Observation #2 indicates that writes via the
buffered IO mode with page cache introduce costly software
overheads, while writes via the direct IO mode can avoid such
overheads under strict alignment guarantees. Furthermore, Ob-
servation #3 discovers that a large and aligned write via the
direct IO mode still fails to fully utilize SSD bandwidth, while
explicit IO-splitting and multi-threaded IO execution can. As

USENIX Association 23rd USENIX Conference on File and Storage Technologies 69

a result, we argue that an optimal SSD-write path is possible,
but with strict conditions, including SSD-page-alignment, the
direct IO mode, and explicit multi-threaded IO processing.
Existing SSD file systems, which transform any-pattern re-
quests with diverse offsets and sizes to memory-page aligned
and homogeneous bios, rarely meet such strict conditions
simultaneously to perform the SSD-write optimally.

Emerging Non-Volatile Memories (NVMs) [2, 18, 26, 67,
80] with byte-accessibility and fast persistence favor small
accesses without high alignment costs, which are notably com-
plementary in IO-pattern preferences to SSDs. This inspires
our insight: the increasingly high write performance of SSDs
can be maximally utilized if all IOs to SSDs are fully aligned
while NVM can fast absorb residual unaligned small IOs.

Motivated by this insight to rethink the request-to-IO trans-
formation functionality of file systems, this paper proposes
a heterogeneous-IO orchestrated file system, or OrchFS. Or-
chFS’s request-to-IO transformation first proactively parti-
tions a file write to SSD-page aligned SSD-IOs and/or the
residual small and unaligned NVM-IOs. Then, this transfor-
mation adopts a novel triple-data-path approach that utilizes
the above optimal SSD-write path for the partitioned SSD-
IOs, and uses the legacy memory-semantic NVM data path
for the partitioned NVM-IOs, while enabling the buffered IO
mode for the SSD-read path because reads with page cache
naturally benefit from (large) SSD-page aligned writes.

OrchFS’s alignment-based request-to-heterogeneous-IO
transformation introduces three key challenges: how to parti-
tion and map any-pattern writes to heterogeneous-storage IOs
effectively and efficiently (C1), how to fast index for all par-
titions across NVMs and SSDs (C2), and how to effectively
integrate and orchestrate the aforementioned triple data paths
(C3). To address C1, OrchFS presents: 1) a heterogeneous
data layout with three types of storage-units and 2) an effi-
cient file write partition strategy with two specific policies of
alignment-prioritization and fragmentation-minimization. To
overcome C2, OrchFS designs a unified and cache-friendly
indexing scheme to locate the split and scattered data. For C3,
OrchFS builds an embedded parallel IO engine to coordinate
the triple-path IOs and ensure data consistency. In addition,
OrchFS inherits and extends prior techniques of both SSD
and NVM file systems to further reduce IO penalties (e.g.,
LibFS-KernelFS architecture) and ensure crash consistency
(e.g., journaling). Overall, OrchFS highly coordinates and
synergizes the file system functionalities and IO characteris-
tics of hybrid storage by transforming various user accesses
into device-preferred heterogeneous IOs at runtime.

In comparison, existing hybrid NVM-SSD systems either
use the upper-layer NVMs as a cache to the lower-layer SSDs
to absorb most workloads [8,36,41,45,55,76,85], thus under-
utilizing high-bandwidth SSDs, or leverage NVM and SSD to
handle small and large writes respectively [27, 89] but ignore
the write inefficiency of SSDs.

We implement an OrchFS prototype to provide over 30

commonly used POSIX APIs [71] for applications and eval-
uate it under a variety of workloads and real applications.
The results show that OrchFS can efficiently handle a wide
variety of workloads with diverse access patterns and out-
performs representative SSD file systems (EXT4 [6] and
F2FS [37]), NVM file systems (NOVA [78], OdinFS [88], and
ArckFS [87]), and hybrid NVM-SSD file systems (Strata [36],
SPFS [76], and PHFS [27, 89]) by up to 29.76×, 3.49× and
7.16× in write latency, and by up to 3.08×, 6.79× and 6.34×
in peak read throughput, respectively.

The major contributions of this work are:
• We experimentally identify and analyze the root causes

of write inefficiency of existing file systems running on
high-bandwidth SSDs.

• We propose OrchFS, the first SSD-NVM heterogeneous-
IO orchestrated file system with a unique alignment-based
request-to-heterogeneous-IO transformation, and present
several novel enabling techniques.

• We implement an OrchFS prototype and evaluate it against
the state-of-the-art and representative file systems on SSD,
NVM and hybrid SSD-NVM under a variety of workloads
and real applications.

2 Background and Motivation
In this section, we first provide the necessary background for
SSDs, NVMs, and file systems, then describe our experimen-
tal analysis to identify the root causes of write inefficiency of
SSD file systems, which motivates our OrchFS design.

2.1 SSDs and NVMs
SSDs have been ubiquitously deployed, from Internet of
Things (IoT) [1], mobile devices [37], servers [4], to large-
scale datacenters [74]. The storage density of SSDs has been
increasing steadily by increasing bits per NAND cell and us-
ing 3D-structured flash fabric [16, 46]. An SSD-page, as a
basic read/write flash-unit, e.g., 16KB, is larger than a 4KB
memory-page. In the meantime, the SSD bandwidth also
keeps increasing, due to scalable IO parallelism among multi-
ple flash, chips and dies within an SSD. For example, the read
and write bandwidths of PCIe4.0 NVMe SSDs are approxi-
mately 5GB/s-7GB/s and 3GB/s-6GB/s, respectively, which
are further doubled in current PCIe5.0 SSDs [60, 75].

Emerging NVMs support byte-addressability with fast per-
sistence, but have much higher per capacity price and smaller
capacity than SSDs. Although Intel Optane DCPMM [26]
has discontinued, RRAM [67], PCRAM [18], MRAM [2] and
memory-semantic SSDs [80] have continued to evolve.

2.2 File Systems
File systems have been playing a pivot role in exploiting un-
derlying storage devices to offer a logical file/directory view
and file operations for upper applications. Using the legacy
POSIX interface [71], applications invoke reads/writes with

70 23rd USENIX Conference on File and Storage Technologies USENIX Association

Sequential 1MB Random 1B-2MB
0

500

1000

1500

La
te

nc
y

(μ
s)

SSD raw EXT4 F2FS

(a) on a PCIe4.0 SSD
Sequential 1MB Random 1B-2MB

0

500

1000

1500

La
te

nc
y

(μ
s)

XFS BTRFS

(b) on a PCIe5.0 SSD
Figure 2: Average write latency of four representative
SSD file systems with FIO single-threaded benchmark (io-
engine=psync and fsync=1) on the PCIe4.0 SSD [59] and the
PCIe5.0 SSD [58], respectively.

byte-addressable offset and length. File systems transform
any-pattern user-requests to device-allowable IOs.

Mainstream SSD file systems [37, 48, 57, 68] considering
SSD characteristics still inherit a legacy block storage stack
[38] with page cache to transform a file request to one or
more 512B/page-aligned block IOs (bios) according to the
underlying physical page-address. Each bio corresponds to
one or more contiguous physical pages. For page-unaligned
writes missed in page cache, file systems use a read-modify-
write (RMW) process [37, 48, 54, 63] to forcefully align write
requests to page-boundary, e.g., 4KB, before submitting bios.
The RMW process first reads the corresponding page from
the SSD, then updates the page, and finally writes the aligned
page to the SSD. Furthermore, when a host write is SSD-
page unaligned and missed SSD’s internal cache, the SSD
has to perform similar RMWs to align SSD-pages internally
[5, 22, 24]. Both page cache and SSD’s internal cache can
mitigate IO misalignment when the requested data is cached.

2.3 Write Performance of SSD File Systems
With the increasing bandwidth of SSDs, SSD file systems
are expected to improve their overall performance accord-
ingly. However, mainstream SSD file systems with the default
buffered IO mode fail to effectively exploit the high write-
bandwidth promised by SSDs.

Figure 1 (single-threaded FIO benchmark, with sufficient
memory-pages) demonstrates that such write-inefficiency is a
common phenomenon for prevalent unaligned write-requests,
regardless of the write sizes.

To further understand the actual write performance unhid-
den by page cache, we use FIO [3] with the same config-
uration as Figure 1 but with fsync=1 (i.e., calling fsync()
after each write) to perform two representative workloads
[7, 23, 47, 74, 84, 90], i.e., the sequential and large 1MB-sized
writes as an ideal case, and the random 1B-2MB-sized writes
as a common case. As shown in Figure 2, the sequential write
latencies of the file systems are 2.64×- 4.31× and 2.65×-
7.54× of the raw 1MB-write latency of the PCIe4.0 SSD and
the PCIe5.0 SSD respectively, and the random write latencies
of the file systems are 4.13×- 6.42× and 5.85×- 9.62× of
that respectively. This means that, under strict persistence, 1)
even aligned large writes suffer from write-inefficiency, and 2)
unaligned writes suffer from more severe write-inefficiency.

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB0
2
4
6
8

10

No
rm

al
ize

d
La

te
nc

y

11
.0

8
μs

11
.9

4
μs

14
.2

6
μs

18
.7

5
μs

27
.0

2
μs

43
.0

7
μs

75
.8

9
μs

14
0.

34
 μ

s

26
7.

68
 μ

s

Aligned Direct IO Writes Unaligned Direct IO Writes with Read-Modify-Write

Figure 3: Normalized random write latency of aligned direct
IO writes and unaligned direct IO writes with read-modify-
write on the PCIe4.0 SSD [59].

2.4 Analysis on Write Inefficiency
Next, we comprehensively and experimentally explore and
identify the root causes of the write-inefficiency of SSD file
systems on high-bandwidth SSDs.

2.4.1 IO Alignment
For an unaligned write, the request-to-IO transformation pro-
cess of file systems first aligns it. To better understand IO
alignment costs of file systems without an impact of page
cache, we use the direct IO mode to perform random writes
and measure their latencies. Compared to the default buffered
IO mode, the direct IO mode bypasses page cache but de-
mands strict alignment among the IO size, offset, and memory-
buffer address [54]. We use the common RMW process (§ 2.2)
on host to align unaligned writes.

Figure 3 shows that unaligned direct IO writes have signifi-
cantly higher latency (1.85×-10.71×) than aligned direct IO
writes. Because an unaligned direct IO write is forced to per-
form one or two extra read-IOs before writing. This introduces
the additional read latency and IO amplification, referred to
as alignment cost. In particular, the 16KB unaligned writes
read and then write two adjacent SSD-pages [5], thus caus-
ing the highest alignment cost (10.71×). Unaligned writes
smaller than 16KB read and then write one or two entire SSD-
pages. Even for the 1MB large-writes, the unaligned case still
results in 1.85× higher write latency than the aligned case
mainly due to reading two SSD-pages at the head and tail of
the write [22, 24]. In conclusion, we draw Observation #1:
unaligned writes have significant alignment costs.

2.4.2 Page Cache
Page cache is widely used to speed up reads/writes at the cost
of memory usage and complex cache management. With the
narrowing performance gap between memory and fast storage,
the overhead of page caching is no longer negligible.

To comprehensively understand the entire write data path
using page cache upon high-bandwidth SSDs, we perform a
10GB (unaligned) random write experiment with the buffered
IO mode as a common case on EXT4 and F2FS. To clearly
break down the write time into page caching, IO alignment,
fsync() calls, block IOs, and others, we clear page cache
before each running, call fsync() after each write, insert
corresponding timing breakpoints into the kernel source codes
of EXT4 and F2FS, and run three times to take the average.

Figure 4(a) shows the breakdown results. Compared to Fig-
ure 3, Figure 4(a) exhibits a still significant, albeit slightly re-

USENIX Association 23rd USENIX Conference on File and Storage Technologies 71

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB
0

20
40
60
80

100

Ti
m

e
Pr

op
or

tio
n

(%
)

9.
5

9.
5 23
.2

19
.8 26
.1

21
.4 30

.3
27

.5 19
.8

24
.9 19

.9
27

.1 19
.5

27
.9 17

.8
22

.7 16
.8

23
.5

14
.1

10
.9 20

.7
16

.5 26
.7

22
.1 33

.5
28

.9 39
.2

32
.5

Block IOs Page Cache fsync() calls IO Alignment OthersBlock IOs Page Cache fsync() calls IO Alignment Others

(a) Unaligned random writes with the buffered IO mode

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB
0

20
40
60
80

100

Ti
m

e
Pr

op
or

tio
n

(%
)

88
.5

88
.7

88
.4

88
.7

90
.4

88
.5

89
.6

92
.9

93
.6

94
.2

90
.3

94
.8

90
.2

96
.0

91
.9

95
.0

92
.6

96
.9

Block IOs fsync() calls OthersBlock IOs fsync() calls Others

(b) Aligned random writes with the direct IO mode
Figure 4: Write time breakdown of EXT4 (left bars) and F2FS
(right bars).

duced, alignment cost. This is because, as data is progressively
cached, a small number of unaligned writes are absorbed by
page cache without extra read-IOs [63]. Nevertheless, this
demonstrates that when data is not cached, it remains costly
for file systems with page cache to enforce IO alignment.

Furthermore, other than IO alignment time, performing
block IO takes only 11.5%-32.9% of the write time. As the
write size increases, page caching takes an increasing por-
tion of time, e.g., 39.2% (average latency of 362.2µs) and
32.5% (average latency of 314.2µs) for EXT4 and F2FS re-
spectively in the 1MB case. The page caching mainly per-
forms page allocation, locking, searching, LRU list manage-
ment, and copying data between the application and page
cache. Previous works have also observed expensive page
caching [15, 43, 51, 54]. The fsync, excluding block IO times,
accounts for 5.5%-27.9% (average latency of up to 227.3µs)
of the write time for EXT4 and F2FS. The fsync mainly per-
forms looking up and assembling dirty pages into bios, as
well as finally marking flushed pages as clean [53]. Even if
applications do not call fsync(), they still have to perform
page caching and IO alignment, e.g., Figure 1.

Moreover, we experimentally verify that page caching and
fsync() calls take similar amounts of time in aligned and
unaligned buffered IO writes. This means that page cache
introduces significant software overhead, e.g., 9.5%-56.0%
for unaligned writes and 15.9%-65.8% for aligned writes.

For comparison, we further perform 10GB aligned random
writes via the direct IO mode on EXT4 and F2FS respectively.
Similarly, we call fsync() after each write. Figure 4(b) shows
the write time breakdown. Executing block IOs takes most
of the write time (i.e., 88.4%-96.9%). The fsync call only
accounts for 1.9%-8.5% (average latency of up to 17.3µs) of
the write time for EXT4 and F2FS, respectively, because the
fsync call without handling page cache only uses the FLUSH
command to notify SSD [82]. Moreover, the average latency
of aligned direct IO writes is only 12.9%-34.6% of the average
latency of the corresponding unaligned buffered IO writes.

SSD A SSD B SSD A SSD B SSD A SSD B SSD A SSD B SSD A SSD B0
1
2
3
4
5
6
7

Th
ro

ug
hp

ut
 (G

B/
s)

64KB 128KB 256KB 512KB 1MB

Single-threaded large write IOs
Multi-threaded split write IOs

Single-threaded large read IOs
Multi-threaded split read IOs

Figure 5: Throughput of single-threaded large aligned IOs vs.
multi-threaded split 32KB aligned IOs. SSD A: the PCIe4.0
SSD [59]. SSD B: the PCIe5.0 SSD [58].

This demonstrates the performance potential of the direct IO
mode. As a conclusion, we draw Observation #2: buffered
IO writes suffer from costly page caching software overhead,
while direct IO writes can avoid such overheads under the
strict alignment.

2.4.3 IO Concurrency
Even ideal aligned large writes via the direct IO mode still fail
to maximize SSD bandwidth by a single thread, e.g., all cases
use at most 89.0% of the SSD raw bandwidth in Figure 3.
This is largely due to internal complex IO scheduling [22, 29]
and fairness for multi-streams [70] of modern SSDs.

To understand the impact of IO concurrency for bandwidth
utilization of SSDs, we set two IO patterns: 1) a single thread
with large aligned IOs, and 2) splitting each large IO into
multiple 32KB IOs and handling them using multiple threads.
We evaluate the throughput of both IO patterns on the PCIe4.0
SSD and the PCIe5.0 SSD via the direct IO mode. Figure 5
shows that the multi-threaded IO pattern outperforms the
single-threaded IO pattern in all cases. The write and read
throughputs in the multi-threaded IO pattern are 1.02×-1.56×
and 1.06×-1.65× higher than that of the single-threaded IO
pattern. In conclusion, we draw Observation #3: a large and
SSD-page aligned read/write by a single thread via the direct
IO mode still does not fully utilize the bandwidth, but splitting
it into multiple smaller SSD-page aligned IOs executed in a
multi-threaded manner can maximize SSD bandwidth.

In summary, existing SSD file systems fail to take full
write-advantage of high-bandwidth SSDs because of IO mis-
alignment, page caching overhead, and insufficient IO con-
currency. Therefore, we argue that an optimal write path for
high-bandwidth SSDs should be via the direct IO mode and
multi-threaded IO processing for SSD-page aligned IOs. Fur-
ther, reads without extra IOs have less penalty of misalign-
ment than writes and can naturally benefit from aligned writes,
multi-threaded IO processing and page cache without the
fsync cost. Therefore, we believe that the legacy data path
with page cache would remain the best for SSD-reads with
SSD-page aligned writes.

2.5 Motivation
With the emergence of highly data-intensive applications such
as machine learning [49], cloud computing [74], graph pro-
cessing [90], databases [23], etc., it is desirable for file systems
to fully expolit the growing IO capability of modern SSDs
with cost-effectiveness to provide all-rounded supports for

72 23rd USENIX Conference on File and Storage Technologies USENIX Association

intensive and mixed load patterns (e.g., mixed small and large,
unaligned and aligned, and reads and writes), as well as high
scalability and fast persistence. However, due to the write-
inefficiency, existing SSD file systems with the legacy block
storage stack fall far short of performing optimally on high-
bandwidth SSDs under various workloads. Although there
are the optimal-yet-rigorous SSD data paths to overcome the
write-inefficiency, the question of how to keep SSDs working
in the optimal data paths remains unanswered.

Emerging NVMs are particularly friendly for small ac-
cesses without high alignment costs [79], but are limited cost-
effectiveness compared to SSDs. Nevertheless, leveraging a
small NVM as an auxiliary device could provide an oppor-
tunity for SSDs to keep working in the optimal data paths.
This insight, combined with the three observations, leads to a
key design principle: proactively partitioning an any-pattern
write to an SSD-preferred SSD-page aligned part and a resid-
ual, small and unaligned part, so that the former and latter
are strategically and fast served by SSD and NVM respec-
tively. This design principle does not demand an NVM with
large capacity, high bandwidth and scalability, but only lever-
ages its capability for low-latency and byte-addressable ac-
cesses. This motivates us to design a novel file system using
an alignment-based write-partition to extend and improve the
request-to-IO transformation functionality of file systems to
orchestrate requests as device-preferred heterogeneous IOs,
called OrchFS.

Existing hybrid NVM-SSD systems can be roughly clas-
sified into two categories: hierarchical architecture and par-
allel architecture. The former adopts fast NVM as an upper-
tier cache and the underlying SSDs as capacity devices
[8, 36, 41, 45, 55, 76, 85]. Some works further redirect over-
loaded or asynchronous requests to SSD [76,85], or condition-
ally uses NVM to buffer synchronized dirty pages of SSD [8].
Overall, in the hierarchical architecture, the upper NVMs
bear the blunt of the load, thus losing the opportunity to fully
utilize the underlying high-bandwidth SSDs. The parallel ar-
chitecture strategically sends requests to NVMs and SSDs in
parallel. NHC [77] mainly utilizes SSDs to accelerate reads.
UHS [89] and Intel DAOS [27, 28] send size-threshold-based
large and small writes to SSDs and NVMs respectively.

OrchFS proactively partitions a write into aligned part for
SSD and the remaining part for NVM, which is fundamentally
different from above existing NVM-SSD architectures.

3 OrchFS Design
We propose OrchFS that, to the best of our knowledge, is the
first SSD-NVM heterogeneous-IO orchestrated file system to
judiciously leverage small auxiliary NVM to maximize the
performance of high-bandwidth SSDs.

3.1 Design Challenges
Governed by the design principle (§ 2.5), the OrchFS design
must tackle the following three key challenges (Cs).

Transforming an any-
pattern write into

Block-Page-Aligned File Write Partition (§ 3.4)
Unified Per-File Mapping

Structure (§ 3.5)

Verify

Parallel IO Engine (§ 3.6)

open [p]read[p]write[f]stat close

Load/
Store

POSIX Application
…

Metadata

Polling Return

Shared Memory

SSD

Blocks

Reads: Buffered IO
Writes: Direct IO

Lease

KernelFS

Heterogeneous Data Layout(§ 3.3)

…

Userspace

Unified locating of
requested storage units

Kernelspace

LibFS

Data
Migration

(§ 3.7)

NVM SSD

Pages/Upages

① Block-aligned
SSD-IOs

② Page-aligned
NVM-IOs

③ Page-unaligned
NVM-IOs

Figure 6: OrchFS overview.

• C1: How to effectively partition any-pattern writes with
various offset and size and map the partitions into large SSD
blocks and/or small NVM pages, while adaptively handling
complex overwrites with data splitting and merging?

• C2: How to fast index all partitions across NVM and SSD?
• C3: How to effectively orchestrate transformed IOs for the

triple paths of optimal SSD-write, conventional SSD-read,
and memory-semantic NVM while ensuring consistency?
Additionally, OrchFS should also adaptively merge and

migrate file data stored on NVM to SSD with low complexity,
thus efficiently reducing file fragmentation and NVM usage.

3.2 OrchFS Overview
Figure 6 show an overview of OrchFS. To address C1, Or-
chFS first proposes an NVM-SSD heterogeneous data lay-
out (§ 3.3) and three types of storage units to accommodate
different-grained data. OrchFS further designs an alignment-
prioritizing and fragmentation-minimizing write-partition
(§ 3.4) to efficiently map any-pattern writes into three types
of storage units. To overcome C2, OrchFS designs a unified
per-file mapping structure HRtree (§ 3.5) to efficiently locate
split file data across NVM pages and SSD blocks. To solve
C3, OrchFS proposes an embedded parallel IO engine (§ 3.6)
to handle transformed IOs in parallel via their respective paths
by binding dedicated IO threads with exclusive address spaces
and queues. Moreover, OrchFS inherits and extends the popu-
lar LibFS-KernelFS architecture to further reduce IO penalties
and the common journaling mechanism to ensure crash con-
sistency, as well as introducing an address-aligned shared
memory to satisfy write-buffer-address alignment for the di-
rect IO mode and SSD’s access security (§ 4).

3.3 Heterogeneous Data Layout
OrchFS builds a data layout upon SSD and NVM, and defines
three types of storage units to strategically store file data.

Data layout. OrchFS’s data layout consists of a meta-
data area on NVM and file data area across NVM and SSD.

USENIX Association 23rd USENIX Conference on File and Storage Technologies 73

H

SSD Block
0 4KB … 32KB

0 4KB
NVM Upage

878B 2341B

(878,831)

(2341,103)

Header

chunk chunk

8KB

Figure 7: An example of using an NVM Upage to store two
small updates of a logical page of an SSD block.

The metadata area defines superblock, bitmaps, inode table,
HRtree (§ 3.5), directory, and journals, which are exclusively
stored on NVM. The inode table and directory data structure
adopt a linked list suitable for NVM [19,40,88]. The metadata
updates are often small-sized, latency sensitive, and persis-
tence required, thus preferring NVM’s IO characteristics. The
file data area includes an NVM page/Upage zone and an SSD
block zone, with the latter storing most of the file data.

Three types of storage units. Both NVM and SSD have
their respective preferred storage granularities. To minimize
misalignment in SSD and NVM, OrchFS employs three types
of storage units, i.e., SSD blocks, NVM pages, and NVM
unaligned pages (Upages). By default, OrchFS sets the SSD
block size to 32KB (two SSD-pages), which is an integral
multiple of the NVM page size, i.e., 4KB, the same as most
NVM file systems [19, 78, 88]. Setting larger SSD blocks
means that more writes are judged as block-unaligned and
are transformed into NVM-IOs. NVM Upage is designed to
store the residual page-unaligned part of a file write, which is
called a chunk, so that all unaligned data are store in Upages.

NVM Upage structure. By default, an NVM Upage con-
sists of an NVM page for placing chunks and a 56B (64B
- 8B, the reason in § 3.5) header for locating chunks within
the page. The header contains 14 4B entries, each of which
records the offset of a chunk within the page (2B) and the
chunk’s size (2B). Figure 7 shows an example of using an
NVM Upage. The Upage stores two small updates of the SSD
block’s third logical page. The two small updates are stored
as chunks whose offsets within the NVM Upage are 878B
and 2341B, and whose sizes are 831B and 103B, respectively.

Merge of NVM chunks. When a new chunk is inserted
to an NVM Upage, OrchFS first opportunistically merges it
with existing address-overlapping chunks, then updates the
Upage’s header according to the merged result. Moreover,
when all entries in a Upage’s header are used up, OrchFS
writes the Upage’s data back to the corresponding SSD block
and then reclaims this NVM Upage, thereby eliminating the
file fragmentation within this logical page.

3.4 Block-Page-Aligned File Write Partition
OrchFS proposes block-page-aligned write-partition. That is,
an any-pattern write is partitioned into block-aligned SSD-
IOs, page-aligned NVM-IOs, and page-unaligned chunk-IOs
sequentially, called the alignment-prioritizing (AP) policy.
With this policy, the aligned parts of a write can be directly
written into the corresponding blocks/pages without RMWs
of either host or SSD, and then the residual chunks are strate-
gically written to NVM. Further, a file should be mapped to

as few storage units as possible to minimize fragmentation,
called the fragmentation-minimizing (FM) policy.

There are two types of file writes: append writes and over-
writes. An append write does not overlap with the already
stored part of the file, allowing for a relatively simple gen-
eration of a set of block-IOs, page-IOs, and chunk-IOs. In
contrast, an overwrite can overlap with various storage units,
their combinations are especially complex. For this, following
the FM policy, OrchFS partitions an any-pattern overwrite to
a combination of three basic cases, i.e., overwrite to pages,
Upages and blocks respectively, and handles them separately.

Algorithm 1 describes the write-partition process. For an
incoming user write from the POSIX interface, OrchFS first
identifies its type, i.e., append write, overwrite or both, ac-
cording to the offset and size of the write (line 2 and 4-5).

Append writes. Following the AP policy, OrchFS trans-
forms an append write into block-aligned SSD-IOs (line 22-
23) and the remaining NVM-IOs (line 24-25). Following the
FM policy, an unaligned chunk is directly appended to the last
NVM page or a new page without the header. Moreover, when
a file’s last logical block is not completely filled, that is, this
logical block is stored in NVM pages, OrchFS first partitions
a part of the write to NVM-IOs to fill it (line 20-21), thereby
simplifying index structures (§ 3.5) and data migration (§ 3.7).

Algorithm 1 Block-Page-Aligned File Write Partition
Input: Write Request Offset and Size: reqoffset, reqsize
1: procedure WRITE_PARTITION(reqoffset, reqsize)
2: if reqoffset = filesize then
3: Append_write(reqoffset, reqsize)
4: else
5: if reqoffset + reqsize > filesize then
6: Append_write(filesize, reqoffset + reqsize - filesize)
7: reqsize← filesize - reqoffset
8: subparts[]← Split_write_to_3_Cases(reqoffset,reqsize)
9: for each subpart in subparts[] do

10: if subpart ∈ NVM pages then # Case 1
11: Transform_to_Page_IOs(partoffset, partsize)
12: else if subpart ∈ NVM Upages then # Case 2
13: Transform_to_Upage_IOs(partoffset, partsize)
14: else Overwrite_to_SSDblocks(partoffset, partsize) # Case 3
15: procedure APPEND_WRITE(offset, size)
16: # Split into 3 parts, with sizes: fillsize, midsize, remainsize in order
17: fillsize← SSDBlockSize - (filesize mod SSDBlockSize)
18: remainsize← (size - fillsize) mod SSDBlockSize
19: midsize← size - fillsize - remainsize
20: if fillsize ̸= 0 then
21: Transform_to_Page_IOs(offset, fillsize)
22: if midsize ̸= 0 then
23: Transform_to_Block_IOs(offset + fillsize, midsize)
24: if remainsize ̸= 0 then
25: Transform_to_Page_IOs(offset + fillsize + midsize, remainsize)
26: procedure OVERWRITE_TO_SSDBLOCKS(offset, size)
27: # Split into 3 parts, with sizes: headsize, midsize and tailsize in order
28: headsize← SSDBlockSize - (filesize mod SSDBlockSize)
29: tailsize← (offset + size) mod SSDBlockSize
30: midsize← size - headsize - tailsize
31: if headsize ̸= 0 then
32: Transform_to_Page_and_Upage_IOs(offset, headsize)
33: if midsize ̸= 0 then
34: Transform_to_Block_IOs(offset + headsize, midsize)
35: Reclaim_Upages(offset + headsize, midsize)
36: if tailsize ̸= 0 then
37: tailoffset = offset + headsize + midsize
38: Transform_to_Page_and_Upage_IOs(tailoffset, tailsize)

74 23rd USENIX Conference on File and Storage Technologies USENIX Association

Write Request
① Determine the

Write Type
0 89KB 154KB 194KB

Append

Overwrite Append

Overwrite

1

32KB
File

2 3 5 6

② Transform the
Write Request

89KB-
92KB

92KB-
96KB

96KB-128KB 128KB-154KB 154KB-
160KB

64KB

0 89KB 128KB32KB 64KB 160KB 194KB

③ Final Hybrid
 File Data

Distribution

NVM Page

NVM Upage

SSD Block

File

128KB

160KB-192KB 192KB-
194KB

74

96KB 192KB

…

109KB

Processing

Figure 8: A write-partition example.

Overwrites. The write-partition transforms an overwrite
into a combination of three basic cases and handles them
separately. Case-1: Overwrite to NVM pages, following the
FM policy, this case is transformed into page-IOs (line 10-
11). Note that, unaligned page-IOs can be written to existing
pages without headers. Case-2: Overwrite to NVM Upages.
Following the FM policy, the write-partition transforms it
into corresponding Upage-IOs (line 12-13) with the merge of
NVM chunks (§ 3.3). Case-3: Overwrite to SSD blocks (line
14). Following the AP and FM policies, the write-partition
first transforms the block-aligned part of the write to SSD-IOs
while reclaiming the corresponding obsolete NVM Upages
(line 33-35), and then the remaining parts of the write are
transformed to aligned NVM page-IOs and unaligned Upage-
IOs (line 31-32 and 36-38) with the merge of NVM chunks.

In this way, the write-partition adapts to any-pattern writes
with a time complexity of O(1). Note that, akin to assembling
bios, the write-partition obtains the data distribution of re-
quests during file mapping (§ 3.5) located on the critical path,
without the need for additional queries.

Example. Figure 8 shows a write-partition example for
an 154KB file. When receiving an 105KB write at the 89KB
file offset, OrchFS splits the write into an overwrite with
the offset of 89KB to 154KB and an append-write with the
offset of 154KB to 194KB. According to the file data distri-
bution, two block-aligned parts of 96KB-128KB within the
overwrite and 160KB-192KB within the append-write are
transformed to SSD-block IOs, while the NVM Upage cor-
responding to 109KB-110KB is reclaimed. The rest of the
overwrite is transformed to NVM-page IOs and NVM-Upage
IOs under Case-1 (128KB-154KB), Case-2 (89KB-92KB)
and Case-3 (92KB-96KB), respectively. The rest of append-
write is transformed to NVM-page IOs (154KB-160KB and
192KB-194KB). Finally, these 7 IOs are sent to the parallel
IO engine to processed by NVM and SSD in parallel.

Reads. OrchFS passively transforms read requests to
blocks/pages/Upages read-IOs based on the location of the
requested data, and then sends them to the parallel IO engine.

3.5 Unified Per-File Mapping Structure
OrchFS’s files can be distributed across NVM and SSD in
three types of storage units, complicating file mapping. There-
fore, OrchFS proposes a novel cache-friendly unified per-

10

Tree-Node Header

2 3 4

10 2 10

O-ELN Header

2

Tree-Node Index Entry

NVM Upage Index Entry

SSD Block Index Entry

NVM Page Index Entry

63…

Legacy
Radix Tree

OELN

LN

AELN

A-ELN Header

10

Tree-Node Header

2 3 4 63…

Root node
2MB-range per entry

3′

10

Tree-Node Header

2 3 4 63…

File inode

Legacy leaf node
32KB-range per entry

Extended leaf node
4KB-range per entry

LN

7… 7…

2176KB32KB 64KB
…

0

104KB
Hybrid data distribution of the indexed file

124KB

Figure 9: An HRtree structure example of a 2176KB file.

file mapping structure called Heterogeneous Radix tree, or
HRtree, to efficiently map from file’s logical offset to SSD
blocks, NVM pages, and NVM Upages simultaneously. Or-
chFS avoids complex parallel searches or slow serial searches
of two separate indexing structures for NVM and SSD, which
are common schemes for existing hybrid NVM-SSD sys-
tems [27, 36, 45, 55, 76, 85].

HRtree can be seen as merging two separate indexing struc-
tures of NVM and SSD by only adding a heterogeneous layer
on the bottom of a legacy radix tree [39, 64]. As shown in
Figure 9 (top left), HRtree’s non-bottom part maps a file’s log-
ical offset to a 32KB logical block. A logical block is placed
in either several NVM pages (Case-1) or an SSD block with
small updates stored in NVM pages and/or Upages (if present)
(Case-2). The heterogeneous layer contains two types of ex-
tended leaf nodes (ELNs): Append-write ELN (A-ELN) and
Overwrite ELN (O-ELN), which are designed to locate the
data of Case-1 and Case-2, respectively. The A-ELN consists
of a 64B A-ELN header (storing node’s metadata) and 8 8B
index entries for locating NVM pages. The O-ELN consists
of a 64B O-ELN header, an 8B index entry for locating an
SSD block, and 8 64B index entries for locating NVM pages
or Upages. Specifically, the 64B index entry is composed of
8B page index entry and 56B Upage header (§ 3.3), while
when locating NVM pages, the Upage header is invalid.

Figure 9 shows the HRtree of a 2176KB file. Most data of
this file are stored in SSD blocks. The file’s logical block with
offset=1 is stored entirely in NVM pages. The file logical
block with offset=3 is stored in an SSD block, and the latest
updates of the 8KB-12KB area and the 28KB-32KB area of
the SSD block is placed in an Upage and a page respectively.

HRtree is kept in memory to speedup file mapping, while its
updates are recorded as journals in NVM, which are applied
conditionally (§ 4). The performance of HRtree is almost the
same as that of a legacy radix tree, except for one additional
memory-access when using an ELN. Moreover, HRtree con-
nects leaf nodes similarly to B+tree [11, 35] to speedup range
search, thereby improving the locating of large requests. Or-
chFS further deploys a readers-writer range lock [9,56,88] on
HRtree to support fine-grained concurrent accesses to disjoint
regions of a file while allowing concurrent reads on the same
region. In addition, when migrating data from NVM to SSD,

USENIX Association 23rd USENIX Conference on File and Storage Technologies 75

HRtree only modifies the relevant ELNs without reconstruct-
ing, thus the HRtree design also simplifies data migration.

3.6 Parallel IO Engine
In OrchFS, file requests are transformed into SSD-IOs and
NVM-IOs. To efficiently and transparently orchestrate these
IOs with their respective data paths while ensuring data consis-
tency, OrchFS presents a novel embedded parallel IO engine.

OrchFS deploys the parallel IO engine with a dedicated
IO thread pool. By default, OrchFS sets 4 and 32 threads in
the IO thread pool for NVM and SSD, respectively. Setting
4 threads for NVM is usually sufficient and suitable [79, 88],
and NVM is only used to handle small IOs. The 32 IO threads
for SSD are chosen to strike a balance between the load of
each thread and system CPU usage, while making full use of
SSD bandwidth. OrchFS further inherits OdinFS’s spin-then-
park strategy [88] for the IO thread pool to avoid wasting CPU
cycles at idle and minimize the latency of naively parking and
waking-up threads [34].

The address space of OrchFS is evenly divided among these
IO threads in an interlaced manner. Specifically, each NVM-
IO thread or SSD-IO thread is interlaced and bound to default
32KB aligned address-range in the NVM space or the SSD
space. In this way, each large SSD-IO is transparently split
into multiple aligned 32KB IOs, thereby further explicitly
enabling the multi-threaded IO execution without the depen-
dency on application threads. In comparison, traditional file
systems passively map a request into one or more continuous
physical addresses to generate memory-page aligned variable-
sized IOs by expensive RMWs and without the proactive
multi-threaded IO processing. Moreover, each IO thread has
a ring queue buffer, and each new IO is sequentially added
to the corresponding queue. Each IO thread uniquely exe-
cutes read and write IOs sequentially within its corresponding
exclusive address range, thus ensuring data consistency. Be-
sides, OrchFS supports free configuration of the numbers
of IO threads and interlaced binding granularity to adapt to
NVMs and SSDs with different IO capabilities.

The parallel IO engine transparently uses the direct IO
mode for SSD-write IOs, the buffered IO mode for SSD-read
IOs, as well as the LibFS-KernelFS memory-semantic data
path for NVM IOs. Linux kernel has provided a method to
ensure the data consistency of direct IO writes and buffered IO
reads (e.g., the generic_file_direct_write() function in Linux
kernel 5.18.18 mm/filemap.c). Moreover, OrchFS introduces
an address-aligned shared memory to satisfy write-buffer-
address alignment for the direct IO mode, detailed in § 4.

3.7 Data Migration
To reduce NVM’s usage and file fragmentation cross NVM
and SSD, OrchFS opportunistically migrates NVM data to
SSD, and frees up the used NVM pages/Upages. The reversed
SSD-to-NVM migration is feasible but nonearning because
SSD-reads benefit from page cache well, e.g., Figure 13.

Under high space utilization of NVM or idleness (optional),
OrchFS enables the data migration. OrchFS preferentially mi-
grates the logical-blocks that utilize more pages/Upages. For
a migration operation, OrchFS first reads all pages/Upages
of a logical-block and corresponding SSD-block (if any), and
then writes them into a new block. During this migration,
this logical-block is locked by HRtree’s range lock. This
fine-grained block-level (rather than coarse-grained file-level)
migration reduces the impact on foreground writes. Besides,
some NVM Upages are transparently written back and re-
claimed after their headers are used up (§ 3.3).

Overall, OrchFS tends to store a vast majority of data to
SSD directly, thus the data migration is not triggered fre-
quently. In some extreme cases, e.g., all writes are small and
placed on NVM, OrchFS would degenerate into a hierarchical
NVM-SSD file system [36,76,85]. The data migration design
can effectively handle such cases (e.g., § 5.5).

4 Implementation
We implement an OrchFS prototype from scratch while re-
ferring to NOVA [78], Strata [36], OdinFS [88], ArckFS
[87] and F2FS [37]. The OrchFS prototype is available
at https://github.com/YekangZhan/OrchFS. We modify
Linux kernel’s radix tree to implement HRtree. OrchFS in-
herits and extends the LibFS-KernelFS architecture to further
reduce IO latency. OrchFS implements metadata security and
NVM’s data security based on Strata and ArckFS. OrchFS fur-
ther introduces an address-aligned shared memory space for
SSD-write data exchange between KernelFS and each LibFS.
This ensures SSD’s data security and satisfies write-buffer-
address alignment for the direct IO mode simultaneously with
less than 10% performance overhead in our evaluation. Addi-
tionally, OrchFS can also support the use of the buffered IO
mode for asynchronous SSD-writes.

LibFS-KernelFS metadata updates. In OrchFS, Ker-
nelFS (i.e., the trusted entity) leases exclusive metadata re-
sources and storage units to LibFSes. For the leased meta-
data updates, LibFSes record and store them to the metadata
journals, and update them in memory. KernelFS verifies the
legality and integrity of these journals, similar to ArckFS’s "in-
tegrity verifier", but performs the verification asynchronously.
If it passes, KernelFS performs this metadata update in NVM.
In this way, KernelFS can maintain a global state.

Sharing. OrchFS adopts the conventional sharing model
[36,87], which supports leases on files and regions of a file sys-
tem namespace. The leases enable exclusive writes or shared
reads for a specific file or a region of a namespace. When
OrchFS reclaims a LibFS’s write lease, it notifies KernelFS
to verify and accept the LibFS’s metadata updates.

Crash consistency. By default, OrchFS ensures atomic
metadata-operations but not atomic data-operations, which
provides the same consistency guarantees as EXT4 [6], NOVA
relaxed mode [78], OdinFS [88] and ArckFS [87]. OrchFS
can be easily enhanced to provide other consistency modes

76 23rd USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/YekangZhan/OrchFS

1KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 1B-2MB
Average Write Request Size (±10%)

0
1
2
3
4
5
6
7
8
9

No
rm

al
ize

d
La

te
nc

y

15
.6

9x
 /

13
.5

6x

26
.5

1x
 /

22
.7

6x

20
.5

1x
 /

16
.4

4x

12
.9

6x
 /

10
.0

9x

22
.4

4x
 /

13
.2

6x

29
.7

6x
 /

23
.2

1x

21
.7

4x
 /

16
.9

7x

12
.9

9x
 /

10
.1

9x

1.
43

μs

2.
49

μs

4.
19

μs

7.
80

μs

15
.5

2μ
s

28
.7

4μ
s

42
.2

3μ
s

74
.0

1μ
s

13
4.

21
μs

25
1.

86
μs

25
5.

88
μs

EXT4
EXT4_no_fsync

F2FS
F2FS_no_fsync

NOVA
OdinFS

ArckFS
Strata

SPFS_EXT4
SPFS_F2FS

PHFS
OrchFS

Figure 10: Average write latency of file systems under different write sizes.
Table 1: Experimental workloads.

Section Workload Characteristics
§ 5.2.1 Single-threaded writes and reads under different IO sizes
§ 5.2.2 Multi-threaded writes under different access patterns
§ 5.3 Mixed metadata and data accesses with different proportions

§ 5.4.1 Small accesses, mixed writes and reads with different proportions
§ 5.4.2 Mixed small and large, writes and reads with different proportions

as needed. For example, using out-of-place updates for NVM
pages/Upages and SSD blocks to ensure atomic writes. Or-
chFS ensures crash consistency by using conventional logical
journaling [62, 68]. During crash recovery, OrchFS verifies
and replays the operations recorded on the metadata journals
serially to recover to a consistent state.

5 Evaluation
In this section, we evaluate the effectiveness of OrchFS under
a wide variety of workloads, as shown in Table 1.

5.1 Experimental Setup
Environment. Our evaluation machine has two Intel Xeon
Gold 6348 processors (2.60 GHz, 28 CPUs) and 256GB of
DDR4 DRAM. By default, we use an 128GB Intel Optane
PM [26] as NVM, and a PCIe4.0 3.84TB Samsung PM9A3
SSD [59] with 6.8GB/s read and 4.2GB/s write bandwidths.
All experiments related to the PCIe5.0 SSD, i.e., 3.84TB Sam-
sung PM1743 SSD [58] with 14GB/s read and 6GB/s write
bandwidths, are conducted on a similar machine with 256GB
of DDR5 DRAM. Note that, OrchFS aims to maximize SSD
performance by using a small-sized auxiliary NVM, thus a
larger and/or faster NVM does not alter the overall conclu-
sions. OrchFS runs on Ubuntu 20.04 and Linux kernel 5.18.18.
For all experiments, we pin threads to the cores, disable CPU
frequency scaling, and clear the kernel cache before each run.
All experimental results are the average of at least three runs.

Baseline file systems. We compare OrchFS against three
types of file systems. (1) SSD file systems: EXT4 [6] and
F2FS [37]. (2) NVM file systems: NOVA [78], OdinFS [88]
and ArckFS [87], for demonstrating the performance of Or-
chFS’s NVM usage. (3) Hybrid NVM-SSD file systems
(HFSs): Strata [36], SPFS [76], and PHFS. EXT4 and F2FS
are mature and widely used production file systems. NOVA
is a presentative in-kernel NVM file system. OdinFS and Ar-
ckFS are state-of-the-art in-kernel and userspace NVM file
systems, respectively. Strata is a userspace hierarchical HFS.
SPFS is a state-of-the-art hierarchical HFS stacked on EXT4
and F2FS for evaluation respectively. For a fair comparison,

following UHS [89], which is implemented at block layer, as
well as Intel DAOS [27], which is designed for distributed
scenarios, we implement their NVM-SSD parallel principle
based on OrchFS, called PHFS. PHFS stores all metadata in
NVM, and sends small and large write requests to NVM and
SSD respectively using 32KB as the small-large boundary.

Configuration. EXT4, NOVA, OdinFS, ArckFS, SPFS and
PHFS are set to the same crash consistency guarantee as
OrchFS. F2FS and Strata provide stricter write-atomicity with
extra file-write overhead. Nevertheless, this does not impact
the overall conclusions as explained later. EXT4 and F2FS
run on SSD. NOVA, OdinFS and ArckFS run on NVM. Strata,
SPFS, PHFS and OrchFS run cross NVM and SSD.

Limitation. Ziggurat [85] is not open-source. SplitFS [31]
crashes frequently for unaligned writes, and its performance
is inferior to that of ArckFS under aligned workloads [87].

5.2 Microbenchmark
5.2.1 Single-Threaded Performance
We first evaluate single-threaded performance of OrchFS un-
der diverse IO sizes. By default, we call fsync() after each
write for data persistence. In this section, we also evaluate the
performance of EXT4 and F2FS without fsync() calls.

Write performance. We first pre-fill a 10GB file with the
same write-size range, clearing cache, then perform a 10GB
random writes and measure the average write latency. As
shown in Figure 10, OrchFS’s performance is 0.96×-29.76×
that of the baseline file systems. For small-size (<32KB)
writes, OrchFS writes all data to NVM, exhibiting a sim-
ilar performance to the NVM file systems and HFSs, and
significantly higher than the SSD file systems.

For large-size (>64KB) writes, OrchFS outperforms the
baseline file systems by 1.41×-7.16× in latency. The advan-
tages of OrchFS stem from three aspects. Firstly, OrchFS
keeps SSD working for an optimal write pattern, thereby
avoiding the alignment cost, page cache overhead (§ 3.4), and
fully exploiting SSD’s high bandwidth (§ 3.6). 2) OrchFS
adaptively utilizes NVM and SSD to handle each request in
parallel (§ 3.6). 3) OrchFS provides efficient write-partition
and file mapping (§ 3.5). In comparison, the SSD file systems
and PHFS suffer from severe write inefficiency (§ 2.4), even
without fsync() calls. Strata and SPFS use NVM to handle
most writes, thus their performances are similar to that of the
NVM file systems. The fact that OrchFS has similar perfor-
mance in the 1MB case and the 1B-2MB case demonstrates

USENIX Association 23rd USENIX Conference on File and Storage Technologies 77

1KB 4KB 8KB
16KB

32KB
64KB

128KB
256KB

512KB
1MB

1B-2MB
0.00

0.25

0.50

0.75

1.00

Ti
m

e
Pr

op
or

tio
n IO Index Other Page Upage Block

(a) Write time breakdown (size ± 10%)
32KB

64KB
128KB

256KB
512KB

1MB
1B-2MB

0

1

2

No
rm

al
ize

d
La

te
nc

y Enable Disable

(b) Parallel IO engine
Figure 11: Write time breakdown (a) and sensitivity study of
enabling and disabling the parallel IO engine (b).

64KB 128KB 256KB 512KB 1MB 1B-2MB
Average Write Request Size (±10%)

0.0
0.5
1.0
1.5
2.0
2.5

No
rm

al
ize

d
La

te
nc

y 1 2 4 8 16 32 (Normalized Reference) 48 64

Figure 12: Sensitivity study of the number of SSD-IO threads
in the parallel IO engine.

the load-adaptability of OrchFS’s write-partition (§ 3.4).
For the 32KB and 64KB writes, about 2.4% and 48.1%

of request-data in OrchFS are written to SSD respectively.
Hence, OrchFS gains relatively less advantage than the NVM
file systems, Strata and SPFS, but still significantly outper-
forms the SSD file systems (4.94×-8.89×). PHFS under the
32KB and 64KB cases sends 1/2 of and all writes to SSD re-
spectively, rendering its 32KB performance in between those
of the NVM and SSD file systems and its 64KB performance
similar to that of the SSD file systems.

Write breakdown and sensitivity study of parallel IO
engine. To better understand the performance gains by Or-
chFS, we breakdown the write time (left bars) and the IO time
(right bars), as shown in Figure 11(a). Note that, we stack
the IO times of NVM and SSD in the same bar, but NVM-
IOs and SSD-IOs are actually handled in parallel. For small
(<32KB) writes, NVM handles all write-IOs. For medium
to large writes, the write-IOs are handled by both NVM and
SSD. The larger the write size, the smaller the proportion of
NVM-IOs. This demonstrates that OrchFS does not rely on
NVM performance for medium to large writes.

Then, we analyze the efficacy of parallel IO engine. We
first measure the write latency with/without the parallel IO
engine (i.e., enabling parallel NVM-SSD IO handling and
SSD’s multi-threaded IO execution or not), as shown in Fig-
ure 11(b). OrchFS with parallel IO engine outperforms its
counterpart without the engine in IO latency by up to 48.6%.
This demonstrates that the parallel IO engine can effectively
improve the write latency for various write sizes without side
effects. We further study the impact of the number of IO
threads in the parallel IO engine on the write latency. Consid-
ering that the NVM under 4 IO-threads behaves best [79, 88],
we focus on the number of SSD-IO threads. Figure 12 shows
that the default setting of 32 SSD-IO threads has the best
write performance. Moreover, although 8 SSD-IO threads can
almost maximize SSD performance, the default 32 threads

Table 2: OrchFS storage space usage breakdown.
IO Size (±10%) 1,4,8,16KB 32KB 64KB 128KB 256KB 512KB 1MB 1B-2MB

Space occupation after the 10GB pre-fill (i.e., append writes) (GB)
NVM Page 10 9.76 5.19 2.50 1.25 0.63 0.31 0.32

NVM Upage 0 0 0 0 0 0 0 0
SSD Block 0 0.24 4.81 7.50 8.75 9.37 9.69 9.68

Space occupation after the 10GB random writes on the above filled file (GB)
NVM Page 10 9.89 7.06 4.19 2.34 1.25 0.63 0.64

NVM Upage 0 0.03 0.47 0.42 0.27 0.15 0.08 0.08
SSD Block 0 0.24 4.81 7.50 8.75 9.37 9.69 9.68

0 10 20 30
Elapsed Time (s)

0
5

10
15
20
25

Th
ro

ug
hp

ut
 (G

B/
s)

EXT4 F2FS NOVA Odinfs ArckFS Strata

(a) Read at 1MB (±10%) case

0 10 20 30
Elapsed Time (s)

0
5

10
15
20
25

Th
ro

ug
hp

ut
 (G

B/
s)

SPFS_EXT4 SPFS_F2FS PHFS OrchFS

(b) Read at 1-2MB case

0 10 20 30
Elapsed Time (s)

0

1

2

Th
ro

ug
hp

ut
 (G

B/
s)

(c) Read at 4KB (±10%) case

0 10 20 30
Elapsed Time (s)

0
2
4
6
8

Th
ro

ug
hp

ut
 (G

B/
s)

(d) Read at 1B-128KB case
Figure 13: Read throughputs of file systems over time.

can reduce the load of each thread (i.e., the queue depth of
each thread § 3.6).

Space usage breakdown. To better understand file data
distribution in OrchFS, we measure the usages of its three
types of storage units after completing the above pre-fill (i.e.,
append writes) and random writes respectively, as shown in
Table 2. There are two main takeaways. (1) The larger the
write request size, the more data are stored in SSD. In the
1MB random write case, OrchFS only writes about 4.7% data
to NVM, but OrchFS improves the write latency by 68.4%
and 72.4% over EXT4 and F2FS that solely use SSD, respec-
tively. This demonstrates that OrchFS effectively maximizes
SSD performance by only using a small amount of NVM.
(2) The space usages under the 1B-2MB case and the 1MB
(±10%) case are similar, which demonstrates the adaptability
of OrchFS’s storage units to various write sizes.

Reads. Next, we conduct four experiments to assess Or-
chFS’s read performance. We first fill a 10GB file with write-
size of 1MB (±10%), 1B-2MB, 4KB (±10%) and 1B-128KB
respectively, clearing cache, and then perform random reads
with the corresponding size-ranges.

The results are shown in Figure 13. The NVM file systems
without page cache, and Strata and SPFS (almost exclusively
using NVM) have relatively stable throughputs over time.
The SSD file systems have a slow start in throughput due
to reading from SSD, and gradually gain speed over time as
more data are cached by page cache, eventually reaching and
maintaining a peak with a stable page cache hit ratio.

For OrchFS and PHFS, approximately 3.1% and 0%, 3.2%
and 1.6%, 100% and 100%, and 52% and 25% of the file data
reside in NVM for the four cases respectively. In the 1MB
(±10%) case, OrchFS quickly reaches its peak throughput,
which is up to 6.79× higher than the baseline file systems.
Because OrchFS largely reads multiple 32KB-aligned regions

78 23rd USENIX Conference on File and Storage Technologies USENIX Association

of SSD and NVM in parallel, only the head and tail of each
request may result in unaligned reads that are partially served
by NVM. PHFS’s performance is similar to those of the SSD
file systems, because PHFS only uses SSD in the 1MB case.

In the 1B-2MB case, OrchFS exhibits a similar trend to and
a slightly lower peak throughput than the 1MB (±10%) case,
due to slightly more unaligned reads. Nevertheless, OrchFS’s
peak throughput is up to 6.33× that of the baseline file sys-
tems. PHFS uses NVM to serve small reads, thus exhibiting a
higher initial throughput than the SSD file systems.

In the 4KB (±10%) case, both OrchFS and PHFS use NVM
only, their behaviors are similar to those of the NVM file
systems, Strata and SPFS. The SSD file systems exhibit slow
performance growth due to slow small and unaligned reads.

The 1B-128KB case aims to present a special scenario, i.e.,
in OrchFS, half of the file data is on NVM, and the other
half is on SSD. Compared to the SSD file system, OrchFS
has a faster growth rate in throughput, but bounded by the
NVM’s read bandwidth, thus exhibiting a slightly lower peak
throughput. In PHFS, 25% of the file data is on NVM, thus
its throughput growth rate and peak throughput fall between
those of OrchFS and the SSD file systems. Certainly, OrchFS
can use page cache for NVM-side reads [73] to improve its
peak throughput.

Overall, these experiments demonstrate that OrchFS ef-
fectively exploits SSD’s potentials by only using a small-
sized NVM. The block-aligned write-partition not only makes
writes efficient but also improves read performance.

5.2.2 Multi-Threaded Performance
We evaluate the multi-threaded performance of OrchFS to
demonstrate its effectiveness under concurrent accesses.

Concurrent access to multiple files. We conduct random
overwrite tests with three different write-size ranges: 4KB
(±10%), 1MB (±10%), and 1B-2MB. We pre-fill 16 5GB files
with the same write-size range. Each user thread accesses
only one file. We measure the aggregate throughput, as shown
in Figure 14(a)(b)(c). In the 4KB (±10%) case, OrchFS’s
performance is comparable to that of SPFS and the NVM
file systems (1.00×-1.72×). In the 1MB (±10%) and 1B-
2MB cases, OrchFS reaches the peak throughput at 2 user
threads and remains stable as the number of threads scales.
In comparison, PHFS and the SSD file systems reach peak
throughput at more than 6 user threads. SPFS and Strata
almost use NVM only, hence their performance is similar to
the NVM file systems. Strata performs poorly in all cases,
due to its atomic writes and limited concurrency.

Concurrent access to a single file. We further evaluate the
concurrency of OrchFS on a single file. We pre-fill a 10GB file
with write-size ranging from 1B to 2MB, and conduct random
write tests with the same write size range. Each user-thread
writes 3GB data. Figure 14(d) shows that OrchFS outper-
forms the baseline file systems in aggregate throughput by
1.86×-7.84×. At 2 user-threads, OrchFS saturates the SSD’s

1 2 3 4 5 6 7 8 9 10 12 14 16
User Threads

0

1

2

Th
ro

ug
hp

ut
 (G

B/
s)

EXT4 F2FS NOVA OdinFS ArckFS Strata

(a) 4KB (±10%) random writes

1 2 3 4 5 6 7 8 9 10 12 14 16
User Threads

0

2

4

Th
ro

ug
hp

ut
 (G

B/
s)

SPFS_EXT4 SPFS_F2FS PHFS OrchFS

(b) 1MB (±10%) random writes

1 2 3 4 5 6 7 8 9 10 12 14 16
User Threads

0

2

4

Th
ro

ug
hp

ut
 (G

B/
s)

(c) 1B-2MB random writes

1 2 3 4 5 6 7 8 9 10 12 14 16
User Threads

0

2

4

Th
ro

ug
hp

ut
 (G

B/
s)

(d) 1B-2MB writes to a single file
Figure 14: Write throughputs under multiple user-threads.

1 2 3 4 5 6 7 8 9 10 12 14 16
User Threads

0

3

6

9

Th
ro

ug
hp

ut
 (G

B/
s)

OrchFS - PCIe4.0 SSD OrchFS - PCIe5.0 SSD

(a) 1B-2MB append writes

1 2 3 4 5 6 7 8 9 10 12 14 16
User Threads

0

3

6

9

Th
ro

ug
hp

ut
 (G

B/
s)

OrchFS - two PCIe4.0 SSDs

(b) 1B-2MB random writes
Figure 15: Write throughputs under different SSD setups.

bandwidth and maintains stable performance with increasing
threads. PHFS and the SSD file systems suffer from slow
concurrent fsync() on a single file [50, 53], while OrchFS
avoids this due to the direct IO mode for SSD writes (§ 2.4.2).

Sensitivity analysis of different SSD setups. We further
evaluate the performance of OrchFS under three SSD setups,
namely, one default PCIe4.0 SSD, one PCIe5.0 SSD with
6GB/s write bandwidth, and two default PCIe4.0 SSDs with a
RAID0 configuration [52]. Each user thread accesses one file
using a write-size range of 1B-2MB. We measure aggregate
throughputs of append writes and random writes respectively.
Figure 15 shows that OrchFS reaches its peak throughput at 2
and 3 user-threads for the one PCIe4.0/PCIe5.0 SSD setups
and the two PCIe4.0 SSDs. Moreover, the performance of
append and random writes of OrchFS are similar, validating
the effectiveness of OrchFS’s write-partition (§ 3.4).

Overall, OrchFS supports concurrent accesses effectively.

5.3 Macrobenchmark
In this section, we use Filebench [69] with three representative
workloads of Fileserver, Webproxy and Varmail to evaluate
the overall performance of OrchFS under mix reads and writes
of metadata and file data. Table 3 summarizes the characteris-
tics of these three workloads. We persist writes immediately.
Strata is unable to run Filebench.

Single thread. Figure 16(a) shows that, under a single
thread, OrchFS outperforms the baseline file systems by
2.33×-10.25×, 1.81×-7.44×, and 1.04×-13.35× in through-
put for Fileserver, Webproxy and Varmail respectively. For
metadata operations, the performance of OrchFS and PHFS
is comparable to that of the NVM file systems, and superior
to that of the SSD file systems. For reads and writes, OrchFS
outperforms the baseline file systems, similar to § 5.2.1.

USENIX Association 23rd USENIX Conference on File and Storage Technologies 79

Table 3: Filebench workload characteristics.
Workload #Files Avg. File size Avg. IO size (r/w) Threads R/W
Fileserver 10K 256KB 1MB/256KB 1/16 1:2
Webproxy 10K 2MB 1MB/256KB 1/16 5:1
Varmail 10K 64KB 1MB/64KB 1/16 1:1

Fileserver Webproxy Varmail
(a) Single-thread

0

5

10

15

No
rm

al
ize

d
Ko

ps
/s

6.
18

13
.5

1

10
.1

1

<—
 c

ra
sh

EXT4 F2FS NOVA OdinFS ArckFS

Fileserver Webproxy Varmail
(b) 16-threads

0

5

10

15

18
.1

3

37
.7

7

21
.6

6

<—
 c

ra
sh

SPFS_EXT4 SPFS_F2FS PHFS OrchFS

Figure 16: Normalized throughput of Filebench.

Therefore, for write-dominated Fileserver and read-
dominated Webproxy, OrchFS’s throughput is the highest.
For metadata-dominated workload Varmail, OrchFS exhibits
3.96×-13.35× higher throughput than that of the SSD file sys-
tems and SPFS. SPFS performs poorly because it is a stacked
file system with more complex metadata updates. Compared
to the NVM file systems, the advantage of OrchFS comes
from a small number of large reads and medium-size writes.

16 threads. Figure 16(b) further shows the results under
16 threads. OrchFS outperforms the baseline file systems
by 1.76×-15.12× in throughputs. The SSD file systems still
perform poorly due to slow metadata operations and write
inefficiency. PHFS utilizes NVM to handle all metadata op-
erations, while using SSD for reads and writes akin to the
SSD file systems, and its performance is significantly inferior
to OrchFS in all cases. This demonstrates that the parallel
HFS design cannot fully utilize SSD performance directly.
The NVM file systems and SPFS also underperform due to
limited bandwidth and concurrency of the NVM. Using faster
and/or more NVMs can improve their performance at the
cost of higher price. In comparison, the majority of OrchFS’s
performance attributes to SSD.

Overall, OrchFS exhibits high performance under mixed
metadata and data accesses.

5.4 Real-World Applications
In this section, we evaluate the efficiency and adaptability
of OrchFS under two real-world representative applications:
key-value store [23], and large-scale graph processing [90].

5.4.1 YCSB + LevelDB
We use LevelDB [23] as a representative key-value store. The
Yahoo! Cloud Serving Benchmark (YCSB) [14] is a common
benchmark for database applications, as a workload gener-
ator. Table 4 summarizes the characteristics of the YCSB
workloads. We set the SSTable size to 64MB to follow the
recommended configuration [20]. We configure the key-value
operations of LevelDB to be synchronous, so that writes are
immediately persisted. We issue 5 million operations with a
value size of 1KB. ArckFS is unable to run YCSB + LevelDB.

The results of the overall throughput are shown in Figure 17.
In these cases, OrchFS, SPFS and PHFS use NVM to handle

Table 4: YCSB workload characteristics.
Load Write only: 100% insert
RunA Update heavy: 50%/50% read/write mix
RunB Read mostly: 95%/5% read/write mix
RunC Read only: 100% read
RunD Read latest: new records are inserted, and the most recently inserted records are read
RunE Short ranges: short ranges of records are queried, instead of individual records
RunF Read-modify-write: read a record, modify it, and write back the changes

Load RunA RunB RunC RunD RunE RunF0
2
4
6
8

10

No
rm

al
ize

d
Ko

ps
/s

9.
49

11
.7

6

64
.0

2

17
3.

86

58
.1

1

22
.2

4

9.
50

<—
 c

ra
sh

EXT4
F2FS

NOVA
OdinFS

Strata
SPFS_EXT4

SPFS_F2FS
PHFS

OrchFS

Figure 17: Normalized throughput of YCSB+LevelDB.

small writes (and corresponding reads) and metadata accesses,
while using SSD to process a small amount of large and
asynchronous compaction writes. Therefore, OrchFS, SPFS
and PHFS have similar performance.

For Load with intensive and small write, OrchFS has a
greater advantage over the SSD file systems (3.28×-9.82×).
Compared to the NVM file systems, OrchFS’s advantage
(1.3×-1.43×) stems from its use of SSD to handle large com-
paction writes, saving the NVM bandwidth. For RunA, RunB,
RunD and RunF, which have different proportions of writes,
OrchFS significantly outperforms the SSD file systems and
slightly outperforms the NVM file systems in throughput.

For read-only RunC and RunE, OrchFS’s performance is
competitive with the NVM file systems (0.99×-1.64×). Since
more than 95% data of OrchFS are located in NVM and are
not cached, OrchFS’s read performance is slightly lower than
the SSD file systems effectively benefiting from page cache,
similar to Figure 13(d). OrchFS performs better than SPFS
in RunC but is slightly inferior to SPFS in range-read-based
RunE, due to SPFS’s read-optimized extent hashing.

5.4.2 Large-Scale Graph Processing
GridGraph [90] is a system for processing large-scale graphs
on a single machine. To further evaluate OrchFS’s load adapt-
ability, we employ GridGraph to execute the Pagerank [21]
algorithm with 8GB dedicated memory (emulating scenarios
of large-scale graph processing) under the Livejournal [66],
Twitter [32], and Friendster [65] datasets respectively, and run
20 iterations on each graph. Table 5 summarizes the workload
characteristics. We persist writes immediately.

We measure the execution time under the three datasets
respectively, as shown in Figure 18, OrchFS outperforms the
baseline file systems by 1.69×-3.20×. The SSD file systems
and PHFS suffer from the write-inefficiency. The NVM file
systems and SPFS rely on expensive NVM to process requests
but are limited by the performance of NVM. This suggests
that under various mixtures of reads and writes with diverse
unaligned request sizes and offsets, OrchFS can always handle
them efficiently, thereby accelerating the graph processing
and the scenarios with similar access behaviors, such as cloud
computing [74] and scientific computing [54].

80 23rd USENIX Conference on File and Storage Technologies USENIX Association

Table 5: Workload characteristics of graph processing.
Dataset |V| |E| Dataset

Size Writes Reads Average
Write Size

Average
Read Size

LiveJournal 4.85M 69.0M 539MB 1.8GB 12.8GB 123.1KB 16.5MB
Twitter 61.6M 1.5B 11.5GB 35.4GB 25.5GB 1.02MB 4.9MB

Friendster 68.3M 2.6B 28.2GB 86.8GB 93.4GB 129.4KB 11.0MB

LiveJournal Twitter Friendster0

50

100

150

Ex
ec

ut
io

n
Ti

m
e

(s
)

EXT4
F2FS
NOVA
OdinFS
ArckFS

SPFS_EXT4
SPFS_F2FS
PHFS
OrchFS

Figure 18: Execution time of graph processing.

Overall, OrchFS exhibits strong load-adaptability for
emerging real-world applications.

5.5 Analysis of File Fragmentation and Aging
In SSD-side, the allocation unit is an SSD-block, e.g., 32KB,
and OrchFS always places file data in an SSD-block aligned
manner. The SSD-blocks of a file are never further fragmented,
thus relieving potential aging of SSD-side [29]. In NVM-
side, OrchFS allocates NVM pages and smaller chunks in
Upages for block-unaligned writes, causing potential data
fragmentation over aging. However, the fragmented chunks
can be merged in Upages (§ 3.3). Furthermore, the NVM
Upages/pages can be strategically migrated and merged into
the SSD blocks, thus mitigating file fragmentation in NVM.

To better understand data fragmentation of OrchFS, we first
disable the data migration of OrchFS and perform continuous
unaligned random writes with different sizes to a 10GB file,
which is initially stored on SSD. We measure the percentage
of the number of NVM Upages relative to the total number of
logical pages in the file, reflecting the degree of subpage-level
data fragmentation. Figure 19 shows that, for all cases, as the
amount of written data increases, the percentage of Upages
first increases and then decreases, because the chunks within
an Upage are gradually merged into a full-page. The 1KB,
4KB, and 16KB cases exhibit a high percentage of Upages,
because all writes are stored in NVM. Moreover, the larger the
write size, the less the Upages, because more data are written
to SSD directly. When the data migration is enabled, OrchFS
gradually migrates all NVM Upages/pages to SSDs. For ex-
ample, for the extreme 1KB case file, OrchFS migrates all its
NVM Upages/pages to the SSD within 12 seconds. Addition-
ally, OrchFS can adopt WineFS’s anti-aging approach [30] to
further reduce NVM-side page-level fragmentation.

6 Related Work
This section discusses the related work concerning file sys-
tems, multiple IO paths, and alignment optimizations.

SSD file systems have been undergoing continuous devel-
opment and evolution [4, 37, 48, 57, 68]. The latest improve-
ments focus on the scalability, e.g., CJFS [50] presents con-
current journaling for EXT4 [48], SpanFS [33] and MAX [44]
propose scalability optimization based on F2FS [37]. They all
suffer from the write inefficiency on high-bandwidth SSDs.

Initial 1GB 2GB 5GB 10GB 20GB 50GB 100GB 1TB
The amount of data continuously written to a 10GB file

0
20
40
60
80

100

Th
e

Pe
rc

en
ta

ge
 o

f N
VM

 U
pa

ge
s (

%
)

1KB 4KB 16KB 32KB 64KB 256KB 1MB 1B-2MB

Figure 19: OrchFS subpage-level file fragmentation.

NVM file systems are designed to fully exploit NVM per-
formance. In-kernel NVM file systems [12, 19, 30, 78, 88]
bypass page cache and allow applications to directly ac-
cess file data stored on NVM. Userspace NVM file sys-
tems [9, 10, 17, 31, 40, 86, 87] further bypass the kernel and
access NVM in userspace to mitigate IO penalties. However,
the relatively high per capacity price of NVMs limits the
widespread deployment of such systems.

Hybrid NVM-SSD systems either use the upper NVMs to
endure most loads [8,36,41,45,55,76,85], thus underutilizing
the underlying SSDs, or leverage NVM and SSD to handle
small and large writes respectively [27, 89] but ignore the
write inefficiency of SSDs, especially high alignment costs.

Multiple IO paths. Some distributed file systems (DFSs)
use the buffered IO mode and the direct IO mode for SSDs
based on a fixed or dynamic IO-size threshold [13, 25, 42, 54,
61, 72]. Most hybrid NVM-SSD systems use the memory-
semantic path for NVM and the buffered IO mode for SSD,
and some works [27, 36] use SPDK [81] for SSD. They do
not consider high alignment costs and write-partition, while
using the expensive RMW process (§ 2.4.1) to align writes.

Alignment optimizations. Some works [5,22,24,63,83,84]
have also observed high alignment costs of SSDs. To reduce
it, NVStore [63] uses page cache to merge unaligned writes.
Re-aligning [5] improves FTL to remap unaligned writes to a
single SSD-page. WAFLASH [24] proposes a write-aligned
FLASH drive. iBridge [84] leverages SSD to serve stripe-
unaligned writes of DFSs. They are orthogonal to OrchFS.
Besides, WineFS [30] proposes an alignment-aware NVM
allocator to resist the effects of aging for NVM file systems.
OrchFS focuses on the SSD-side alignment optimization and
can inherit WineFS’s designs to enhance the NVM-side per-
formance and anti-aging capabilities.

7 Conclusion
This paper identifies and analyzes the root causes of the write
inefficiency of file systems on high-bandwidth SSDs, and pro-
poses OrchFS to maximize SSD performance by transforming
requests into device-preferred SSD-IOs and NVM-IOs. Ex-
perimental results demonstrate the efficacy of OrchFS.

Acknowledgement
We thank our shepherd Saurabh Kadekodi and the anony-
mous reviewers for their insightful comments. This work was
supported by NSFC (No.62172175), National Key Research
and Development Program of China (No.2024YFB4505105,
No.2022YFB2804302), and Key Research and Development
Project of Hubei (No.2022BAA042).

USENIX Association 23rd USENIX Conference on File and Storage Technologies 81

References

[1] Imran Ahmed, Misbah Ahmad, Awais Ahmad, and
Gwanggil Jeon. Iot-based crowd monitoring system: Us-
ing ssd with transfer learning. Computers & Electrical
Engineering, 93:107226, 2021.

[2] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts,
Vladimir Nikitin, Xueti Tang, Daniel Lottis, Kiseok
Moon, Xiao Luo, Eugene Chen, Adrian Ong, et al. Spin-
transfer torque magnetic random access memory (stt-
mram). ACM Journal on Emerging Technologies in
Computing Systems (JETC), 9(2):1–35, 2013.

[3] AXBOE. Fio: Flexible i/o tester. 2020. https://
github.com/axboe/fio.

[4] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee,
and Mark Shellenbaum. The zettabyte file system. In
Proc. of the 2nd Usenix Conference on File and Storage
Technologies, volume 215, 2003.

[5] Zhigang Cai, Chengyong Tang, Minjun Li, François Tra-
hay, Jun Li, Zhibing Sha, Jiaojiao Wu, Fan Yang, and
Jianwei Liao. Re-aligning across-page requests for flash-
based solid-state drives. In Proceedings of the 52nd
International Conference on Parallel Processing, pages
736–745, 2023.

[6] Mingming Cao, Suparna Bhattacharya, and Ted Ts’o.
Ext4: The next generation of ext2/3 filesystem. In LSF,
2007.

[7] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC
Du. Characterizing, modeling, and benchmarking
rocksdb key-value workloads at facebook. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 209–223, 2020.

[8] Youmin Chen, Youyou Lu, Pei Chen, and Jiwu Shu.
Efficient and consistent nvmm cache for ssd-based file
system. IEEE Transactions on Computers, 68(8):1147–
1158, 2018.

[9] Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C
Arpaci-Dusseau, Remzi H Arpaci-Dusseau, and Jiwu
Shu. Scalable persistent memory file system with kernel-
userspace collaboration. In 19th USENIX Conference
on File and Storage Technologies (FAST 21), pages 81–
95, 2021.

[10] Jungsik Choi, Jaewan Hong, Youngjin Kwon, and Hwan-
soo Han. Libnvmmio: Reconstructing software io path
with failure-atomic memory-mapped interface. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 1–16, 2020.

[11] Douglas Comer. Ubiquitous b-tree. ACM Computing
Surveys (CSUR), 11(2):121–137, 1979.

[12] Jeremy Condit, Edmund B Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better i/o through byte-addressable, persis-
tent memory. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages
133–146, 2009.

[13] Orangefs configuration file. Orangefs documentation.
https://docs.orangefs.com/configuration/
admin_ofs_configuration_file/, 2023.

[14] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

[15] Jonathan Corbet. Buffered i/o without page-cache
thrashing. https://lwn.net/Articles/806980/,
2024.

[16] Jinhua Cui, Zhimin Zeng, Jianhang Huang, Weiqi Yuan,
and Laurence T Yang. Improving 3d nand ssd read per-
formance by parallelizing read-retry. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, 2022.

[17] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and protection in the zofs
user-space nvm file system. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles,
pages 478–493, 2019.

[18] Xiangyu Dong, Naveen Muralimanohar, Norm Jouppi,
Richard Kaufmann, and Yuan Xie. Leveraging 3d pcram
technologies to reduce checkpoint overhead for future
exascale systems. In Proceedings of the conference on
high performance computing networking, storage and
analysis, pages 1–12, 2009.

[19] Subramanya R Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System software for persistent mem-
ory. In Proceedings of the Ninth European Conference
on Computer Systems, pages 1–15, 2014.

[20] Facebook. Rocksdb tuning guide. 2023.
https://github.com/facebook/rocksdb/wiki/
RocksDB-Tuning-Guide.

[21] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and
Tamás Sarlós. Towards scaling fully personalized
pagerank: Algorithms, lower bounds, and experiments.
Internet Mathematics, 2(3):333–358, 2005.

82 23rd USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/axboe/fio
https://github.com/axboe/fio
https://docs.orangefs.com/configuration/admin_ofs_configuration_file/
https://docs.orangefs.com/configuration/admin_ofs_configuration_file/
https://lwn.net/Articles/806980/
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide

[22] Congming Gao, Liang Shi, Kai Liu, Chun Jason Xue,
Jun Yang, and Youtao Zhang. Boosting the performance
of ssds via fully exploiting the plane level parallelism.
IEEE Transactions on Parallel and Distributed Systems,
31(9):2185–2200, 2020.

[23] Sanjay Ghemawat and Jeff Dean. Leveldb is a fast key-
value storage library written at google that provides an
ordered mapping from string keys to string values, 2014.

[24] Shuibing He, Matthew Myers, Xuehao Duan, Keegan
Sanchez, and Xuechen Zhang. Waflash: Taming un-
aligned writes in solid-state disks. In 2022 IEEE
International Conference on Networking, Architecture
and Storage (NAS), pages 1–8. IEEE, 2022.

[25] Frank Herold. An introduction to beegfs.
https://www.beegfs.io/docs/whitepapers/
Introduction_to_BeeGFS_by_ThinkParQ.pdf,
2014.

[26] Intel. Intel optane dc persistent memory. 2021.
https://www.intel.com/content/www/us/en/
architecture-and-technology.

[27] Intel. Distributed asynchronous object storage (daos).
https://docs.daos.io/v2.7/, 2024.

[28] Intel. Distributed asynchronous object storage
(daos). https://github.com/daos-stack/daos/
tree/master, 2024.

[29] Yuhun Jun, Shinhyun Park, Jeong-Uk Kang, Sang-Hoon
Kim, and Euiseong Seo. We ain’t afraid of no file
fragmentation: Causes and prevention of its perfor-
mance impact on modern flash SSDs. In 22nd USENIX
Conference on File and Storage Technologies (FAST
24), pages 193–208, Santa Clara, CA, February 2024.
USENIX Association.

[30] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponna-
palli, Harshad Shirwadkar, Gregory R Ganger, Aasheesh
Kolli, and Vijay Chidambaram. Winefs: a hugepage-
aware file system for persistent memory that ages
gracefully. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, pages
804–818, 2021.

[31] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
Splitfs: Reducing software overhead in file systems for
persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages
494–508, 2019.

[32] KAIST. Twitter. 2023. http://an.kaist.ac.kr/
traces/WWW2010.html.

[33] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu,
Lian Du, Shuai Ma, and Jinpeng Huai. Spanfs: A
scalable file system on fast storage devices. In 2015
USENIX Annual Technical Conference (USENIX ATC
15), pages 249–261, 2015.

[34] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim.
Scalable numa-aware blocking synchronization primi-
tives. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 603–615, 2017.

[35] Wook-Hee Kim, R Madhava Krishnan, Xinwei Fu,
Sanidhya Kashyap, and Changwoo Min. Pactree: A high
performance persistent range index using pac guidelines.
In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, pages 424–439, 2021.

[36] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A cross media file system. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages
460–477, 2017.

[37] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2fs: A new file system for flash stor-
age. In 13th USENIX Conference on File and Storage
Technologies (FAST 15), pages 273–286, 2015.

[38] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham,
Jae W Lee, and Jinkyu Jeong. Asynchronous i/o stack:
A low-latency kernel i/o stack for ultra-low latency
ssds. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 603–616, 2019.

[39] Viktor Leis, Alfons Kemper, and Thomas Neumann. The
adaptive radix tree: Artful indexing for main-memory
databases. In 2013 IEEE 29th International Conference
on Data Engineering (ICDE), pages 38–49. IEEE, 2013.

[40] Ruibin Li, Xiang Ren, Xu Zhao, Siwei He, Michael
Stumm, and Ding Yuan. ctfs: Replacing file indexing
with hardware memory translation through contiguous
file allocation for persistent memory. In 20th USENIX
Conference on File and Storage Technologies (FAST
22), pages 35–50, 2022.

[41] Wenjie Li, Dejun Jiang, Jin Xiong, and Yungang
Bao. Hilsm: an lsm-based key-value store for hy-
brid nvm-ssd storage systems. In Proceedings of
the 17th ACM International Conference on Computing
Frontiers, pages 208–216, 2020.

[42] Xiuqiao Li, Limin Xiao, Meikang Qiu, Bin Dong, and
Li Ruan. Enabling dynamic file i/o path selection
at runtime for parallel file system. The Journal of
Supercomputing, 68:996–1021, 2014.

USENIX Association 23rd USENIX Conference on File and Storage Technologies 83

https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology
https://www.intel.com/content/www/us/en/architecture-and-technology
https://docs.daos.io/v2.7/
https://github.com/daos-stack/daos/tree/master
https://github.com/daos-stack/daos/tree/master
http://an.kaist.ac.kr/traces/WWW2010.html
http://an.kaist.ac.kr/traces/WWW2010.html

[43] Yu Liang, Jinheng Li, Rachata Ausavarungnirun, Ri-
wei Pan, Liang Shi, Tei-Wei Kuo, and Chun Jason Xue.
Acclaim: Adaptive memory reclaim to improve user ex-
perience in android systems. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 897–
910, 2020.

[44] Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu.
Max: A multicore-accelerated file system for flash stor-
age. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 877–891, 2021.

[45] Zhen Lin, Lingfeng Xiang, Jia Rao, and Hui Lu.
P2cache: Exploring tiered memory for in-kernel file
systems caching. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23), pages 801–815, 2023.

[46] Chun-Yi Liu, Jagadish B Kotra, Myoungsoo Jung, Mah-
mut T Kandemir, and Chita R Das. Soml read: Rethink-
ing the read operation granularity of 3d nand ssds. In
ASPLOS, pages 955–969, 2019.

[47] Shuyang Liu, Shucheng Wang, Qiang Cao, Ziyi Lu,
Hong Jiang, Jie Yao, Yuanyuan Dong, and Puyuan Yang.
Analysis of and optimization for write-dominated hy-
brid storage nodes in cloud. In Proceedings of the
ACM Symposium on Cloud Computing, pages 403–
415, 2019.

[48] Avantika Mathur, Mingming Cao, Suparna Bhat-
tacharya, Andreas Dilger, Alex Tomas, and Laurent
Vivier. The new ext4 filesystem: current status and
future plans. In Proceedings of the Linux symposium,
volume 2, pages 21–33. Citeseer, 2007.

[49] Jayashree Mohan, Amar Phanishayee, and Vijay Chi-
dambaram. Checkfreq: Frequent, fine-grained dnn
checkpointing. In 19th USENIX Conference on File
and Storage Technologies (FAST 21), pages 203–216,
2021.

[50] Joontaek Oh, Seung Won Yoo, Hojin Nam, Changwoo
Min, and Youjip Won. Cjfs: Concurrent journaling for
better scalability. In 21st USENIX Conference on File
and Storage Technologies (FAST 23), pages 167–182,
2023.

[51] Yoshihiro Oyama, Shun Ishiguro, Jun Murakami, Shin
Sasaki, Ryo Matsumiya, and Osamu Tatebe. Reduc-
tion of operating system jitter caused by page reclaim.
In Proceedings of the 4th International Workshop on
Runtime and Operating Systems for Supercomputers,
pages 1–8, 2014.

[52] David A. Patterson, Garth A. Gibson, and Randy H.
Katz. A case for redundant arrays of inexpensive
disks (RAID). In Proceedings of the 1988 ACM

SIGMOD International Conference on Management
of Data, Chicago, Illinois, USA, June 1-3, 1988, pages
109–116, 1988.

[53] Kiet Tuan Pham, Seokjoo Cho, Sangjin Lee, Lan Anh
Nguyen, Hyeongi Yeo, Ipoom Jeong, Sungjin Lee,
Nam Sung Kim, and Yongseok Son. Scalecache: A
scalable page cache for multiple solid-state drives. In
Proceedings of the Nineteenth European Conference on
Computer Systems, pages 641–656, 2024.

[54] Yingjin Qian, Marc-André Vef, Patrick Farrell, Andreas
Dilger, Xi Li, Shuichi Ihara, Yinjin Fu, Wei Xue, and An-
dré Brinkmann. Combining buffered i/o and direct i/o in
distributed file systems. In 22nd USENIX Conference
on File and Storage Technologies (FAST 24), pages 17–
33, 2024.

[55] Sheng Qiu and AL Narasimha Reddy. Nvmfs: A hybrid
file system for improving random write in nand-flash
ssd. In 2013 IEEE 29th Symposium on Mass Storage
Systems and Technologies (MSST), pages 1–5. IEEE,
2013.

[56] Yujie Ren, Changwoo Min, and Sudarsun Kannan.
Crossfs: A cross-layered direct-access file system.
In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 137–154,
2020.

[57] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The
linux b-tree filesystem. ACM Transactions on Storage
(TOS), 9(3):1–32, 2013.

[58] Samsung. Samsung pm1743 ssd. https:
//semiconductor.samsung.com/ssd/
enterprise-ssd/pm1743/, 2024.

[59] Samsung. Samsung pm9a3 ssd. 2024.
https://semiconductor.samsung.com/ssd/
datacenter-ssd/pm9a3/.

[60] Samsung. Samsung ssd. https://semiconductor.
samsung.com/ssd/, 2024.

[61] Frank Schmuck and Roger Haskin. Gpfs: A shared-disk
file system for large computing clusters. In Conference
on file and storage technologies (FAST 02), 2002.

[62] Harshad Shirwadkar, Saurabh Kadekodi, and Theodore
Tso. FastCommit: resource-efficient, performant and
cost-effective file system journaling. In 2024 USENIX
Annual Technical Conference (USENIX ATC 24),
pages 157–171, Santa Clara, CA, July 2024. USENIX
Association.

84 23rd USENIX Conference on File and Storage Technologies USENIX Association

https://semiconductor.samsung.com/ssd/enterprise-ssd/pm1743/
https://semiconductor.samsung.com/ssd/enterprise-ssd/pm1743/
https://semiconductor.samsung.com/ssd/enterprise-ssd/pm1743/
https://semiconductor.samsung.com/ssd/datacenter-ssd/pm9a3/
https://semiconductor.samsung.com/ssd/datacenter-ssd/pm9a3/
https://semiconductor.samsung.com/ssd/
https://semiconductor.samsung.com/ssd/

[63] Jiwu Shu, Fei Li, Siyang Li, and Youyou Lu. Towards
unaligned writes optimization in cloud storage with high-
performance ssds. IEEE Transactions on Parallel and
Distributed Systems, 31(12):2923–2937, 2020.

[64] Keith Sklower. A tree-based packet routing table for
berkeley unix. In USENIX Winter, volume 1991, pages
93–99, 1991.

[65] Stanford. Friendster. 2023. https://snap.stanford.
edu/data/com-Friendster.html.

[66] Stanford. Livejournal. 2023. https://snap.
stanford.edu/data/soc-LiveJournal1.html.

[67] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart,
and R Stanley Williams. The missing memristor found.
nature, 453(7191):80–83, 2008.

[68] Adam Sweeney, Doug Doucette, Wei Hu, Curtis An-
derson, Mike Nishimoto, and Geoff Peck. Scalability
in the xfs file system. In USENIX Annual Technical
Conference, volume 15, 1996.

[69] Vasily Tarasov. Filebench-a model based file sys-
tem workload generator. https://github.com/
filebench/filebench, 2018.

[70] Arash Tavakkol, Mohammad Sadrosadati, Saugata
Ghose, Jeremie Kim, Yixin Luo, Yaohua Wang,
Nika Mansouri Ghiasi, Lois Orosa, Juan Gómez-Luna,
and Onur Mutlu. Flin: Enabling fairness and enhancing
performance in modern nvme solid state drives. In 2018
ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pages 397–410. IEEE,
2018.

[71] Stephen R Walli. The posix family of standards.
StandardView, 3(1):11–17, 1995.

[72] Feiyi Wang, Sarp Oral, Saurabh Gupta, Devesh Ti-
wari, and Sudharshan S Vazhkudai. Improving large-
scale storage system performance via topology-aware
and balanced data placement. In 2014 20th IEEE
International Conference on Parallel and Distributed
Systems (ICPADS), pages 656–663. IEEE, 2014.

[73] Guoyu Wang, Xilong Che, Haoyang Wei, Shuo Chen,
Puyi He, and Juncheng Hu. Nvpc: A transparent nvm
page cache. arXiv preprint arXiv:2408.02911, 2024.

[74] Shucheng Wang, Ziyi Lu, Qiang Cao, Hong Jiang, Jie
Yao, Yuanyuan Dong, and Puyuan Yang. Bcw: Buffer-
controlled writes to hdds for ssd-hdd hybrid storage
server. In 18th USENIX Conference on File and
Storage Technologies (FAST 20), pages 253–266, 2020.

[75] Wiki. Pci express. https://semiconductor.
samsung.com/ssd/, 2024.

[76] Hobin Woo, Daegyu Han, Seungjoon Ha, Sam H Noh,
and Beomseok Nam. On stacking a persistent memory
file system on legacy file systems. In 21st USENIX
Conference on File and Storage Technologies (FAST
23), pages 281–296, 2023.

[77] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ram-
natthan Alagappan, Rathijit Sen, Kwanghyun Park, An-
drea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
The storage hierarchy is not a hierarchy: Optimizing
caching on modern storage devices with orthus. In 19th
USENIX Conference on File and Storage Technologies
(FAST 21), pages 307–323, 2021.

[78] Jian Xu and Steven Swanson. Nova: A log-structured
file system for hybrid volatile/non-volatile main memo-
ries. In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 323–338, 2016.

[79] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An empirical guide
to the behavior and use of scalable persistent mem-
ory. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), pages 169–182, 2020.

[80] Shao-Peng Yang. Overcoming the memory wall with
cxl-enabled ssd. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23), pages 601–617, 2023.

[81] Ziye Yang, James R Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E Paul.
Spdk: A development kit to build high performance
storage applications. In 2017 IEEE International
Conference on Cloud Computing Technology and
Science (CloudCom), pages 154–161. IEEE, 2017.

[82] Jeseong Yeon, Minseong Jeong, Sungjin Lee, and Eu-
nji Lee. RFLUSH: Rethink the flush. In 16th
USENIX Conference on File and Storage Technologies
(FAST 18), pages 201–210, Oakland, CA, February
2018. USENIX Association.

[83] Yekang Zhan, Haichuan Hu, Xiangrui Yang, Shaohua
Wang, Qiang Cao, Hong Jiang, and Jie Yao. Romefs: A
cxl-ssd aware file system exploiting synergy of memory-
block dual paths. In Proceedings of the 2024 ACM
Symposium on Cloud Computing, SoCC ’24, pages
720–736, New York, NY, USA, 2024. Association for
Computing Machinery.

[84] Xuechen Zhang, Ke Liu, Kei Davis, and Song Jiang.
ibridge: Improving unaligned parallel file access with
solid-state drives. In 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing,
pages 381–392. IEEE, 2013.

USENIX Association 23rd USENIX Conference on File and Storage Technologies 85

https://snap.stanford.edu/data/com-Friendster.html
https://snap.stanford.edu/data/com-Friendster.html
https://snap.stanford.edu/data/soc-LiveJournal1.html
https://snap.stanford.edu/data/soc-LiveJournal1.html
https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://semiconductor.samsung.com/ssd/
https://semiconductor.samsung.com/ssd/

[85] Shengan Zheng, Morteza Hoseinzadeh, and Steven
Swanson. Ziggurat: A tiered file system for non-volatile
main memories and disks. In 17th USENIX Conference
on File and Storage Technologies (FAST 19), pages
207–219, 2019.

[86] Shawn Zhong, Chenhao Ye, Guanzhou Hu, Suyan
Qu, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau,
and Michael Swift. Madfs:per-file virtualization for
userspace persistent memory filesystems. In 21st
USENIX Conference on File and Storage Technologies
(FAST 23), pages 265–280, 2023.

[87] Diyu Zhou, Vojtech Aschenbrenner, Tao Lyu, Jian
Zhang, Sudarsun Kannan, and Sanidhya Kashyap. En-
abling high-performance and secure userspace nvm file
systems with the trio architecture. In Proceedings of
the 29th Symposium on Operating Systems Principles,
pages 150–165, 2023.

[88] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang,
Changwoo Min, and Sanidhya Kashyap. Odinfs: Scaling
pm performance with opportunistic delegation. In 16th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), pages 179–193, 2022.

[89] Qingsong Zhu, Qiang Cao, and Jie Yao. Uhs: An ultra-
fast hybrid storage consolidating nvm and ssd in par-
allel. In 2023 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1–6. IEEE,
2023.

[90] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Grid-
graph: Large-scale graph processing on a single ma-
chine using 2-level hierarchical partitioning. In 2015
USENIX Annual Technical Conference (USENIX ATC
15), pages 375–386, 2015.

A Artifact Appendix

Abstract
The evaluated artifact is provided in a git repository and con-
tains the scripts used for running the experiments presented
in this paper.

Scope
The artifact has been made available. It includes detailed
reference instructions to set up, deploy, and configure OrchFS
and main experiments.

Contents
The artifact contains the steps to build, install, and configure
OrchFS, including setting the size of three types of storage

units, and the number of IO threads and the interlaced binding
granularity in the parallel IO engine. It also contains the Bash
scripts used for performance benchmarks, the user-friendly
test examples used for other common evaluations, and corre-
sponding documents for each script and example.

Hosting
The artifact is available at https://github.com/
YekangZhan/OrchFS. All necessary instructions are
provided in the README.md file. We encourage the users to
use the latest version of the repository, since it may include
bug fixes and additional functions.

Requirements
We evaluated OrchFS on the machine equipped with common
enterprise PCIe4.0 and PCIe5.0 SSDs (§ 5.1). For machines
with older PCIe generation devices and slower-speed devices,
the benchmarks may not show similar results we present in
the paper, but we believe the overall trends should be similar.

86 23rd USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/YekangZhan/OrchFS
https://github.com/YekangZhan/OrchFS

	Introduction
	Background and Motivation
	SSDs and NVMs
	File Systems
	Write Performance of SSD File Systems
	Analysis on Write Inefficiency
	IO Alignment
	Page Cache
	IO Concurrency

	Motivation

	OrchFS Design
	Design Challenges
	OrchFS Overview
	Heterogeneous Data Layout
	Block-Page-Aligned File Write Partition
	Unified Per-File Mapping Structure
	Parallel IO Engine
	Data Migration

	Implementation
	Evaluation
	Experimental Setup
	Microbenchmark
	Single-Threaded Performance
	Multi-Threaded Performance

	Macrobenchmark
	Real-World Applications
	YCSB + LevelDB
	Large-Scale Graph Processing

	Analysis of File Fragmentation and Aging

	Related Work
	Conclusion
	Artifact Appendix

