
J Sign Process Syst (2013) 72:209–228
DOI 10.1007/s11265-013-0775-x

SAFE: A Source Deduplication Framework for Efficient
Cloud Backup Services

Yujuan Tan · Hong Jiang · Edwin Hsing-Mean Sha ·
Zhichao Yan · Dan Feng

Received: 6 November 2012 / Revised: 30 March 2013 / Accepted: 10 May 2013 / Published online: 21 June 2013
© Springer Science+Business Media New York 2013

Abstract Due to the relatively low bandwidth of WAN that
supports cloud backup services and the increasing amount
of backed-up data stored at service providers, the dedu-
plication scheme used in the cloud backup environment
must remove the redundant data for backup operations
to reduce backup times and storage costs and for restore
operations to reduce restore times. In this paper, we pro-
pose SAFE, a source deduplication framework for efficient
cloud backup and restore operations. SAFE consists of
three salient features, (1) Hybrid Deduplication, combin-
ing the global file-level and local chunk-level deduplication
to achieve an optimal tradeoff between the deduplication
efficiency and overhead to achieve a short backup time;
(2) Semantic-aware Elimination, exploiting file seman-
tics to narrow the search space for the redundant data

Y. Tan (�) · E. H.-M. Sha
College of Computer Science,
Chongqing University, Chongqing, China
e-mail: tanyujuan@gmail.com

E. H.-M. Sha
e-mail: edwinsha@gmail.com

H. Jiang · Z. Yan
Department of Computer Science & Engineering,
University of Nebraska-Lincoln, Lincoln, NE, USA

H. Jiang
e-mail: jiang@cse.unl.edu

Z. Yan
e-mail: yanzhichao.hust@gmail.com

D. Feng
School of Computer Science & Technology,
Huazhong University of Science & Technology, Wuhan, China
e-mail: dfeng@hust.edu.cn

in hybrid deduplication process to reduce the deduplica-
tion overhead; and (3) Unmodified Data Removal, remov-
ing the files and data chunks that are kept intact from
data transmission for some restore operations. Through
extensive experiments driven by real-world datasets, the
SAFE framework is shown to maintain a much higher
deduplication efficiency/overhead ratio than existing solu-
tions, shortening the backup time by an average of
38.7 %, and reduce the restore time by a ratio of up to
9.7 : 1.

Keywords Cloud backup services · Data backup · Data
restore · Data deduplication

1 Introduction

Driven by the trend toward cloud computing, backup, which
consumes significant IT resources and can be relatively
independently integrated, is an attractive application to be
outsourced to cloud, an effort referred to as Cloud Backup
Service. Cloud backup service has been viewed favorably by
telecommuting employees, Remote Offices/Branch Offices
(ROBOs), and Small and Medium Businesses (SMBs) who
lack sufficient remote backup strategies due to the limited
IT staffs and constrained IT budgets.

However, cloud backup services face some serious chal-
lenges. The first one is the long backup/restore time that rep-
resents the time spent on sending/restoring specific dataset
to/from backup destination, due to the low bandwidth WAN
links between the user and service provider constraining the
data transmission. For example, it would take more than
14 days to backup/restore 1TB data to/from Amazon S3 [5]
with an assumed network bandwidth of 800 KB/s [46]. The
ESG research indicates that 39 % of organizations that have

mailto:tanyujuan@gmail.com
mailto:edwinsha@gmail.com
mailto:jiang@cse.unl.edu
mailto:yanzhichao.hust@gmail.com
mailto:dfeng@hust.edu.cn

210 J Sign Process Syst (2013) 72:209–228

tried to run backups over WAN report both the backups and
restores take too long and 31 % of them report that the
cost of WAN bandwidth is too high [1]. Another challenge
stems from the vast storage space and very high data man-
agement cost required for the rapidly increasing amount of
backed-up data stored at service providers’ site. Thus both
challenges demand a novel space-efficient approach that can
reduce both the bandwidth consumptions and storage costs
for cloud backup services.

Two well-known source deduplication methods, source
local chunk-level deduplication [39, 46] and source global
chunk-level deduplication [11, 15, 29], have been proposed
in the past for backup operations to reduce the backup
times and save storage costs by removing the redundant
data chunks from being transmitted to backup destination.
The former removes the duplicate chunks locally within the
same client while the latter removes the duplicate chunks
globally across different clients. But as revealed by some
recent studies [12, 34, 52], due to the out-of-memory fin-
gerprint accesses to massive backed-up data, chunk-level
deduplication has an inherent latency and throughput prob-
lem that significantly affects the backup performances. In
source global chunk-level deduplication, this overhead of
massive disk accesses will obviously throttle the dedupli-
cation process and hence lengthen the backup time. In
source local chunk-level deduplication, the overhead is
much alleviated since searching the duplicate chunks is
restricted to the same client and the number of on-disk
searched fingerprints is significantly reduced. This reduced
overhead, however, comes at the cost of a severely lim-
ited data compression ratio, which lengthens the backup
time and increases the storage cost due to the increased
data transmission. Therefore it is desirable to achieve
an optimal tradeoff between the deduplication efficiency
and deduplication overhead to maintain a much shorter
backup time than existing solutions for cloud backup
operations.

Our preliminary studies obtained two important and
insightful observations on the redundancy of typical
backup data. First, it is observed that many file-semantic
attributes(see Section 2.1), such as the file locality, file size,
file type and file timestamps, have an indication of the
existence or nonexistence of the redundant data. By exploit-
ing these file semantics to narrow the search space for the
redundant data, it is possible to fast find them in a very
short time and thus to reduce the overall deduplication over-
head. Second, it is observed that the redundant data across
different clients is dominated largely by duplicate files(see
Section 2.2). This observation, combined with the fact that
the removal of duplicate files is much easier than that of
duplicate chunks, suggests that a global file-level dedu-
plication will likely achieve a higher efficiency/overhead
ratio than a global chunk-level deduplication across

different clients. Furthermore, by combining the global file-
level deduplication and the local chunk-level deduplication,
it is possible to achieve a higher compression ratio than the
local chunk-level deduplication and a lower overhead than
the global chunk-level deduplication. Thus the exploitation
of file semantics integrated with a hybrid deduplication
method has potential benefits in achieving a high dedupli-
cation efficiency/overhead ratio to maintain a short backup
time for cloud backup operations.

Besides the two important observations described above,
our preliminary studies have also observed some data redun-
dancy for data restores (see Section 2.3). Each restore
operation takes place after data corruptions and needs to
restore the corrupted dataset to a previous backed-up ver-
sion that has been stored in the backup destination. This
corrupted dataset, as a general rule, is anyways evolved from
its previous backed-up versions with relatively data modifi-
cations, insertions or deletions, and further in some restore
scenarios (see Section 2.3.2), this evolution may have many
files and data chunks unchanged in their entirety after back-
ups. Thus by exploiting this data redundancy and removing
those unchanged files and data chunks from data transmis-
sion, it is possible to significantly reduce the restore times
for cloud restore operations.

The above observations and analysis motivate us to
propose SAFE, a source deduplication framework for
cloud backup services. SAFE achieves an optimal trade-
off between the deduplication efficiency and deduplication
overhead for backup operations to achieve a short backup
time, and also exploits the data redundancy for some restore
operations to reduce the restore times. SAFE has three
salient features that distinguish it from the existing solu-
tions: (1)Semantic-aware Elimination, exploiting the file
semantics such as the file locality, file types, file sizes, and
file timestamps to narrow the search space for the redundant
data to reduce the deduplication overhead; (2)Hybrid Dedu-
plication, combining the Global File-level Deduplication
(GFD) that removes the global duplicate files across dif-
ferent clients and Local Chunk-Level Deduplication (LCD)
that removes the local duplicate chunks across similar files
in the same client to achieve a high deduplication effi-
ciency/overhead ratio for cloud backup operations; and
(3)Unmodified Data Removal, removing the unmodified
files and data chunks that are kept intact after backups from
data transmission for cloud restore operations. Among these
features, Hybrid Deduplication and Semantic-aware Elim-
ination work in synch to remove the redundant data from
data transmission to reduce backup times and storage costs,
while Unmodified Data Removal aims to reduce the restore
times in some restore scenarios. Through extensive experi-
ments driven by real-world datasets, the SAFE framework
is shown to maintain a much higher deduplication effi-
ciency/overhead ratio than existing solutions, shortening the

J Sign Process Syst (2013) 72:209–228 211

backup time by an average of 38.7 %, and reduce the restore
time by a ratio of up to 9.7 : 1.

It must be noted that our SAFE is mainly oriented toward
the cloud backup of unstructured data. The unstructured
data, as opposed to its structured counterpart typically found
in databases, has no fixed data model and is created by indi-
viduals on a variety of systems using a variety of formats
(documents, photos, videos, etc.) [45]. It comprises the vast
majority of users information in modern-day organizations,
estimated to be as high as 80 %, and this ratio is projected to
further increase [20]. Therefore, the current form of SAFE
is limited to file systems that consist of mostly unstructured
data, to the exclusion of database systems.

The rest of the paper is organized as follows. In
Section 2 we discuss the motivation for our research.
We present the system architecture in Section 3 and the
detailed SAFE framework in Section 4. Section 5 evaluates
SAFE through experiments driven by real-world datasets.
Section 6 presents related work and Section 7 concludes the
paper.

2 Motivation of Our Work

Arguably, neither of the two well-known deduplication
schemes mentioned in the previous section, namely, source
global chunk-level deduplication and source local chunk-
level deduplication, is effective or desirable for cloud
backup services that demand short backup time, short
restore time and high storage space-efficiency. In this sec-
tion, we will discuss the data redundancy in cloud backup
environment to motivate our SAFE research.

2.1 File Semantics Exploration

File semantics can be revealed at various levels, including
definitional, associative, structural, behavioral, environmen-
tal level or through other relevant information of the files,
where various hints can be obtained. In this subsection, we
will focus on the file locality and some other file attributes
to discuss the inherent data redundancy revealed by
them.

File Locality There are many identical directories created
by individual users in enterprise file systems [19], such
as software packages, copies of repositories, directories of
photos or music. This suggests that if two directories share
one file, other files may also be shared, a common form
of file duplicate locality. Thus by exploiting this file local-
ity, it is possible to prefetch and cache the nearby duplicate
files(i.e., the duplicate file hashes in SAFE) to memory to
avoid the disk accesses for them when one is found, so as to
reduce the overall deduplication overhead.

File Size It is a known fact that most files are small files in
a typical file system [4]. During our experiments (detailed
in Section 2.2), we observed that about 63.8 % of the identi-
cal files are smaller than 8 KB, accounting for only 0.53 %
of the redundant data, which is consistent with previously
published studies [4]. Thus small files can be ignored to
improve the deduplication efficiency/overhead ratio during
file-level deduplication process.

File Type Some specific files, such as compressed tarballs,
multimedia files, that are semantically identical may share
little redundant data in their binary presentations. For exam-
ple, the same picture stored in the GIF format is completely
different from that stored in the JPEG format. For these file
types, very few similar files exist and thus exploiting their
data redundancy at the file level instead of chunk level will
likely be sufficient [26].

File Timestamps The timestamps of a file are changed
whenever the file is modified. Thus, simply checking file
timestamps(i.e., checking the file timestamps at user client
site in SAFE) can directly identify and remove unchanged
files from the backup process. There is no need to involve
such unchanged files in either file-level deduplication or
chunk-level deduplication.

The file semantics described above present the potential
opportunity to narrow the search space for redundant data
to reduce the deduplication overhead while still maintaining
high deduplication efficiency, and thus they are exploited
by SAFE to accelerate the deduplication process in backup
operations. Furthermore, we believe that other file seman-
tics exposed at various levels of the file system can also be
helpful in optimizing deduplication performances, which is
beyond the scope of this paper and will be investigated in
our future work.

2.2 Hybrid Approaches for Data Backups

Both the intuitive scenarios statistical evidences reveal the
benefits of exploring a hybrid deduplication method in
cloud backup environment.

2.2.1 Intuitive Scenarios

Large amounts of redundant data from identical files.

– In each classical full backup, all the files, regardless of
their change status, are sent to the backup destination.
As a result, many duplicate files are repeatedly backed
up among multiple full backups.

– Routine file operations tend to generate many identical
files entering cloud backup systems through routine file
backups, such as file replications (e.g., photos, reports,

212 J Sign Process Syst (2013) 72:209–228

etc.) for data sharing among friends or colleagues,
downloading the same files from Internet by differ-
ent users, installing the same operating-system files[–]
or applications across different file systems, etc. More
importantly, those files are rarely changed.

– Microsoft’s study [27] reveals that 75 % of the redun-
dant data are generated from the duplicate files after the
survey of the file system content data collected from
857 desktop computers.

The above scenarios indicate that substantial identical
files exist in backup systems. These files stand to be iden-
tified and removed at the file level to filter out data redun-
dancy before resorting to chunk-level deduplication, thus
significantly reducing the chunking and hence the dedupli-
cation overhead. It is beneficial to combine file-level and
chunk-level deduplication strategies in backup systems.

2.2.2 Statistical Evidences

To verify the data redundancy observed from our intuitive
scenarios, we have obtained statistical and quantitative evi-
dences through a file-scanning backup program (FSBP) that
we developed. FSBP simulates a file-system backup soft-
ware that extracts file hashes and chunk fingerprints (chunk
hashes) from the backed-up datasets but without sending
them to the backup destination. We have distributed FSBP
to five members under the same project in our research
group and they do semi-regular full backups of their per-
sonal home directories(i.e, including course files, project
documents, source trees, developing tools and other pri-
vate files but without the operating system files) lasting for
6 days, totaling about 19 full backups. The total amount of
backed-up data is about 256 GB consisting of 958, 641 files.
Table 1 shows the data redundancy quantitatively. In what
follows we will present three observations drawn from these
statistics.

– Most of the redundant data can be attributed to iden-
tical files during filesystem backups, of which a vast
majority is generated from multiple full backups of
the same client, reinforcing the critical importance of
Virtual Full Backup(see Section 4.1.1) in cloud backup
systems such as SAFE.

– The redundant data across different clients is dominated
largely by duplicate files, which is consistent with the

latest research result from Microsoft [27]. This implies
that the file-level removal of the duplicate files among
different file systems alone is sufficient to eliminate the
vast majority of such redundant data.

– Besides identical files, there are many similar files
existing in the same client. The total amount of the
redundant chunks shared by them is comparable to that
of duplicate files across different clients, implying that
the local chunk-level deduplication is important and
essential to maintain a high compression ratio.

The above observations clearly suggest that the vast
majority of redundant data stems from duplicate files, espe-
cially for the data redundancy across different clients. This,
combined with the fact that removing duplicate files at file
level is easier and more efficient than that at chunk level,
motivates us to propose SAFE that exploits global file-level
deduplication and local chunk-level deduplication together
to achieve an optimal tradeoff between the deduplication
efficiency and overhead for backup operations to maintain
short backup time.

2.2.3 Theoretical Analysis

Besides the statistical evidences, we will further analyze the
effectiveness of the hybrid approach proposed by SAFE that
combines the global file-level and local chunk-level dedu-
plication approaches, by comparing it to the existing source
global chunk-level deduplication approach and source local
chunk-level deduplication approach. This analysis is based
on the assumption that there is N duplicate files and M

duplicate chunks (not including the duplicate chunks from
duplicate files) across different clients, and L duplicate
chunks from the same client. Each of the duplicate file is
composed of K(K > 1) chunks in average. As a side
note, the duplicate files generated from the same client by
full backups are not considered here due to that the Vir-
tual Full Backup method can remove these duplicate files
which will not be involved to general deduplication pro-
cesses. Costgf , Costgc, Costlc are used to represent the
deduplication overhead of each duplicate file in the global
file-level deduplication approach, the deduplication over-
head of each duplicate chunk in the global chunk-level
deduplication approach, and the deduplication overhead of
each duplicate chunk in the local chunk-level deduplication

Table 1 The data redundancy
in preliminary study. Total Duplicate Duplicate

files chunks

The total redundant data 211 GB (100 %) 199.2 GB (94.4 %) 11.8 GB (5.6 %)

Within the same client 199.6 GB (100 %) 188 GB (94.2 %) 11.6 GB (5.8 %)

Across different clients 11.4 GB (100 %) 11.2 GB (98.2 %) 0.2 GB (1.8 %)

J Sign Process Syst (2013) 72:209–228 213

approach respectively, with the assumption that Costgc =
α · Costgf (α > 1) and Costgc = β · Costlc(β > 1).

Therefore, the overall deduplication overhead Costslc,
Costsgc, Costhyb and the number of removed chunks
Removeslc, Removesgc, Removehyb in the source local
chunk-level deduplication approach, source global chunk-
level deduplication approach, and hybrid deduplication
approach can be respectively computed as{

Removeslc = L

Costslc = L · Costlc
(1)

{
Removesgc = N · K + M + L

Costsgc = (N · K + M + L) · Costgc

(2)

{
Removehyb = N · K + L

Costhyb = N · Costgf + L · Costlc
(3)

and their ratios between the deduplication overhead and the
number of removed chunk can be computed by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Removeslc

Costslc
= L

L · Costlc
= 1

Costlc
Removesgc

Costsgc

= N · K + M + L

(N · K + M + L) · Costgc

= 1

Costgc

Removehyb

Costhyb

= N · K + L

N · Costgf + L · Costlc

= N · K + L(
N
α

+ L
β

)
· Costgc

= N · K + L(
N · β

α
+ L

)
· Costlc

(4)

As seen from the above formula, it is found that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Removehyb

Costhyb

= N · K + L(
N
α

+ L
β

)
· Costgc

>
Removesgc

Costsgc

= 1

Costgc

(5)

where α > 1, β > 1. This reveals that the hybrid approach
has better tradeoff between the deduplication efficiency and
overhead than that for source global chunk-level dedupli-
cation approach. Moreover, the deduplication overhead of
hybrid approach Costhyb = N · Costgf + L · Costlc =(

N
α

+ L
β

)
· Costgc is much less than that for source global

chunk-level deduplication approach Costsgc = (N · K +
M + L) · Costgc, while omitting only M duplicate chunks
that have been verified very small according to our study
and other literature.

While compared to the source local chunk-level dedupli-
cation approach,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Removehyb

Costhyb

= N · K + L(
N · β

α
+ L

)
· Costlc

>
Removeslc

Costslc

= 1

Costlc
(6)

when K >
β
α

, meaning that the hybrid approach has better
tradeoff between the deduplication efficiency and over-
head than that for source local chunk-level deduplication
approach. But when K <

β
α

,
Removehyb

Costhyb
<

Removeslc

Costslc
. How-

ever, this source local chunk-level deduplication approach
doesn’t remove the N · K + M duplicate chunks across
clients, and these duplicate chunks, according to the exper-
imental results from our study and other literatures, takes
large percentage of the total redundant data that must
be removed. In summary, the hybrid approach outper-
forms the existing source global chunk-level and local
chunk-level deduplication approaches by combing both of
the deduplication overhead and efficiency, which is more
suitable for the redundancy elimination in cloud backup
services.

2.3 Removing Unmodified Data for Restores

Most of the existing deduplication approaches mainly focus
on removing the redundant data for backup operations,
while paying little attention to the data restores in cloud
backup environment. However, during each restore opera-
tion, the corrupted dataset that requires to restore in users’
local computers is also evolved from its previous backed-
up versions with data modifications(like that in back-
ups), and thus many redundant data exists among multiple
restore/backup operations and can be removed to improve
restore performances. In this subsection, we will discuss
the existence of the redundant data between the corrupted
version of the dataset and its previous backed-up versions
and present the potential opportunity for exploiting the data
redundancy to reduce the restore time.

2.3.1 Data Redundancy

During some of the restore operations, there are many un-
changed files and data chunks that are kept intact after their
previous backups. In the following, we will present three
types of files that intuitively describe the file relationships
between the current corrupted version of the dataset and its
previous backed-up versions to show the data redundancy.

Unchanged Files Most files are kept unchanged after their
first backups. Policroniades et al. [31] noted that in real file

214 J Sign Process Syst (2013) 72:209–228

systems, most accesses to files are read-only, implying that
most files are not modified since they are initially created or
copied onto the file system. Microsoft’s 5-years file meta-
data study [4] further shows that the percentage of these
unmodified files has grown from 66 % to 76 % from 2000
to 2004. A good example of the data corruptions is the virus
attacks. Some viruses only attack the files with specific file
types, for example, the “mmc.exe”virus only attacks all the
executable files in the Window XP operating systems. When
one file system is attacked by this kind of viruses, there will
be only a limited number of executable files infected and
large amounts of non-executable files are kept intact.

Modified Files Generally, the individual files that require
restorations all have been modified since their last back-
ups. Nevertheless, a significant amount of unmodified data
chunks are likely to exist between the current file version
and its previous ones given that most data writes are con-
centrated on a small subset of data blocks in a short time in
typical file systems [36].

Deleted Files Besides the unchanged and modified files,
typically there are many files that have been deleted or
entirely corrupted after their last backups. These deleted
files, however, must be transmitted in their entirety from the
remote backup destination to the users’ local computers for
restorations.

The above three types of files reveal that a large amount
of unmodified data (i.e., unchanged files and unmodified
data chunks) exists between the current corrupted version
of the dataset and its previous backed-up versions after
data corruptions during some restores. If such unmodified
data in users’ local computers is available (i.e., can be
accessed), it is possible to remove them from transmission
to significantly reduce the restore time.

2.3.2 Restore Scenarios

Many incidents can cause the data loss or disasters that
triggers the data restorations. In some of the data restores,
the unmodified data that has been described above exists
with a high probability. The 2010 data loss survey [2] car-
ried out by Cibecs Company classifies these incidents into
seven categories, including theft, negligence, hardware fail-
ure, software failure, technical incompetence, viruses and
others. Its survey report pointed out that “39 % of data losses
are ascribed to hardware and software failures, 34 % of
losses are attributed to negligence and theft, 23 % of data
losses are caused by viruses and technical incompetence”.
Observed from these incidents presented in the report, we
argue that the unmodified data is available when the 23 %
of data loss is caused by viruses and technical incompe-
tence and even sometime when the 11 % of the data losses

are caused by software failures, since these incidents will
not completely destroy the whole file system data and much
chunk data will be kept intact in client computers. There-
fore, under these restore scenarios, it is possible to prevent
this unmodified data from being transmitted from remote
backup destination to reduce the restore time, which moti-
vates us to propose SAFE to exploit this data redundancy to
improve restore performance. But in other restore scenarios
when the unmodified data is unavailable, all the restore data
must be entirely transmitted from the remote backup desti-
nation and thus the restore time cannot be reduced through
the reduction of the transferred dataset.

3 System Architecture

To present SAFE clearly, we first describe the system archi-
tecture briefly. As shown in Fig. 1, the system is composed
of three subsystems: File Agent, Master Server and Storage
Server. File Agent is distributed and installed on user client
machines that subscribe to backup services, while Master
Server and Storage Server are located in remote datacenters
to provide backup services.

3.1 File Agent

File Agent is a software program that provides a func-
tional interface (file backups/restores) to users. It is respon-
sible for gathering datasets and sending/restoring them
to/from Storage Servers for backups/restores. To apply

U
ser Interface

Data Transfer AgentJob Agent

Unmodified Data
Identification

Local Chunk-fingerprint Store

UMR

Local Chunk-
fingerprint

Identification

LCD

M
etadata agent

Global File-hash
Identification

Global File-
hash Store

SFD

Job Agent

Chunk Store

M
etadata agent

Data Transfer Agent

Synthetic Full Backup : VFB

GFD

Incremental Backup : VFB GFD

Figure 1 System architecture.

J Sign Process Syst (2013) 72:209–228 215

SAFE to the system, File Agent adds three key func-
tional modules, Incremental Backup (Incremental Backup
is the Phase-I of the two-phased Virtual Full Backup (VFB)
module and Virtual Full Backup is the Phase-I of the two-
phased Global File-level Deduplication (GFD) module),
Local Chunk-level Deduplication (LCD) which consists of
Local Chunk-fingerprint Identification and Local Chunk-
fingerprint Store, and Unmodified Data Removal (UMR)
which consists of Unmodified Data Identification and Local
Chunk-fingerprint Store.

3.2 Master Server

Master Server is the administrative center in the whole sys-
tem, which globally manages and schedules all backup and
restore jobs. It uses a catalog database to keep track of which
files are stored on which Storage Servers. To apply SAFE,
two key functional modules are added to Master Server,
Synthetic Full Backup (Phase-II of VFB) and Server-side
File-level Deduplication (SFD, Phase-II of the GFD mod-
ule) which consists of Global File-hash Identification and
Global File-hash Store.

3.3 Storage Server

Storage Server is the depository for backed-up data. It per-
forms actual data backup and restore jobs along with File
Agent under the direction of Master Server. After each
backup job, Storage Server sends the metadata information
(including file metadata and job metadata) to Master Server
that in turn stores it in catalog database for backed-up data
indexing and retrieving. Chunk Store that consists of a large
number of chunk containers is responsible for storing the
backed-up data chunks from different user clients.

3.4 SAFE Process Flows

SAFE has two separate process flows, one for data backup
and the other for data restore. In this subsection, we describe
these two process flows to illustrate the functionalities of
SAFE.

3.4.1 Backup Process flow

SAFE’s data backups take the following three stages involv-
ing the semantic-aware elimination and the hybrid dedupli-
cation.

Stage 1 During each backup, SAFE first uses Virtual Full
Backup (detailed in Section 4.1.1), the first phase
of the Global File-level Deduplication (GFD), to
filter out the completely unchanged files accord-
ing to their file timestamps in File Agent.

Stage 2 After the processing of Virtual Full Backup,
SAFE uses Server-side File-level Deduplication,
the second phase of GFD, to remove the dupli-
cate large files across different clients in Master
Server. SAFE in this stage excludes small files
to narrow the search space for duplicate files,
and further exploits the file locality to reduce the
deduplication overhead.

Stage 3 After the Global File-level Deduplication process,
SAFE uses the Local Chunk-level Deduplication
to remove the duplicate chunks across similar
non-compressed files within the same Client. This
process is carried out by File Agent locally instead
of Master Server remotely so as to reduce the
data transmission overhead and relieve the server
workload.

After the above tri-staged deduplication process, the
remained files and data chunks are considered new and
directly sent to the corresponding Storage Servers under the
direction of Master Server.

3.4.2 Restore Process Flow

In some restore scenarios when the local unmodified data is
available, SAFE’s data restores are accomplished with the
help of the Unmodified Data Removal (UMR) module in
File Agent, which assists in identifying and removing the
unmodified data chunks from transmission by the follow-
ing three stages. A more detailed description is showed in
Section 4.2.

Stage 1 During each restore operation, UMR first finds
the same files(the files with the same file names)
that exist in both the corrupted version of the
dataset and its previous backed-up version (the
backed-up version that the corrupted dataset
requires restored to).

Stage 2 After finding out all the same files, UMR then
gets the corresponding chunk fingerprints of those
files in both the corrupted version and backed-up
version.

Stage 3 Having all the chunk fingerprints after stage 2,
UMR finds the unmodified data chunks(i.e., by
identifying those chunk fingerprints that exist in
both the backed-up version and corrupted version)
and removes them from transmission to reduce the
restore time.

After the above three stages, the remained data chunks
that have been modified are notified to Master Server that
enables them sent from the corresponding Storage Servers.
However, if there are no unmodified data chunks or the
unmodified data chunks are unavailable, all the data chunks

216 J Sign Process Syst (2013) 72:209–228

must be sent from the corresponding Storage Servers in their
entirety without the above three stages.

4 Design and Implementation

In this section, we will detail the designs and implementa-
tions of the three unique design features of SAFE, semantic-
aware elimination, hybrid deduplication, and unmodified
data removal.

4.1 Semantic-Aware and Hybrid Deduplication

In SAFE, the semantic-aware elimination and hybrid dedu-
plication functions work in synch to remove the redundant
data from transmission for backup operations. We detail
their designs by describing the Global File-level Deduplica-
tion module and Local Chunk-level Deduplication module
that embed their functionalities.

4.1.1 Global File-Level Deduplication

Global File-level Deduplication (GFD) is a two-staged
deduplication approach, including Virtual Full Backup and
Server-side File-level Deduplication, focusing on removing
the duplicate file globally that have been backed up already.

Virtual Full Backup The Virtual Full Backup (VFB) mod-
ule is the first stage of Global File-level Deduplication. It
entails a two-phased backup operation, namely, a conven-
tional incremental backup based on file timestamps in File
Agent and a synthetic full backup following each incremen-
tal backup in Master Server, which work in synch to remove
the vast majority of duplicate files without degrading the
restore performance. The key to VFB’s unique advantage
lies in the fact that its first phase, incremental backup based
on file timestamps that incurs nearly no deduplication over-
head, blocks the bulk of completely unchanged files at the
client site that would otherwise be repeatedly backed up in
multiple full backups. And its second phase, synthetic full
backup, helps to achieve a comparable restore performance
to the conventional full backup. The concept of VFB was
first introduced for storage optimization by ADSM [10], and
it has been widely recognized in backup industries.

Server-Side File-Level Deduplication Server-side File-level
Deduplication (SFD), the second stage of the Global File-
level Deduplication approach, is implemented in Master
Server. It compares the file hashes of incoming files (file
hashes are generated by File Agent and sent to Master
Server) with those already stored in the global file-hash
store to identify and remove duplicate files (the files with
the same file hashes) globally. However, SFD can become a

potential performance bottleneck because the limited main
memory capacity may force significant disk accesses for on-
disk file hashes. SAFE in this stage exploits two important
file semantics, namely, file size and file locality, to relieve
this disk bottleneck as follows.

File Size SAFE excludes small files from SFD process to
narrow the search space for duplicate files. Regardless of
its size, each file has a single file hash that uniquely rep-
resents its file content. Any two files with the same file
hash are regarded as duplicates and are stored only once.
This implies that, when exploiting file hashes in file-level
deduplication, files will be identified (except for data read-
ing and file hash computing that are done in File Agent)
at the same cost, independent of their sizes. This further
suggests that, in terms of identification cost per MB, iden-
tifying large files will be far more cost-effective than small
files at the file level. As shown in our statistical evidences,
about 63.8 % of duplicate files are small files (smaller than
8 KB) accounting for only 0.53 % of redundant data (see
Section 2.1). By ignoring these small duplicate files, we can
reduce the number of file hashes by 63.8 % and arguably
also reduce the number of disk accesses significantly, at the
very low expense of leaving 0.53 % of redundant data un-
removed. Simultaneously, the exclusion of small files from
SFD can reduce the number of file hashes transferred from
File Agent. If all the files are small, this stage can be skipped
entirely, avoiding the round-trip between File Agent and
Master Server altogether. Therefore, the exclusion of small
files has the potential benefit of reducing disk accesses and
data transmission overheads.

File Locality Given the existence of the file locality widely
known and further confirmed in our study, SAFE uses
three key techniques, namely, file vector, stream-informed
file layout and locality-preserved cache [52], to identify
and remove the duplicate file hashes, which significantly
reduces the number of disk accesses. 1) File vector is imple-
mented by Bloom Filter [8] that concisely represents the
already-stored file hashes to support approximate mem-
bership queries with a small probability of false positive,
whose use aims to avoid the disk accesses to nonexistent
file hashes. 2) Stream-informed file layout is used to cre-
ate file-hash locality in the global file-hash store. Upon each
backup, File Agent reads files from a specified directory and
sends their hashes in the same order as they are read to Mas-
ter Server that in turn stores these file hashes to the global
file-hash store in the same order as they are received, thus
preserving the internal file locality. 3) Locality-preserved
cache is used for caching the duplicate file hashes to avoid
the disk accesses for them. As implied in Section 2.1, if one
file is a duplicate, the nearby files are duplicate ones with a
high probability. Thus SAFE uses locality-preserved cache

J Sign Process Syst (2013) 72:209–228 217

to prefetch and cache these nearby duplicate file hashes
(these file hashes are stored in global file-hash store on
disk) in memory to avoid the disk accesses for them when
one is found. In summary, the combination of these three
techniques can reduce the disk accesses for both duplicate
file hashes and nonexistent file hashes, which effectively
accelerates the SFD process.

4.1.2 Local Chunk-Level Deduplication

Local Chunk-level Deduplication (LCD) exploits the data
redundancy within the same client. After global file-level
deduplication, SAFE breaks the remained files into a series
of variable sized chunks and determines whether they are
duplicate ones by inspecting the local chunk-fingerprint
store (As a side note, the local chunk-fingerprint store can
be rebuilt from Master Server if File Agent fails) in File
Agent. In the absence of sufficient main memory as that in
SFD process, SAFE uses the following two approaches to
reduce the disk accesses in LCD process.

Compressed-Files Exclusion SAFE excludes compressed
files from LCD process. In the digital universe, there are
many duplicate compressed files, especially digital images,
audio and video files [20]. Two common features shared by
these compressed files are their large size and high proba-
bility of remaining unmodified once generated. Even if such
a compressed file is indeed modified by some special tools,
there will be nearly no duplicate chunks between the orig-
inal and the modified copy in their binary representations.
Our experiments conducted to obtain statistical evidences
show that no duplicate chunks are found among multiple
highly semantically similar pictures stored in the JPEG file
format, suggesting that there is no need to deduplicate such
compressed files at the chunk level. Thus, SAFE excludes
compressed files from LCD to narrow the search space
for duplicate chunks to reduce the disk accesses while still
maintaining high deduplication efficiency.

Two-Tiered Chunk Indexing and Small Files Optimization
Inspired by the novel Extreme Binning [7] approach, SAFE
uses the same two-tiered chunk indexing mechanism to
reduce the disk accesses, where for each file a representa-
tive chunk fingerprint is selected as the primary index and
the collection of chunk fingerprints of this file is binned
as the secondary index. During LCD process, the primary
index is fetched in its entirety to the memory and kept res-
ident there since it is very small. If two files have the same
primary index, they are considered highly similar and their
secondary indices in disks are checked to find duplicate
chunks. Thus, each file needs at most one disk access to
identify its duplicate chunks. Distinct from Extreme Bin-
ning, SAFE further reduces the disk accesses for small files

by piggybacking their secondary indices to primary indices
when reading the latter to memory. Thus when identifying
duplicate chunks among similar small files, no disk access
is needed. In the current SAFE design, it is empirically
determined that any file of no greater than two chunks is
considered a small file, regardless of the chunk size.

4.2 Unmodified Data Removal

The Unmodified Data Removal (UMR) module focuses on
identifying and removing the unmodified data from trans-
mission for restore operations in File Agent. As described
in Section 2.3, there are many unmodified files and data
chunks that are kept intact in the corrupted dataset and
require no data transmission in some restore scenarios.
In this subsection, we describe how UMR identifies and
removes such unmodified data from data transmission to
reduce the restore time.

During each restore operation after selecting out the
backed-up version that the corrupted dataset requires
restored to, UMR runs the following three steps to filter out
the unmodified data from restoration. In the first step UMR
finds the same files (the files with the same file names) that
exist in both the corrupted version of the dataset and its pre-
viously backed-up version (the backed-up version that the
corrupted dataset requires restored to). It first consults the
local chunk-fingerprint store (i.e., including the chunk fin-
gerprints of backed-up files and the associated file metadata
information such as file name, file backup time, and etc.)
and finds all the files that exist in the backed-up version, and
then it uses these obtained file names to find out the same
files currently existing in the corrupted version in users’
local computers.

After finding out all the same files, UMR in the sec-
ond step retrieves their corresponding chunk fingerprints
in both the corrupted version and its backed-up version.
For the corrupted version, UMR gets their chunk finger-
print by chunking those files with the Rabin Fingerprints
algorithm [33] and names each chunk with the SHA-1
hash function [30] in the same way as that in data backup
operation. While for the backed-up version, UMR directly
consults the local chunk-fingerprint store to retrieve the
corresponding chunk fingerprints of those files. As a side
note, the chunk-fingerprint store in File Agent can be cor-
rupted as the corruptions of other normal files. Thus before
each backup and restore operation, SAFE checks the cor-
rectness and completeness of the local chunk-fingerprint
store by comparing it with that stored in Master Server, and
when the File Agent fails or local chunk-fingerprint store
fails, SAFE rebuilds it from Master Server. Obviously in
this protocol, there will be some transmitting and comput-
ing overheads incurred for doing this comparison before
each backup and restore operation. However, SAFE keeps

218 J Sign Process Syst (2013) 72:209–228

this overhead minor by only transmitting the signature of
the local chunk-fingerprint store and comparing it with that
stored in Master Server. The detailed comparison imple-
mented in SAFE is omitted in this paper due to the space
constraints.

After getting all the chunk fingerprints of the same files,
UMR in the last step identifies the unmodified data chunks
by finding the same chunk fingerprints that exist in both the
corrupted version and backed-up version, and finally noti-
fies Master Server that the remained data chunks that have
been modified must be transferred from the correspond-
ing Storage Servers for data restorations, thus removing
the unmodified data chunks from transmission to reduce
the restore time. As a side note, since UMR only finds
the unmodified data among chronological file versions with
the same file names, without considering the chronologi-
cal file versions with different file names caused by the file
rename or file copy operations, there will be some unmod-
ified data chunks that are regard as modified data chunks
with false positive and still require being transferred from
the corresponding Storage Servers for data restorations.

5 Performance Evaluations

We have built both a trace-driven simulator and a prototype
implementation of SAFE, fed real-world datasets to evaluate
its performance. The SAFE simulator is used to evaluate the
backup performance and the SAFE prototype system is used
for evaluating the restore performance.

5.1 Experimental Setup

In SAFE simulator and prototype system, SAFE’s Master
Server and Storage Server, are both featured with two-
socket dual-core 2.1 GHz CPUs, a total of 2 GB memory,
1 Gbps NIC cards, and a 500 GB hard drive. Multiple
clients, equipped with different hardware but the same Win-
dows XP operating system, are installed with File Agent and
fed with the real-world datasets.

5.1.1 SAFE Simulator

SAFE simulator is composed of two parts: the FSBP pro-
gram (described in Section 2.2) which is used to collect
backup datasets and a prototyped SAFE functional mod-
ule that simulates the functionalities of Master Server and
File Agent (described in Sections 3 and 4). Due to privacy
concerns of the collected datasets, Storage Server is not sim-
ulated for backup operations. However, this does not impact
the correctness of the experimental results.

FSBP extracts the metadata information from the backup
datasets at both the file level and chunk level.

File Level At the file level, FSBP collects the file attributes
and computes the file hashes. The file attributes, includ-
ing file ownership, file name, file type, file size and file
timestamps, convey file semantic information exploited in
SAFE’s semantic-aware elimination.

Chunk Level At the chunk level, chunk fingerprints along
with chunk sizes are collected. Each file is broken into a
series of chunks with an average size of 8 KB by the Rabin
fingerprint algorithm [33] and each chunk is named by the
SHA-1 hash function [30].

We feed the collected datasets to SAFE in the order of
their original sequence of backup operations and record
the statistics such as data compression ratio, deduplication
time, backup time, and so on for the backup performances
analysis.

5.1.2 Relevant Systems for Comparison

To assess SAFE’s benefits and limitations, we compare
SAFE’s performance with that of the source local chunk-
level deduplication scheme and source global chunk-level
deduplication scheme that are widely used in cloud backup
environment.

Source Local Chunk-Level Deduplication Scheme (L-CDS)
This scheme has been applied in commercial products such
as Syncsort Backup Express [39] and in research prototypes
such as Cumulus [46]. We have implemented the Cumu-
lus prototype, the only published L-CDS prototype with
sufficiently detailed description.

Source Global Chunk-Level Deduplication Scheme (G-
CDS) This scheme has been applied in many commercial
products [11, 15, 29]. We implement the prototype by
using the well-known approaches in DDFS [52] for the
redundancy identification at the server site.

5.2 The Evaluation of the Backup Performance

In SAFE, the hybrid deduplication function and semantic-
aware elimination work in synch to remove the redundant
data for backup operations. In this subsection, we compare
the experimental results in deduplication efficiency, dedu-
plication overhead and backup time that have been obtained
from our SAFE simulator, L-CDS and G-CDS.

5.2.1 Trace Workload

We distributed FSBP to twenty-nine members in our
research group, of whom twenty-five installed it on their
desktop PCs and the other four on their laptops, and all
installed the windows XP operating system. All of them did

J Sign Process Syst (2013) 72:209–228 219

semi-regular backups of their important personal directories
(i.e., the user data including course files, project documents,
source trees, developing tools and other private files but
without the operating system files) from June 1st, 2009 to
August 31st, 2009. Altogether, there are 1568 backups with
a total of 1.07TB data, consisting of 4, 942, 186 files. More-
over, we have further used a subset of the trace reported by
Xia et al. [48] that was collected from 15 graduate students
totaling about 530 GB data. During our experimental evalu-
ations, we first fed SAFE with the dataset collected by Xia
and then followed with that collected by ourselves. As a side
note, the dataset that was reported in Section 2.2 is excluded
here, which was collected at different times for different
purposes.

5.2.2 Deduplication Efficiency

Our experimental results present the cumulative deduplica-
tion efficiency for a total of 1568 backups. As a side note,
SAFE does not rely on the specified chunking algorithm
and chunk size, and thus we only focus on the dedupli-
cation efficiency that is impacted by the redundant data
identification process but without the chunking algorithm.
Nevertheless, both the chunking algorithm and the aver-
age chunk size have some influences on the deduplication
efficiency, and thus to compare the deduplication efficiency
on equal terms, we use the same chunking algorithm and the
same average chunk size, and fed the same chunks to the
three deduplication methods to compare their experimental
results.

Figure 2a compares the cumulative deduplication effi-
ciency of the three deduplication methods. We define dedu-
plication efficiency as the ratio between the amount of
the redundant data actually removed by each deduplication
method and the total amount of the redundant data in each
dataset. Obviously, the maximum deduplication efficiency
is 1 (i.e., 100 %) and the minimum is 0 (i.e., 0 %). The
results show that G-CDS removes all the redundant data at
the chunk level while SAFE leaves 1.35 % of redundant
data intact to reduce the deduplictation overhead to accel-
erate the whole deduplication process. As expected, L-CDS

leaves about 40.69 % of redundant data intact because it
ignores the redundant data across different clients, which is
much more than SAFE.

5.2.3 Deduplication Overhead

We use the deduplication time required for each backup
session as a metric to evaluate the deduplication overhead.
Figure 2b compares the cumulative deduplication overhead
(i.e., deduplication time) of the three methods, normalized
to the overhead of G-CDS. The results show that SAFE
introduces only 34.6 % of G-CDS’ overhead on average
while L-CDS incurs even lower overhead, at 26.2 %. During
each backup session, SAFE’s local deduplication process
at the client site takes less time than L-CDS by singling
out compressed files and small files that incur zero disk
accesses, and the same time its global deduplication pro-
cess at the server site spends much less time than G-CDS by
identifying duplicate files at the file level instead of at the
chunk level as G-CDS does and only processing large dupli-
cate files by ignoring small duplicate files and all similar
files. Thus SAFE incurs much less overhead than G-CDS
and only slightly more than L-CDS.

To closely examine SAFE’s tradeoff between the dedu-
plication efficiency and overhead, we present the corre-
sponding deduplication efficiency/overhead ratios, normal-
ized to that of G-CDS, in Fig. 2c. Clearly, a higher ratio
between efficiency and overhead represents a better trade-
off between the two measures, thus more desirable. During
the first thirty backup sessions, L-CDS has higher effi-
ciency/overhead ratio than the other two methods. But as
the backup process continues to accumulate more than thirty
sessions, SAFE’s ratio exceeds that of L-CDS and becomes
the highest among them. This is because that, when ini-
tially the backed-up data from different users is small, the
local redundant data dominates the data redundancy, result-
ing that SAFE’s global deduplication process has minor
efficiency/overhead ratio and thus SAFE is less effective
than L-CDS. But as the amount of backed-up data increases,
the amount of global redundant data increases and becomes
more dominant, thus making SAFE obtain much from its

200 400 600 800 1000 1200 1400 1600

0.5

0.6

0.7

0.8

0.9

1.0

a b c

Backup Sessions

L-CDS
 SAFE
 G-CDS

200 400 600 800 1000 1200 1400 1600

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Backup Sessions

L-CDS
 SAFE
G-CDS

200 400 600 800 1000 1200 1400 1600
1

2

3

4

5

6

7

E
ff

ic
ie

nc
y/

O
ve

rh
ea

d
R

at
io

Backup Sessions

L-CDS
 SAFE
 G-CDS

O
ve

rh
ea

d

E
ff

ic
ie

nc
y

Figure 2 The tradeoff between deduplication efficiency and deduplication overhead.

220 J Sign Process Syst (2013) 72:209–228

global deduplication process and most cost-effective among
the three methods.

Moreover, we have evaluated the deduplication effi-
ciency/overhead ratio of a global file-level deduplication
approach and compared its results with that of SAFE in
Fig. 3. This global file-level deduplication approach, called
G-FDS, only removes the duplicate files (without removing
duplicate chunks) within the same client and across different
clients globally. Compared to the chunk-level deduplication
approaches, it obviously removes less redundant data and
needs less deduplication time since it ignores the redundant
chunk data across different files. Figure 3 compared the effi-
ciency/overhead ratio between G-FDS and SAFE, and both
are normalized to that of G-CDS. As seen from the results,
it is found that G-FDS’s efficiency/overhead ratio is much
higher than that of SAFE, which seems that G-FDS is much
more effective than SAFE. However, due to that the removal
of the redundant data is the primary concern of deduplica-
tion approaches, we argue that SAFE is more effective in
removing the redundant data since G-FDS dose not consider
the data redundancy across different files and sacrifice much
deduplication efficiency. Meanwhile, the chunk-level dedu-
plication approach that can remove more redundant data and
get higher deduplication efficiency is much more popular
than file-level deduplication approach in most cases.

5.2.4 Backup Time

With regard to the three source deduplication methods in
our study, the backup time consists of two parts: data dedu-
plication time and data transfer time. For a fixed dataset,
the deduplication time is generally fixed, whereas the data
transfer time varies with network bandwidth. Figure 4 plots
the backup time as a function of network bandwidth from
an experiment where we select three backup sessions and
simulate a network environment with different bandwidths:

Figure 3 The comparison of SAFE and Global File-level Dedupli-
cation Approach(G-FDS) on the deduplication efficiency/overhead
ratio.

100 KB/s, 800 KB/s, 1 MB/s, 2 MB/s, 4 MB/s, 8 MB/s. The
data redundancy of these three backup sessions is summa-
rized in Table 2. As a side note, the backup time is equal
to the deduplication time when the network bandwidth is
perfect. In Section 5.2.3, we have showed that SAFE takes
much less deduplication time than G-CDS, but more than
L-CDS for all of the collected backups, and thus in this
subsection, we will not repeatedly show the backup time
of these three selected backups under the perfect network
bandwidth.

Figure 4a shows the backup time of Backup 1 that has
about 69.51 MB duplicate files but only 2.02 MB dupli-
cate chunks across different clients, which is very close to
our observations reported in Section 2.2 that the duplicate
files constitute a vast majority of data redundancy across
clients. SAFE removes the global-redundant data at the file
level with much less deduplication time than G-CDS at the
chunk level while leaving only 2.02 MB (1.49 %) redundant
data intact. L-CDS, which does not target global data redun-
dancy, leaves 71.53 MB redundant data un-removed. Thus
when the network bandwidth is lower than 4 MB/s, L-CDS
has a very large backup time due to the heavy overhead in
data transmission. SAFE, which incurs less deduplication
time than G-CDS and less data transfer time than L-CDS,
maintains a shorter backup time than both G-CDS and
L-CDS by an average margin of 38.7 %.

Figure 4b shows the backup time of Backup 2 that has
no duplicate files across different clients and no dupli-
cate chunks that are already backed up by the same client,
but only about 2.72 MB duplicate chunks shared with
other clients. This is the worst case scenario that renders
SAFE’s global file-level and local chunk-level deduplica-
tions completely ineffective due to the complete lack of data
redundancy SAFE is designed to remove. Thus compared to
L-CDS, SAFE has a larger backup time for its longer dedu-
plication time with an extra round-trip. While compared to
G-CDS, SAFE’s backup time is also larger for its lower
compression ratio and thus the longer transfer time.

Figure 4c shows the backup time of Backup 3 that has
about 482.21 MB duplicate chunks already backed up by the
same client but no redundant data across different clients.
Thus SAFE, L-CDS and G-CDS achieve the same compres-
sion ratio and require the same data transfer time regardless
of the network bandwidth. But G-CDS, having to take more
time to remove the redundant data at the server site, has a
longer backup time than the other two.

As seen from the above three backups, Backup 1 is
closest to our observations reported in Section 2.2, for
which SAFE is designed and thus benefits the most. SAFE,
designed to primarily remove duplicate files globally, incurs
an extra round-trip that is more than compensated in Backup
1 but much less so in Backups 2 and Backup 3 where there
are no duplicate files across clients. These backup samples

J Sign Process Syst (2013) 72:209–228 221

0.1 0.8 1 2 4 8
0

200
400
600
800

1000
1200
1400
1600
1800

a b c

Network Bandwidth (MB/s)

L-CDS
 SAFE
 G-CDS

0.1 0.8 1 2 4 8
0
5

10
15
20
25
30
35

Network Bandwidth(MB/s)

L-CDS
 SAFE
 G-CDS

0.1 0.8 1 2 4 8
0

500

1000

1500

2000

Network Bandwidth (MB/s)

L-CDS
 SAFE
 G-CDS

Figure 4 Backup time.

were selected to stress-test SAFE to show its overhead under
extremely adversary conditions. In fact during our study,
the data redundancy of most backup sessions is close to
Bacukup 1 where SAFE benefits most.

Additionally, under low network bandwidth, the data
transfer time dominates the backup time in most cases,
stressing the importance of the deduplication efficiency.
However, as the bandwidth increases, the deduplication time
can hide the data transfer time and thus dominates the
backup time. SAFE is the best deduplication method in
trading off between the deduplication efficiency and over-
head, generally achieving the shortest backup time among
the three schemes under comparison.

5.2.5 The Benefits of Semantic-Aware Elimination

In this subsection, we focus on two key steps, SFD and
LCD, to analyze the detailed benefits of semantic-aware
elimination in SAFE.

1) Server-side File-level Deduplication. SFD is designed
to remove duplicate files across different clients in
Master Server. In this stage, we exploit two file seman-
tics, file size and file locality, to reduce the disk
accesses incurred by the out-of-memory file-hashes
indexing.

File-size Threshold To reduce the disk accesses, SAFE
excludes small files as they account for a large percentage
of all files but a very small fraction of the actual data. The
file-size threshold by which small files are excluded clearly

affects the amount of redundant data to be removed and
the deduplication time. In general, the smaller this thresh-
old value is, the larger the number of files will be subject to
deduplication but at the cost of more disk accesses. There-
fore, the file-size threshold must be judiciously chosen to
achieve a good balance between the deduplication overhead
and deduplication efficiency. Figure 5a plots the cumulative
deduplication time of SFD required for all the backups as
a function of the file-size threshold. It shows that the larger
the file-size threshold, the shorter the deduplication time
will be. In particular, as the threshold increases from 0 KB
to 8 KB, the deduplication time is significantly reduced.
Figure 5b plots the corresponding redundant data that has
been removed by SFD. The remained data after SAFE is just
the amount of data to be transferred, which is proportional
to the data transfer time. To better understand the tradeoff
between the deduplication efficiency and overhead, we plot
the corresponding backup time in Fig. 5c, which is the sum
of the deduplication time and the data transfer time under
the network bandwidth of 800 KB/s. It shows that the min-
imum backup time is achieved at the file-size threshold of
8 KB, as a result of the substantially reduced deduplica-
tion time during this period. On the other hand, the backup
time increases with the file-size threshold beyond the 8 KB

point, due to the increasing amount of data required to be
transferred. We thus believe that the file-size threshold of
8 KB(i.e., the average chunk size in our dataset) is best
suited for our collected data sets.

Disk I/O Reduction After filtering out small files and
exploiting file locality, the disk I/Os are substantially

Table 2 Data redundancy of
the three backups. Duplicate data Duplicate data across

in the same client different clients

Duplicate files Duplicate chunks

Backup 1 66.84 MB 69.51 MB 2.02 MB

Backup 2 0 MB 0 MB 2.72 MB

Backup 3 482.21 MB 0 MB 0 MB

222 J Sign Process Syst (2013) 72:209–228

0KB 8KB 32KB 512KB 128MB
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600

a b c
D

e-
du

pl
ic

at
io

n
T

im
e

(s
)

File Size
0KB 8KB 32KB 512KB 128MB

380

400

420

440

460

480

500

520

540

R
em

ov
ed

 D
at

a
(G

B
)

File Size

0KB 8KB 32KB 512KB 128MB
50000
52000
54000
56000
58000
60000
62000
64000
66000
68000
70000

B
ac

ku
p

W
in

do
w

 (
s)

File Size

Figure 5 File-size threshold.

reduced in SFD. During our experiments, an I/O reduction
of about 40 % can be reached through small-file filtering
alone and 78 % can be reached by combining small-file
filtering and file locality exploitation in the users’initial
backups.

2) Local Chunk-level Deduplication. To reduce disk
accesses in LCD, SAFE uses two-tiered indexing
scheme and singles out two types of files, small files
and compressed files, with zero disk accesses. As indi-
cated in our experimental results, the combination of
these methods can eliminate about 99.9 % of the
disk I/Os, and the efficiency of the compressed-file-
exclusion method varies from user to user depending on
the backup datasets.

5.3 The Evaluation of The Restore Performance

In some restore scenarios when the local unmodified data is
available, SAFE’s data restore is assisted by the Unmodified
Data Removal module, which helps to remove the unmodi-
fied files and data chunks from data transmission to reduce
the restore time. In this subsection, we use SAFE prototype
system and show the experimental results on both directory
restore and individual file restore when the UMR module is
not only effective but also ineffective.

5.3.1 Datasets

We use two datasets to evaluate SAFE’s restore perfor-
mances. One consists of 16 full backups of one author’s
home directory, totaling about 139.11 GB data, and the other
consists of a tar file of Linux source tree with four backed-
up versions. Moreover, because it is hard to trigger realistic
data disasters, we simulate the disasters by injecting data
corruptions that select some files to apply file rename opera-
tion, file modification(including data insertion, deletion and
modification) and file deletion to the last version of the
dataset, and then enable it to be restored to its previously

backed-up versions. While we realize that these are con-
trived data disasters, we have not been able to find a better
way to simulate/emulate disasters.

5.3.2 Directory Restore

We use the dataset of 16 full backups of one author’s home
directory (i.e., the user data including course files, project
documents, source trees, developing tools and other private
files but without the operating system files) to evaluate the
directory restore performances. There is a total of 15 simu-
lated restores by restoring this directory on the 16th day to
its previous backed-up versions on the 1st day, 2nd day, 3rd
day,..., and 15th day.

Figure 6 shows the amount of the redundant data that
can be removed during each of the 15 restores if the local
unmodified data chunks are available. As shown in this
figure, the amount of the redundant data increases as the
restored backup point approaches the 16th day, and when
the restored backup point is on the 15th day, the amount
of the data removed reaches the maximum value of about
8.26 GB, with a data reduction ratio of about 11.2 : 1 com-
pared to the original size of the directory of about 9.07 GB.
The reason behind such a high reduction ratio is that, during

2 4 6 8 10 12 14 16

6.0

6.5

7.0

7.5

8.0

Day

Figure 6 The amount of the redundant data removed by SAFE when
local unmodified data is available.

J Sign Process Syst (2013) 72:209–228 223

0.8 1 2 4 8

16

32

64

128

256

512

1024

2048

4096

8192

Network Bandwidth (MB/s)

L-CDS
 G-CDS
 SAFE

Figure 7 The comparison of the directory restore time when local
unmodified data is available.

directory restores, most of the files are kept intact after back-
ups that can be removed from transmission, given that most
data writes are centered on a small set of files in typical file
systems [31]. However, if the data restoration is triggered by
the site disasters or hardware failures when the local unmod-
ified data is unavailable, there will be no redundant data that
can be removed to optimize the restore performances. Thus
below we will show the restore time of SAFE when the local
unmodified data is available and unavailable.

To quantify the reductions on the directory restore time,
we focus on the restore operation that restores the home
directory on the 16th day to its backed-up version on the
15th day under a simulated network environment with dif-
ferent bandwidths: 800 KB/s, 1 MB/s, 2 MB/s, 4 MB/s,
8 MB/s. Figure 7 compares the restore time required for
SAFE prototype system, L-CDS and G-CDS when the local
unmodified data is available. As seen from this figure,
SAFE significantly reduces the restore time after removing
the unmodified data from transmission compared with G-
CDS and L-CDS. Its reduction ratio is up to 9.7 : 1 when
the network bandwidth is 800 KB/s. However, this reduction
ratio decreases as the network bandwidth increases. Figure 8
shows the restore time required for the three methods when
the local unmodified data is unavailable. In this case, SAFE,
L-CDS and G-CDS all have to transfer all the restored data
and costs nearly the same restore time regardless of the
network bandwidth.

5.3.3 Individual File Restore

In addition to directory restores, the restore of individual
files is another common restore operation in cloud backup
environment. In most cases, the individual file restore hap-
pens when the file in the client site is changed or deleted,
which is different from the directory restore where many
files are kept intact after backups. Thus during individ-
ual file restores, the amount of redundant data that can

0.8 1 2 4 8

16

32

64

128

256

512

1024

2048

4096

8192

Network Bandwidth (MB/s)

L-CDS
 G-CDS
 SAFE

Figure 8 The comparison of the directory restore time when local
unmodified data is unavailable.

be removed is much less than that in directory restores.
Another feature of the individual file restore is that it would
never be triggered by the site disasters or disk failures that
render the local unmodified data unavailable, and thus in
our experiments, we only evaluate the individual file restore
performances when the UMR module is effective by using
a tar file of Linux source tree with four backed-up versions,
without considering that the UMR module is ineffective and
the unmodified data is unavailable.

We simulate three file restores that restore the 4th file
version to its 1st, 2nd, and 3rd versions. Table 3 shows the
file sizes of the four file versions and the amounts of redun-
dant data that can be removed during the three simulated
file restores. Similar to directory restores, the amount of
the redundant data removed by SAFE increases as the file
version approaches the 4th version. However, this common
trend observed in both the directory restores and the indi-
vidual file restores should not be regarded as a rule since the
amount of this redundant data is heavily dependent on the
amount of data modifications of each specific dataset.

Figure 9 compares the restore time required for the
SAFE prototype system, L-CDS and G-CDS under the net-
work bandwidth of 800 KB/s. This figure shows that SAFE
spends respectively 83.4 %, 80.04 %, and 73.73 % of the
time required for G-CDS and L-CDS for the three simulated

Table 3 The file sizes of the four versions of tar file and the redundant
data removed by three simulated file restores.

File version File size The redundant data

removed during

simulated restores

1st version 353.21 MB 63.28 MB

2nd version 365.83 MB 77.75 MB

3rd version 382.42 MB 105.4 MB

4th version 394.91 MB –

224 J Sign Process Syst (2013) 72:209–228

Figure 9 The comparison of the individual file restore time.

restores after removing the unmodified data from transmis-
sion, while G-CDS and L-CDS cost nearly the same restore
time regardless of the restore sessions.

5.4 Discussions

Client Overhead SAFE uses more CPU power and stor-
age space at the client site to compensate for the lack of
sufficient network bandwidth for cloud backup and cloud
restore operations. We argue that this is a good strategy with
an acceptable overhead, given that the rapid advancement
in processor and storage technologies is making processing
capabilities and storage capacities increasingly affordable.

Flexibility It is relatively easy for SAFE to provide a user
interface by which a user can choose between Global File-
level Deduplication and Local Chunk-level Deduplication
for data backup, and whether to use the Unmodified Data
Removal for data restoration. Our rationale behind this pos-
sible choice is that a cloud backup user may be aware of the
nature and characteristics of his/her datasets, if he/she is the
one knowledgeable of the provenance of the datasets, and
thus may choose a particular option accordingly to avoid
the unnecessary data transmission cost and deduplication
overhead.

Restore Cases The restoration cases can be classified into
three categories, the full file-system restore, the single direc-
tory restore, and the individual file restore. For the single
directory restore and individual file restore, SAFE can help
find and remove the unmodified data to avoid the data
transmission as long as the whole directory or file has
not been deleted, which eases the searching burden of the
users especially by facing the directories including tens of
thousands of files or even more files. While for the full file-
system restore, SAFE can also find the unmodified data if
the file system is corrupted by software failures or viruses

attacks and the unmodified data is available and accessible,
significantly improving the restore performances.

6 Related Work

Recently, data deduplication has been emerged as an alter-
native lossless data compression [3, 9, 18] scheme that has
been employed in various backup and archival systems [13,
14, 21, 25, 32, 49–52]. In cloud backup environment, it
is desirable to have the redundant data removed at source
client before reaching backup destination to reduce the net-
work bandwidth consumption, which is different from the
target deduplication schemes employed in such systems as
DDFS [52], Sparse Index [24], Falconstor [17], Exgrid [16],
and Sepaton DeltaStor [38]. Table 4 compares the source
deduplication methods used in five well-known developed
backup systems, along with our proposed SAFE scheme.
As indicated in the table, SAFE differs greatly from all
of them in a few ways. First, their deduplication methods
used for backup operations are very different. The exist-
ing approaches either use the source global chunk-level
deduplication which removes all the redundant data among
different clients globally and thus incurring heavy sys-
tem overhead, or the source local chunk-level deduplication
which incurs very little system overhead by only removing
redundant data locally within the individual client. SAFE,
distinct from all of them, combines the source global file-
level deduplication scheme and the source local chunk-level
deduplication scheme to effectively trade off between the
deduplication efficiency and deduplication overhead for
cloud backup operations. Second, SAFE further exploits
file semantics, such as file locality, file timestamps, file
size and file type, to significantly reduce the deduplication
overhead in its both global file-level deduplication stage
and local chunk-level deduplication stage to accelerate the
overall deduplication process for cloud backup Operations.
The file semantics have been widely used in the design
and optimization of file systems, such as perfecting and
caching [47]. Extracting file semantics, motivated by our
experimental observations, is proven very useful to improve
SAFE’s deduplication performances. Third, SAFE exploits
the data redundancy for some restore scenarios to optimize
the cloud restore performance, while most of the exist-
ing deduplication approaches only focus on removing the
redundant data from transmission for backup operations,
paying little attention to the fact that the restore opera-
tions over low-bandwidth WAN networks suffer serious
performance degradation and must also be improved.

Our hybrid method used in SAFE is mainly motivated
by our own study revealing that the redundant data across
different clients is dominated largely by duplicate files,
implying that the global file-level deduplication is sufficient

J Sign Process Syst (2013) 72:209–228 225

Table 4 The comparison of source deduplication schemes used in recently developed backup systems.

Backup optimization Restore optimization

Global/Local File/Chunk Semantic-aware

NetBackup PureDisk [29] Global Chunk No No

Commvault Simpana [11] Global Chunk No No

EMC Avamar [15] Global Chunk No No

Syncsort Backup Express and NetApp [39] Local Chunk No No

Cumulus [46] Local Chunk No No

CABdedupe [40] Local Chunk No Yes

SAFE Global file + Local chunk File semantic Yes

to remove its vast majority of redundant data. Moreover,
similar observations have been made and reported in the lit-
erature. J. C. Tang et al. [41] have found that about 54 % of
files are duplicate ones among the members of an organi-
zation, accounting for 32 % of the total storage space, and
a negligibly small fraction of files are similar ones among
them. Microsoft’s file metadata study results [4] show that
users locally contribute to a decreasing fraction of their sys-
tems’ content while file copies from others contribute to
an increasing fraction. Besides SAFE, other system ven-
dors [23] also exploit both the file level and chunk level
deduplication schemes, such as TAPER [22] for reduc-
ing the data transmission for replica synchronization, Deep
Store [51] for saving storage space in the archival system,
Extreme Binning [7] for improving chunk-level dedupli-
cation throughput in backup systems, and etc. Although
all of these systems have used the concept of the hybrid
method, their detailed motivation and implementations are
different from that of SAFE. As described before, SAFE’s
hybrid method is main motivated by our observation that the
redundant data across different clients is dominated largely
by duplicate files and the fact that the removal of dupli-
cate files is much easier than that of duplicate chunks, and
thus we only remove the duplicate files globally but not
duplicate chunks globally to improve the deduplication effi-
ciency/overhead ratio. Microsoft’s study [27] also reveals
that 75 % of the redundant data are generated from the dupli-
cate files after the survey of the file system content data

collected from 857 desktop computers, and the only removal
of the duplicate files across different file systems can elim-
inate large percent of the redundant data. While in other
systems, the use of file-level deduplication scheme is just
helping to first filter out the data redundancy before resort-
ing to the chunk-level deduplication, so as to reduce their
chunk-level deduplication overhead.

Besides SAFE, a rich body of previous research has
addressed the problem of data transmission over low-
bandwidth network applications. Table 5 compares the
methods used in some well-known network applications,
along with our proposed SAFE scheme. Rsync [37] is an
early study that uses the delta compression to remove the
redundant data that is already stored in the server. Unfor-
tunately, due to that the delta compression only removes
the redundant data between two files, reference file version
and current file version, it only focuses on the redundant
data between two files with identical file names. Unlike
Rsync, LBFS [28] exploits the data redundancy among all
the files using the chunk-level deduplication scheme, which
removes all the redundant data at the chunk level to improve
the network filesystem performances. Distinct from SAFE,
LBFS has not exploited the file semantics and even used the
hybrid method that combined the file level and chunk level
deduplication schemes to further reduce the overall dedupli-
cation overhead. TAPER [22] is a scalable data replication
protocol that provides a four-phased redundancy elimina-
tion scheme to balance the tradeoff between the network

Table 5 The comparison of methods used to address the problem of data transmission over low-bandwidth networks in well-known network
applications.

Research goal Redundant data elimination Semantic-aware Read or write optimization

Rsync [37] Incremental file transfer Delta compression No Write

LBFS [28] Network file system Chunk deduplication No Read and write

TAPER [22] Replica synchronization Directory+File+Chunk No Write

+Byte deduplication

SAFE Cloud backup service File+Chunk deduplication File semantic Read and write

226 J Sign Process Syst (2013) 72:209–228

bandwidth savings and computation overheads. Although
TAPER has exploited the file-level and chunk level dedu-
plication scheme like SAFE does, it has not exploited any
file semantics to further reduce the computation and match-
ing overheads. Moreover, it cannot be directly integrated
into cloud backup systems since it only focuses on the
redundant data among the different versions of the same
directory, without considering the redundant data across dif-
ferent directories and even across different clients. Besides
these three methods, other approaches [6, 43, 53, 54] used
in distributed file systems also have addressed this trans-
mission problem, such as the recipe technique used in [44],
the look aside caching technique used in [42], and etc.
However, they are all not designed specially for backup sys-
tems and have limited effectiveness in cloud backup service
environment.

In addition to the deduplication technology employed
in cloud backup environment, the wide area data services
(WDS), such as Riverbed [35], can also be leveraged to
remove the redundant data from transmission over WAN
to alleviate the network bottleneck. However, due to the
fact that SAFE is specially designed for backup/restore
workloads at the application level, we argue that SAFE
is more efficient and cost-effective than WDS-based
approaches.

7 Conclusion

Motivated by the observations from our preliminary studies,
we propose an alternative source deduplication framework,
SAFE, to improve the efficiency of both cloud backup and
restore operations. SAFE not only employs a hybrid dedu-
plication approach that combines the global file-level dedu-
plication and local chunk-level deduplication and further
exploits file semantics (including file locality, file times-
tamps, file type, file size) to narrow the search space for
redundant data in backup operations to reduce backup times
and save storage costs, but also exploits the data redun-
dancy for some restore operations to remove the unmod-
ified files and data chunks from transmission to reduce
the restore times. Compared with the widely used L-CDS
(source local chunk-level deduplication scheme) and G-
CDS (source global chunk-level deduplication scheme) that
work for removing the redundant data for backup opera-
tions, SAFE achieves a compression ratio approaching that
of G-CDS with a small difference of 1.35 %, while incurring
a deduplication overhead very close to that of the L-CDS
method, thus achieving a much higher deduplication effi-
ciency/overhead ratio than existing solutions and shortens

the backup time by an average of 38.7 % during backup
operations. During some restore operations when the local
unmodified data is available, SAFE significantly reduces
the restore time by a reduction ratio of up to 9.7 : 1
after removing up to 91.8 % of this unmodified data. As
a direction of future work, we plan to investigate more
file semantics to explore the data redundancy to optimize
deduplication performances for both backup and restore
operations.

Acknowledgments This work is supported by the Fundamen-
tal Research Funds for the Central Universities under Grant
No.0903005203206 and No.CDJZR12180006, the National High
Technology Research and Development (863 Program) of China under
Grant No.2013AA013202 and No.2013AA013203, Chongqing High-
Tech Research Programcsct2012ggC40005, National Basic Research
973 Program of China under Grant No. 2011CB302301, NSFC
No.61025008, No.61232004 and No.61173014, the US NSF under
grants IIS-0916859, CCF-0937993, CNS-1016609, CNS-1116606 and
CNS-1015802.

References

1. Branch Office Optimization (2007). Enterprise strategy group.
2. Data loss survey: http://www.idgconnect.com (2010).
3. Adya, A., Bolosky, W.J., Castro, M., Cermak, G., Chaiken, R.,

Douceur, J.R., Howell, J., Lorch, J.R., Theimer, M., Wattenhofer,
R.P. (2002). FARSITE: federated, available, and reliable storage
for an incompletely trusted environment. ACM SIGOPS Operating
Systems Review, 36(SI), 1–14.

4. Agrawal, N., Bolosky, W.J., Douceur, J.R., Lorch, J.R. (2007). A
five-year study of file-system metadata. In FAST’07.

5. Amazon Simple Storage Service: http://aws.amazon.com/s3.
6. Annapureddy, S., Freedman, M.J., Mazieres, D. (2005). Shark:

Scaling file servers via cooperative caching. In NSDI’05.
7. Bhagwat, D., Eshghi, K., Long, D.D., Lillibridge, M. (2009).

Extreme binning: scalable, parallel deduplication for chunk-
based file backup. Technical Report, HPL-2009-10R2 HP
Laboratories.

8. Bloom, B.H. (1970). Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7), 422–
426.

9. Bobbarjung, D.R., Jagannathan, S., Dubnicki, C. (2006). Improv-
ing duplicate elimination in storage systems. ACM SIGOPS Trans-
actions on Storage, 2(4), 424–448.

10. Cabrera, L., Rees, R., Steiner, S., Hineman, W., Pennere, M.
(1995). ADSM: A multi-platform, scalable, backup and archive
mass storage system. In Compcon’95.

11. Commvault Simpana: http://www.commvault.com.
12. Debnath, B., Sengupta, S., Li, J. (2010). ChunkStash: Speed-

ing up inline storage deduplication using flash memory. In
USENIX’10.

13. Dong, W., Douglis, F., Li, K., Patterson, H. (2011). Tradeoffs in
scalable data routing for deduplication clusters. In FAST’11.

14. Dubnicki, C., Gryz, L., Heldt, L., Kaczmarczyk, M., Kilian, W.,
Strzelczak, P., Szczepkowski, J., Ungureanu, C., Welnicki, M.
(2009). Hydrastor: A scalable secondary storage. In FAST’09.

http://www.idgconnect.com
http://aws.amazon.com/s3
http://www.commvault.com

J Sign Process Syst (2013) 72:209–228 227

15. EMC Avamar: http://www.emc.com.
16. Exgrid: http://www.exagrid.com.
17. Falconstor: http://www.falconstor.com.
18. Ferreira, R.A., Ramanathan, M.K., Grama, A., Jagannathan, S.

(2007). Randomized protocols for duplicate elimination in peer-
to-peer storage systems. IEEE Transactions on Parallel and
Distributed Systems, 18(5), 686–696.

19. Forman, G., Eshghi, K., Suermondt, J. (2009). Efficient detection
of large-scale redundancy in enterprise file systems. ACM SIGOPS
Operating Systems Review, 43(1), 84–91.

20. Gantz, J.F., Chute, C., Manfrediz, A., Minton, S., Reinsel, D.,
Schlichting, W., Toncheva, A. (2008). The diverse and explod-
ing digital universe: an updated forecast of worldwide information
growth through 2011. IDC Report.

21. Guo, F., & Efstathopoulos, P. (2011). Building a high-performance
deduplication system. In USENIX ATC’11.

22. Jain, N., Dahlin, M., Tewari, R. (2005). TAPER: Tiered
approach for eliminating redundancy in replica synchronization.
In FAST’05.

23. Kulkarni, P., Douglis, F., LaVoie, J., Tracey, J.M. (2004). Redun-
dancy elimination within large collections of files. In USENIX’
04.

24. Lillibridge, M., Eshghi, K., Bhagwat, D., Deolalikar, V., Trezise,
G., Campbell, P. (2009). Sparse indexing: Large scale, inline
deduplication using sampling and locality. In FAST’09.

25. Liu, C., Gu, Y., Sun, L., Yan, B., Wang, D. (2010). R-ADMAD:
High reliability provision for large-scale de-duplication archival
storage systems. In ICS’09.

26. Meister, D., & Brinkmann, A. (2009). Multi-level comparison of
data deduplication in a backup scenario. In SYSTOR’09.

27. Meyer, D.T., & Bolosky, W.J. (2011). A study of practical dedu-
plication. In FAST’11.

28. Muthitacharoen, A., Chen, B., Mazières, D. (2001). A low-
bandwidth network file system. In SOSP’01.

29. NetBackup PureDisk: http://www.symantec.com.
30. NIST: Secure hash standard (1993). In FIPS PUB (Vol. 180, p. 1).
31. Policroniades, C., & Pratt, I. (2004). Alternatives for detecting

redundancy in storage systems data. In USENIX’04.
32. Quinlan, S., & Dorward, S. (2002). Venti: A new approach to

archival storage. In FAST’02.
33. Rabin, M.O. (1981). Fingerprinting by random polynomials. Tech-

nical Report TR-15-81. Harvard University: Center for Research
in Computing Technology.

34. Rhea, S., Cox, R., Pesterev, A. (2008). Fast, inexpensive content-
addressed storage in foundation. In USENIX’08.

35. Riverbed: http://www.riverbed.com.
36. Roselli, D., Lorch, J.R., Anderson, T.E. (2000). A comparison of

file system workloads. In USENIX’00.
37. Rsync: http://rsync.samba.org.
38. Sepaton DeltaStor: http://www.sepaton.com.
39. Syncsort Backup Express and NetApp: http://www.syncsort.com.
40. Tan, Y., Jiang, H., Feng, D., Tian, L., Yan, Z. (2011). CABdedupe:

A causality-based deduplication performance booster for cloud
backup services. In IPDPS’11.

41. Tang, J.C., Drews, C., Smith, M., Wu, F., Sue, A., Lau, T. (2007).
Exploring patterns of social commonality among file directories
at work. In CHI’07.

42. Tolia, N., Harkes, J., Kozuch, M., Satyanarayanan, M. (2004).
Integrating portable and distributed storage. In FAST’04.

43. Tolia, N., Kaminsky, M., Andersen, D.G., Patil, S. (2006). An
architecture for internet data transfer. In NSDI’06.

44. Tolia, N., Kozuch, M., Satyanarayanan, M., Karp, B. (2003).
Opportunistic use of content addressable storage for distributed
file systems. In USENIX’03.

45. Unstructured data: http://en.wikipedia.org/wiki/Unstructureddata.
46. Vrable, M., Savage, S., Voelker, G.M. (2009). Cumulus: filesys-

tem backup to the cloud. ACM Transactions on Storage, 5(4), 1–
28.

47. Xia, P., Feng, D., Jiang, H., Tian, L., Wang, F. (2008). FARMER:
A novel approach to file access correlation mining and eval-
uation reference model for optimizing peta-scale file system
performance. In HPDC’08.

48. Xia, W., Jiang, H., Feng, D., Hua, Y. (2012). SiLo: A similarity-
locality based near-exact deduplication scheme with low ram
overhead and high throughput. In USENIX ATC’11.

49. Yang, T., Feng, D., Niu, Z., Wan, Y. (2010). Scalable high perfor-
mance de-duplication backup via hash join. Journal of Zhejiang
University Science, 11(5), 315–327.

50. Yang, T., Jiang, H., Feng, D., Niu, Z., Zhou, K., Wan, Y. (2010).
DEBAR: a scalable high-performance de-duplication storage sys-
tem for backup and archiving. IPDPS’10.

51. You, L.L., Pollack, K.T., Long, D.D.E. (2005). Deep store: An
archival storage system architecture. In ICDE’05.

52. Zhu, B., Li, K., Patterson, H. (2008). Avoiding the disk
bottleneck in the data domain deduplication file system. In
FAST’08.

53. Qiu, M., Sha, E.H.-M. (2009). Cost minimization while satis-
fying hard/soft timing constraints for heterogeneous Embedded
Systems. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 14(2), 1–30.

54. Li, J., Qiu, M., Ming, Z., Quan, G., Qin, X., Gu, Z. (2012). Online
optimization for scheduling preemptable tasks on IaaS cloud sys-
tems. Journal of Parallel and Distributed Computing (JPDC),
72(5), 666–677.

Yujuan Tan received the
B.Sc. degree in Computer
Science and Engineering in
2006 from Hunan Normal
University, Changsha, China;
and the PhD degree in Com-
puter Science and Engineering
in 2012 from Huazhong
University of Science and
Technology, Wuhan, China.
Since July 2012 She has been
at Chongqing University,
Chongqing, China, where she
serve as an Assistant Profes-

sor in the College of Computer Science. Her present research interests
include computer architecture, computer storage systems, big data
computing, cloud computing, and performance evaluation. She has
over 15 publications in journals and international conferences, includ-
ing TACO, IPDPS, ICPP, HiPEAC, and NAS. Dr. Tan is a member of
ACM.

http://www.emc.com
http://www.exagrid.com
http://www.falconstor.com
http://www.symantec.com
http://www.riverbed.com
http://rsync.samba.org
http://www.sepaton.com
http://www.syncsort.com
http://en.wikipedia.org/wiki/Unstructured data

228 J Sign Process Syst (2013) 72:209–228

Hong Jiang received the
B.Sc. degree in Computer
Engineering in 1982 from
Huazhong University of Sci-
ence and Technology, Wuhan,
China; the M.A.Sc. degree
in Computer Engineering in
1987 from the University of
Toronto, Toronto, Canada;
and the PhD degree in Com-
puter Science in 1991 from
the Texas A&M University,
College Station, Texas, USA.
Since August 1991 he has

been at the University of Nebraska-Lincoln, Lincoln, Nebraska,
USA, where he is Willa Cather Professor of Computer Science and
Engineering. At UNL, he has graduated 12 Ph.D. students who upon
their graduations either landed academic tenure-track positions in
Ph.D.-granting US institutions or were employed by major US IT
corporations. His present research interests include computer archi-
tecture, computer storage systems and parallel I/O, high-performance
computing, big data computing, cloud computing, performance eval-
uation. He serves as an Associate Editor of the IEEE Transactions
on Parallel and Distributed Systems. He has over 200 publications in
major journals and international Conferences in these areas, includ-
ing IEEE-TPDS, IEEE-TC, ACM-TACO, JPDC, ISCA, MICRO,
USENIX ATC, FAST, LISA, ICDCS, IPDPS, MIDDLEWARE,
OOPLAS, ECOOP, SC, ICS, HPDC, ICPP, etc., and his research has
been supported by NSF, DOD and the State of Nebraska. Dr. Jiang is
a Senior Member of IEEE, and Member of ACM.

Edwin Hsing-Mean Sha
received Ph.D. degree from
the Department of Computer
Science, Princeton University,
USA in 1992. From August
1992 to August 2000, he was
with the Department of Com-
puter Science and Engineering
at University of Notre Dame,
USA. Since 2000, he has been
a tenured full professor in
the Department of Computer
Science at the University of
Texas at Dallas. Since 2012,

he served as the Dean of College of Computer Science at Chongqing
University, China. He has published more than 300 research papers
in refereed conferences and journals. He has served as an editor for
many journals, and as program committee and Chairs for numerous
international conferences. He received Teaching Award, Microsoft
Trustworthy Computing Curriculum Award, NSF CAREER Award,
and NSFC Overseas Distinguished Young Scholar Award, Chang-
Jiang Honorary Chair Professorship and China Thousand-Talent
Program

Zhichao Yan received the
B.Sc. degree in Computer Sci-
ence and Engineering in 2006
from Huazhong Agricultural
University, Wuhan, China; and
the PhD degree in Com-
puter Science and Engineer-
ing in 2013 from Huazhong
University of Science and
Technology, Wuhan , China.
Her present research interests
include computer architecture,
parallel I/O, high-performance
computing, big data comput-

ing, cloud computing, performance evaluation. He has over 15 pub-
lications in journals and international conferences, including TACO,
IPDPS, ICPP, HiPEAC, and NAS.

Dan Feng received her B.E,
M.E. and Ph.D. degrees in
Computer Science and Tech-
nology from Huazhong Uni-
versity of Science and Tech-
nology (HUST), China, in
1991, 1994 and 1997 respec-
tively. She is a professor and
director of Data Storage Sys-
tem Division, Wuhan National
Lab for Optoelectronics. She
also is vice dean of the
School of Computer Science
and Technology, HUST. Her

research interests include computer architecture, massive storage sys-
tems, parallel file systems, disk array and solid state disk. She has over
100 publications in journals and international conferences, including
FAST, USENIX ATC, ICDCS, HPDC, SC, ICS and IPDPS. Dr. Feng
is a member of IEEE and a member of ACM.

	SAFE: A Source Deduplication Framework for Efficient Cloud Backup Services
	Abstract
	Introduction
	Motivation of Our Work
	File Semantics Exploration
	File Locality
	File Size
	File Type
	File Timestamps

	Hybrid Approaches for Data Backups
	Intuitive Scenarios
	Statistical Evidences
	Theoretical Analysis

	Removing Unmodified Data for Restores
	Data Redundancy
	Unchanged Files
	Modified Files
	Deleted Files

	Restore Scenarios

	System Architecture
	File Agent
	Master Server
	Storage Server
	SAFE Process Flows
	Backup Process flow
	Restore Process Flow

	Design and Implementation
	Semantic-Aware and Hybrid Deduplication
	Global File-Level Deduplication
	Virtual Full Backup
	Server-Side File-Level Deduplication
	File Size
	File Locality

	Local Chunk-Level Deduplication
	Compressed-Files Exclusion
	Two-Tiered Chunk Indexing and Small Files Optimization

	Unmodified Data Removal

	Performance Evaluations
	Experimental Setup
	SAFE Simulator
	File Level
	Chunk Level

	Relevant Systems for Comparison
	Source Local Chunk-Level Deduplication Scheme (L-CDS)
	Source Global Chunk-Level Deduplication Scheme (G-CDS)

	The Evaluation of the Backup Performance
	Trace Workload
	Deduplication Efficiency
	Deduplication Overhead
	Backup Time
	The Benefits of Semantic-Aware Elimination
	File-size Threshold
	Disk I/O Reduction

	The Evaluation of The Restore Performance
	Datasets
	Directory Restore
	Individual File Restore

	Discussions
	Client Overhead
	Flexibility
	Restore Cases

	Related Work
	Conclusion
	Acknowledgments
	References

