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Abstract Given the increasing prevalence of compute/data
intensive applications, the explosive growth in data, and the
emergence of cloud computing, there is an urgent need for
effective approaches to support such applications in non-
dedicated heterogeneous distributed environments. This pa-
per proposes an efficient technique for handling parallel
tasks, while dynamically maintaining load balancing. Such
tasks include concurrently downloading files from repli-
cated sources; simultaneously using multiple network inter-
faces for message transfers; and executing parallel computa-
tions on independent distributed processors. This technique,
DDOps, (Dual Direction Operations) enables efficient uti-
lization of available resources in a parallel/distributed en-
vironment without imposing any significant control over-
head. The idea is based on the notion of producer pairs that
perform tasks in parallel from opposite directions and the
consumers that distribute and control the work and receive
and combine the results. Most dynamic load balancing ap-
proaches require prior knowledge and/or constant monitor-
ing at run time. In DDOps, load balancing does not require
prior knowledge or run-time monitoring. Rather, load bal-
ancing is automatically inherent as the tasks are handled
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from the opposite directions, allowing the processing to con-
tinue until the producers meet indicating the completion of
all tasks at the same time. Thus DDOps is most suitable for
heterogeneous environments where resources vary in spec-
ifications, locations, and operating conditions. In addition,
since DDOps does not require producers to communicate at
all, the network effect is minimized.

Keywords Load balancing · Heterogeneous resources ·
Parallel computing · Distributed systems · Dual-direction
processing

1 Introduction

As computing resources become abundant and their capa-
bilities grow, software demand grows even faster. For exam-
ple, in an earlier era of processors with clock speeds around
a few kilo Hertz and limited memory capacity, operating
systems were small and had limited features and most ap-
plications were text-based and graphics-based applications
were unheard of. As the hardware advanced to higher clock
speeds, larger memory space, and better processing capa-
bilities, software evolved even faster and started consuming
whatever the hardware has to offer and demanding more.
The same happened to the networking technologies. For ex-
ample, when the networks were first designed and used, sim-
ple text messages and specific types of files were exchanged,
which the limited bandwidth available then was able to han-
dle. Now, the networks have advanced tremendously and can
offer huge transfer capacity, yet we still consume all of it and
crave for more because we demand the immediate transport
of millions to billions of bytes of data (text, audio, images,
video, etc.) at incredible speeds. The same applies to appli-
cations, where the computation demands increase so fast,
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even the fastest computing systems cannot keep up. There-
fore, we find ourselves forced to consider replication, redun-
dancy and parallelization. However, this comes with costs
and based on how, where, and when we utilize such meth-
ods, the overhead could be prohibitive.

Concurrent and parallel processing has been explored and
exploited heavily over time using models ranging from the
shared memory model, to message passing, to distributed
objects across distributed environments. The same happened
in networking due to the high demand for network capac-
ity to handle the large amounts of data [5]. Many models
and techniques were introduced to provide good results for
specific requirements or environments. However, we cur-
rently face a much harder job in making parallelization work
efficiently in highly distributed environments. This is fur-
ther compounded by the advances of the Grid and Cloud
architectures that impose much tougher challenges due to:
(1) the high heterogeneity of the resources; (2) the extreme
nature of the applications and their very high demand on
resources; (3) The great distances covered by the networks
spread worldwide; and (4) the large volumes and high com-
plexity of data and huge files that need to be shipped around
as needed [4, 6, 20]. As more techniques emerge, one of
the very important issues that arise is scheduling and load
balancing [20, 33, 45]. Several application domains afford
parallelization, but when in use, the gain is often below the
expectation. The heterogeneity of the resources and high
latency in communication cause problems and offset the
gains. Therefore, it is important to find schemes that will
reduce the need for communication and support effective
scheduling techniques that will provide some level of load
balancing. Yet again, this is not easily doable since main-
taining good load balancing requires some additional work
(processing and communication), which in some cases can
be prohibitively expensive. As we will discuss in the re-
lated work section, there are several models and techniques
that offer efficient scheduling and load balancing. Some of
these are static, which require prior knowledge of the en-
vironment and applications requirements. However, as the
applications start executing, these models have no way to
adapt to changes in the environment or requirements. The
other type is dynamic load balancing, where the load bal-
ancer monitors the environment and application require-
ments during run-time and attempts to make adjustments
to redistribute the tasks and adjust the load as necessary.
This type of load balancing is generally capable of handling
dynamic changes in the environment’s operation attributes
during run-time. However, the communication overhead im-
posed by the monitoring and load redistribution is usually
high, which negatively affects the overall performance [48].
In addition, the response to changes may also take too long,
which reduces or even eliminates the expected benefits.

In this paper we offer a new technique (DDOps) for dis-
tributing/processing parallel and distributed tasks in such a

way that load balancing is automatically inherent. The main
idea of DDOps is based on the notion of processing tasks in
a job in opposite directions such that the processes perform-
ing the tasks will not have to contend on shared resources.
In addition, the processes will work independently at their
own speeds until they meet without needing to know how
far the others are in their processing. As a result, DDOps
avoids the common requirements of the state-of-the-art ap-
proaches, namely, the need to know any information about
the resources being used before hand and the need to mon-
itor these resources during run time, while it continues to
maintain the load balance among all participating resources.
The load balancing here implies that all resources available
are utilized at their maximum possible performance and all
will end their work at relatively the same time. Thus there
will be minimum idle time for any of the resources. Further-
more, if some of the resources capabilities change during
run-time, the work will still be done at relatively the same
time except that some work load will shift among the re-
sources. To better understand the key DDOps idea, we view
it as being analogous to having a long fence that needs to
be painted by two painters, where you could just tell them
to each take one half of the fence, which can be problematic
if one of the painters is slower than the other and the faster
one must wait idly for the slower one to finish his half. Or,
you could simply start the painters at the opposite ends of
the fence and get them to move towards each other. Here
the painters will work independently and will continue at
their own pace until they meet somewhere along the fence
and they will be done at the same time. The painters’ meet-
ing point will change depending on which painter is faster.
Technically this will free the client from having to deal with
the run-time changes in the environment and redistributing
the load to adjust for these changes. Thus the processors will
be completely independent and will not need to wait for any
instructions or deal with each other during run-time.

In the remainder of the paper, we first discuss some of the
current work relevant to our technique in Sect. 2 then we de-
fine the problem scope and identify its boundaries in Sect. 3.
In Sect. 4, we introduce the general technique for the dual-
direction operations (DDOps). In the subsequent sections
we show examples of different application domains where
the technique applies, including parallel file downloads in
Sect. 5, parallel computations with the matrix multiplication
example in Sect. 6, and message transfer over multiple net-
work interface cards in Sect. 7. In Sects. 5, 6 and 7 we out-
line how DDOps is used, offer an overview of other avail-
able solutions, report on the experimental results and briefly
discuss the outcomes. In Sect. 8, we discuss and analyze our
technique and offer additional experimental results that ap-
ply to all domains. Finally in Sect. 9 we conclude the paper.



Cluster Comput (2014) 17:503–528 505

2 Background and related work

Computing facilities and resources are in high demand be-
cause many applications are increasingly resource intensive
and require pooling multiple resources together to perform
the required tasks efficiently. Parallel computing and redun-
dant resources are very important to enable efficient execu-
tion of such applications. As a result, it has also become
important to accommodate heterogeneous resources and al-
low applications to distribute their tasks among them. With
this notion, we find ourselves facing the parallelization chal-
lenges in various domains. Although many problems and
applications are theoretically highly parallelizable, the prac-
tical side imposes many constraints including communica-
tions delays, contention on resources and high coordination
and synchronization costs.

In [5] authors introduce a middleware infrastructure to
support parallel programming models on heterogeneous sys-
tems. This framework allows application developers to write
and execute object-oriented parallel programs on heteroge-
neous computing resources. It offers a run-time environment
using software agents to facilitate and coordinate remote ex-
ecutions of parallel tasks. However, this framework does not
explicitly address load balancing among the resources. Au-
thors in [30] survey various techniques to optimize parallel
programming including program transformation, communi-
cation and message passing optimizations, self adaptation
and load balancing. Load balancing in heterogeneous dis-
tributed environments imposes great challenges especially
if the environment suffers from long transmission delays
and nondeterministic load levels. To achieve load balanc-
ing in such an environment, it is important to target three
goals: (1) minimizing idle time, (2) minimizing overload-
ing, and (3) minimizing control overhead [48]. Achieving
these goals requires efficient algorithms to help distribute
the load evenly and devise ways to keep that balance during
execution. Yet such algorithms are affected by many factors
and variables that can cause new problems. For example,
many load balancing algorithms require constant exchange
of information, task redistribution and coordination efforts,
which can be hindered by the long delays experienced in
various distributed environments such as the Grid and the
Cloud. The effects of these delays were explained in [15],
where longer delays have proven to cause more disturbance
and postpone overall system stability while trying to balance
the load among the resources.

When parallel tasks are distributed, the type of environ-
ment they are in has a great effect on how and when these
tasks will complete. In a homogeneous dedicated environ-
ment, tasks can be divided into equal sub tasks and dis-
tributed among the available resources. Thus we can min-
imize idle time, overloading and control efforts easily. How-
ever, in the same environment, if the resources are shared

among multiple applications, some factors such as memory
size, network bandwidth and CPU utilization may change
during execution. In this case the initial equal distribution of
sub tasks may no longer achieve good load balancing and
some tasks will hold others until they are done which in-
creases idle time for many resources and may also overload
others. Therefore, it is necessary to device a dynamic ap-
proach that monitors the operating attributes of the resources
and current loads to adjust the load when necessary. Yet this
will increase control efforts and may not be possible in all
cases since load adjustment may require data and/or task re-
distribution, which is usually very costly. On the other hand,
if we have a dedicated yet heterogeneous environment, we
need to have prior knowledge of the available resources and
use that knowledge to fairly distribute the tasks such that
faster processors, for example, will get more units to pro-
cess while the slower ones will be given fewer units. The
last possibility and the one that is currently very common
on Grid, Cloud and Internet environments is having a shared
heterogeneous environment to deal with. In this case, prior
knowledge is helpful to achieve initial load balancing; how-
ever, we also need continuous monitoring and constant ad-
justing of the load to achieve some level of load balancing
throughout execution time. Here we review some of the ap-
proaches designed for load balancing where each one has
its own merits and at the same time has some drawbacks.
Generally, load balancing methods cover several directions
[38] and maybe viewed to have three categories involving
resource aware models, prediction models and divisible load
theory. From another perspective, we may categorize load
balancing methods as static or dynamic.

Static methods usually acquire knowledge about the en-
vironment before execution and distribute the tasks accord-
ing to this information. This would work very well for dedi-
cated heterogeneous environments since there will be minor
changes during run time. One example of this approach is
described in [40] where a system of non-linear equations
is solved to decide on the size of each subtask based on the
systems specifications. Another example is described in [43]
based on a maximum flow algorithm to minimize the sub-
tasks assigned to the most loaded or the slowest machines.
Another example of static scheduling is a local search al-
gorithm [46] designed to solve large instances of the in-
dependent tasks mapping problem with the assistance of a
GPU. On the other hand, dynamic load balancing methods
rely heavily on monitoring the environment during run time
and adjusting subtask allocation according to the most re-
cent changes observed. In [27] a master/slave organization is
used to distribute the tasks based on most recently observed
performance of the participating machines. The master ba-
sically distributes a portion of the subtasks to the slaves and
adjusts the size of the next subtask to balance the load de-
pending on how fast the response arrives from these slaves.
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In [49], a load balancing method based on the assumption
of preserving the speed of computation in the consecutive
iterations is introduced. The algorithm determines the load
size of the next round based on the computation and com-
munication times for the previous round. Another exam-
ple is in [18] and [20] where a load balancing algorithm
is designed for networks of workstations (NOW) where the
nodes are shared among multiple users and multiple tasks
and the available processing power varies during run time.
Here again in the initial phase where some subtasks are dis-
tributed, the response time is considered to determine the
size of the next round of subtasks. In both examples, con-
stant monitoring of the tasks is required and, when the net-
work delay is factored into account, the estimates become
less realistic. For example, if there are two nodes on a NOW
where one is faster than the other, but the communication
delay associated with the first node is much higher, the re-
sponse will arrive later for the first node than for the second.
Consequently, the faster node will be assigned less work.
However, in reality, it should have been given more work to
process to amortize its longer communication delays.

In dynamic load balancing, load distribution may involve
several methods. The easiest method is to use the mas-
ter/slave model and divide the task into multiple partitions
that are then distributed to the slaves through several steps.
This would work well for large tasks and when the com-
munication overhead is low. Another possibility is to cre-
ate one partition per contributing node and, if one com-
pletes its work earlier than others during run-time, it is as-
signed some of the work relocated from other nodes. This
reduces the communication overhead, but introduces the ex-
tra complexity of load reallocation, which may involve data
sharing, process duplication or process migration. Another
possibility is to replicate all tasks on all nodes and then
determine portions of tasks each node will handle and ad-
just these parameters as necessary during run time. While
this sounds promising, it involves high replication overhead
and requires subtasks to be highly independent. Another ap-
proach is to use a distributed model where the nodes com-
municate with each other to exchange load and environment
information and exchange tasks when necessary to balance
the load among them. Yet again, this can cause various prob-
lems with non-dedicated resources. In particular, when re-
sources are distributed over long distances, the delay fac-
tor in communication becomes predominant and reduces the
gains of load balancing [15].

Another categorization for load balancing methods di-
vides them into centralized and distributed methods. Cen-
tralized load balancing algorithms are usually simpler to de-
sign and control and we have covered several examples ear-
lier such as [18, 20, 27] and [43]. These would work very
well on stable environments and would perform best if the
network delays are minimal. However, when dynamic envi-
ronments are involved and high delay factors are in effect,

it may be necessary to consider a distributed load balanc-
ing model. In one example a semi-distributed load balanc-
ing algorithm is described [56], where the computing envi-
ronment is clustered in a mesh structure such that each node
could inform the others if it was idle or if one of its neigh-
bors is idle. Therefore, the load will be distributed among
idle nodes and updated as the environment changes. In addi-
tion, a decentralized load balancing algorithm is introduced
for Grid environments where the communication overhead
is reduced while maintaining adequately updated state infor-
mation during run-time [3]. Another example [30, 31] uses
a global scheduler in an adaptive distributed load balanc-
ing model. This model relies on prior knowledge of each
contributing node’s capabilities, current tasks and power in
addition to having best task-node mappings and expected
task completion times. The model distributes large tasks first
then runs smaller tasks in parallel during nodes’ idle times.
As a result, it reduces communication and conflict between
load balancing goals, yet it may be unfair to the small tasks
that need to compete for idle times. Also in [19] we find
a distributed sender-initiated model that adapts to the sys-
tems operational conditions and each node can decide on
the load autonomously. In this model, load balancing is han-
dled locally by the nodes and involves coordination among
the nodes, which increases the overhead.

Two additional example for load balancing on the Grid
are the GridSim load balancing [55] and the Enhanced Grid-
Sim load balancing [48]. The GridSim model relies on the
hierarchical structure of the Grid environment and places
the load balancing control at the Grid Node level. There-
fore, each Grid node handles the tasks and resources avail-
able within it to offer best achievable load balancing and re-
duces idle time and control overhead. In Enhanced GridSim,
the model is extended to include a second level of load bal-
ancing performed at the machine (that being a cluster com-
puter, a NOW, or any computational/resource entity that also
contain multiple local resource) level where local load bal-
ancing is done within each machine. Furthermore, load bal-
ancing methods may be designed as part of the application
or moved to the system level. Load balancing at the appli-
cation level has the advantage of being more informed of
the application’s requirements, while implementing it at the
system level will provide a more efficient approach as it will
be better tuned to the available resources and independent
of the specifics of the applications. Another approach that
emerged for load balancing is to introduce it at the middle-
ware level, thus having more links with the system while
maintaining independence from the applications. A final ex-
ample we include here involves process migration to achieve
load balancing [53]. PS-GRADE, a graphical environment
for parallel programming, is enhanced by adding a model
to monitor global states to decide on the processes allo-
cation/reallocation based on load levels. The synchronizers
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gather processes states, construct the global state then issue
control signals to preserve states and migrate processes to
less loaded resources. The model can support a centralized
synchronizer or a group of distributed synchronizers.

More recently more criteria in scheduling and load bal-
ancing became important one of which is energy effi-
ciency. Several research groups are investigating different
approaches that could offer efficient scheduling and load
balancing, while maintaining an efficient use of energy. The
survey [54] focuses on the characteristic of two main power
management technologies: (a) static power management
(SPM) systems that utilize low-power components to save
the energy, and (b) dynamic power management (DPM) sys-
tems that utilize software and power-scalable components to
optimize the energy consumption. In addition, [35] Outlines
the role of the communication fabric in data center energy
consumption and presents a scheduling approach DENS that
balances energy consumption, individual job performance
and traffic demands. The authors in [45] introduce a sim-
ple two phase heuristic for scheduling independent tasks
that improves the previously known Min-Min heuristic. It
relies on the results of the cellular genetic algorithm and
provides results in a significantly reduced runtime. Further-
more, in [47] the authors show that the two phase heuristic
introduced in [45] provides for a more energy-efficient ap-
proach as tasks are better distributed across resources. In
[36] independent batch scheduling in computational grids
uses makespan and energy consumption as the scheduling
criteria. This works best with massive parallel processing
of applications that require a large amount of data and re-
sults in possible reduction of cumulative power energy uti-
lized by the system resources. The method requires gather-
ing prior information and deciding on the schedule accord-
ingly. NBS-EATA [34] offers an approach to address the
problem of allocation of tasks onto a computational grid,
while simultaneously minimize the energy consumption and
the makespan subject to deadline constraints and tasks’ ar-
chitectural requirements. It offers energy optimizing power-
aware resource allocation strategy in computational grids for
multiple tasks.

In general load balancing techniques require knowledge
of the available resources and their operating conditions. Ta-
ble 1 offers a summary of the techniques we discussed. To
satisfy needs of non-dedicated heterogeneous environments,
it is important to have prior knowledge of the resources, in
addition to keeping an up-to-date view of the current oper-
ational conditions of the environment during run time. As
shown in [16] and [44], this is usually a very costly require-
ment and may significantly reduce load balancing, which
will in turn result in reduced gains of parallelization. As
we mentioned earlier, load balancing is achieved when we
can minimize idle time (i.e. when all contributing resources
complete their tasks at the same time), minimizing overload

on resources and minimizing control efforts. In DDOps as
we will describe later, we offer load balancing that satisfies
these requirements by reducing the overhead and eliminat-
ing the need for coordination among servers.

3 Problem definition

Parallelization is a desirable approach in many domains and
finding an efficient way to do it is very important. In this
paper, we address parallelization from a different angle that
does not only involve parallel computations, but also paral-
lel file/data transfer and parallel networking. In that broad
context, we address the particular point of task distribution
and load balancing. Therefore, we need to clearly define our
scope and identify the problem boundaries. To do that, we
introduce the DDOps technique. DDOps applies to a specific
type of processes; however it is a starting point for a more
general approach to be applied to most parallel or repli-
cated operations and applications. Therefore, it is important
to clearly state the governing problem parameters and de-
clare the operational limits. The main objective of DDOps
is to introduce efficient dynamic load balancing with mini-
mal idle time and minimal communication and coordination
overhead while executing our operations in parallel over a
distributed heterogeneous environment.

The first requirement to successfully use DDOps is to
have multiple distributed independent tasks or a large, but
easily parallelizable task. As we discussed in the introduc-
tion we address problems in three different domains that fit
this requirement namely parallel network transfers over mul-
tiple NICs (Network Interface Cards), parallel file download
from replicated servers, and parallel computation for data or
process intensive applications such as matrix manipulations,
data analysis and image processing. Such domains serve a
large scope of computational problems and can benefit well
from DDOps.

The second requirement is the type and boundaries of
the problems. In this case the problem has to be well de-
fined in a geometric (preferably linear) form and must have
well defined boundaries (known start and end points). When
partitioned, the sub-problems need to be highly independent
from each other (not necessarily fully decoupled, but enough
to allow the producers to work with minimum interference
from each other). Generally there is a huge collection of
such problems including mathematical computations such
as solving systems of linear equations. Moreover, several
applications involve high volumes of data to be transferred,
processed and analyzed as in data mining and pattern anal-
ysis. Furthermore, considering scientific operations, several
computational sites rely on receiving huge data sets from
labs and observatories to use in their computations.

In addition, to make this work well we need to have repli-
cated and redundant resources, which is already available
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Table 1 Summary of load balancing techniques discussed in Sect. 2

Ref. # Name Type Pros Cons Suitable Env. Comments

[40] LB for sorting S/C Efficient during run time
as there is no additional
overhead

Any changes in the
environment will not be
accounted for since the
load is all distributed
beforehand. Described
for one application
(sorting)

Homogeneous or
heterogeneous dedicated
environment such as
clusters

Solves linear system of
equations to determine
throughput of
participating nodes then
partitioning the problem
proportional to the
determined values

[43] LB with
flexibly
assigned tasks

S/C Works well if more units
than needed are
available and does not
add any overhead during
run time

Cannot handle changes
in the environment
during run time. Also
cannot work well with
limited resources

Homogeneous and in
some cases
heterogeneous dedicated
environments

Works well for problems
with overlapping
processing or data.
Requires the existence of
multiple processing units
that any of which could
be assigned a task

[35] DENS S/C Energy efficient
scheduling

Gathers prior
information to achieve
its goal

Heterogeneous
environment with power
concerns

Balances energy
consumption, individual
job performance and
traffic demands

[45, 47] Two-phase
heuristic

S/C Schedules independent
tasks on multiple
resources

Requires preprocessing
to determine optimized
task allocations

Heterogeneous
environments

Improves the min-min
heuristic and provides
energy efficiency

[36] Batch
scheduling

S/C Provides energy efficient
scheduling for the
computational Grid

Requires prior
knowledge of resources
capabilities and works
best for massively
parallel tasks

Relatively homogeneous
environments

Aims to minimize
makespan and energy
consumption

[34] NBS-EATA S/C Determines efficient
allocation of tasks on
computational Grids

Requires prior
knowledge of resources
capabilities

Relatively homogeneous
environments

Aims to minimize
makespan and energy
consumption

[27] M/S LB D/C Eliminates the deadlock
issue with the last task

Communication delays
are not factored, which
could result in
unrealistic estimates

Shared homogeneous
and heterogeneous
environments with stable
communications

Works with master/slave
model. measures
performance of
processors to assign
proportional new load

[49] LB D/C Offers good load
balancing through
reallocation

Requires monitoring
processors to determine
load reallocation which
creates a high overhead.
Developed for parallel
solution of linear
equations

Heterogeneous shared
environments (E.G.
NOW) with stable
communication
performance

Works for the
master/slave model and
data-intensive
applications. Uses
sub-structuring method
of structured and free 2D
quadrilateral finite
element meshes

[20] Dynamic LB D/C Starts with better load
distribution based on
pre-analysis of
workstation speed and
current workload

Requires a wait time to
determine initial
information and
calculate load
distribution. Creates run
time overhead while
waiting to workstations
to finish assigned load
before giving more.
Cannot tolerate
communications delays

Heterogeneous shared
environments (e.g.
NOW) with stable
communication
performance

Requires very fine grain
partitioning and utilizes
system information to
determine a dynamic LB
at the beginning, then
relies on received
responses to determine
next load assignment
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Table 1 (Continued)

Ref. # Name Type Pros Cons Suitable Env. Comments

[55] New LB D/D Localized event
management offers
faster response time for
load reallocation

LB effects may take too
long to propagate across
a large system where
some areas may be
overloaded while a
further area is sitting idle

Heterogeneous systems
with relatively uniform
resources and loads

Uses neighbor
monitoring to request
additional loads from
overloaded neighbors

[3] Decentralized
LB

D/D Reduced communication
overhead using scalable
status information
exchange

Overhead still exists.
Information is
propagated from local
groups to others, thus
full system update may
not happen quickly

Heterogeneous grid with
relatively high
communication delays

Uses task classification
and assigns classes to
sub groups of resources
thus, updates needed
remain localized for
most of the runtime
periods

[31] Global
scheduler LB

D/D Could work well for a
large number of
distributed tasks with
well defined needs

Does not help when we
have data intensive or
identical parallel tasks.
Also requires users to
define their balancing
instances

Heterogeneous systems
and distributed tasks (not
parallel applications)

Requires prior
knowledge of tasks
properties. Distributes
large tasks first then
injects smaller tasks to
fill idle times

[19] Dynamic LB
with delays

D/D Effective resources
utilization bu allocating
incoming loads based on
calculated completion
times

Works well with
distributed tasks but not
parallel tasks where
tasks may need to be
re-allocated during run
time

Heterogeneous systems
with some
communication delays

Uses
regeneration-theory
approach to average
overall completion time
while considering
heterogeneity and
communication delays.
Any node may initiate
DLB when new tasks
arrive

[48] LB for Grid D/D Works well when tasks
are evenly distributed
among Grid nodes and
resources

Imposing high loads on a
small portion of the Grid
hierarchy disturbs LB
since tasks will need to
be redistributed beyond
the local subsystem

Heterogeneous
hierarchical distributed
Grid systems

Task-level LB with
localized decision
making with the
hierarchical Grid
structure

[53] Process
migration

D/– Offers accurate process
states and migration
mechanism

Requires constant
monitoring and
coordination overhead is
high with multiple
synchronizers

Heterogeneous
distributed environments

Designed for message
passing model and
specific environment
(PS-GRADE)

LB = Load Balancing, X//Y → X = S = static, X = D = dynamic; Y = C = centralized, Y = D = distributed

in various environments usually for reliability and enhanced
performance purposes. For example, many compute nodes
on the Grid have huge numbers of replicated computational
nodes and storage units. Furthermore, the Cloud is built
based on replication and mirrored sites that are currently
used to offer better performance for the Cloud clients and
improve the overall availability of their services. As for the
examples we use here, in the case of FTP, the requested files
need to have replicated copies on multiple FTP servers that
do not need to be in the same location or in direct contact
with each other. In addition, in terms of parallel computa-
tions, we need to replicate the processing code and the data
used. Furthermore, in the network model we need to have

a sender/receiver with redundant NICs on both sides, which
is currently the case in most computers as they usually have
more than one NIC.

DDOps uses the producer/consumer model where the
consumer is the requesting process and it is also the pro-
cess in control. The producer on the other hand is one
or more processes/resources that will be executing the re-
quested tasks independently from each other and delivering
the results to the consumer. In a way this is just a spinoff
from the client/server and the master/slave models and we
use it to avoid confusions since in some cases the server
may be either a producer or a consumer. Thus, we use the
producer/consumer terms to have a clearer identification of
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who is doing the processing and generating the results and
who is getting the results of this processing. The technique
allows all producers to work independently from each other
and none of them require any prior or run-time knowledge
of the other producers. The consumer on the other hand is
the one taking control of the process, instructing the pro-
ducers to start their tasks and providing them with enough
information on how and where to start their work. The con-
sumer is also responsible for collecting and aggregating the
incoming results to produce the final results required and
also to inform the producers when it is time to stop their
work. Furthermore, the consumer is also responsible of re-
assigning tasks or partitions to free producers as soon as they
finish the tasks at hand. This technique works on any type of
distributed environment. However, it is best suited for het-
erogeneous highly dynamic environments. Thus the overall
benefits are higher on a widely distributed system such as
the Grid and Cloud than they are on LAN or homogeneous
systems.

4 Dual-direction operations (DDOps)

The novel approach in DDOps offers parallelization of large
tasks with dynamic load distribution and execution without
having to actually know of the conditions and capabilities
of the resources involved. As a result it works very well
in heterogeneous environments with very dynamic operat-
ing conditions. Here we describe the DDOps technique that
enhances the performance and load balancing while reduc-
ing the overhead. We will start by explaining the base case
(dual-producer), where only two producers are used then
we will describe the general case for multiple producers (k-
producers). The idea is based on a basic concept of no syn-
chronization parallelization. Thus there will be no need for
constant monitoring or reallocation of the load during pro-
cessing. In addition, the producers will not need to perform
any synchronization or coordination measures among each
other nor with the consumer. Those will be handled on the
consumer side alone. When a problem is partitioned, instead
of alternating partition assignments from the beginning, we
proceed from either end of the set of partitions until the pro-
ducers meet somewhere in the middle.

To clarify the picture let us take a physical problem where
a supervisor has ordered forms to be processed and two as-
sistants to do the job. A simple way to do this is for the super-
visor to divide the batch into two equal parts and give them
to the assistants. However, if one assistant is faster, then the
supervisor will have to wait for the slower one to finish,
while the faster assistant is free. To reduce this waiting time
the supervisor could further partition the batch into multiple
smaller batches (partitions) and give each worker a partition
to work on and then they have to come back when done to

take another. Therefore, the imbalance will be reduced, but
there will be delays due to the continuous communications
and monitoring to organize the dispatch and return of forms
in an orderly fashion. In our model all the supervisor needs
to do is spread the batch of forms in a common area (some-
thing like a long line on a table) and tell the first assistant
to pick up forms from one end (moving from left to right)
and the other to do the same from the other end (moving
right to left). Each completed form is marked and returned
to its location. This way, none of the assistants will need to
go back to the supervisor and they will keep working at their
own pace until they both encounter a marked form (indicat-
ing the other has completed that one). As a result, whether
or not the assistants work at the same speed or not will not
matter since the faster one will just process more forms and
they will both finish at almost the same time. In addition nei-
ther of the assistants needs to know what the other is doing
or how far he/she is. As a result, none of the assistants will
be idle and they will not waste time trying to coordinate with
the supervisor or each other. The movement in opposite di-
rections allows DDOps to reduce coordination and control
overhead of distributing the processing while reducing the
restrictions imposed by the resources and allowing the con-
sumer to fully utilize them.

4.1 The technique for the dual-producer case

In the dual-producer DDOps we have two replicated in-
stances of the problem resources and each DDOps pro-
ducer (DDP) handles the assigned blocks from an oppo-
site direction. The DDOps consumer (DDC) initiates the
operations of the first producer (DDP1) to start from the
beginning moving towards the end (left to right) and the
second (DDP2) to start form the end moving towards the
beginning (right to left), as illustrated in Fig. 1. The par-
allel DDPs stop working as soon as they receive a stop
message from the DDC. The stop messages are sent when
the DDC receives the results for two consecutive blocks,
one from each producer; as it signifies that all blocks were
completed. For example, with an n-block problem, DDP1

processes the ordered blocks b1, b2, b3, . . . , bm and DDP2

processes the ordered blocks bn, bn−1, . . . , bm+1. This en-
sures that the faster DDP will have the opportunity to pro-
cess more blocks, while the slower DDP will process fewer
blocks during the same time period. In addition, none of the
DDPs will need to wait for the other and they do not re-
quire any additional instructions during processing. Thus,

Fig. 1 Block processing and downloading directions by dual DDOps
producers DDP1 and DDP2
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they will be busy for relatively the same amount of time
and will automatically achieve load balancing despite any
changes in the environment’s operational conditions during
execution. The meeting point (m) will change depending on
the capabilities of both DDPs, the overall operating condi-
tions at both sites, and the available resources to each DDP.
If both DDPs are similar and operate under very similar load
and network conditions, m will fall roughly in the center.
However, as soon as any of the parameters changes for one
of the producers, m will move closer to the slower DDP as
the faster DDP picks up more of the work. As both DDPs
continue to process blocks and send their results from dif-
ferent directions, the DDC will put together the intermediate
results and will know exactly when all the work is done and
ask the DDPs to stop. This automatically solves the problem
of load balancing between dual heterogeneous DDPs with
dynamic loads located on heterogeneous environments with
dynamic conditions. Yet it will not require any communica-
tion or monitoring from the producers side at all. Therefore,
both producers will be independently working on their parts
of the job without delays and without exerting any additional
effort.

Each DDP maintains a separate block counter such that
DDP1 maintains an incrementing counter starting from one,
while DDP2 maintains a decrementing counter starting from
the last block number. This information is easily obtained
since the problem size and the number of blocks are deter-
mined at the beginning of processing. The DDC will provide
this information along with the necessary data and process-
ing instructions to the DDPs from the beginning. Since the
results are sent over TCP [51], a reliable transport proto-
col, the blocks’ first-in-first-out (FIFO) order is preserved
for each TCP connection. That is, if DDP1 sends results for
blocks b1, b2, b3, and b4 to the DDC, these will be received
in the same order b1, b2, b3, and b4. Although some blocks
might be lost or corrupted, TCP maintains the reliability and
FIFO order of delivery. These same features relieve the pro-
ducers from needing to add sequence headers to each sent
result, thus eliminating another possible overhead compo-
nent.

The implementation of the technique on the producer
side requires very few components. Each DDP maintains a
counter and executes two main operations initiated by the
control messages Start and End that are sent by the DDC.
The Start message carries five parameters: the process name,
processName, which tells the DDP which process is to be
executed; the resource name, resourceName, which signifies
either the file to be downloaded if the process is download,
the result file name if parallel computation is the process and
the connection name for the network transfer case; the block
size blockSize, which tells the DDP how big each block is
in bytes; the first block number firstBlock, which indicates
the starting block; and the counter mode counterMode, to

tell the DDP in which direction the processing will proceed
(“increment” forcing the DDP to move forward or “decre-
ment” which will make the DDP move backwards). As a
result each DDP will perform the operations as requested
by the DDC and continue to work until the End message
arrives. The End message carries the name of the active pro-
cess and tells the DDP to stop processing more blocks. Each
DDP is multi-threaded to be able to handle multiple requests
from different clients at the same time.

On the DDC side, more control is needed thus the imple-
mentation is a bit more complex. When the task is requested,
the DDC needs to locate the available replicas of the task re-
sources and get the information about the location and size.
Using this information the DDC decides on the block size
and start and end points. After issuing the Start messages
to the DDPs, the DDC needs to manage the different results
received from the two DDPs and keep track of processed
blocks until all required blocks are completed before ask-
ing the DDPs to stop using the End messages. When the
DDC needs to execute a task, it first finds the information
about the available resources and the addresses for the par-
ticipating DDPs. Then if necessary, DDC distributes copies
of the problem (code and/or data) to all DDPs. Then it de-
cides on a partitioning model and calculates the number of
blocks and initiates the processing from the two DDPs by
sending a different Start message to each one. For example
DDP1 is given the Start massage (download, fileXYZ, 4000,
1, increment) and DDP2 is given (download, fileXYZ, 4000,
n, decrement). Where download indicates that DDC needs
to download the file named fileXYZ in blocks of size 4000
bytes. As the messages indicate, DDP1 is to start from block
number 1 and move forward, while DDP2 is to start from
block number n and move backwards. (i.e. If the file size is
800,000 bytes, then there will be 200 blocks of size 4000
bytes and n = 200). Each DDP upon receiving the Start
message will begin file transfer accordingly. As the DDC
receives file blocks, it will reconstruct the file and watch for
the point where blocks meet. As soon as the DDC receives
two blocks with consecutive block numbers, it knows that
all blocks have arrived and immediately sends an End mes-
sage to both DDPs. Any additional arriving blocks after that
will just overwrite their earlier version so the DDC does not
need to verify duplicates.

4.2 The technique for the k-producer case

The technique described in Sect. 4.1 provides an efficient
solution for load balancing for parallel operations using
DDOps with two producers. As we include more produc-
ers, it becomes more complicated. However, it still requires
no coordination among producers. The general approach
we will describe can apply to any number of producers;
however, for simplicity and without loss of generality, we
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Fig. 2 Multiple DDP solution

will deal with an even number of producers, where the
dual-producer method is repeated among pairs of produc-
ers. Generalizing the method for an odd number of produc-
ers requires minor changes in the producer operations. Each
DDP will start processing blocks from the specified prob-
lem based on the content of the Start message it receives
and will stop processing as soon as an End message arrives.
However, the DDC will have to account for the difference in
numbers. If we have an odd number of producers, we will
pair (k −1) producers and the last one is spawned into a pair
of threads making up a virtual pair that will operate like the
other pairs.

To demonstrate the concept, assume there are k replicated
producers, where k is even. The DDPs are divided into k/2
pairs. In addition, the problem at hand is also divided into
a large number of equal-sized blocks that are grouped into
k/2 partitions as shown in Fig. 2. The size of each partition
can either be the same for all groups or if prior information
is available, it can be chosen to be proportional to the rel-
ative speed/performance of the associated DDPs such that
high performing producers are given larger partitions. Each
pair of DDPs handles its partition as described in the dual-
producer case. During processing, any pair that finishes its
partition is reassigned by the DDC to help another pair in
its partition. Let us call the pair that finishes its partition a
freePair while a pair that is still working a busyPair. Each
busyPair consists of an incrementing busy DDP, which is
working from left to right and a decrementing busy DDP,
which is working from right to left. The partition of the se-
lected busyPair is divided further into two partitions, left-
Part and rightPart. After dividing the selected partition into
two new partitions, one of the free DDPs is associated with
the incrementing busy DDP to form a new DDP pair for the
leftPart while the second free DDP is associated with the
decrementing busy DDP to form another DDP pair for the
rightPart. The first free DDP starts to work in the decrement
mode from the end of the leftPart while the incrementing
busy DDP continues its operation from left to right (without
any changes) on the same partition. In addition, the second
free DDP starts to work in the increment mode from the be-
ginning of the rightPart while the decrementing busy DDP
continues its operations from right to left on that partition,
again without changes to its original work direction. This al-
lows the free DDPs to help busy DDPs while the busy DDPs
continue their operations normally without any interruptions
or changes. All of this is achieved by simply sending two

new Start messages to the freePair DDPs indicating the new
block numbers to start from and the directions of the oper-
ation. All other pairs including the one receiving the help
are not affected. Pair reassignments may be repeated several
times by the DDC until there are no more DDPs needing
help.

For large problems and with large heterogeneous dis-
tributed environments, it may be necessary to repeat the re-
assignment of pairs several times, which may cause some
delays. To enhance load balancing among the DDP pairs
and reduce reallocations, three greedy strategies are intro-
duced. These strategies aim to reduce the number of reas-
signments, thus reducing the number of Start/End messages
to be sent and resulting in more efficient operations among
all pairs. In the first strategy, if there are multiple busyPairs
that need help, we select the busyPair with the maximum
number of unprocessed blocks in its partition to be helped
first. Thus helping what appears to be the slowest of the pro-
ducer pairs. The second strategy applies after selecting the
pair to help. Within the selected DDP pair we associate the
slower DDP (which processed fewer blocks than its partner)
from the selected busyPair with the faster DDP (which pro-
cessed the more blocks than its partner) from the freePair
and vice versa. This makes the faster free DDP pick up the
slack from the slower busy DDP, while the slower free DDP
is paired with the faster busy DDP. As a result we rebalance
the overall workload between the two new pairs. This strat-
egy takes into consideration the recent history of the DDPs
load by maintaining for each DDP Si the number of blocks
C(Si) it processed at the DDC. This number represents the
contribution of the DDP to the processing of the blocks.

The third strategy divides the unfinished partition based
on the recent progress of the four DDPs involved in the pro-
cess rather than blindly dividing the remaining blocks in
half. Let Sil , Sdl , Sir , and Sdr denote the incrementing DDP
on the leftPart, the decrementing DDP on the leftPart, the
incrementing DDP on the rightPart, and the decrementing
DDP on the rightPart, respectively. The DDPs Sil and Sdr

are from the original busyPair that needed help while DDPs
Sdl and Sir are from the original freePair that will help the
busyPair. The DDPs Sil and Sdr do not need to change their
next block numbers. They continue their operations and di-
rections. However, we need to assign new next block num-
bers for DDPs Sdl and Sir . To assign the next block numbers
for DDPs Sdl and Sir based on the recent progress of the
four DDPs involved in the process, we need to divide the un-
finished blocks in the selected unfinished partition into two
parts with sizes proportional to the recent speeds of their
associated DDP pairs. Let us define a new function P(S)

to be the next block number that the DDP S needs to pro-
cess. The number of unprocessed blocks in any partition is
the next block number that the decrementing DDP needs to
process minus the next block number that the incrementing
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DDP needs to process plus 1.

Unsent fragments = P(Sdr ) − P(Sil) + 1 (1)

We need to divide this number of blocks into leftPart and
rightPart, with sizes proportional to their DDPs’ processing
speeds. Let the recent contribution of the leftPart DDPs be
represented by C(Sil)+C(Sdl) while the contribution of the
rightPart DDPs be calculated as C(Sir )+C(Sdr). Therefore
we can calculate the number of unfinished blocks for the
leftPart, U (leftPart), as:

U(leftPart) = unsent blocks

× Contibution of leftPart DDPs

Contribution of all four DDPs
(2)

U(leftPart) = (
P(Sdr) − P(Sil) + 1

)

× C(til) + C(tdl)

C(til) + C(tdl) + C(tir ) + C(tdr )
(3)

The value of U (leftPart) can be a real number but it should
be truncated to an integer value. We have:

unsent blocks = U(leftPart) + U(rightPart) (4)

From Eq. (4), we can calculate the unfinished blocks for the
right part, U (rightPart), by:

U(rightPart) = unsent blocks − U(leftPart) (5)

U(rightPart) = (
P(Sdr) − P(Sil) + 1

) − U(leftPart) (6)

From these equations, the next block numbers for DDPs Sdl

and Sir can be calculated as:

P(Sdl) = P(Sil) + U(leftPart) − 1 (7)

P(Sir ) = P(Sdr) − U(rightPart) + 1 = P(Sdl) + 1 (8)

For example, assume we are downloading a file named
fileXYZ with 40 blocks of size 4000 bytes each from four
servers using four DDPs (DDP1, DDP2, DDP3 and DDP4).
The file blocks will be divided into two equal partitions
and four replicated DDPs will transfer the blocks from the
file, see Fig. 3. DDP1 and DDP2 will work on the first

Fig. 3 4 DDPs processing two partitions at relatively equal speed

partition, while DDP3 and DDP4 will work on the sec-
ond. This is achieved by the DDC sending the Start mes-
sages (download, fileXYZ, 4000, 1, increment), (download,
fileXYZ, 4000, 20, decrement), (download, fileXYZ, 4000,
21, increment) and (download, fileXYZ, 4000, 40, decre-
ment) to DDP1, DDP2, DDP3 and DDP4, respectively. As-
suming all DDPs have equal operational properties all will
finish around the same time. Now consider a scenario where
workloads on the DDPs are different such that the second
partition was completed while the first partition is still be-
ing processed. Now, consider at the time immediately after
the second partition is completed the contributions of DDP1,
DDP2, DDP3 and DDP4 are 4, 2, 12, and 8, respectively, as
in Fig. 4(a). Based on the second greedy strategy described
above we will associate DDP4 with DDP1 and DDP3 with
DDP2, as in Fig. 4(b). This means that Sil = S1, Sdl = S4,
Sir = S3, and Sdr = S2. We have C(Sil) = 4, C(Sdl) = 8,
C(Sir ) = 12, C(Sdr) = 2, P(Sil) = 5, and P(Sdr ) = 18. We
can calculate U (leftPart) from Eq. (4) as:

U(leftPart) = int

(
(18 − 5 + 1) × 4 + 8

4 + 8 + 12 + 2

)
= 6

Thus we can calculate P(Sdl) and P(Sir ) from (7) and (8)
as: P(Sdl) = 5 + 6 − 1 = 10 and P(Sir ) = 10 + 1 = 11

Therefore the DDC will send Start messages (down-
load, fileXYZ, 4000, 10, decrement) and (download, fileXYZ,
4000, 11, increment) to DDP4 and DDP3, respectively. Ac-
cordingly all four DDPs are re-paired to process and send
blocks from the first unfinished partition. In addition, they
all have a more balanced load based on their previous per-
formance to ensure they finish at about the same time.

Fig. 4 Top: 4 DDPs processing 2 partitions, 2nd partition is completed
by DDP3 and DDP4 while the 1st partition is still being processed.
Bottom: rearrangement of DDPs when DDP3 & DDP4 start helping
DDP1 and DDP2. DDP3 and DDP2 pair gets more blocks based on the
partitioning heuristics
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In the following sections (Sects. 5, 6 and 7) we ex-
plore three different examples of application domains where
DDOps is very useful. We will cover DDFTP (Dual Di-
rection FTP) for parallel file and data set transfers, DDPar
(Dual Direction Parallel Processing) to illustrate its use in
parallel processing, and DDNet (Dual Direction Network
transfer where we use multiple NICs to transfer messages
in parallel.

5 Dual-direction FTP (DDFTP)

Replicated FTP servers are available over the Internet to
supply users with files for installing new applications such
as video games and office applications, for upgrading and
maintaining existing applications and systems such as Win-
dows and virus protection software, for entertainment such
as music and movies, and for specific information such
as financial and geographic information. In addition, repli-
cated FTP servers are available over Grid environments from
which different Grid applications and users can download
and utilize data files. These files are usually very large and
contain important information. To achieve high download
rates and good load balancing, it is important to be able to
utilize the redundancy available and at the same time min-
imize the coordination overhead. Applying the technique
we described earlier, we can download file partitions from
replicated servers (producers) and rely on the characteris-
tics of TCP to help in the ordering and reconstruction of the
file from the delivered blocks on the client (consumer) side.
The control and coordination is done on the consumer side,
which relieves the servers from coordination and allows us
to distribute the task among any set of distributed producers
regardless of their locations or communications capabilities
among each other.

Here, we use the term dual-direction FTP (DDFTP),
where we use the DDOps technique for file downloads from
replicated FTP servers. As described in the general model,
the DDC (in this case the DDFTP client) will first issue a
request to receive file information including the file size and
the number of available replicas and their locations. Using
this information the DDC will determine the number of pro-
ducer pairs to be used (based on the number of available
DDFTP servers), partition the file accordingly and send dif-
ferent Start messages to the DDFTP producer (DDP) pairs.
Each DDP will find the file and start sending blocks starting
from the start block number received and in the direction
given by the DDC. The DDC will receive the blocks from
each producer in order (courtesy of TCP) and will combine
all blocks to build the file. DDC will also verify block num-
bers and send End messages to the DDPs as soon as it con-
firms receiving all requested blocks.

5.1 Background

The original FTP as described in RFC 959 [22] was designed
to support file transfer in a distributed environment using
the client/server model and serving a single connection at
a time. Over the past few decades many implementations
of FTP client and server software were introduced [24] and
with these different implementations, several enhancements
were made and given the single client/connection design the
performance of FTP was improved to its best possible lim-
its. To further improve FTP performance, researchers had to
explore more drastic models involving the use of multiple
servers/clients, proxy servers, multithreading, and multiple
connections. Several ideas were explored and one of the ear-
liest was the GridFTP [6]. GridFTP supports efficient mass
data transfer using parallel TCP streams and data striping
over multiple servers. Further enhancements and variations
of GridFTP were also introduced such as the middleware to
enhance reliability of GridFTP [39] and the dynamic paral-
lel data transfer from replicated servers using the GridFTP
features [57]. Another potential improvement was done as
part of PFTP [11], where striping and parallel connections
are used to move data from cluster to cluster. PFTP relies on
the availability of a parallel file system such as PVFS (Par-
allel Virtual File System), which stores large files in trips
across multiple cluster nodes. Another research group intro-
duced a PFTP for high performance storage systems (HPSS)
[28], where the standard FTP with special extensions is used
to enhance file transfer performance for large files. A differ-
ent approach for parallel file transfer is to use a proxy that
controls the process. This proxy could be either close to the
client or the server depending on the functionalities needed.
One example is discussed in [25], where a proxy handles
the client request for file download, retrieves file parts from
various servers, orders the parts then delivers them to the
client. The main issue here is that received parts are likely
to arrive out of order, which may lead to the need for a very
large buffer and may also cause delivery delays to the client.
To resolve the buffer problem, some researchers suggested
the use of variable block size for the download [33]. Also
to enhance download times and reduce costs in the Grid en-
vironment researchers proposed a dynamic server selection
scheme coupled with P2P co-allocation based on available
bandwidth values between client and servers [29].

In general, various concurrent and parallel techniques are
used to enhance file transfer performance and provide clients
with fast and reliable file downloads. However, as in the gen-
eral case of parallelism, adding more does not always result
in a matching improvement level. In most cases the overhead
imposed and the control issues result in lower performance
gains than expected. As a result many of the models we ex-
plored offer good enhancement but still afford more [4]. In
the following sub-sections we will further explore our pro-
posed method for parallel file downloads, that will enhance



Cluster Comput (2014) 17:503–528 515

Fig. 5 FTP Vs. DDFTP on LAN with heterogeneous load

performance while minimizing overhead. This method may
also be combined with some other methods described here
to further enhance performance.

5.2 Performance measurements (dual-producers)

We conducted several experiments to evaluate the perfor-
mance gains of DDFTP for the dual-producer case and we
compared the performance of DDFTP with the regular FTP,
concurrent FTP and dynamic adaptive data transfer model
(DADTM). Concurrent FTP downloads a file replicated on
two FTP servers by dividing it into two equal sized partitions
and downloading them in parallel. DADTM is an approach
using dynamic adaptive data transfer as described in [57].
For all experiments three computers were used: two servers
and a client, connected by a wired Ethernet LAN. In the
first set of experiments some processing and communication
loads were put on the servers while the client was dedicated
for the download process. Both regular FTP (on two servers
FTP1 and FTP2) and DDFTP performances were measured
and compared for downloading five files of sizes 100, 200,
300, 400, and 500 MB. The files were stripped into blocks of
4000 bytes each. The download was repeated ten times and
the average time was taken. Figure 5 shows very good per-
formance gain for DDFTP over regular FTP and it increases
as the files grow larger. We also verified the correctness of
the downloaded file by comparing the downloaded and orig-
inal files and no differences were found. In addition we used
archived and executable files for the download, all of which
worked correctly after the download.

In the next set of experiments, the performance gains of
DDFTP compared to DADTM and concurrent FTP were
measured. To implement the DADTM we developed the
model with an initial discovery phase to determine the par-
tition sizes, then periodic monitoring to adjust the load ac-
cording to changes in the environment. DADTM will first
request small equal sized blocks from the servers then based
on the response time will partition the file relative to the ob-
served performance. To show the performance differences
we made the first server very busy with other loads while
the second server was left free. As shown in Fig. 6 the per-
formance of DDFTP is at least eight percent (8 %) better

Fig. 6 Concurrent FTP, DADTM & DDFTP with heterogeneous load

Fig. 7 No. of blocks DDFTP producers processed during download

than DADTM and over fifty percent (50 %) better than con-
current FTP for all file sizes. Although the percentage over
DADTM is not too high, it offers a good improvement based
on the LAN setup and current conditions. In addition, we
will show in the experiments with multiple servers that this
difference increases significantly as the load on the servers
vary and network delays increase especially in WAN.

When measuring the DDFTP performance, since the two
DDFTP producers had different loads during the download,
we also measured the contribution of each server for DDFTP
when downloading a file. Figure 7 shows the percentage of
blocks on average that were downloaded by each DDFTP
producer. As it clearly shows, DDFTP2 did not have a lot
of load on it to begin with so it was able to transfer most of
the blocks while DDFTP1 was trying to handle the different
loads on it in addition to the file transfer thus it managed to
transfer less blocks during the same time. In comparison, the
concurrent FTP servers had no choice but to each complete
the assigned half of the file (50 % of the file each). There-
fore, FTP1 took much longer than FTP2 to finish the trans-
fer. During the extra time, FTP2 was idle. As for DADTM
the distribution was relatively similar to DDFTP but with
slightly less correspondence to the actual load differences
among the FTP servers. We will provide detailed experi-
mental results for DADTM in the multiple-server case. If we
consider the case where both servers are free and operating
at the same level, then the difference between all three meth-
ods would be less obvious and the FTP servers will share the
load relatively equally. However, in actual FTP operations
FTP servers will mostly have varying loads on each one and
their operating conditions will be heterogeneous and dynam-
ically changing during the download. Therefore, our tech-
nique provides better load balancing in the download efforts
and will result in shorter download times.
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Table 2 List of FTP servers
used and their operational
properties

Server # RTT (s) 500 MB
transfer time (s)

Effective bandwidth
(MByte/s)

1 0.240 524.747 0.952840

2 0.200 569.095 0.878588

3 0.150 656.064 0.762121

4 0.240 874.578 0.571704

5 0.240 524.747 0.952840

6 0.200 569.095 0.878588

7 0.150 656.064 0.762121

8 0.240 874.747 0.571594

As these experiments show, the overall performance of
DDFTP using two servers has improved significantly com-
pared to regular FTP and also showed significant improve-
ment over the concurrent FTP, when the servers and/or their
operating conditions are heterogeneous. We also showed
that it performs better compared to DADTM. As we men-
tioned earlier, several research groups proposed dynamic
partitioning of files based on network and server conditions;
however, they all impose high coordination overhead. This
would be fine when using a LAN and generally stable op-
erating environment, but as soon as this moves to a WAN,
the propagation delays and other transmission problems will
cause the overhead to grow significantly and reduce any pos-
sible gains. Our proposed technique in DDFTP does not re-
quire any coordination from the DDFTP producers and the
only messages exchanged are one Start and one End mes-
sage per producer. Producers do not need to synchronize or
coordinate with each other nor wait for intermediate instruc-
tions from the consumer. The consumer takes care of the or-
ganization of the file components locally thus eliminating
the need for any communication overhead.

5.3 Performance measurements (k-producers)

To show the performance gains of DDFTP using multiple
servers, we conducted several experiments. We used a wide
area network (WAN) emulator between the FTP client and
the FTP servers to include the effects of WAN such as high
return trip time (RTT), limited bandwidth, packet drops, etc.
Eight servers were used with the specifications listed in Ta-
ble 2. Each numbered server has an RTT (to the client),
transfer time of a 500 MB file to the client, and the effective
bandwidth achieved in the transfer under the current condi-
tions. In all cases, a maximum of 0.240 second RTT is used,
which is relatively close to the time it takes a signal to travel
between USA and Europe.

Experiments were conducted using four and eight servers
to measure performance of file transfer (file size 500 MB)
using DDFTP, DADTM and concurrent FTP. Figure 8 shows
the results of all experiments. The figure clearly shows the

Fig. 8 Download Time (500 MB) with Multiple FTP producers

performance advantage of using DDFTP compared to the
other techniques. For example, while it takes concurrent
FTP around 216 s and DADTM 173 s to download the file
using 4 servers, it takes DDFTP only 160 s to download the
same file from the same number of servers. This time drops
to 82 s if 4 More servers with similar specifications where
added. The speedup ratio between the 8- and 4-server cases
using DDFTP is 1.95 which shows significant improvement
with minimum loss. Figure 9(a) shows the percentage of
downloaded data for DDFTP from each of the producers
for 4 and 8 producers. The figures correspond closely to
the percentage of performance for each producer used com-
pared to all. It clearly shows how the load balancing hap-
pens among the producers based on their current capabili-
ties and loads. As a result, we can achieve a high load bal-
ancing without adding coordination overhead. In concurrent
FTP the servers are assigned fixed sized partitions; there-
fore, the slower of the servers will hold up everyone else
until it is done, which explains the overall delay. When load
balancing is introduced based on periodic measurements as
in DADTM (Fig. 9(b)), the percentage of data transfer be-
comes more proportional to the loads in each server in a sim-
ilar way as in DDFTP. As a result, we conclude that DDFTP
achieves as good or better load balancing on non-dedicated
heterogeneous servers. However, the overall performance of
DADTM is lower as it involves initial measurements and pe-
riodic updates adding more delays.
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Fig. 9 Percentage of
transferred blocks in:
(a) DDFTP: 4 producers (left)
and 8 producers (right)
and (b) DADTM: 4 servers (left)
and 8 servers (right)

5.4 Analysis and discussion

Here we introduced an innovative method based on DDOps
to parallelize file downloads from distributed FTP servers
and achieve good load balancing with minimal coordina-
tion overhead. DDFTP uses dual direction operations as de-
scribed earlier and frees the producers from dealing with
coordination or control issues. Furthermore, each producer
handles the assigned load as best as its current resources and
operational environment allows. Therefore, we do not have
to monitor the operational attributes continuously to adjust
the load. The producers need minimum information and
work completely independently of each other. Therefore,
changes in network properties will not severely harm their
download operations; on the contrary, each producer will de-
liver blocks according to its current capabilities and faster
producers will automatically compensate for the slower
ones.

As the experiments show, with DDFTP we can decrease
the download time from multiple producers significantly by
allowing each pair of producers download in opposite di-
rections. This basically eliminates the need to monitor and
adjust download conditions for each producer and requires
no coordination between them. This becomes very suitable
for the current situation on the Internet, Cloud and Grid
environments where FTP servers are heterogeneous, scat-
tered in different locations and operate under varying net-
work and operational conditions. The overall gain is high
mainly because we were able to minimize idle time for all
producers. Each producer receives its transfer orders in the
Start message independently and continues working until
it receives the End message from the consumer. The con-
sumer, on the other hand, orchestrates the operations and
rebuilds the file. However, the overall effort is minimized

and localized. The DDFTP approach can be combined with
other methods currently used for concurrent file downloads.
For example, DDFTP can be easily incorporated within the
GridFTP to further enhance download time among different
partitions and servers. It could also be enhanced by introduc-
ing a proxy server that will take over the DDFTP consumer
operations and make the whole download distribution trans-
parent to the user.

6 Dual-direction parallel processing (DDPar)

The general approach for efficient load balancing of par-
allel applications on non-dedicated heterogeneous environ-
ments, where multiple problems execute concurrently, is to
use advanced dynamic scheduling and load balancing tech-
niques. This requires continuous monitoring of resources
before and during run time. The gathered information is used
for task/data assignments and reassignments to achieve ef-
fective dynamic load balancing. As an alternative approach
to monitoring, the problem can be divided into multiple par-
titions and processors solve one partition then take the next
until all partitions are processed. Thus, the faster processors
will solve more partitions than the slower ones. This requires
coordination among the processors which causes delay and
reduces the expected overall gains. The Grid and the Cloud
are heterogeneous environments and usually non-dedicated
thus both continuous monitoring and partitioning are very
costly due to the high communication delays among the re-
sources.

Using DDOps we contribute in relieving the application
from having to handle this issue by changing the way the
problem tasks are executed. Using the dual direction ap-
proach allows the resources to independently work on dif-
ferent tasks of the problem from opposite directions and not
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worry about changes in the environment. However, as we
described in Sect. 3, we can apply this technique on specific
types of parallel applications that have relatively indepen-
dent tasks and well defined boundaries. The dual-direction
parallel computation (DDPar) technique distributes task pro-
cessing among the available producers. If necessary, it will
also replicate the programs and data needed for the task if
it is not already available on the producers’ machines. The
DDC gives each DDP the instructions to start processing
from a specific point in the problem in the direction. In this
manner the consumer will form pairs of processing units
to handle each partition from two opposite directions. Each
producer in the pair will work as slow (or as fast) as its own
resources and operating conditions allows, yet they both will
complete their work at the same time. The DDC keeps track
of the results of these computations and informs the pairs
when to stop processing and also reassigns pairs to help oth-
ers when necessary. The main advantage of using DDPar
is that there is no need to monitor resources and reallocate
tasks when the environment changes and load balancing is
achieved regardless of the changes that may occur.

6.1 Background

Parallelization is used to enhance the performance of com-
pute-intensive problems. Multiple processors are used in
parallel to reduce the computation time for large problems
such as image and video processing, scientific simulations,
data visualization, and design optimizations. Some of these
problems are easily dividable and they can be easily par-
allelized using multiple processors/machines while others
have less parallelization degrees and require complex tech-
niques to achieve good parallelization gains. However, in
any parallel application achieving good performance also re-
lies on the scheduling and load balancing efforts. These ef-
forts are simple when dealing with a stable homogenous en-
vironment, however it is challenging for non-dedicated het-
erogeneous environments. In this case it is hard keep track
of and control the resources available all the time. An exam-
ple of the importance of proper partitioning to achieve load
balancing is dealing with sparse matrices [13]. In such ex-
ample, processing is not balanced among the different pro-
cesses due to the varying distribution of the elements; there-
fore, a model to study the initial distribution and partition
the data accordingly is introduced. Using DDPar, it becomes
unnecessary to do that since the pair that will receive a less
dense section of the matrices, will finish faster and be reas-
signed to help other pairs quickly. Another way to achieve
load balancing is using graph partitioning based on the re-
sources capabilities and operating conditions [8].

As we will use parallel matrix multiplication (PMM) as
our example to demonstrate DDPar, we explore here some
relevant models and techniques used. Several PMM algo-
rithms are available for parallel machines or homogeneous

Fig. 10 Result matrix with two producers

networks of workstations [2, 12, 23, 37]. In addition there
are a few for heterogeneous environments such as [9]. This
algorithm was designed with the aim of enhancing load bal-
ancing for heterogeneous environments and reducing com-
munication overhead among the heterogeneous machines.
The algorithm works well as long as the environment’s oper-
ational conditions do not change during run time. However,
it is not suitable for non-dedicated heterogeneous environ-
ments because it cannot change the load distribution after
execution begins. The authors in [7] experimented with dif-
ferent implementations of PMM on heterogeneous clusters
of multi-core processors to find the best scheduling strat-
egy. The authors in [5] experimented with matrix multipli-
cation using the master/slave model on heterogeneous clus-
ters where matrices are divided into smaller blocks. These
blocks are distributed among available slaves based on their
dynamic speed. These approaches and several others rely on
some knowledge either prior or during execution to adjust
the load or they adopt the master/slave model to divide the
multiplication task into smaller sub problems. Generally, we
may achieve load balancing but at the expense of high over-
head. Our technique reduces the problem by limiting the
overhead to achieve better load balancing on non-dedicated
heterogeneous resources.

6.2 Parallel matrix multiplication with DDPar

In this section we illustrate the benefits of DDPar to enhance
load balancing among parallel tasks on non dedicated het-
erogeneous environments. We will use the PMM problem
to demonstrate the technique as it satisfies the requirements
described in Sect. 3. It is well defined in a geometric form,
has known boundaries and can be easily partitioned. The
sub-problems are highly independent therefore the produc-
ers can work with minimum interference from each other.
DDPar makes the parallelization of matrix multiplication ef-
fective on both local environments such as clusters as well as
highly distributed environments with high communication
delays such as Grid and Cloud environments. DDPar can be
applied on the PMM application as shown in Fig. 10. This
figure represents the result matrix of the multiplication pro-
cess. The result matrix can be divided into blocks of equal
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Table 3 Machines
specifications Machine # Specifications

M1 Desktop, Microsoft Windows XP Professional, Intel® Core 2 CPU 6400 @ 2.13 GHz,
3.00 GB of RAM, Gigabit Ethernet NIC

M2 Laptop, Microsoft Windows XP Professional, Intel® Core 2 Duo T7300 @ 2.00 GHz,
0.99 GB of RAM, Gigabit Ethernet NIC

M3 Laptop, Microsoft Windows 7, Intel® Core i5 CPU M450 @ 2.4 GHz, 4.00 GB of RAM,
Fast Ethernet NIC

M4 Laptop, Microsoft Windows 7, Intel® Core i7 CPU Q740 @ 1.73 GHz, 6.00 GB of RAM,
Fast Ethernet NIC

sizes as shown in the figure. Each computing node in the sys-
tem is considered as a resource that can be used to solve part
of the problem (producer). Multi-core machines have multi-
ple producers. In the dual-producer case, one producer will
start calculating the result blocks from the first block (top
left corner) while the second will start from the last block
(bottom right corner). The consumer will ask the producers
to stop processing as soon as it has the full matrix. If the re-
sulting matrix is of size m by p and each block consists of
l cells, then there are (m × p)/l blocks in the result matrix.
If there are more than two producers, then the result matrix
is divided into multiple partitions. In this case, each pair of
producers will work on one partition. For example, with four
producers, the result matrix is first divided into two halves
and each half is processed by a pair as in dual-producer.

6.3 Performance measurements (dual-producer)

To evaluate DDPar for the PMM problem, four multi-core
machines were used with the system specifications listed
in Table 3. These machines were connected by a dedicated
LAN using Dell 2324 Fast/Gigabit Ethernet switch.

Two sets of experiments were conducted to evaluate the
performance of DDPar on PMM with dual producers. In the
first set, machine M1 was the consumer while machines M2
and M3 where the producers. Three square matrices of sizes
1000, 1500 and 2000 were used. The results are shown in
Fig. 11, where Mat(M2) is for the result when one producer
from M2 is used. Mat(M3) is for the result when one pro-
ducer from M3 is used. Eq-Part(M2, M3) is the result when
the problem is divided into two equal parts solved by M2
and M3. Finally, DDPar(M2, M3) is the result when DDPar
is used with one producer from M2 and one from M3. As
shown in Fig. 11, DDPar achieves better processing times
for all matrix sizes and it enhances further with larger ma-
trix sizes.

Another set of experiments was conducted to compare
the performance of PMM using DDPar and the M-Blocks
approach. In the M-Blocks approach the master divides the
matrices into multiple blocks. These blocks are assigned by
the master to the producers each time they finish from a
block. In this case the faster slaves will solve more blocks.

Fig. 11 Performance of PMM

Fig. 12 Effects of long RTT in PMM

The main function of the master is to distribute the blocks
and to combine the results. The M-Blocks approach in-
volves some coordination costs for assigning blocks to the
slaves several times and involves idle time for the slaves
while waiting for new assignments. The experiment was
conducted with an emulated WAN embedded between the
machines. The main aim of this experiment is to evaluate
the effect of long RTT on the performance of both DDPar
and M-Blocks. As shown in Fig. 12, the processing times
of DDPar slightly increase as RTT increases while the pro-
cessing time of M-Block increases significantly as RTT in-
creases. This is mainly due to the cost of coordination in
M-Block, where slaves need to go back to the master every
time they finish a block to get the next one. The cost of co-
ordination in DDPar is kept at minimum since the producer
continues its work and it does not need to wait for the con-
sumer during execution.

6.4 Performance measurements (k-producer)

The following experiments were done to evaluate PMM with
DDPar for multiple producers. One set of experiments was
conducted to evaluate the performance of DDPar in the k-
producer case with k = 4 and k = 8 on a LAN and compare
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Fig. 13 DDPar performance of PMM, k-procedure case

Fig. 14 DDPar performance in a non-dedicated environment

it to the equal partition method (Eq-Part). The results are
shown in Fig. 13. The M1 through M4 bars represent the
execution time for PMM on a single processor on each ma-
chine. For the parallel version M4 was used as the consumer
while one producer was used from each machine for the
4-producer case, DDPar(4), and two producers were used
from each machine for the 8-producer case, DDPar(8). The
speedup for DDPar(4) is 4.38 with respect to the slowest
machine M3 and 3.66 with respect to fastest machine M1.
The speedup for DDPar(8) is 7.90 with respect to slowest
machine M3 and 6.59 with respect to fastest machine M1.
Compared to Eq-Part, we achieved better performance since
each machine was handling load proportional to its capabil-
ities, while in Eq-Part, each machine has to handle the same
amount of load regardless of its capabilities. As a result, the
overall performance is always governed by the slowest ma-
chine in the group.

In another experiment, we measured the effect of hav-
ing varying loads on the producers on the overall perfor-
mance. We compared DDPar with M-Blocks and Eq-Part
using eight producers with imposed load on four of them.
The load levels as shown in Fig. 14 represent the burstiness
of the load on the producers. The amount of load imposed
was relatively constant; however, the variations of its dis-
tribution have been increased in each level. Assuming for
example that the load imposed takes up around 40 % of the
resources available on each of the four producers, in level
one, this extra load is uniformly distributed among the pro-
ducers with minimum changes in the levels during run time.
On each following level, the load variation is increased such
that by level 5, the load level on the four machines varies

very quickly and in unpredictable bursts. As Fig. 14 shows,
the overall performance of DDPar is better than the others
and as the load level variations increase, DDPar becomes
more efficient and maintains better performance. In Eq-Part,
the load variations cause additional delays, however they do
not increase drastically since each producer handles its own
fixed part regardless of the others. However, in M-Blocks,
the performance decreases drastically as the load variations
increase since each producer has to communicate with the
consumer with every completed set of blocks. Therefore, as
the variations increase, the producers lose more time waiting
for the next set of blocks.

6.5 Analysis and discussion

When dealing with parallel applications, one of the major
causes of low gains is communications delays and poor load
balancing. Although this may be easily manageable in ho-
mogeneous environments and relatively easy to handle in
dedicated heterogeneous environments, it is extremely dif-
ficult to manage in heterogeneous non-dedicated environ-
ments. Many dynamic load balancing techniques offer good
results if certain conditions are applied. Examples of such
conditions are low communication delays, predictable load
levels on the nodes and stable operating conditions. With
DDPar, we enhance the performance and inherently achieve
effective load balancing among the resources without im-
posing additional overhead. The experiments demonstrated
the overall advantage of using DDPar even when high com-
munication delays are involved and varying load levels on
the machines were introduced. The simple, yet innovative
work assignment from the two ends of the problem offers
numerous advantages: (1) It allows each node (producer) to
work at its own pace. (2) It eliminates the need for the pro-
ducers to consult with the consumer to get more work. (3) It
allows the consumer to identify and reassign faster produc-
ers to help others effectively. (4) Any change in the operating
conditions of the node where the producer is working will be
automatically reflected on the producer’s performance and
eventually be controlled by the producer without having to
constantly monitor them. (5) Even in homogeneous envi-
ronments, when the problem is unbalanced (e.g. processing
sparse matrices), there is no need to adjust data assignments
since producers will automatically work on different parts at
different paces and be reassigned to help others when nec-
essary. Therefore, load balancing is always achieved with
minimal overhead.

7 Dual-direction message transfer (DDNet)

Here we discuss using the DDOps technique as a middle-
ware-level message striping approach (DDNet) to increase
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the communication bandwidth for data transfer in hetero-
geneous clusters equipped with multiple network interface
cards (NICs). Currently network sockets can handle one
connection at a time and if the machine has more than one
NIC, only one is used per application. In our earlier work
[41], we introduced a new technique to allow an applica-
tion to use multiple NICs to increase bandwidth by stripping
the messages and distributing the stripes (blocks) among the
available NICs. Here we enhance the method to reduce the
overhead. Using TCP we are assured of the correctness and
order of received packets. Therefore, the sender does not
need to number the blocks (no additional header needed) and
the receiver will not have problems managing the arriving
blocks. In addition, by applying DDNet to send blocks from
opposite directions, we reduce contention on resources.

In the Cloud and Grid environments, the infrastructure
usually consists of multiple highly distributed high perfor-
mance equipment connected either locally on high speed
LANs or globally over high bandwidth WANs. In addition,
most computers are now equipped with multiple NICs. Yet,
the communication bandwidth is mostly governed by the
available bandwidth in the network and the maximum band-
width the NIC can achieve. As a result, it is feasible to find
ways to utilize multiple NICs on the machines to increase
the bandwidth. Using the DDNet approach we can divide
the messages into blocks and assign them to different NICs
on the machine and the receiving end receives the blocks
over one or more NICs then combine them to reconstruct
the original message. Since block transmission is done from
opposite directions, we do not worry about the NICs dif-
ferences in performance and we do not need remote coor-
dination and synchronization between them. Using DDNet
at the middleware-level, where the middleware acts as the
consumer, provides a scalable, portable, and flexible solu-
tion to increase bandwidth among heterogeneous systems.
This technique is devised to balance the load so that slower
networks will still contribute in the message transfer, yet at
a slower pace. DDNet relies on the middleware (DDC) to
distribute the blocks, ensure correct transmission and stop it
when all blocks arrive at the destination. The sending and
receiving ends are the producers as together they complete
the transmission of the messages.

7.1 Background

Efforts are being made to utilize existing multiple NICs on
computers to enhance the communication performance of
distributed applications. One important approach is the strip-
ing technique [52]. Striping is well known and understood in
the context of storage systems, for example, the redundant
arrays of inexpensive disk (RAID) architecture [32]. Strip-
ing at lower network levels has been implemented in a num-
ber of research projects, such as the IBM project for strip-
ing PTM packets [50], and the Stripe, which is an IP packets

scalable striping protocol [1]. However, these techniques are
network and/or system dependent. In addition, GridFTP [26]
uses multiple TCP streams to improve aggregate bandwidth
over a single TCP stream in wide area networks. In addi-
tion, GridFTP can transfer data from multiple servers where
data is partitioned to improve performance. Some work as
in [1] and [50] has also been done to minimize the overhead
of striping at lower network layers. This work uses queues
at the receiving end of the channels to maintain synchro-
nization between sender and receiver to reorder the pack-
ets. Another example of using striping in clusters is channel
bonding [10], which is implemented at the kernel level and
it provides high bandwidth and high throughput for the ap-
plications, thus reducing transfer time for medium to large
messages [14]. Since channel bonding is implemented in the
lower network layers, it requires specific hardware config-
urations and additional addressing scheme that restrict its
utilization and impose several limitations [17]. Moreover,
most techniques introduced do not adequately address load
balancing in heterogeneous environments. Our model, Mu-
niSocket [42], solves the problem with minimum interfer-
ence.

7.2 Performance measurements (dual-producers)

To evaluate the performance gains of DDNet, a number of
experiments were conducted using MuniSocket that allows
an application to simultaneously use the available multiple
NICs [41] and using Enhanced MuniSocket that includes
the DDNet technique. To measure the achievable round-trip
transfer time we used the ping-pong benchmark [21]. All
experiments were conducted in sets done in multiple repeti-
tions and the average results for each set were taken. Then,
the sets were repeated and the peak averages of all sets were
reported. This method allows us to avoid considering the re-
sults that are impacted by other load on the networks when
we need not consider it. All experiments were conducted
on a 24-node cluster, where each node is equipped with two
Fast Ethernet (FE) NICs connected to two FE networks. The
experiments measure the round trip time (RTT) and the ef-
fective bandwidth is derived as:

Effective Bandwidth (Mbps)

= (
8 × Message size/106)/(RTT/2) (9)

In Enhanced MuniSocket using DDNet the senders will
each keep a separate counter for the blocks and will in-
crease or decrease it for the next block depending on the
direction it was assigned. An array of status values (one per
block) is used to synchronize the point where the senders
stop processing more blocks. Each entry in the array rep-
resents a block status. The value 0 represents unsent block
while value 1 represents in-transit or sent block. Each sender
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Fig. 15 Effective bandwidth of TCP, MuniSocket, and Enhanced Mu-
niSocket

Fig. 16 Bandwidth utilization of MuniSocket and Enhanced Mu-
niSocket

tries to get and change the corresponding block status value
from the array. As soon as the entry is granted to a sender
the value is changed to 1. Since senders start from opposite
directions, they both can stop as soon as they encounter a
sent block.

Experiments were conducted to evaluate the performance
of Enhanced MuniSocket over two Fast Ethernet (FE) net-
works. With Enhanced MuniSocket, the overall performance
improved noticeably with most message sizes (see Fig. 15).
While MuniSocket (MuniSocket 2*100) only achieved
speedup with messages of size 32 KB and larger, Enhanced
MuniSocket achieved speedup for messages of size 8 KB
and beyond. The speedup of Enhanced MuniSocket for a
64 KB message is around 1.86 with respect to TCP100 and
1.47 with respect to MuniSocket. The speedup of Enhanced
MuniSocket for a 2 MB message is around 1.98 with re-
spect to TCP100 and 1.02 with respect to MuniSocket. This
shows that the original MuniSocket imposes overhead due to
the use of block headers and the senders contention on the
blocks. While Enhanced MuniSocket eliminates this over-
head and increases load balancing. Figure 16 shows the
bandwidth utilization of both MuniSocket and Enhanced
MuniSocket, normalized to the maximum achievable peak.
While the effective bandwidth of MuniSocket approaches
the maximum achievable peak with a 0.5 MB message, En-
hanced MuniSocket achieves this with a much smaller mes-
sage (16 KB).

Another set of experiments was conducted to measure
the load balancing effect achieved by Enhanced MuniSocket
using two FE networks. The first network had no load,
while the second had some load generated by messages
of size 32 KB being exchanged frequently between the

Fig. 17 Effective bandwidth of TCP and enhanced MuniSocket on
loaded network

two nodes. Figure 17 shows the average effective band-
width achieved with a TCP socket, using the first (Unloaded
TCP100) and the second (Loaded TCP100) network, re-
spectively. In addition, it shows the average effective band-
width achieved with Enhanced MuniSocket. Enhanced Mu-
niSocket achieved speedups with messages of size 40 KB
and larger and offered dynamic load balancing with the
varying load on the networks. The results also show that
while the loaded network provides less than 75 percent of its
peak bandwidth, MuniSocket still achieved high bandwidth
gain with dynamic load balancing. That is, with a 2 MB mes-
sage, for example, an average bandwidth of 82.123 Mbps
was obtained with either network interface individually.
However, Enhanced MuniSocket achieved an average band-
width of 161.84 Mbps.

7.3 Performance measurements (k-producers)

DDNet provides an efficient solution for load balancing net-
work traffic across multiple NICs as well as the dual-NIC
case demonstrated in the previous section. Here we show the
performance results for DDNet on more than two NICs. As
described in the general approach, DDOps, when multiple
NICs are available, a matching number of senders/receivers
pairs are created. The message is divided into the same num-
ber of partitions and each pair handles one partition in dual
directions as described for the dual NICs case. Load balanc-
ing is achieved by assigning free pairs to help others when
the load varies. We used the same cluster and benchmark de-
scribed earlier to evaluate the performance of Enhanced Mu-
niSocket over four FE networks. Two nodes were equipped
with two NICs in addition to the original two NICs each had.
Both MuniSocket (MuniSocket 4*100) and Enhanced Mu-
niSocket (Enhanced MuniSocket) with four channels were
evaluated. The results, in terms of peek effective bandwidth,
are shown in Fig. 18. Enhanced MuniSocket provides bet-
ter performance than MuniSocket by a margin of 35 % for
messages of size 128 Kbyte and of 7.6 % for 2 MB mes-
sages. These experiments also show that DDNet provides
good scalability and flexibility to increase message transfer
effective bandwidth.



Cluster Comput (2014) 17:503–528 523

Fig. 18 Effective bandwidth of MuniSocket and Enhanced Mu-
niSocket on four Fast Ethernet networks

7.4 Analysis and discussion

As DDNet allows us to increase the effective bandwidth of
transmission by utilizing the available multiple NICs, it also
results in a good balancing among used NICs and networks.
As shown in the experiments, we were able to achieve high
bandwidth and good load balancing across dual and multiple
NICs. When the network attributes and operating conditions
are similar across the distributed environment, the DDNet
technique (Enhanced MuniSocket) performs slightly better.
However, as soon as the network attributes and operating
conditions vary, we see higher gains with DDNet. The main
reason is that with varying conditions some NICs are able
to transmit several blocks within a time period, while oth-
ers have other loads and are able to transmit fewer blocks
within the same time frame. However, the overall perfor-
mance will improve relative to the average capacity cur-
rently available. All this is achieved without having to mon-
itor the networks or keep track of the variations in loads and
operating conditions. Therefore, DDNet offers an efficient
mechanism to enhance network performance and at the same
time ensure good load balancing without adding any signif-
icant overhead. In addition, DDNet does not require coordi-
nation among the different threads; therefore, there will be
no contention delays or coordination overhead.

8 DDOps analysis

After discussing the DDOps technique and demonstrating
its benefits in three different domains (File download, par-
allel computation and multiple networks message transfer),
we discuss additional characteristics and evaluate the gen-
eral performance. As we described earlier, DDOps imposes
minimal overhead while achieving very good load balanc-
ing. To evaluate the overhead imposed, let us consider the
dual-producer case first. In the dual-producer case, we need
one Start message with starting location (counter’s initial
block number) and counter mode to be sent to each pro-
ducer. In addition, we need only one End message to each
producer to stop processing. Thus only four control mes-
sages are needed regardless of the problem size or the num-
ber and size of the blocks used. For the k-producer scenario,

where k > 2 and k � n, and n is number of blocks in the
problem, we consider the best and average case scenarios.
The best case is where all producer pairs finish processing
their blocks at the same time. Thus the consumer needs to
send k Start messages at the beginning and k End messages
when all the blocks are completed. The complexity of the
best case scenario is O(k), Thus, for small k, which is the
usual operational case, the complexity is constant.

The average case analysis provides a good projection of
the behavior of the proposed approach in real-life where the
communication and processing workload on the networks
and producers are dynamic. A simple approximation of the
average case scenario can be considered when processing
the partitions consists of j load-balancing rounds. In each
round multiple recursive steps are performed by different
producer pairs. In addition, in each round, we assume that
on average half of the producer pairs finished processing
their blocks while the rest only processed an average of half
of their blocks. This implies that about a quarter of the to-
tal blocks is not processed at the end of the current round
and need to be processed in the following rounds. There-
fore, j will be equal to log4(n) rounds. In the first round,
the consumer will send k Start messages to the k producers,
while during the rest of the rounds only k/2 Start message
need to be sent by the consumer to the producers. Thus the
number of Start messages in the average case is:

Number of Start Messages = k + k

2

(
(log4 n) − 1

)
(10)

This means that O(k × log4(n)) Start messages need to
be sent in the average case. Similarly the same number of
End messages will need to be sent, which keeps the total
number of messages within the same order calculated in
Eq. (10). To verify our analysis, we experimentally counted
the number of Start messages needed in the k-producer case.
In all experiments, we used DDFTP with two files of sizes
100 MB and 500 MB to be downloaded using four servers
and eight servers. Three block sizes were used 500 Bytes,
2500 Bytes, and 4000 Bytes. The results are shown in Ta-
ble 4.

The results show that as the number of blocks increases,
the number of the Start messages increases slightly. In ad-
dition, as the number of producers increases, the numbers
of Start messages increases too. However, for different file
sizes, the number of Start messages stays as it is if the num-
ber of servers and blocks are the same. Figure 19 shows
the average number of Start messages needed in the aver-
age case for different scenarios. Another issue to consider
is how DDOps performance is affected by high communica-
tion delays and variations in load levels on the machines. Ex-
periments were done to measure these effects using DDFTP
as an example. In one set we measured the file download
time using DDFTP, DADTM and concurrent FTP (described
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Table 4 Number of start
control messages under different
scenarios

File size
(MB)

# Servers Block size
(Bytes)

#Blocks Actual range of
start msgs

# Start msgs
calculated from (9)

100 4 4000 26215 8–16 16.7

100 8 4000 26215 22–30 33.4

100 4 500 209716 14–18 19.7

100 8 500 209716 26–36 39.4

500 4 2500 209716 14–18 19.7

500 8 2500 209716 32–36 39.4

500 4 500 1048576 16–19 22

500 8 500 1048576 29–36 44

Fig. 19 Load balancing steps
under different scenarios

Fig. 20 The effect of increased
RTT on File download time
using a 100 MB file and 4
producers

Fig. 21 Effect of varying load
on producers on file download
time using a 100 MB file and 4
servers

in Sect. 5) for a fixed file size, with increasing RTT (see
Fig. 20).

Experiments were also done to evaluate the performance
when each of the producers and its associated network is
subjected to varying levels of load throughout the download
time. This shows how non-dedicated machines would be-

have in a Grid or Cloud environment. Here we introduced
several concurrent tasks distributed randomly on the ma-
chines where our producers operate to occupy some part of
the resources including the network bandwidth. Figure 21
shows the overall results again showing the least effect with
DDFTP. The number of parallel load in the figure represents



Cluster Comput (2014) 17:503–528 525

Table 5 Average client CPU
utilizations Servers types & transfer approach Transfer time (s) Average CPU

utilization

Homogenous servers & DDFTP 66 6.27 %

Homogenous servers & DADTM 72 5.89 %

Homogenous servers & concurrent FTP 65 5.42 %

Heterogeneous servers & DDFTP 54 6.67 %

Heterogeneous servers & DADTM 59 6.15 %

the maximum number of tasks randomly introduced across
all machines. For example 10 parallel loads mean that there
may be 5 tasks on one server and its network connections,
three on another, two on a third and nothing on the remaining
machines or it could be that all 10 tasks are on one machine
and everyone else is free. This imposes a random dynamic
load on each machine similar to what they would experience
on normal day to day operations. The higher the number of
parallel tasks imposed, the busier the machines would be. In
this case for concurrent FTP, the overall download time in-
creased with the existing load since we cannot really change
the fact that the slowest of the machines will hold everyone
else. Therefore, as soon as one machine experiences high
load during the download, the whole process will be slowed
even if the other machines are not busy. As for DADTM, the
performance is good; however, it still cannot match DDFTP
since the periodic monitoring to change the load usually
cannot fully keep up with the dynamic changes. This extra
time for monitoring and adjustments reflects in the overall
performance. In addition, the effect increases even more as
the load increases on the machines since more adjustments
will be required. In DDFTP, each producer works indepen-
dently without having to adjust download parameters. Thus,
each producer will use whatever resources available to it to
achieve the best possible performance. Therefore, the over-
all performance remains at the same level with increasing
load on the machines.

Since the DDFTP client (DDC) has a lot of work to
do controlling the producers and organizing the results, we
need to measure how much overhead this imposes on the
DDC. An experiment was conducted to compare the over-
head of different approaches used on the DDC machine. In
this case we used DDFTP for parallel file download as an
example, thus the DDC will request a download operation.
In this experiment, a file of size 500 MB was used. The ex-
periment has two parts to compare the overhead with and
without using load balancing. The first part was conducted
using homogenous servers and network capabilities. Each
server can transfer 1 MB/s. In this part the load balancing
mechanism will not be used as the servers and connect-
ing networks are homogenous. The second part was con-
ducted using eight servers with heterogeneous capabilities.
The servers can transfer between 0.6 MB/s to 2 MB/s. In

this experiment, load balancing is activated as the servers are
heterogeneous. In the first part, the DDC CPU usage values
during the data transfer were recorded for three download
approaches: dual-direction (DDFTP), adaptive (DADTM)
and concurrent (Concurrent FTP) approaches. In the sec-
ond part, the DDC CPU usage during the data transfer for
DDFTP and DADTM were recorded as in the case of con-
current FTP the overhead is always constant regardless of
the environment’s conditions. The results are shown in Ta-
ble 5 and show that there is little overhead on the client’s
CPU usage for the three approaches. In addition, there are
little differences between DDFTP and DADTM; and the
overhead slightly increases in the heterogeneous cases. This
is due to the involvement of the load balancing mechanism
overheads. Although, DDFTP has slightly more overhead on
the client compared to the other approaches, it still provides
better load balancing that results on better transfer times.
As the heterogeneity of the environment increases and its
operating conditions change dynamically, we achieve better
performance with DDFTP and overhead is less significant.

DDOps offers a simple, yet an elegant approach to
achieve load balancing among parallel tasks while minimiz-
ing the control overhead and dodging the effects of high
communication delays. For environments like the Grid and
Cloud, this is particularly important since the resources are
heterogeneous, non-dedicated and highly distributed. The
analysis of control overhead and the experimental evalua-
tions show that we can achieve excellent results in different
settings and various environments (local clusters on LAN
and distributed resources over WAN). This is achievable
due to the low overhead which make the technique more
stable even when high delays and variable loads exist in the
environment.

9 Conclusion

In this paper we presented a new approach for performance
enhancement and dynamic load balancing among distributed
cooperative processes that work on a single dividable prob-
lem on non-dedicated heterogeneous environments. This ap-
proach, based on dual direction operations (DDOps), mini-
mizes the number of messages needed for coordinating the
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processing nodes (producers). In addition, it does not require
any direct communication or coordination among the pro-
ducers. This is done by dividing the work among the produc-
ers which are grouped in pairs such that each pair will work
on its part from opposite directions. This allows each pro-
ducer to continue its work without having to consult with the
consumer or the other producers. In addition, as each pro-
ducer in a pair works towards the other, the load will be au-
tomatically evenly distributed among the two based on their
speed and they will both finish at the same time. This makes
DDOps suitable for load balancing among parallel processes
in any type of distributed environments, yet it shows its mer-
its best in heterogeneous non-dedicated environments. This
approach works perfectly for dual as well as for multiple
producers. As we have demonstrated, DDOps can be used
in various application domains; however, there are certain
requirements where it will offer the best results. These re-
quirements include having easily dividable problems, well
defined problem boundaries, and multiple producers with
replicated resources (e.g. multiple processors for parallel
computations or replicated file servers for parallel file down-
load). We used the parallel file download from replicated file
servers as one example, demonstrated the concept as it sup-
ports utilizing multiple NICs to transfer messages in par-
allel as another example, and described it in parallel com-
putations using PMM as a third example. The experimental
evaluation has shown DDOps’s efficiency and low overhead
in several scenarios. DDOps proved to be useful in paral-
lelizing large tasks and it solves load balancing issues facing
non-dedicated heterogeneous environments such as highly
distributed systems and the Grid and Cloud environments.
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