
Parallel Computing 32 (2006) 331–356

www.elsevier.com/locate/parco
A novel fault-tolerant scheduling algorithm
for precedence constrained tasks in real-time

heterogeneous systems

Xiao Qin a,*, Hong Jiang b

a Department of Computer Science, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro,

NM 87801-4796, United States
b Department of Computer Science and Engineering, University of Nebraska—Lincoln, Lincoln, NE 68588-0115, United States

Received 18 September 2005; received in revised form 13 January 2006; accepted 9 June 2006
Available online 8 August 2006
Abstract

Fault-tolerance is an essential requirement for real-time systems, due to potentially catastrophic consequences of faults.
In this paper, we investigate an efficient off-line scheduling algorithm generating schedules in which real-time tasks with
precedence constraints can tolerate one processor’s permanent failure in a heterogeneous system with fully connected net-
work. The tasks are assumed to be non-preemptable, and each task has two copies scheduled on different processors and
mutually excluded in time. In the literature in recent years, the quality of a schedule has been previously improved by
allowing a backup copy to overlap with other backup copies on the same processor. However, this approach assumes that
tasks are independent of one other. To meet the needs of real-time systems where tasks have precedence constraints, a new
overlapping scheme is proposed. We show that, given two tasks, the necessary conditions for their backup copies to safely
overlap in time with each other are (1) their corresponding primary copies are scheduled on two different processors, (2)
they are independent tasks, and (3) the execution of their backup copies implies the failures of the processors on which
their primary copies are scheduled. For tasks with precedence constraints, the new overlapping scheme allows the backup
copy of a task to overlap with its successors’ primary copies, thereby further reducing schedule length. Based on a
proposed reliability model, tasks are judiciously allocated to processors so as to maximize the reliability of heterogeneous
systems. Additionally, times for detecting and handling of a permanent fault are incorporated into the scheduling scheme.
We have performed experiments using synthetic workloads as well as a real world application. Simulation results show that
compared with existing scheduling algorithms in the literature, our scheduling algorithm improves reliability by up to
22.4% (with an average of 16.4%) and achieves an improvement in performability, a measure that combines reliability
and schedulability, by up to 421.9% (with an average of 49.3%).
� 2006 Elsevier B.V. All rights reserved.

Keywords: Real-time tasks; Off-line scheduling; Fault-tolerance; Heterogeneous systems; Precedence constraints; Reliability; Perform-
ability
0167-8191/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2006.06.006

* Corresponding author. Tel.: +1 505 835 5902.
E-mail addresses: xqin@cs.nmt.edu (X. Qin), jiang@cse.unl.edu (H. Jiang).
URL: http://www.cs.nmt.edu/~xqin/ (X. Qin).

mailto:xqin@cs.nmt.edu
mailto:jiang@cse.unl.edu
http://www.cs.nmt.edu/~xqin/

332 X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356
1. Introduction

Heterogeneous systems have been increasingly used for scientific and commercial applications, including
real-time safety-critical applications, in which the system depends not only on the results of a computation,
but also on the time instants at which these results become available. Examples of such applications include
aircraft control systems, transportation systems and medical electronics. To obtain high performance for real-
time heterogeneous systems, scheduling algorithms play an important role. While a scheduling algorithm maps
real-time tasks to processors in a system such that deadlines and response time requirements are met [29], the
system must also guarantee its functional and timing correctness even in the presence of hardware and soft-
ware faults, especially when applications are safety-critical. To address this important issue and to improve on
some existing solutions in the literature, this study investigates a scheduling algorithm with which real-time

tasks with precedence constraints can be statically scheduled to tolerate the failure of one processor in a het-
erogeneous system.

In this paper we comprehensively address the issues of fault-tolerance, reliability, real-time, task precedence
constraints, and heterogeneity. We propose an algorithm, referred to as eFRD (efficient fault-tolerant reliabil-

ity-driven algorithm), can tolerate one processor’s failures in a heterogeneous system with fully connected net-
work. Failures considered in our study are of the fail-silent type, and the failures are detected after a fixed
amount of time. To tolerate any one processor’s permanent failure, the algorithm uses a primary/backup tech-
nique [9–11,17,21] to allocate two copies of each task to different processors. Thus, the backup copy of a task
executes if its primary copy fails due to failures of its assigned processor. To improve the quality of schedules
backup copies are allowed to overlap with other backup copies on the same processor, as long as their cor-
responding primary copies are allocated to different processors [9,21]. As an added measure of fault-tolerance,
the proposed algorithm also takes the reliability of processors into account. Tasks are judiciously allocated to
processors not only to reduce schedule lengths, but also to improve the reliability as well. In addition, times for
detecting and handling of a permanent fault is incorporated into the scheduling scheme, thus making the algo-
rithm more practical. Computational, communication and reliability heterogeneities are also taken into
account in the algorithm, as explained in detail in later sections. Various algorithms studied in [1–11,13–29]
share one or two features with eFRD, in terms of the assumed operational conditions, as explained in Section
2. However, eFRD is arguably the most comprehensive, in terms of the number of different scheduling issues
addressed, and outperforms several quantitatively comparable algorithms in the literature. More specifically,
extensive simulation studies carried out by the authors showed that the proposed algorithm significantly out-
performs all three relevant algorithms found in the literature, namely, FRCD [24], the one in [10,11], which we
call FGLS (fault-tolerant greedy list scheduling), and the one in [21], called OV by the original authors of that
paper.

In the section that follows, related work in the literature is briefly reviewed to present a background for the
proposed algorithm and to contrast eFRD with other algorithms to show its relevance, similarity, and unique-
ness. The rest of the paper is organized as follows. Section 3 presents the system characteristics and quanti-
tatively analyzes the reliability of a heterogeneous system. Section 4 describes the eFRD algorithm and the
main principles behind it, including theorems used for presenting the algorithm. Performance evaluation is
given in Section 5 where three main measures of performance, namely, schedulability, reliability, and perform-
ability are described and used for performance assessment of eFRD in comparison with three relevant and
quantitatively comparable algorithms. Finally, Section 6 concludes the paper by summarizing the main con-
tributions of this paper and by commenting on future directions for this work.

2. Related work

Fault-tolerance must be considered in the design of scheduling algorithms, because occurrences of faults are
often unpredictable in computer systems [15,18]. Ahn et al. studied a delayed scheduling algorithm using a
passive replica method [2]. Liberato et al. proposed a necessary and sufficient feasibility-check algorithm
for fault-tolerant scheduling [16]. Bertossi et al. extended the well-known rate-monotonic first-fit assignment
algorithm. In their new algorithm, all task copies were considered by rate-monotonic priority order and
assigned to the first processor in which they fit. Caccamo and Buttazzo developed an algorithm to schedule

X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356 333
hybrid task sets consisting of firm and hard periodic tasks [6]. Both of the above algorithms assumed that
underlying systems either is homogeneous or consists of a single processor.

Scheduling algorithms fall into two major camps: static and dynamic scheduling. Static scheduling algo-
rithms know task sets and their constraints a priori [37]. Ramaritham proposed a static algorithm for allocat-
ing and scheduling periodic tasks running in distributed systems [37]. Dynamic scheduling algorithms heavily
rely on system current sates at the time of scheduling. Therefore, it is imperative for dynamic scheduling to
leverage mechanisms to collect and analyze system states, which in turn exhibit extra overheads. Static sched-
uling algorithms, by contrast, can make scheduling decisions in a fast and efficient way. Although static sched-
uling algorithms may make poor decisions in dynamic environments, static algorithms are appealing for
computing environments where task sets and constraints are known beforehand.

The issue of scheduling on heterogeneous systems has been studied and reported in the literature in the past
decade. These studies addressed various aspects of a complicated problem. Ranaweera and Agrawal devel-
oped a scalable scheduling scheme for heterogeneous systems [25]. In [8,28], reliability cost, defined to be
the product of processor failure rate and task execution time, was incorporated into scheduling algorithms
for tasks with precedence constraints. However, these algorithms neither provide fault-tolerance nor support
real-time applications.

Previous work has been done to facilitate real-time computing in heterogeneous systems. Huh et al. pro-
posed a solution for the dynamic resource management problem in real-time heterogeneous systems. A prob-
abilistic model for a client/server heterogeneous multimedia system was presented in [26]. These algorithms,
however, also could not tolerate any permanent processor failures.

While eFRD tolerates any one processor’s permanent failure, the algorithm presented in [1], also a real-time
scheduling algorithm for tasks with precedence constraint, does not support fault-tolerance. eFRD schedules
the backup copy to start after its primary copy’s scheduled execution time, thus avoiding unnecessary execu-
tion of the backup copy if the primary copy completes successfully. Dima et al. also devised an off-line real-
time and fault-tolerant scheduling algorithm to handle both processor and communication link failures [7].
However, this algorithm must execute the backup copy of a task simultaneously with its primary copy.

Tasks considered in eFRD can either be confined by precedence constraints or be independent, and eFRD
may be generalized to consider heterogeneous systems, where homogeneity is just a special case. Manimaran
and Siva Ram Murthy [17] and Mosse et al. [9] have proposed dynamic algorithms to schedule real-time tasks
with resource and fault-tolerance requirements on multiprocessor systems, but the tasks scheduled in their
algorithms are independent of one another and are scheduled on-line. Naedele [19] has devised an algorithm
that assumed the same system and task model as in [9]. Oh and Son also studied a real-time and fault-tolerant
scheduling algorithm that statically schedules a set of independent tasks, and can tolerate one processor’s per-
manent failure [21]. Two common features among these algorithms [9,16,18,20,21] are that (1) tasks consid-
ered are independent from one another and (2) they are designed only for homogeneous systems. Although
heterogeneous systems are addressed in both [28] and eFRD, the latter considers fault-tolerance and real-time
tasks while the former does not consider either.

There exist excellent studies in the arena of multi-criteria scheduling [41]. Fohler studied an adaptive fault-
tolerate scheduling for real-time systems [38]. Dogan and Özgüner developed matching and scheduling algo-
rithms for heterogeneous systems. Their algorithms account for execution time and reliability of applications
[39]. Dynamic scheduling algorithms, however, have no complete knowledge pertinent to task sets and con-
straints. Girault et al. designed a static scheduling algorithm to automatically obtain distributed and fault-tol-
erant schedules [40]. Assayad et al. developed heuristic scheduling algorithm for distributed embedded
systems. Their algorithm takes both reliability and real-time constraints into account [41]. In addition to
the issue of multi-criteria, this study is focused on a novel overlapping scheme.

Very recently, Girault et al. [10,11] proposed a real-time scheduling algorithm (referred to as FGLS) for
heterogeneous systems providing fault-tolerance for tasks with precedence constraints. This study is by far
the closest to eFRD that the authors have found in the literature. The main distinction between FGLS
[10,11] and eFRD is fivefold. First, the former is not concerned with task deadlines explicitly, thus imply-
ing soft real-time systems, while eFRD is designed for hard real-time systems. Second, eFRD considers
heterogeneity in computation, communication, and reliability while the former only deals with computa-
tional heterogeneity. Third, the former does not consider reliability when scheduling tasks while eFRD

334 X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356
is reliability-driven. Fourth, the former allows the concurrent execution of primary and backup copies of a
task, whereas eFRD allows backup copies of tasks whose primary copies are scheduled on different pro-
cessors to overlap one another. Last, FGLS handles several failures, whereas eFRD tolerates only one pro-
cessor’s failure at a time.

In the authors’ previous work, both static [23,24] and dynamic [22] real-time scheduling schemes for heter-
ogeneous systems were developed. One similarity among these algorithms is that the reliability-driven scheme is
applied to the algorithms to enhance the reliability of heterogeneous systems. With the exception of the FRCD

(fault-tolerant reliability cost driven) algorithm [24], other algorithms proposed in [22,23] cannot tolerate any
failure. In this paper, the FRCD algorithm [24] is extended by relaxing the requirement that backup copies of
tasks be prohibited to overlap with one another.
3. System model for reliability

3.1. System model

In parallel and systems, real-time jobs with dependent tasks can be modeled by directed acyclic graphs

(DAGs). In this paper, a DAG is defined as T = {V,E}, where V = {v1,v2, . . . ,vn} represents a set of real-time
tasks that are assumed to be non-preemptable, and a set of weighted and directed edges E represents commu-
nication among tasks. (vi,vj) 2 E indicates a message transmitted from task vi to vj.

When one processor in a system fails, it takes a certain amount of time, denoted d, to detect and handle the
fault. To tolerate permanent faults in one processor, a primary–backup (PB) technique is applied in the pro-
posed scheduling scheme. Thus, two copies of any task, denoted vP and vB, are executed sequentially on two
different processors. Without loss of generality, we assume that primary and backup copies of a task are iden-
tical. It is worth noting that the proposed approach can also be used tolerate transient processor failures,
because it is sufficient to deal with transient failures using the same fault-tolerant mechanism.

A heterogeneous system considered in this study consists of a set P = {p1,p2, . . . ,pm} of heterogeneous pro-
cessors connected by a network. The network in our model provides full connectivity through either a physical
link or a virtual link. This assumption is arguably reasonable for modern interconnection networks (e.g. Myr-
inet [35] and InfiniBand [36]) that are commonly used in heterogeneous systems. A processor communicates
with other processors through message passing, and the communication time between two tasks assigned to
the same processor is assumed to be zero. Note that the aspect of fault-tolerance in networks is out the scope
of this study.

A measure of computational heterogeneity is modeled by a function, C: V · P! Z+, which represents the
execution time of each task on each processor in the system. Thus, cij denotes the execution time of task vi on
processor pj. A measure of communication heterogeneity is modeled by a function C: E · P · P! Z+. Com-
munication time for sending a message (vi,vj) 2 E from task vi on pk to task vj on pb is determined by wkb · eij,
where eij is the volume of data and wkb is the weight on the edge between pk and pb, with wkb representing the
delay involved in transmitting a message of unit length between the two processors. Given a task vi 2 V, di, si

and fi denote the deadline, scheduled start time, and finish time (fi = si + cij) of vi’s primary copy, whereas dB
i ,

sB
i and f B

i ðf B
i ¼ sB

i þ cijÞ represent those of vi’s backup copy, respectively. p(vi) denotes the processor to which
vi is allocated. These parameters are subject to constraints: (1) si 6 di � cij, where pðvP

i Þ ¼ j, and (2)
sB

i 6 dB
i � cik, where pðvB

i Þ ¼ k. A real-time job has a feasible schedule if for all v 2 V, the above two con-
straints are satisfied.

Let X be an m · n binary matrix corresponding to a schedule, in which the primary copies of n tasks are
assigned to m processors. Element xij equals 1 if and only if vi’s primary copy has been assigned to processor
pj; otherwise xij = 0. Likewise, let XB denote an m · n binary allocation matrix of backup copies, in which an
element xB

ij is 1 if and only if the backup copy of vi has been assigned to pj; otherwise xB
ij equals 0. Therefore, we

have pðvP
i Þ ¼ j() xij ¼ 1 and pðvB

i Þ ¼ j() xB
ij ¼ 1.

Example 1. Fig. 1 shows a task graph that consists of six tasks and a system with three processors. Two
allocation matrices, X for primary copies and XB for backup copies, are given below. Note that cij can be

estimated by code profiling and statistical prediction techniques [34].

p1 p2 p3 p1 p2 p3

0 1 0 v1 0 0 1 v1

1 0 0 v2 0 0 1 v2

X = 0 0 1 v3
BX = 1 0 0 v3

1 0 0 v4 0 0 1 v4

0 1 0 v5 0 0 1 v5

0 0 1 v6 1 0 0 v6

((20,8,10),55)

((10,22,7),70)
((6,18,8),72)

((9,12,10),80)

((12,24,10),115)

e12 = 2
v1

v2 v3

v4 v5

e56 = 1

e36 = 1

e46 = 2

e24 = 1 e25 = 2

e15 = 1

((12,8,10),75)
w23 = w32=3

w13 = w31=3w12 = w21= 1

e13 = 2

p3p2

p1

v6

Fig. 1. DAG task graph. Assume a three-processor system and each real-time task is denoted by vi = ((ci1,ci2,ci3,),di), where cij is the
execution time of vi on pj, and di is the deadline. eij and wij depict data volume and communication weight, respectively, 1 6 i 6 6,
1 6 j 6 3.

X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356 335
3.2. Reliability analysis

Since many real-time systems operate in environments that are non-deterministic and even hazardous, it is
necessary and important for the systems to be fault-tolerant. To quantitatively evaluate the system’s level of
fault-tolerance, a reliability model needs to be addressed, assuming that fault arrival rate is constant and the
distribution of the fault-count for any fixed time interval is approximated using a Poisson probability distri-
bution [12,27,28]. It is to be noted that the reliability function, derived below, helps in evaluating the perfor-
mance of our scheduling in Section 5.

Though the derivation of reliability is similar to that of the reliability function presented in [12,27,28], we
relax one unrealistic assumption imposed on the reliability models in [12,27,28]. The models in [12,27,28]
assume that the processors in a system are fault-free, implying that the reliability of the system when one
processor fails is not considered. A major reason behind this assumption is that these models do not tolerate
processor failures. To further enhance the reliability of the real-time system, we propose a model, on which the
proposed eFRD algorithm is based.

A k-timely-fault-tolerant (k-TFT) schedule [21] is defined as the schedule in which no task deadlines are
missed, despite k arbitrary processor failures. In this paper, the scheduling goal is to achieve 1-TFT for pro-
cessor failure by incorporating processor and task redundancy into the scheduling algorithm.

The reliability of a processor pi in time interval t is exp(�kit), where ki (1 6 i 6 m) is pi’s failure rate in a
vector of failure rates K = (k1,k2, . . . ,km), with m being the number of processors in the system [27]. Likewise,
the reliability of a link between pi and pj during the time interval t is exp(�lijt), where lij is an element of M, an
m · m matrix of failure rates for links. A processor might fail during an idle time, but it is assumed that pro-
cessors’ failures during an idle time interval are not considered in our reliability model. The reason for this
assumption is twofold [12,27,28]. First, instead of affecting the system reliability, failures during an idle time
merely affect the completion time of tasks. Second, a processor’s failure during an idle period can be fixed by

336 X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356
replacing the failed processor with a spare unit, meaning that such failures are not critical for reliability
analysis.

The state of the system is represented by a random variable K which takes value in {0,1,2, . . . ,m}. More
precisely, K = 0 means that no processor permanently fails, and K = i (1 6 i 6 m) signifies that the ith proces-
sor encounters permanent failures. The probability for K is determined by Eq. (1), where si is the schedule
length of processor i, or in other words, the latest of finish times among all primary copies of tasks assigned
to processor i,
Pr½K ¼ k� ¼

Qm
i¼1

expð�kisiÞ for k ¼ 0;

½1� expð�kkskÞ�
Qm

i¼1;i6¼k
expð�kisiÞ otherwise:

8>><
>>: ð1Þ
It should be noted that the notion of reliability heterogeneity is implied in the variation of computation time
and failure rate. Let R(K,M,X,XB,T) denote the system reliability for a given schedule X and XB, a set K of
processors’ failure rates, a matrix M of failure rates for links, and a job T. The system reliability equals the
probability that all tasks can be successfully completed even in the presence of one processor’s hardware
and software faults. Under the assumption that no more than one processor permanently fails in the current
system, that is,

Pm
i¼0Prðk ¼ iÞ ¼ 1, it calls for the derivations of two kinds of reliabilities, namely: (1)

R0(K,M,X,T), the reliability when every processor is operational, and (2) Rk(K,M,X,XB,T), k 5 0, the reli-
ability when exactly the kth processor fails. Thus, the system reliability R(K,M,X,XB,T) can be expressed as
below:
RðK;M ;X ;X B; T Þ ¼ PrðK ¼ 0Þ � R0ðK;M ;X ; T Þ þ
Xm

k¼1

½PrðK ¼ kÞ � RkðK;M ;X ;X B; T Þ�; ð2Þ
where Rk(K,M,X,XB,T) is a product of processor reliability Rk
PNðK;X ;X B; T Þ and link reliability

Rk
LINKðM ;X ;X B; T Þ. Hence, the system reliability when the kth processor fails can be written as:
RkðK;M ;X ;X B; T Þ ¼ Rk
PNðK;X ;X B; T Þ � Rk

LINKðM ;X ;X B; T Þ; 0 6 k 6 m: ð3Þ
Before proceeding to derive the expression of the link reliability, we first consider the expressions for two
reliability functions R0

PNðK;X ;X B; T Þ and Rk
PNðK;X ;X B; T Þ, which are defined to be the product of all proces-

sors’ reliabilities. Since the reliability of each processor pj can be evaluated as:
Qn

i¼1 expð�kjxijcijÞ; 1 6 j 6 m,
the reliability R0

PN and Rk
PN are then determined by Eqs. (4) and (5) as follows:
R0
PNðK;X ; T Þ ¼

Ym

j¼1

Yn

i¼1

expð�kjxijcijÞ; ð4Þ

Rk
PNðK;X ;X B; T Þ ¼

Ym
j¼1;j6¼k

Yn

i¼1

expð�kjxijcij

()
�

Ym

j¼1;j 6¼k

Yn

i¼1

expð�kjxikxB
ijcijÞ

()

¼
Ym

j¼1;j 6¼k

Yn

i¼1

½expð�kjxijcijÞ � expð�kjxikxB
ijcijÞ�

¼
Ym

j¼1;j 6¼k

Yn

i¼1

exp½�kjcijðxij þ xikxB
ijÞ�; where 1 6 k 6 m: ð5Þ
In Eq. (5) the expression within the first pair of brackets on the right hand side of the first equal sign represents
the probability that tasks, whose primary copies reside in fault-free processors, are operational during the
course of execution. Similarly, the expression in the second pair of brackets is the probability that the backup
copies of the tasks, whose primary copies reside on the failed processor, are operational during the execution
of these backup copies.

X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356 337
Example 2. Consider the task and processor graphs shown in Fig. 1 as an example, where the schedule result is
represented by X and XB illustrated in Example 1. Thus, we have:
x12 ¼ x21 ¼ x33 ¼ x41 ¼ x52 ¼ x63 ¼ 1; xB
13 ¼ xB

23 ¼ xB
31 ¼ xB

43 ¼ xB
53 ¼ xB

61 ¼ 1;
and,
R0
PNðK;X ; T Þ ¼ expð�k1ðc21 þ c41ÞÞ � expð�k2ðc12 þ c52ÞÞ � expð�k3ðc33 þ c63ÞÞ;

R1
PNðK;X ;X B; T Þ ¼ expð�k2ðc12 þ c52ÞÞ � expð�k3ðc33 þ c63 þ c23 þ c43ÞÞ;

R2
PNðK;X ;X B; T Þ ¼ expð�k1ðc21 þ c41ÞÞ � expð�k3ðc33 þ c63 þ c13 þ c53ÞÞ;

R3
PNðK;X ;X B; T Þ ¼ expð�k1ðc21 þ c41 þ c31 þ c61ÞÞ � expð�k2ðc12 þ c52ÞÞ:
Before determining R0
LINKðM ;X ; T Þ, a link reliability when every processor is operational, we derive a prob-

ability Rkb(M,X,T) that the link between pk and pb is operational during the transmission of messages through
this link. The set of all messages transmitted from pk to pb is defined as below:
Ekb ¼ fðvi; vjÞjeij > 0 ^ xik ¼ 1 ^ xjb ¼ 1g 81 6 k; b; q 6 m : k 6¼ b; k 6¼ q; and b 6¼ q;
where eij > 0 signifies that a message is sent from vi to vj, xik = 1 means that the primary copy of vi is assigned
to pk, and xjb = 1 indicates that the primary copy of vj is assigned to pb. The reliability of the message
(vi,vj) 2 Ekb is the probability that the link connecting pk and pb is operational during the time interval wkbeij

when the message is being transmitted. Hence, message (vi,vj)’s reliability can be calculated as:
exp(�lkbxikxjbwkbeij) = exp(�lkbwkbeij).

Based on the definition of message reliability, Rkb(M,X,T) can be expressed as the product of the
reliabilities of all messages that belong to set Ekb. More precisely, Rkb(M,X,T) is obtained as:
RkbðM ;X ; T Þ ¼
Yn

i¼1

Yn

j¼1;j 6¼i

exp½�lkbxikxjbðwkbeijÞ� ¼
Y

ðv; ;vjÞ2Ekb

expð�lkbwkbeijÞ: ð6Þ
R0
LINKðM ;X ; T Þ is determined as a product of all links’ reliabilities, and therefore we have,
R0
LINKðM ;X ; T Þ ¼

Ym

k¼1

Ym

b¼1;b6¼k

RkbðM ;X ; T Þ: ð7Þ
Example 3. Again, given a heterogeneous system illustrated in Example 1, where w12 = w21 = 1, w13 = w31 = 3
and w23 = w32 = 3, we have E12 = {(v2,v5)}, E21 = {(v1,v2)}, E13 = {(v4,v6)}, E23 = {(v1,v3), (v5,v6)} and,
R0

LINKðM ;X ; T Þ ¼ expð�l12e25Þ � expð�l21e12Þ � expð�3l13e46Þ � expð�3l23ðe13 þ e56ÞÞ.

Similar to the reliability function of R0
LINK, Rq

LINK calls for the derivation of link reliability Rq
kbðM ;X ; T Þ,

which is a probability that the link between pk and pb is operational when exactly the qth processor fails under
a schedule X. Before proceeding to derive the expression of Rq

kbðM ;X ; T Þ, we define two sets of messages that
have to be transmitted if pq encounters permanent failures:
Eq
kb ¼ fðvi; vjÞjeij > 0 ^ xik ¼ 1 ^ xjq ¼ 1 ^ xB

jb ¼ 1g;

E0qkb ¼ fðvi; vjÞjeij > 0 ^ xiq ¼ 1 ^ xB
ik ¼ 1 ^ xjq ¼ 1 ^ xB

jb ¼ 1g 81 6 k; b; q 6 m : k 6¼ b; k 6¼ q; and b 6¼ q:
Eq
kb implies that, if ðvi; vjÞ 2 Eq

kb, the primary copy of vi is assigned to pk, the primary and backup copies of vj

are assigned to pq and pb respectively, then this message must be shipped from vi’s primary copy to vj’s backup
copy due to pq’s failure. Similarly, E0qkb indicates that, if ðvi; vjÞ 2 E0qkb, the primary copies of vi and vj are both
assigned to pq, whereas the backup copies of vi and vj are assigned to pk and pb, respectively, forcing the mes-
sage to be sent from the backup copy of vi to that of vj (i.e., through the link between pk and pb).

Thus, Rq
kbðM ;X ;X B; T Þ is defined to be a product of the reliabilities of all messages that belong to the three

message sets: Ekb, Eq
kb, and E0qkb. Therefore, we have:

338 X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356
Rq
kbðM ;X ;X B; T Þ ¼

Yn

i¼1

Yn

j¼1;j 6¼i

exp½�lkbxikxjbðwkbeijÞ� �
Yn

i¼1

Yn

j¼1;j 6¼i

exp½�lkbxikðxjqxB
jbÞðwkbeijÞ�

()

�
Yn

i¼1

Yn

j¼1;j 6¼i

exp½�lkbðxiqxB
ikÞðxjqxB

jbÞðwkbeijÞ�
()

¼
Y

ðvi;vjÞ2Ekb

expð�lkbwkbeijÞ �
Y

ðvi ;vjÞ2Eq
kb

expð�lkbwkbeijÞ �
Y

ðvi;vjÞ2E0qkb

expð�lkbwkbeijÞ: ð8Þ
Since Rq
LINKðM ;X ;X B; T Þ denotes the reliability of all links when processor pq encounters permanent fail-

ures, it can be written as the following expression:
Rq
LINKðM ;X ;X B; T Þ ¼

Ym
k¼1;k 6¼q

Ym
b¼1;b6¼k;b6¼q

Rq
kbðM ;X ;X B; T Þ: ð9Þ
Example 4. Consider again the system from Example 1, and suppose p1 is not operational. We have R1
LINK

ðM ;X ;X B; T Þ ¼
Q3

k¼1;k 6¼1

Q3
b¼1;b 6¼k;b6¼1R1

kbðM ;X ;X B; T Þ ¼ R1
23ðM ;X ;X B; T Þ � R1

32ðM ;X ;X B; T Þ, E23 ¼ fðv1; v3Þ;
ðv5; v6Þg, E1

32 ¼ fðv1; v2Þ; ðv1; v5Þg, and E0123 ¼ E32 ¼ E1
32 ¼ E0132 ¼ Ø. Thus, R1

LINKðM ;X ;X 0; T Þ ¼ expð�3l23

ðe13 þ e56 þ e12 þ e15ÞÞ. Similarly, we have E12 ¼ fðv1; v2Þg; E21 ¼ fðv2; v5Þg; E13 ¼ fðv4; v6Þg; E3
31 ¼ fðv1; v3Þ;

ðv5; v6Þg. Hence, R2
LINKðM ;X ;X B; T Þ ¼ R2

13ðM ;X ;X B; T Þ � R2
31ðM ;X ;X B; T Þ ¼ expð�3l13e46Þ� expð�3l31ðe13þ

e56ÞÞ, and R3
LINKðM ;X ;X B; T Þ ¼ R3

12ðM ;X ;X B; T Þ � R2
21ðM ;X ;X B; T Þ ¼ expð�l12e12Þ� expð�l21e25Þ.

We are now in a position to derive the expression for the system reliability R(K,M,X,XB,T) by substituting
(4), (5), (7) and (9) into (2). Thus, the system reliability can be calculated as:
RðK;M ;X ;X B;T Þ ¼ PrðK ¼ 0Þ �
Ym

j¼1

Yn

i¼1

expð�kjxijcijÞ
" # Ym

k¼1

Yn

b¼1;b6¼k

RkbðM ;X ;T Þ
" #

þ
Xm

q¼1

PrðK ¼ qÞ �
Ym

j¼1;j 6¼k

Yn

i

expð�kjcijðxij þ xikxB
ijÞ

" # Ym

k¼1;k 6¼q

Ym

b¼1;b 6¼k;b 6¼q

Rq
kbðM ;X ;X B;T Þ

" #()
:

ð10Þ
4. Scheduling algorithms

In this section, we present eFRD, an efficient fault-tolerant, reliability-cost driven scheduling algorithm for
real-time tasks with precedence constraints in a heterogeneous system.

This algorithm schedules real-time jobs with dependent tasks at compile time, by allocating primary
and backup copies of tasks to processors in such a way that: (1) total schedule length is reduced so
that more tasks can complete before their deadlines; (2) permanent failures in one processor can be tol-
erated; and (3) the system reliability is enhanced by assigning tasks to processors that provide high
reliability.
4.1. An outline

It is assumed in the system model (Section 3) that at most one processor encounters permanent fail-
ures. The key for tolerating permanent failures in a single processor is to allocate the primary and backup
copies of a task to two different processors such that the backup copy subsequently executes if the pri-
mary copy fails to complete. This approach referred to as primary/backup technique has been extensively
studied in the literature [9,10,21]. The primary/backup techniques presented in [9,10,21] are developed for
real-time systems where tasks are independent from one another, meaning that there are no precedence
constraints and the backup copy of a task executes if and only if its primary copy fails. However, the

vi
B

vj
P

vj
B

vi
P

p1

p4

p2

p3

time

Fig. 2. Since processor p1 fails, vB
i executes. Because vP

j cannot receive message from vB
i , vB

j must execute instead of vP
j .

X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356 339
above condition for backup copies’ execution has to be extended to meet the needs of tasks with prece-
dence constraints. More precisely, given a task vj, then there are two cases in which vP

j may fail to exe-
cute: (1) a fault occurs on pðvP

j Þ before time finish fj, and (2) pðvP
j Þ is operational before fj, but vP

j fails to
receive messages from all its predecessors. Case (2) is illustrated by a simple example in Fig. 2 where dot-
ted lines denote messages sent from predecessors to successors. Let vi be a predecessor of vj, and
p(vi) 5 p(vj). Suppose pðvP

i Þ fails before fi, then vB
i should execute. Since vP

j cannot receive a message from
vB

i , vP
j still cannot execute even if pðvP

j Þ is operational. The primary copy of a task that never encounters
case (2) is referred to as a strong primary copy, as formally defined in Definition 1. Thus, a task v has a
strong primary if the primary and backup tasks of all v’s predecessors are scheduled to finish earlier than
the start time of vP (accounting for communication time) and thus the vP can receive all the messages of
its predecessors.

Definition 1. Given a task v, vP is a strong primary copy, if and only if the execution of vB implies the failure of
p(vP) before time f.

It is of critical importance to determine whether a task has a strong primary copy. It is straightforward to
prove that a task without any predecessor has a strong primary copy. Based on this fact, Theorem 1, below,
suggests an approach to determine whether a task with predecessors has a strong primary copy. In this
approach, we assume that we already know if all the predecessors have strong primary copies or not. By using
this approach recursively, starting from tasks with no predecessors, we are able to determine whether a given
task has a strong primary copy. To facilitate the description and proof of Theorems 1–5, which are used in the
eFRD algorithm, we need to further introduce the following definitions.

Definition 2. vi is schedule-preceding vj, if and only if sj P fi.

Definition 3. vi is message-preceding vj, if and only if vi sends a message to vj. Note that vi is message-preceding
vj implies that vi is schedule-preceding vj, but not inversely.

Definition 4. vi is execution-preceding vj, if and only if both tasks execute and vi is message-preceding vj. Note
that vi is execution-preceding vj implies that vi is both message-preceding and schedule-preceding vj, but not
inversely.

Theorem 1. (a) A task with no predecessors has a strong primary copy. (b) Given a task vi and any of its prede-

cessors vj, if they are allocated to the same processor and vj has a strong primary copy, or, if they are allocated on

two different processors and the backup copy of vj is schedule-preceding the primary copy of vi, then vi has a strong

primary copy. That is, 8vj 2 V ; ðvj; viÞ 2 E0 : ððpðvP
i Þ ¼ pðvP

j Þ ^ ðvP
j is a strong primary copyÞÞ _ ðpðvP

i Þ 6¼
pðvP

j Þ ^ ðvB
j is message-preceding vP

i ÞÞ) ðvP
i is a strong primary copyÞ.

Proof. As the proof of (a) is straightforward from the definition, it is omitted here. We only prove (b). Sup-
pose pðvP

i Þ is operational before fi. There are two possibilities: (1) pðvP
i Þ ¼ pðvP

j Þ, we have fj < fi, implying that
pðvP

j Þ does not fail before fj. Because vP
j is a strong primary copy, vP

j must execute. (2) pðvP
i Þ 6¼ pðvP

j Þ and vB
j is

message-preceding vP
i , implying that even if one processor fails, vP

i can still receive message from task vj. Based
on (1) and (2), we have proven that vP

i can receive messages from all its predecessors. In other words, vP
i must

execute since pðvP
j Þ is operational by time fi. Therefore, according to Definition 1, vP

i is a strong primary
copy. h

340 X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356
In the eFRD algorithm, if the backup copies of task vi and vj are allowed to overlap with each other on the
same processor, then three conditions are held, namely, (1) the corresponding primary copies are allocated to
the different processors; (2) vi and vj are independent with each other; and (3) the primary copies of vi and vj are
strong primary copies. This argument is formally described as the following proposition:

Proposition 1. 8vi; vj 2 V :ðpðvB
i Þ ¼ pðvB

j ÞÞ ^ ððsB
i 6 sB

j < f B
i Þ _ ðsB

j 6 sB
i < f B

j ÞÞ) pðvP
i Þ 6¼ pðvP

j Þ^ ðvi; vjÞ 62
E0 ^ ðvj; viÞ 62 E0 ^ vP

i is a strong primary copy ^vP
j is a strong primary copy, where E 0 is a set of precedence

constraints, which is defined as: given two tasks vi and vj, then (vi, vj) 2 E 0 if and only if: (1) (vi, vj) 2 E, or (2) there

exists a task vk, such that (vi, vk) 2 E0 and (vk, vj) 2 E 0. Therefore, vi and vj are independent (or concurrent), if and
only if neither (vi, vj) 62 E 0, nor (vj, vi) 62 E 0.

Fig. 3 shows an example illustrating this case. In this example, we assume that vi and vj are independent, vP
i

and vP
j are strong primary copies, and vi and vj, are allocated to p1 and p3, respectively. The two backup copies

of these two tasks can be overlapped with each other on p2 because at most one of them will ever execute in the
single-processor failure model.

However, if vi and vj in the above example are dependent upon one another, the overlapping between vB
i and

vB
j will be prohibited. More strictly, even though vB

i and vB
j are scheduled on different processors, they still are

not allowed to overlap in time with each other. This statement is formalized in Proposition 2.

Proposition 2. If vi and vj are dependent upon one another, the overlapping between vB
i and vB

j are prohibited.

Thus, 8vi; vj 2 V :ðvi; vjÞ 2 E0) :ðsB
i 6 sB

j < f B
i Þ ^ :ðsB

j 6 sB
i < f B

j Þ.

Proof. Assume vB
i and vB

j can be overlapped in time with one another, which means vB
j will not execute if vB

i

begins running, because the message cannot be transferred from vB
i to vB

j . If a fault occurs on pðvP
i Þ before fi, vB

i

has to execute, implying that vB
j will not execute. Neither can vP

j successfully execute, since it is incapable of
obtaining the message from either vP

i or vB
i . Therefore, task vi is unable to be successfully completed. This

means that the assumption is incorrect, which completes the proof for this proposition. h

The above proposition shows that the positive effects yielded from the backup-overlapping scheme (BOV)
are lessened by the vast majority of tasks that have precedence constraints. To eliminate this limitation, we
propose an alternative overlapping scheme for tasks with precedence constraints. The overlapping scheme
is formally presented as Proposition 3 (Fig. 4 shows this scenario). Please note that the backup of vj should
not be scheduled on p1, and the proof can be found in Theorem 3.

Proposition 3. Given two tasks vi and vj, if (vi, vj) 2 E 0, then vB
i and vP

j are allowed to overlap with each other on
the same processor. Thus, 8vi; vj 2 V :ðvi; vjÞ 2 E0) vB

i and vP
j are allowed to overlap with each other on the same

processor.

Proof. This argument is proved by considering the following three cases in which a failure occurs: (1) p1 has
failed before fi. In this case, vB

i and vB
j will be guaranteed to complete on p2 and p3, respectively. (2) A fault

occurs on p2 before fj. In this case, vP
i and vB

j will successfully execute on p1 and p3, respectively. (3) A fault
occurs on p3 at an arbitrary time. In this case, the failure of p3 presents no adverse effects on vP

i and vP
j , which

will be successfully executing on p1 and p2. All cases ensure that at most one of vB
i and vP

j will execute in the
presence of a fault, implying that these two copies can be overlapped with each other on the same
processor. h
vi
P

vj
P

vj
B

vj
B

timep1

p2

p3 overlap

Fig. 3. Primary copies of vi and vj are allocated to p1 and p3, respectively, and backup copies of vi and vj are both allocated to p2. These two
backup copies can be overlapped with each other.

p1

p2

p3

vi
P

vi
Bvj

P

vj
B

time

overlap

Fig. 4. (vi,vj) 2 E 0, then vB
i and vP

j are allowed to overlap with each other on the same processor.

X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356 341
The algorithm schedules tasks in the following three main steps. First, real-time tasks are ordered by
their deadlines in non-decreasing order, such that tasks with tighter deadlines have higher priorities. Sec-
ond, the primary copies are scheduled to satisfy the precedence constraints, to reduce the schedule length,
and to improve the overall reliability. Finally, the backup copies are scheduled in a similar manner as the
primary copies, except that they may be overlapped on the same processors to further reduce schedule
length. More specifically, in the second and third steps, the scheduling of each task must satisfy the fol-
lowing three conditions: (1) its deadline should be met; (2) the processor allocation should lead to the max-
imum increase in overall reliability among all processors satisfying condition (1); and (3) it should be able
to receive messages from all its predecessors. In addition to these conditions, each backup copy has two
extra conditions to satisfy, namely, (i) it is allocated on the processor that is different than the one assigned
for its primary copy, and (ii) it is allowed to overlap with other backup copies on the same processor if
their primary copies are allocated to different processors. Conditions (i) and (ii) can also be formally
described by Proposition 4, where d is the fault detection time measured by the time interval between
the moment a failure occurs and the moment the failure is detected. Individual processor’s failure can
be detected by various mechanisms including adoption of suitable self-checking [32] and periodic testing
[33].
Proposition 4. A schedule is 1-TFT! 8vi 2 V : : ðpðvPÞ 6¼ pðvBÞÞ ^ ðsB
i P fi þ dÞ ^ vB

i can overlap with other

backup copies on the same processor if their primary copies are allocated to different processors.

In the subsection that follows, the eFRD algorithm is presented, along with some key properties of and
relationships between tasks and their primary and backup copies.

4.2. The eFRD algorithm

To facilitate the presentation of the algorithm, some of the conditions listed above, (1)–(3) and (i)–(ii), and
other necessary notations and properties are listed in Table 1.

In Table 1, EATP
i ðvÞ is the earliest available time on processor pi for the primary copy of task v, taking

into account the time for it to receive messages from all its predecessors. Similarly, EATB
i ðvÞ denotes the

earliest available time on processor Pi for the backup copy of task v. ESTP(v), determined by the minimal
value of ESTP

i ðvÞ for all pi 2 P, is the earliest start time for the primary copy of task v. ESTB(v) is the
earliest start time for the backup copy of task v, and is equal to the minimal value of ESTB

i ðvÞ over all
Pi 2 P. Formulas for computing these values for a given DAG and heterogeneous system are given among
expressions (11)–(16), presented later in the section. F(v) can be determined based on the restriction that
primary and backup copies of a task cannot be allocated to the same processor and on Theorem 3 which
is presented later in this section.

A detailed pseudocode of the eFRD algorithm, accompanied by explanations, is presented below.

The eFRD algorithm:

1. Sort tasks by the deadlines in non-decreasing order, subject to precedence constraints, and put them in a list
OL;
for each processor pi do VQi Ø;

2. for each task vk in OL, following the order, schedule the primary copy vP
k do /* Schedule primary copies */

Table 1
Definitions of notation

Notation Definition

D(v) Set of predecessors of task v. D(v) = {vi j(vi,v) 2 E}
S(v) Set of successors of task v, S(v) = {vij(v,vi) 2 E}
F(v) Set of feasible processors to which vB can be allocated, determined in part by Theorem 3
B(v) Set of predecessors of v’s backup copy, determined by expression (14)
VQi VQi = {v1,v2, . . . ,vq} is a queue in which all tasks are scheduled to pi, sq+1 =1, and f0 = 0
VQ0iðvÞ Queue in which all tasks are scheduled to pi, and cannot overlap with the backup copy of task v,

where sq+1 =1, and f0 = 0
EATi(v,vj) Earliest available time for the primary or backup copy of task v if message e sent from vj 2 D(v)

represents the only precedence constraint
EATP

i ðvÞ Earliest EATi time of v’s primary copy on pi

EATB
i ðvÞ Earliest EATi time of v’s backup copy on pi

ESTP
i ðvÞ Earliest start time for the primary copy of v on processor pi

ESTB
i ðvÞ Earliest start time for the backup copy of v on processor pi

ESTP(v) Earliest EST time of v’s primary copy
ESTB(v) Earliest EST time of v’s backup copy
MSTik(e) Start time of message e sent from pi to pk

342 X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356
2.1 sðvP
k Þ 1; r 0;

2.2 for each processor pi do /* Determine whether task v should be allocated to processor pi */
2.2.1 Calculate EAT P

i ðvkÞ, the earliest available time of vP
k on pi;

2.2.2 Compute ESTP
i ðvÞ, the earliest start time of vP on pi;

2.2.3 if vP
k starts executing at ESTP

i ðvkÞ and can be completed before dk then /* Determine the earliest
ESTi */

Determine rk, processor and link reliability of vP

k on pi;
if ((ri > r) or (ri = r and ESTP

i ðvkÞ < sðvP
k Þ)) then Assign start time and reliability;

end for

2.3 if no proper processor is available for vP

k , then return(FAIL);
2.4 Assign p to vk, where the reliability of vP on p is the maximal; VQp VQp þ vP

k ;
2.5 Update information of messages;
end for
3. for each task vk in the ordered list OL, schedule the backup copy vB
k do /* Schedule backup copies of tasks

*/
3.1 sðvB

k Þ 1; r 0;

/* Determine whether the backup copy of task vk should be allocated to processor pi */

3.2 for each feasible processor pi 2 F(vk), subject to Proposition 4 and Theorem 3, do
3.2.1 Calculate EAT B

i ðvkÞ, the earliest available time of vB
k on pi;

3.2.2 Identify backup copies already scheduled on pi that can overlap with vB
k , subject to Propositions

1–3;
3.2.3 Determine whether vP

k is a strong primary copy (using Theorem 1);
3.2.4 for (all vj in task queue VQ0iðvkÞ) do /* check if the unoccupied time intervals, interspersed by

currently */

scheduled tasks, and time slots occupied by backup copies that can overlap with vB;
3.2.5 if vk starts executing at ESTB
i ðvkÞ and can be completed before dk then /* Determine the earliest

ESTi */

Determine rk, processor and link reliability of vB

k on pi;
if ((ri > r) or (ri = r and ESTB

i ðvkÞ < s0k)) then Assign start time and reliability;
end for
3.3 if no proper processor is available vB
k , then return(FAIL);

3.4 Find and assign p 2 F(vk) to vk, where the reliability of vB
k on p is the maximal; VQp VQp þ vB

k ;
3.5 Update information of messages;

X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356 343
3.6 Based on Theorems 2, 4, and 5, redundant messages are avoided;
end for

return (SUCCEED);

Step 1 takes O(jVjlogjVj) time to sort tasks in non-decreasing order of deadlines. It takes O(jEj) time in Step
2.2.1 to compute EATP

i ðvÞ, and it also takes O(jVj) time in Step 2.2.2 to compute ESTP
i ðvÞ. Since there are

O(jVj) tasks in the ordered list and O(m) candidate processors, the time complexity of Step 2 is bounded
by O(jVjm(jEj + jVj)). Similarly, Step 3 also takes O(jVjm(jEj + jVj)) to schedule the backup copies of the task
graph. Therefore, the time complexity associated with the eFRD algorithm is O(jVjm(jEj + jVj)), indicating
that eFRD is a polynomial algorithm.

4.3. The principles

The above algorithm relies on the values of two important parameters, namely, EST(v), the earliest start
time for task v, and EAT(v), the earliest available time for task v, to determine a proper schedule for the pri-
mary and backup copies of a given task v. The difference between EAT and EST is that while both indicate a
time when task v’s precedence constraint has been met (i.e. all messages from v’s predecessors have arrived),
EST additionally signifies that the processor p(v) (to which v is allocated) is now available for v to start exe-
cution. In other words, EST(v) P EAT(v), since at time EAT(v) processor p(v) may not be available for v to
execute. In the following, we present a series of derivations that lead to the final expressions for EAT(v) and
EST(v).

If task v had only one predecessor task vP=B
j , then the earliest available time EATiðvP=B; vP=B

j Þ for the pri-
mary/backup copy of task v depends on the finish time f ðvP=B

j Þ of vj 2 D(v), the message start time, MSTik(e),
and the transmission time, w�ikjej, for message e sent from vj to v, where pk is the processor to which task vj has
been allocated. Thus, EATi(v,vj) is given by the following expression, where MSTik(e) is determined by an
algorithm presented later in this section. Note that if both the tasks are scheduled on the same node, then
the communication cost is negligible
EATiðvP=B; vP=B
j Þ ¼

f ðvP=B
j Þ if pi ¼ pk;

MSTikðeÞ þ w�ikjej otherwise:

(
ð11Þ
Now consider all predecessors of v. Clearly v must wait until the last message from all its predecessors has
arrived. Thus the earliest available time for the primary copy of v;EATP

i ðvÞ is the maximum of EATiðvP; vP
j Þ

over all its predecessors.
EATP
i ðvÞ ¼MAX

vj2DðvÞ
fEATiðvP; vP

j Þg: ð12Þ
Based on expression (12), the earliest start time ESTP
i ðvÞ on pi can be computed by checking the queue VQi to

find out if the processor has an idle time slot that starts later than task’s EATP
i ðvÞ and is large enough to

accommodate the task. This procedure is described in Step 2.2.2 in the algorithm. ESTP
i ðvÞ is an important

parameter used to derive ESTP(v), which denotes the earliest start time for the primary copy of task v on
any processor. An expression for ESTP(v) is given below:
ESTPðvÞ ¼MIN
pi2P
fESTP

i ðvÞg: ð13Þ
ESTB(v), the earliest start time for the backup copy of task v, is computed in a more complex way than
ESTP(v). For EATB

i ðvÞ, the earliest available time for the backup copy of v, the derivation for its expression
is more involved than that of EATB

i ðvÞ. This is because the set of predecessors of v’s primary copy, DP(v), con-
tains exclusively the primary copies of v’s predecessor tasks, whereas the set of predecessors of v’s backup
copy, B(v), may contain a certain combination of the primary and backup copies of v’s predecessor tasks.

Strong primary copy and the above relationships among tasks are fundamental concepts used in Theorem
2, which is helpful in determining the set of predecessors for a backup copy. Based on the assumption that at

p1

p4

p2

p3

vi

P

vj

P

vi

B

vj

B

time

Fig. 5. (vi,vj) 2 E, vP
i and vP

j are both strong primary copies, and vP
i and vP

j are scheduled on two different processors. vB
i is not messaging-

preceding vB
j .

344 X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356
most one processor in the system will encounter permanent failure, we observe that, if vi is a predecessor of vj

and both tasks have strong primary copies, then the backup copy of vi is not message-preceding the backup
copy of vj. Fig. 5 illustrates a scenario of the case, which is presented formally in the theorem below.

Theorem 2. Given two tasks vi and vj, vi is a predecessor of vj. vB
i is not message-preceding vB

j , meaning that vB
i

does not need to send message to vB
j , if vP

i and vP
j are both strong primary copies, and pðvP

i Þ 6¼ pðvP
j Þ, then the

backup copy of vi is not message-preceding the backup copy of vj.

Proof. Since vP
i and vP

j are both strong primary copies, according to Definition 1, vB
i and vB

j can both execute if
and only if both vP

i and vP
j have failed to execute due to processor failures. But vP

i and vP
j are allocated to two

different processors, an impossibility. Thus, at least one of vB
i and vB

j will not execute, implying that no mes-
sages need to be sent from vB

i to vB
j . h

Let B(v) � V be the set of predecessors of vB. It is defined as follows:
BðvÞ ¼ fvP
i jvi 2 DðvÞg [fvB

i jvi 2 DðvÞ ^ ðvP
i is not a strong primary copy _ vP

is not a strong primary copy _ pðvP
i Þ ¼ pðvPÞÞg ¼ DPðvÞ [DBðvÞ: ð14Þ
In the proposed scheduling algorithm, the primary copy of a task is allocated before its corresponding
backup copy is scheduled. Hence, given a task v and its predecessor vi 2 D(v), the primary and backup copies
of vi should have been allocated when the algorithm starts scheduling vB. Obviously, vB must receive message
from vP

i . In addition, vB also needs to receive message from vB
i , for all vB

i 2 DBðvÞ. Therefore, the maximum
earliest available time of vB on pi is determined by the primary copies of its predecessors, the backup copies
of tasks in DB(v)and messages sent from these tasks. EATB

i ðvÞ is given in the expression below, where d is the
fault detection time:
EATB
i ðvÞ ¼MAXff þ d; MAX

vP
j 2DPðvÞ

ðEATiðvB; vP
j ÞÞ; MAX

vB
j Z2DBðvÞ

ðEATiðvB; vB
j ÞÞg

¼ MAX
vP

j 2DPðvÞ;vB
k 2DBðvÞ

ff þ d;EATiðvB; vP
j Þ;EATiðvB; vB

k Þg: ð15Þ
ESTB
i ðvÞ and ESTB(v) denote the earliest start time for the backup copy of v on pi, and the earliest start time

for the backup copy of task v on any processor, respectively. The computation of ESTB
i ðvÞ is more complex

than that of ESTP
i ðvÞ, due to the need to judiciously overlap some backup copies on the same processor. The

computation of ESTB
i ðvÞ can be found from Step 3.2.4 in the above algorithm. In the eFRD algorithm, the

BOV scheme is implemented in Step 3.2, which attempts to reduce schedule length by selectively overlapping
backup copies of tasks. The expression for ESTB(v) is given below:
ESTBðvÞ ¼MIN
pi2F ðvÞ

fESTB
i ðvÞg: ð16Þ
Unlike expression (13) for ESTP(v), the candidate processor pi in (16) is not chosen directly from the set P.
Instead, it is selected from F(v), a set of feasible processors to which the backup copy of v can be allocated.
Obviously, p(vP) is not an element of F(v). Furthermore, given a task v, it is observed that under some special

p1

p2

p3

vi
P

vi
Bvj

P

vj
B

time j
Bv

Fig. 6. (vi,vj) 2 E, vB
i , is not schedule-preceding vP

j and vP
i is a strong primary copy. vB

j cannot be scheduled on the processor on which vP
i is

scheduled.

X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356 345
circumstances described below, vB cannot be scheduled on the processor where the primary copy of v’s prede-
cessor vP

i is scheduled (Fig. 6 illustrates this scenario). The set F(v) can be generated with help of Theorem 3.

Theorem 3. Given two tasks vi and vj, (vi, vj) 2 E, if vB
i is not schedule-preceding vP

j , then vB
j and vP

i cannot be

allocated to the same processor.

Proof. Suppose pðvP
i Þ has failed before time fi, and vB

i executes instead of vP
i . Thus, either vB

i is execution-pre-
ceding vP

j or vB
i is execution-preceding vB

j . But vB
i cannot be execution-preceding vP

j , since vB
i is not schedule-

preceding vP
j . Hence, vB

i must be execution-preceding vB
j . This implies that vB

j executes on a processor, which
is operational before f B

j . Since a fault occurs on pðvP
i Þ before f B

j , vB
j is not scheduled on pðvP

i Þ, thus,
pðvB

j Þ 6¼ pðvP
i Þ. h

Recall that EATi(v,vj) in expression (11) is a basic parameter used to derive EATP
i ðvÞ in expression (12) and

EATB
i ðvÞ in expression (12). EATi(v,vj) is determined by the start time MSTik(e) of message e sent from

pi = p(v) to pk = p(vj). MSTik(e) depends on how the message is routed and scheduled on the links. Thus, a
message is allocated to a link if the link has an idle time slot that is later than the sender’s finish time and
is large enough to accommodate the message. MSTik(e) is computed by the following procedure, where
e = (vj,v), MST(er+1) =1, MST(e0) = 0, je0j = 0, and MQi = {e1,e2, . . . ,er} is the message queue containing
all messages scheduled to the link from pi to pk. This procedure behaves in a similar manner as the previous
procedure for computing the earliest start time of a task.
Computation of MSTik(e):

1. for (g = 0 to r + 1) do /* Check whether the idle time slots */
2. if MSTik (eg+1) �MAX{MSTik (eg) + wik *jegj, f(vj)} P wik *jej then /* If the idle time slots
3. return MSTik (eg) + wik*jegj, f(vj); /* can accommodate v, return the value */
4. end for

5. return 1; /* No such idle time slots is found, MST is set to be 1 */

In scheduling messages, the proposed algorithm tries to avoid sending redundant messages in Step 3.6,
which is based on the following theorem. This scheme enhances the performance by consuming less commu-
nication resources. Suppose vP

j has successfully executed, either vP
i is execution-preceding vP

j or vB
i is execution-

preceding vP
j . We observe that, in a special case illustrated in Fig. 7, vB

i will never be execution-preceding vP
j .

This statement is described and proved in Theorem 4.
vi
B

vj
B

p1

p2

p3

vj
Pvi

P time

Fig. 7. vi is the predecessor of vj, vP
i and vP

j are scheduled on the same processor, and vP
i is the strong primary copy. In this case, vB

i is not
execution-preceding vP

j .

vi

B

vj

B

p1

p2

p3

vj

Pvi

P time

Fig. 8. vi is the predecessor of vj, vP
i and vP

j are scheduled on the same processor, vP
i is the strong primary copy, vP

j is schedule-preceding vB
i .

Hence, vB
i is not message-preceding vP

j .

346 X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356
Theorem 4. Given two tasks vi and vj, (vi, vj) 2 E, if the primary copies of vi and vj are allocated to the same

processor and vP
i is a strong primary copy, then vB

i is not execution-preceding vP
j , meaning that sending a message

from vB
i to vP

j would be redundant.

Proof. By contradiction: Assume vB
i is execution-preceding vP

j , thus, both vB
i and vP

j must execute (Definition
4). Since vP

i is a strong primary copy, processor pðvP
i Þ must have failed before time fi (Definition 1). But vP

i and
vP

j are allocated to the same processor and vP
i is schedule-preceding vP

j , implying that vP
j also could not execute.

A contradiction. h

Additionally, we identify another enlightening principle, based on which redundant messages can be elim-
inated. Fig. 8 shows a scenario that there is no need for a message to be delivered from vP

i to vB
j . The rationale

behind this case is proved in the following theorem. It is assumed that if p1 fails during the execution of vP
j , vB

i

will have to be executed to send a message to vB
j .

Theorem 5. Given two tasks vi and vj, (vi, vj) 2 E, if the primary copies of vi and vj are allocated to the same

processor, vP
j is a strong primary copy, and vP

j is schedule-preceding vB
i , then vP

i is not message-preceding vB
j ,

indicating that a message from vP
i to vB

j is not required.

Proof. Suppose vB
j is executed. We know that processor pðvP

j Þ must have failed before fj due to the nature of
strong primary copy of vj (Definition 1). Since vP

i is assigned to pðvP
j Þ, vP

i is unable to successfully execute if
pðvP

j Þ has failed before fj, otherwise vP
i might have been completed. In this case, vB

i takes an opportunity to
start executing, because vB

i ’s start time is later than the finish time of vP
i and vP

j (vP
j is schedule-preceding

vB
i). Thus, it is guaranteed that vB

j can receive a message from vB
i when pðvP

j Þ fails, making a message sent from
vP

i to vB
j redundant. h
5. Performance evaluation

In this section, we compare the performance of the proposed algorithm with three existing real-time fault-
tolerant scheduling algorithms in the literature, namely, OV [21], FGLS [10,11], and FRCD [24] by extensive
simulations. For the purpose of comparison, we also simulated a non-fault-tolerant real-time scheduling algo-
rithm (referred to as NFT hereafter) that is unable to tolerate any failure. In this study, we considered a real
world application in addition to synthetic workloads.

Three performance measures are used to capture three important but different aspects of real-time and
fault-tolerant scheduling. The first measure is schedulability (SC), defined to be the percentage of parallel
real-time jobs that have been successfully scheduled among all submitted jobs, which measures an algorithm’s
ability to find a feasible schedule. The second is reliability, defined in expression (2), which describes the reli-
ability of a feasible schedule. Reflecting the combined performance of the first two measures, the third mea-
sure, performability (PF), is defined to be a product of schedulability and reliability. Formally,
SC ¼ Number of jobs with feasible schedules=Total number of submitted jobs; ð17Þ
PFðK;M ;X ;X B; T Þ ¼ RðK;M ;X ;X B; T Þ � SC: ð18Þ

X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356 347
In the following discussions, performability serves as a single scalar metric that measures the overall per-
formance of a real-time heterogeneous system.

Recall that while the four algorithms to be compared share some features such as being fault-tolerant and
static, they differ in some other aspects such as task dependence and heterogeneity. OV assumes independent
tasks and homogeneous systems, whereas FRCD, eFRD and FGLS consider tasks with precedence
constraints that execute on heterogeneous systems. Since FGLS is developed for systems where the commu-
nication link is single bus, the communication heterogeneity is not considered in FGLS. Additionally, while
FRCD and eFRD incorporate computational, communication and reliability heterogeneities into the
scheduling, FGLS considers only computational heterogeneity. In order to make the comparison fair and
meaningful, some adjustments have to be made to the algorithms. More specifically, when comparing all four
algorithms in Sections 5.2 and 5.3, both FGLS, FRCD and eFRD are downgraded to handle only indepen-
dent tasks that execute on homogeneous systems, by removing precedence constraints from tasks, making the
underlying system homogeneous, and assuming fixed deadlines for all tasks.

Similarly, when comparisons are made between eFRD and FGLS in Sections 5.4 and 5.5, the eFRD algo-
rithm is downgraded by assuming communication homogeneity, while the FGLS algorithm is adapted to
include reliability heterogeneity. Furthermore, the FGLS algorithm does not explicitly show how deadlines
are considered, implying that FGLS might be designed for soft real-time systems. Therefore, SC cannot be
directly measured in FGLS. In order for the comparison to be meaningful, we made minor modifications
to FGLS so that deadlines are explicitly considered in scheduling tasks, thereby making SC measurable.

5.1. Workload and system parameters

Workload parameters are chosen in such a way that they are either based on those used in the literature or
represent reasonably realistic workloads and provide some stress tests for the algorithms. We studied three
types of task graphs (DAGs): binary tree, lattice and DAGs with random precedence constraints, ones that
have been frequently used by researchers in the past [23,27,28].

In each simulation experiment, 100,000 real-time DAGs were generated independently for the scheduling
algorithm as follows: First, for each DAG, determine the number of real-time tasks N, the number of proces-
sors m and their failure rates R = {k1,k2, . . . ,km}. Then, the computation time in the execution time vector C is
randomly chosen from a uniformly range (referred to as EX) between 5 and 50. The scale of this range approx-
imates the level of computational heterogeneity. Data communication among real-time tasks and communi-
cation weights are randomly selected from uniformly ranges (referred to as V) between 1 and 10. Finally, the
fault detection time d is randomly computed according to a uniform distribution in the range between 1 and
10, because the fault detection time on average is approximately 3 ms [31]. Real-time deadlines can be defined
in two ways:

1. A single deadline is associated with a real-time job, which is a set of tasks with or without precedence con-
straints. Such a deadline is referred to as a common deadline in the literature [19,20]. Common deadlines
were used in simulation studies reported in Sections 5.2 and 5.3.

2. Individual deadlines are associated with tasks within a real-time job. This deadline definition is often used
for the dynamic scheduling of independent real-time tasks [9,16]. In simulation studies reported in Sections
5.4 and 5.5, this deadline definition was adapted for tasks of a real-time job with precedence constraints.
More specifically, given vi 2 V, if vi is on pk and vj is on pl, then vi’s deadline is determined by:
di ¼MAXfdj þ eij � wlkg þMAXfcikg þ t; ð19Þ

where t is a constant chosen uniformly from a given range H that represents individual relative deadlines.

A DAG with random precedence constraints is generated in four steps: First, the number of tasks N and the
number of messages U are chosen. In this simulation study, it is assumed that U = 4N. Second, the execution
time for each task is chosen randomly. Third, the communication time for each message is generated randomly
and its sender and receiver selected randomly, subject to the condition that such selection does not generate
any circle in the graph. Finally, a relative deadline t for each task is selected uniformly from a given H.

348 X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356
5.2. Schedulability

This experiment evaluates performance in terms of schedulability among the five algorithms using the
schedulability measure. The workload consists of sets of independent real-time tasks running on a homoge-
neous system. The size of the task set is fixed at 100 tasks and the size of the homogeneous system is fixed
at 20. A common deadline of 100 is selected. SC is first measured as a function of task execution time in
the range between 19 and 29 with increments of 1 (see Fig. 9), and then measured as a function of task set
size (see Fig. 10).

Figs. 9 and 10 show that the schedulabilities of the OV and eFRD algorithms are almost identical, and so
are the FGLS and FRCD algorithms. Considering that the eFRD algorithm has to be downgraded for com-
parability, this result should imply that eFRD is more powerful than OV, because eFRD can also schedule
tasks with precedence constraints to be executed on heterogeneous systems, which OV is not capable of.
The results indicate that high reliabilities are made possible by eFRD at the cost of schedulability, because
the average SC value of NFT is approximately 7% higher than that of eFRD.

The results further reveal that both OV and eFRD significantly outperform FGLS and FRCD in SC, sug-
gesting that both FGLS and FRCD are not suitable for scheduling independent tasks. The reason for FGLS’s
poor performance can be explained by the fact that, like FRCD, it does not employ the overlapping scheme
for backup copies. The consequence is twofold. First, FGLS and FRCD require more computing resources
0

0.2

0.4

0.6

0.8

1

19 20 21 22 23 24 25 26 27 28 29

NFT OV eFRD
FGLS FRCD

Execution time

Schedulability

Fig. 9. Schedulability of independent tasks as a function of execution time. Common deadline = 100, N = 100, m = 20.

0

0.2

0.4

0.6

0.8

1

7 8 9 10 11 12 13

NFT OV eFRD
FGLS FRCD

Number of task (x10)

Scheduability

Fig. 10. Schedulability as a function of N. Common deadline = 100, m = 16, MIN_F = 0.5 · 10�6, MAX_F = 3.0 · 10�6, EX = [1,20].

X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356 349
than eFRD, which is likely to lead to a relatively low SC when the number of processors is fixed. Second,
unlike eFRD, the backup copies in FGLS and FRCD cannot overlap with one another on the same processor,
and this may result in a much longer schedule length.

5.3. Reliability performance

In this experiment, the reliability of the OV, FGLS, FRCD and eFRD algorithms are evaluated as a func-
tion of maximum processor failure rate, shown in Fig. 11.

To stress the reliability performance, schedulabilities of all the four algorithms are assumed to be 1.0 by
assigning extremely loose deadlines for tasks. The task set size and system sizes are 200 and 20, respectively.
Execution time of each task is chosen uniformly from the range between 500 and 1500, and the failure rates
were uniformly selected from the range between MIN_F and MAX_F. In this experiment, MIN_F is
1.0 · 10�6 per hour and MAX_F varies from 3.5 · 10�6 to 7.5 · 10�6 per hour with increments of
0.5 · 10�6. The link failure rates are taken uniformly in the range from 0.65 · 10�6 to 0.95 · 10�6 per hour.

We observed from Fig. 11 that the reliability of OV and FGLS are very close, and so are those of FRCD
and eFRD. FRCD and eFRD perform considerably better than both OV and FGLS, with R values being
approximately from 10.5% to 22.3% higher than those of OV and FGLS. The FRCD and eFRD algorithms
have much better reliability simply because OV and FGLS do not consider reliability in their scheduling
schemes while both FRCD and eFRD take reliability into account. This experimental result validates the
use of FRCD and eFRD to enhance the reliability, especially when tasks either have loose deadlines or no
deadlines (non-real-time systems).

5.4. Impact of computational heterogeneity on performance

Sections 5.2 and 5.3 show that the reliabilities of FRCD and eFRD are identical, while the schedulability of
eFRD is significantly superior to that of FRCD. Since performability is a product of reliability and schedu-
lability, eFRD should consistently outperform FRCD in terms of performability under all workloads. Hence,
FRCD will not be considered in the following discussions, and we only evaluate the performance of the FGLS
and eFRD algorithms.

Since computational heterogeneity is reflected in part by the variance in execution times of the computation
time vector C, a metric is introduced to represent the computational heterogeneity level. It is denoted by
g = (a,b), where a is the minimal value for execution time in C, and b is the deviation C. In this experiment,
the execution time for each task on a given processor is chosen uniformly from the range between a and a + b.
Clearly, the higher the value of b, the higher the level of heterogeneity.

To study the impact of the heterogeneity level on the PF performances of the FGLS and eFRD algorithms,
we set a to a constant value of 20, and varied b from 0 to 28 with increments of 4. For each value of b we ran
0.5

0.6

0.7

0.8

0.9

3.5 4.5 5.5 6 6.5 7.5

OV eFRD
FGLS FRCD

MAX_F(10 -6)

Reliability

4 5 7

Fig. 11. Reliability as function of MAX_F. N = 50, m = 20, MIN_F = 1 · 10�6, EX = [500,1500].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 4 8 12 16 20 24 28

FGLS(btree) eFRCD(btree)
FGLS(4-ary tree) eFRCD(4-ary tree)

Beta

Performability

Fig. 12. Performability of btrees and 4-ary trees as a function of heterogeneity level. H = [1,100], N = 150, m = 20, a = 20.

350 X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356
the two algorithms on 10,000 binary trees and 10,000 4-ary trees, with 150 nodes (tasks) each, respectively.
Fig. 12 shows SC performance as a function of b, the heterogeneity level. Only tree-based DAGs are presented
in this experiment, since the other two types of DAGs behave similarly.

The first observation from Fig. 12 is that the value of PF increases with the heterogeneity level. This is
because PF is a product of SC and R, and both SC and R become higher when the heterogeneity level
increases. These results can be further explained by the following reasons. First, though the individual relative
deadlines (i.e. t in expression (19)) are not affected by the change in computational heterogeneity, high vari-
ance in task execution times does affect the absolute deadlines (i.e. d(vi) in expression (19)), making the dead-
lines looser and the SC higher. Second, high variance in task execution times also provides opportunities for
more tasks to be packed in with the fixed number of processors, giving rise to a higher SC. Third, RC decreases
as the heterogeneity level increases, implying an increasing R. This is because high variance in execution times
will lead to a low minimum execution time in C. Given the greedy nature of both algorithms, processors with
minimum execution time in C are most likely to be chosen for task execution, giving rise to high reliability as a
function of processor execution time and processor failure rates.

The second interesting observation is that eFRD outperforms FGLS with respect to PF at low heteroge-
neity levels while the opposite is true for high heterogeneity levels. This is because when heterogeneity levels
are low, both SC and R of eFRD are considerably higher than those of FGLS (reliabilities are depicted in
Fig. 13). On the other hand, eFRD’s SC is lower than that of FGLS at a high heterogeneity level, and Rs
0

0.15

0.3

0.45

0.6

0.75

0 4 8 12 16 20 24 28

FGLS(btree) eFRD(btree)
FGLS(4-ary tree) eFRCD(4-ary tree)

Beta

Reliability

Fig. 13. Reliability of btrees and 4-ary trees as a function of heterogeneity level. H = [1,100], N = 150, m = 20, a = 20.

X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356 351
of two algorithms becomes similar (eFRD is slightly better than FGLS) when heterogeneity level increases.
Therefore, eFRD’s PF, the product of SC and R, is lower than that of FGLS at high heterogeneity levels.

This result suggests that, if schedulability is the only objective in scheduling, FGLS is more suitable for sys-
tems with relatively high levels of heterogeneity, whereas eFRD is more suitable for scheduling tasks with rel-
atively low levels of heterogeneity. In contrast, if R is the sole objective, eFRD is consistently better than
FGLS.

In addition, Fig. 12 indicates that performability of FGLS increases much more rapidly with heterogeneity
level than that of eFRD, implying that FGLS is more sensitive to the change in computational heterogeneity
than eFRD. This is because both SC and R (see Fig. 13) of FGLS continuously increase more sharply with the
increasing heterogeneity level than those of eFRD.

Fig. 13 depicts the R as a function of computational heterogeneity level. The simulation parameters are the
same as the above experiment. Fig. 13 reveals that R increases as the heterogeneity level increases. This is
because high variance in execution times will lead to a low minimum execution time in C. Given the greedy
nature of both algorithms, processors with minimum execution time in C are most likely to be chosen for task
execution, giving rise to high reliability as R is a function of processor execution time and processor failure
rate. Fig. 13 shows that R of eFRD is consistently higher than that of FGLS, suggesting that eFRD is superior
to FGLS in terms of reliability.

5.5. Impact of task parallelism on schedulability

One interesting observation from the previous experiments (Figs. 12 and 13) is that task parallelism,
implied by the width of the tree in the DAGs (binary vs. 4-ary trees), has a significant impact on the SC per-
formance while the R performance is insensitive to such task parallelism. In this section we present simulation
results that substantiate this observation and establish the relationship between task parallelism and SC
performance.

Fig. 14 shows an indirect relationship between SC and task parallelism of random task graphs containing a
fix number of tasks, by plotting SC as a function of the number of messages in the task graph. For a task
graph with a fixed number of tasks, the more messages there are among tasks, the more precedence constraints
that are imposed on the tasks, implying that fewer tasks may execute concurrently. In other words, task par-
allelism decreases as the number of messages increases.

Fig. 14 plainly shows that the schedulabilities of FGLS and eFRD are very close when the number of mes-
sages is greater than 260, with FGLS outperforming eFRD slightly. As the number of messages decreases to
below 240, eFRD starts to outperform FGLS, with the performance gap widening rapidly with the decrease in
0

0.2

0.4

0.6

0.8

1

320 260 280 260 240 220 200 180 160 140

FGLS
eFRD

Number of messages

Schedulability

Fig. 14. Schedulability of random graphs as a function of the number of messages. H = [1,10], N = 100, m = 16, EX = [1,20],
COM = [1,10].

Schedulability

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9

FGLS

eFRCD

Fig. 15. Schedulability of trees as a function of the number of branches. H = [1,100], N = 200, m = 10, EX = [1,20], COM = [1,10].

352 X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356
messages. This result suggests that eFRD yields significantly better performance than FGLS at high levels of
task parallelism while FGLS outperforms eFRD marginally at low task parallelism levels.

Fig. 15 illustrates schedulability as a function of the node degree of the tree task graphs, establishing a more
direct relationship between schedulability and task parallelism. This is because a high node degree in a tree
implies a tree with a high width, clearly indicating a high average task parallelism. The schedulabilities of both
FGLS and eFRD decrease as the node degree of tree increases, with FGLS’s performance dropping much
more rapidly than that of eFRD.

Both Figs. 14 and 15 reveal that task parallelism has much more significant impact on FGLS than on
eFRD, indicating that FGLS is much more sensitive to task parallelism than eFRD. This may be explained
by the fact that the FGLS algorithm allows backup copies to concurrently execute with their corresponding
primary copies, which can be advantageous when task parallelism is low and the number of processors avail-
able is fixed. This advantage, however, quickly diminishes as task parallelism increases while the number of
available processors remains constant, since the concurrent backup copies occupy processor resources that
would otherwise be available for primary copies of other parallel tasks, thereby lengthening the schedule
and lowering SC.

These two figures also indicate that the SC performance decreases with the increase in task parallelism, a
seemingly counter-intuitive phenomenon, because higher task parallelism should in general help shorten sche-
dule length. The reason for this phenomenon is that in this experiment, it is the individual deadlines (expres-
sion (19)), not the common deadline that was used. As a result, the increase in task parallelism, while
shortening the schedule length to some extent, considerably tightens the deadlines. The tightened deadlines
significantly offset gains obtained from the shortened schedule length, especially for FGLS.

5.6. Impact of communication to computation ratio on performance

In this section we evaluate the impact of communication to computation ratio (CCR), which indicates the
ratio of the average execution time of communication activities to that of computation activities. A large value
of CCR means a relatively high communication load compared with computation load. In this experiment we
varied CCR within [0.1,10]. First, the communication cost of each message is randomly chosen from a uni-
form distribution. Next, the execution cost of each task is randomly generated according to the given CCR
value.

Fig. 16 reveals that when the CCR value is small (less than or equal to 1), the schedulability of eFRD is
significantly higher than that of FGLS. The SC performance improvement of eFRD over FGLS decreases
as the CCR value increases. This result implies that eFRD performs substantially better than FGLS with small
values of CCR while FGLS. outperforms eFRD marginally at low task parallelism levels.

Fig. 17 clearly shows that CCR has noticeable impacts on both FGLS and eFRD. It is observed from
Fig. 17 that the reliabilities yielded by FGLS and eFRD increase with the increasing values of CCR, indicating

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.4 0.5 1 2 10

FGLS eFRD

Communication to Computation Ratio (CCR)

Schedulability

Fig. 16. Schedulability of 4-ary trees as a function of CCR. H = [1,100], N = 200, m = 12, COM = [1,100].

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.4 0.5 1 2 10

FGLS eFRD

Communication to Computation Ratio (CCR)

Reliability

Fig. 17. Reliability of 4-ary trees as a function of CCR. H = [1,100], N = 200, m = 12, COM = [1,100].

X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356 353
that a large CCR value leads to high reliabilities. These results can be explained by the way of choosing exe-
cution times. Specifically, larger CCR values result in smaller execution times of tasks, which in turn induce
higher reliabilities. Similar to the schedulability performance, the reliability improvement of eFRD over FGLS
is pronounced when the CCR value is small. However, this advantage gradually diminishes as the CCR value
goes up. This is mainly because execution times become a whole lot shorter with large CCR values. The short-
ened execution times cause relatively higher reliabilities, leaving limited room for further improvement in
reliability.

5.7. Performance on a real application

The goal of this experiment is threefold: First, to validate the results from the synthetic application cases;
second, to evaluate the impact of processor numbers on the performance of the proposed algorithm; and third,
to test the scalability of our algorithm. To do so, we evaluate the performance of eFRD with very large task
graphs generated from a real application: a digital signal processing (DSP) system with 119 tasks in the task
graph [30]. Since OV assumes independent tasks and homogeneous systems, we only compare eFRD against
FRCD and FGLS, which can handle tasks with precedence constraints executing on heterogeneous systems.

The number of processors of a simulated heterogeneous system is varied from 9 to 16. The failure rates of
the processors, which are fully connected with one another, are chosen randomly between 1 · 10�6 and
7.5 · 10�6. Similarly, the link failure rates of the system are uniformly in the range from 0.65 · 10�6 to

0

0.2

0.4

0.6

0.8

1

9 10 11 12 13 14 15 16

FGLS FRCD eFRD

Number of Processors

Schedulability

Fig. 18. Schedulability results for a real world application: a digital signal processing system.

0

0.2

0.4

0.6

0.8

1

9 10 11 12 13 14 15 16

eFRD FGLS FRCD

Number of Processors

Reliability

Fig. 19. Reliability results for a real world application: a digital signal processing system.

354 X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356
0.95 · 10�6 per hour [28]. We performed the experiment with ranges for generating deadlines set to 500 ms.
From Fig. 18, it can be seen that the increase in number of processors increases the schedulability for all
the three algorithms. Importantly, eFRD improves the performance in schedulability over FGLS and FRCD
by up to 1823% and 127% (with average of 374% and 64%), respectively. Furthermore, the advantage of
eFRD over FGLS and FRCD becomes more pronounced when the number of processors is small, and the
performance improvement in schedulability decreases as the number of processors increases. This is because
when the number of processors is large, there is less likelihood that the processors are the bottleneck of in per-
formance. The results indicate that the proposed algorithm can substantially improve system schedulability
over the existing algorithms under circumstances where processors are critical resources in heterogeneous
systems.

The reliabilities of the three alternatives are presented in Fig. 19. We find that the eFRD algorithm
improves the reliability of FGLS by more than 15.7% while maintaining the same level of reliability as that
of FRCD. This is because eFRD leverages the reliability-cost driven technique to achieve the high reliability.
From Figs. 18 and 19 we conclude that the proposed algorithm can provide reliable allocations for both small-
and large-scale applications while significantly improving resource utilization.

6. Conclusion

In this paper we presented an efficient fault-tolerant scheduling algorithm (eFRD), in which real-time tasks
with precedence constraints can tolerate one processor’s failures in a heterogeneous system with fully con-

X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356 355
nected network. The fault-tolerant capability is incorporated in the algorithm by using a primary/backup (PB)
model, where failures are detected after a fixed amount of time. In this PB model, each task is associated with a
primary copy and a backup copy that are allocated to two different processors and the backup copy is exe-
cuted only if the primary copy fails due to the permanent failure of one processor. Unlike FRCD [24], the
eFRD algorithm relaxes the requirement in FRCD that forbids the overlapping of any backup copies to allow
such overlapping on the same processor if their corresponding primary copies are allocated to different pro-
cessors. The system reliability is further enhanced by assigning tasks to processors that are able to yield high
reliability. Moreover, the algorithm takes system and workload heterogeneity into consideration by explicitly
accounting for computational, communication, and reliability heterogeneity.

To the best of our knowledge, the proposed algorithm is the first of its kind reported in the literature, in
that it most comprehensively addresses the issues of fault-tolerance, reliability, real-time, task precedence con-
straints, and heterogeneity. To assess the performance of eFRD, extensive simulation studies were conducted
to quantitatively compare it with the three most relevant existing scheduling algorithms in the literature, OV
[21], FGLS [10,11], and FRCD [24]. The simulation results indicate that the eFRD algorithm is considerably
superior to the three algorithms in the vast majority of cases. There are two exceptions, however. First, the
FGLS outperforms eFRD marginally when task parallelism is low. Second, when computational heterogene-
ity is high, the eFRD algorithm becomes inferior to the FGLS algorithm.

The experimental results also indicate that both computational heterogeneity and task parallelism have a
significant impact on the schedulability. In particular, the FGLS algorithm is much more sensitive to compu-
tational heterogeneity and task parallelism than the eFRD algorithm.

Acknowledgments

This is a substantially revised and improved version of a preliminary paper [23] appeared in the Proceeding

of the International Conference on Parallel Processing (ICPP2002), pages 360–368, August 2002. The revisions
include a detailed reliability analysis, an improved overlapping scheme, consideration of more workload and
system parameters, and performance evaluation with a real application. This work was partially supported by
NSF under Grant EPS-0091900, New Mexico Institute of Mining and Technology under Grant 103295, Intel
Corporation under Grant 2005-04-070, and University of Nebraska-Lincoln under Grant 26-0511-0019.

References

[1] T.F. Abdelzaher, K.G. Shin, Combined task and message scheduling in real-time systems, IEEE Transactions on Parallel and Systems
10 (11) (1999).

[2] K. Ahn, J. Kim, S. Hong, Fault-tolerant real-time scheduling using passive replicas, in: Proc. Pacific Rim Int. Symposium on Fault-
Tolerant Systems, December 15–16, 1997.

[3] R. Al-Omari, A.K. Somani, G. Manimaran, A new fault-tolerant technique for improving the schedulability in multiprocessor real-
time systems, in: Proc. Int. Parallel and Processing Symposium, San Francisco, USA, April 2001.

[4] N.M. Amato, P. An, Task scheduling and parallel mesh-sweeps in transport computations, Technical Report TR00-009, Department
of Computer Science, Texas A&M University, January 2000.

[5] A.A. Bertossi, L.V. Mancini, F. Rossini, Fault-tolerant rate-monotonic first-fit scheduling in hard-real-time systems, IEEE
Transactions on Parallel and Systems 10 (9) (1999) 934–945.

[6] M. Caccamo, G. Buttazzo, Optimal scheduling for fault-tolerant and firm real-time systems, in: Proc. Int. Conf. on Real-Time
Computing Systems and Applications, Hiroshima, Japan, October 27–29, 1998.

[7] C. Dima, A. Girault, C. Lavarenne, Y. Sorel, Off-line real-time fault-tolerant scheduling, in: Proc. Euromicro Workshop on Parallel
and Processing, Mantova, Italy, February 2001, pp. 410–417.

[8] A. Dogan, F. Ozguner, Reliable matching and scheduling of precedence-constrained tasks in heterogeneous computing, in: Proc. Int.
Conf. on Parallel Processing, 2000, pp. 307–314.

[9] S. Ghosh, R. Melhem, D. Mosse, Fault-tolerance through scheduling of aperiodic tasks in hard real-time multiprocessor systems,
IEEE Transactions on Parallel and System 8 (3) (1997) 272–284.

[10] A. Girault, C. Lavarenne, M. Sighireanu, Y. Sorel, Fault-tolerant static scheduling for real-time embedded systems, in: Proc. Int.
Conf. on Computing Systems, April 2001.

[11] A. Girault, C. Lavarenne, M. Sighireanu, Y. Sorel, Generation of fault-tolerant static scheduling for real-time embedded systems with
multi-point links, in: IEEE Workshop on Fault-Tolerant Parallel and Systems, San Francisco, USA, April 2001.

[12] C.J. Hou, K.G. Shin, Allocation of periodic task modules with precedence and deadline constraints in real-time systems, IEEE
Transactions on Computers 46 (12) (1997) 1338–1356.

356 X. Qin, H. Jiang / Parallel Computing 32 (2006) 331–356
[13] E.N. Huh, L.R. Welch, B.A. Shirazi, C.D. Cavanaugh, Heterogeneous resource management for dynamic real-time systems, in: Proc.
the 9th Heterogeneous Computing Workshop, 2000, pp. 287–296.

[14] Y.K. Kwok, I. Ahmad, Static scheduling algorithms for allocating directed task graphs to multiprocessors, ACM Computing Surveys
31 (4) (1999) 406–471.

[15] F. Liberato, S. Lauzac, R. Melhem, D. Mosse, Fault tolerant real-time global scheduling on multiprocessors, in: Proc. of Euromicro
Workshop in Real-Time Systems, 1999.

[16] F. Liberato, R. Melhem, D. Mossé, Tolerance to multiple transient faults for aperiodic tasks in hard real-time systems, IEEE
Transactions on Computers 49 (9) (2000).

[17] G. Manimaran, C. Siva Ram Murthy, A fault-tolerant dynamic scheduling algorithm for multiprocessor real-time systems and its
analysis, IEEE Transactions on Parallel and Systems 9 (11) (1998).

[18] P. Mejia Alvarez, D. Mosse, A responsiveness approach for scheduling fault recovery in real-time systems, in: Proc. IEEE Real-Time
Technology and Applications Symposium, Canada, June 1999, pp. 1–10.

[19] M. Naedele, Fault-tolerant real-time scheduling under execution time constraints, in: Proc. Int. Conf. on Real-Time Computing
Systems and Applications, Hong Kong, China, December 13–15, 1999.

[20] Y. Oh, S.H. Son, An algorithm for real-time fault-tolerant scheduling in multiprocessor systems, in: Proc. Euromicro Workshop on
Real-Time Systems, Greece, 1992, pp. 190–195.

[21] Y. Oh, S.H. Son, Scheduling real-time tasks for dependability, Journal of Operational Research Society 48 (6) (1997) 629–639.
[22] X. Qin, H. Jiang, Dynamic, reliability-driven scheduling of parallel real-time jobs in heterogeneous systems, in: Proc. Int. Conf. on

Parallel Processing, Valencia, Spain, 2001, pp. 113–122.
[23] X. Qin, H. Jiang, D.R. Swanson, An efficient fault-tolerant scheduling algorithm for real-time tasks with precedence constraints in

heterogeneous systems, in: Proc. Int. Conf. on Parallel Processing, British Columbia, Canada, August 2002, pp. 360–368.
[24] X. Qin, H. Jiang, D.R. Swanson, A fault-tolerant real-time scheduling algorithm for precedence-constrained tasks in heterogeneous

systems, Technical Report TR-UNL-CSE 2001-1003, Department of Computer Science and Engineering, University of Nebraska-
Lincoln, September 2001.

[25] S. Ranaweera, D.P. Agrawal, Scheduling of periodic time critical applications for pipelined execution on heterogeneous systems, in:
Proc. Int. Conf. on Parallel Processing, September 2001, pp. 131–138.

[26] R.M. Santos, J. Santos, J. Orozco, Scheduling heterogeneous multimedia servers: different QoS for, hard, soft and non real-time
clients, in: Proc. Euromicro Conf. on Real-Time Systems, 2000, pp. 247–253.

[27] S.M. Shatz, J.P. Wang, M. Goto, Task allocation for maximizing reliability of computer systems, IEEE Transactions on Computers
41 (9) (1992) 1156–1168.

[28] S. Srinivasan, N.K. Jha, Safty and reliability driven task allocation in systems, IEEE Transactions on Parallel and Systems 10 (3)
(1999) 238–251.

[29] J. Stankovic, M. Spuri, K. Ramamritham, G.C. Buttazzo, Deadline scheduling for real-time systems: EDF and related algorithms,
Kluwer Academic Publishers, 1998.

[30] C.M. Woodside, G.G. Monforton, Fast allocation of processes in and parallel systems, IEEE Transactions on Parallel and Systems 4
(2) (1993) 164–174.

[31] W. Zhao, L.E. Moser, P.M. Melliar-Smith, Unification of transactions and replication in three-tier architectures based on CORBA,
IEEE Transactions on Dependable and Secure Computing 2 (1) (2005) 20–33.

[32] G. Buonanno, M. Pugassi, M.G. Sami, P. di Milano, A high-level synthesis approach to design of fault-tolerant systems, in: Proc.
IEEE VLSI Test Symposium, 1997.

[33] S. Hariri, A. Choudhary, B. Sarikaya, Architectural support for designing fault-tolerant open systems, Computer 25 (6) (1992) 50–62.
[34] T.D. Braun et al., A comparison study of static mapping heuristics for a class of meta-tasks on heterogeneous computing systems, in:

Proc. Workshop on Heterogeneous Computing, April 1999, pp. 15–29.
[35] N.J. Boden, D. Cohen, W.K. Su, Myrinet: a gigabit-per-second local area network, IEEE Micro 15 (1) (1995).
[36] J. Wu, P. Wyckoff, D.K. Panda, High performance implementation of MPI datatype communication over InfiniBand, in: Proc. Int.

Parallel and Distributed Processing Symposium, April 2004.
[37] K. Ramamritham, Allocation and scheduling of precedence-related periodic tasks, IEEE Transactions on Parallel and Distributed

Systems 6 (4) (1995) 412–420.
[38] G. Fohler, Adaptive fault-tolerance with statically scheduled real-time systems, in: Proc. Euromicro Workshop on Real-Time

Systems, June 1997.
[39] A. Dogan, F. Özgüner, Matching and scheduling algorithms for minimizing execution time and failure probability of applications in

heterogeneous computing, IEEE Transactions on Parallel and Distributed Systems 13 (3) (2002) 308–323.
[40] A. Girault, H. Kalla, M. Sighireanu, Y. Sorel, An algorithm for automatically obtaining distributed and fault-tolerant static

schedules, in: Proc. Int. Conf. on Dependable Systems and Networks, June 2003.
[41] I. Assayad, A. Girault, H. Kalla, A bi-criteria scheduling heuristics for distributed embedded systems under reliability and real-time

constraints, in: Proc. Int. Conf. on Dependable Systems and Networks, June 2004.

	A novel fault-tolerant scheduling algorithm for precedence constrained tasks in real-time heterogeneous systems
	Introduction
	Related work
	System model for reliability
	System model
	Reliability analysis

	Scheduling algorithms
	An outline
	The eFRD algorithm
	The principles

	Performance evaluation
	Workload and system parameters
	Schedulability
	Reliability performance
	Impact of computational heterogeneity on performance
	Impact of task parallelism on schedulability
	Impact of communication to computation ratio on performance
	Performance on a real application

	Conclusion
	Acknowledgments
	References

