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Data deduplication has been demonstrated to be an effective technique in reducing the total data transferred
over the network and the storage space in cloud backup, archiving, and primary storage systems, such as VM
(virtual machine) platforms. However, the performance of restore operations from a deduplicated backup can
be significantly lower than that without deduplication. The main reason lies in the fact that a file or block
is split into multiple small data chunks that are often located in different disks after deduplication, which
can cause a subsequent read operation to invoke many disk IOs involving multiple disks and thus degrade
the read performance significantly. While this problem has been by and large ignored in the literature thus
far, we argue that the time is ripe for us to pay significant attention to it in light of the emerging cloud
storage applications and the increasing popularity of the VM platform in the cloud. This is because, in a
cloud storage or VM environment, a simple read request on the client side may translate into a restore
operation if the data to be read or a VM suspended by the user was previously deduplicated when written
to the cloud or the VM storage server, a likely scenario considering the network bandwidth and storage
capacity concerns in such an environment.

To address this problem, in this article, we propose SAR, an SSD (solid-state drive)-Assisted Read scheme,
that effectively exploits the high random-read performance properties of SSDs and the unique data-sharing
characteristic of deduplication-based storage systems by storing in SSDs the unique data chunks with high
reference count, small size, and nonsequential characteristics. In this way, many read requests to HDDs are
replaced by read requests to SSDs, thus significantly improving the read performance of the deduplication-
based storage systems in the cloud. The extensive trace-driven and VM restore evaluations on the prototype
implementation of SAR show that SAR outperforms the traditional deduplication-based and flash-based
cache schemes significantly, in terms of the average response times.
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1. INTRODUCTION

With the explosive growth of digital content, the demand for storage capacity has been
mounting, along with an increasing need for more cost-effective use of storage capacity.
Data deduplication, as a space-efficient method, has been proposed for optimizing
applications such as data backup and archiving, and even for primary storage for
the virtual machine (VM) servers by reducing the amount of storage space consumed
by the current datasets. In the deduplication process, the duplicate data chunks are
deleted, leaving only a single instance of each unique data chunk to be stored. Data
deduplication has been proven to be very effective in saving storage space and network
bandwidth in high-performance, data-intensive environments [Muthitacharoenand
et al. 2001; Nath et al. 2008; Tan et al. 2011]. Different applications have different
levels of data redundancy [Meyer and Bolosky 2011]. For example, virtual machines
can benefit greatly from data deduplication because most OS-specific binaries are sim-
ilar across different guest instances, implying a high level of data redundancy. In many
cases, the VM servers with data deduplication can obtain more than 80% storage re-
duction [Clements et al. 2009]. Backup and archiving applications can generally ben-
efit significantly from data deduplication due to the nature of repeated full backups of
an existing file system [Tan et al. 2011].

Since the unique data chunks that are actually stored after data deduplication are
shared among all original sources of those data chunks, the duplicate data chunks
are replaced by pointers to the data chunks that may well be located in many differ-
ent disks. This can result in a file or block being physically fragmented into multiple
small data chunks located in multiple disks. Thus, each of the subsequent read re-
quests issued to the file or block will likely result in many expensive disk seeks. The
performance of these reads in fact directly reflects that of the restore operation in the
deduplication-based systems. In other words, the read performance will suffer signifi-
cantly from the data fragmentation caused by the deduplication process. For example,
it was acknowledged that the read performance declines noticeably on the deduplicated
data in EMC’s DL3D system, and there are other similar deduplication solutions that
cause the read performance to decline by more than 60% over time.! Our preliminary
experimental study on the virtual machine disk images reveals that the restore time
is more than doubled when the deduplication is used.

Moreover, storage system reliability can be measured by MTTDL (mean time to data
loss) and is inversely proportional to MTTR (mean time to repair). Since the data re-
store operation is a significant part of MTTR, its performance will not only affect the
user-perceived response time, but also directly impact the reliability of storage sys-
tems. Therefore, the deduplication-based backup should not only shorten the backup
window and save network bandwidth and storage space, but and more importantly,
also shorten the recovery window. Unfortunately, the issue of read performance has
received very little attention in the literature. For example, in backup recovery, only
33% of recovery cases are successful [Xiao and Yang 2008], and 48% of organizations
need to reduce recovery times [ESG 2008]. In the VM servers, read performance is
arguably even more important, particularly in primary storage systems and the cloud
environment where the restores from the VM suspensions and migrations are very

1Deduplication and restore performance.
http://www.aboutrestore.com/2008/08/08/deduplication-and-restore-performance/.
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frequent and directly reflect the quality of the cloud services as perceived by clients.
Moreover, the reduced read performance can also lead to SLA (service-level agree-
ment) and SLO (service-level objective) violations, which in many environments, such
as Amazon S3 (Simple Storage Service)?, are also perceived as reduced revenues for
service providers.

Thus, the read efficiency in deduplication-based storage systems is critically im-
portant from the viewpoints of system performance and reliability. There are several
proposed solutions that attempt to overcome the aforementioned problem, including
forward referencing (used by SEPATON’s DeltaStor technology?®) and built-in defrag-
mentation [Rhea et al. 2008; Yang et al. 2010]. However, these solutions increase
either system overhead or fragmentation of the stored data. To address this problem
more comprehensively and effectively, in this article, we propose a new solution, SSD
Assisted Read (SAR), to improve the read performance in deduplication-based stor-
age systems. SAR selectively stores in SSDs unique data chunks with high reference
count, small size, and nonsequential workload characteristics to effectively exploit the
unique data-sharing characteristic of deduplication-based storage systems and the
high random-read performance of SSDs. As a result of SAR, many read requests to
multiple HDDs are replaced by read requests to SSDs, thus significantly improving
the read performance.

More specifically, SAR has the following salient features.

First, SAR significantly improves read performance in deduplication-based storage
systems by transforming many small HDD-bound read I10s to SSD-bound IOs to fully
leverage the significant random-read-performance and energy-efficiency advantages of
the latter over the former.

Second, SAR improves system reliability and availability by significantly shortening
the restore window, a substantial part of MTTR.

Third, SAR is independent of and orthogonal to any existing deduplication methods
and is simple to understand and implement, requiring very few changes to existing
data deduplication methods. Thus it can be easily embedded into any existing dedupli-
cation methods to improve read performance.

To evaluate the effectiveness of the proposed SAR, we have implemented a prototype
of SAR by integrating it into the open-source data deduplication project called SDFS.*
Our extensive trace-driven evaluations of the SAR prototype show that SAR outper-
forms the traditional deduplication-based system significantly in read operations by a
speedup factor of up to 28.2x, with an average factor of 5.8 x in terms of the average
response time. The VM restore evaluations of the prototype implementation of SAR
show that SAR reduces the user response time of the traditional deduplication-based
storage system by an average of 83.4% and up to 176.6%.

The rest of this article is organized as follows. Background and motivation are pre-
sented in Section 2. We describe the SAR architecture and design in Section 3. Perfor-
mance evaluations are presented in Section 4. We review the related work in Section 5
and conclude in Section 6.

2. BACKGROUND AND MOTIVATION

In this section, we present the necessary background about data deduplication and
important observations drawn from our preliminary experimental study on the data

2http://avs.amazon. com/s3/
Shttp://sepaton.com
4ht‘cp ://www.opendedup.org/
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fragmentation phenomenon in deduplication-based storage systems, followed by the
description of flash-based SSDs to motivate our SAR research.

2.1. Data Deduplication Basics

Data deduplication is a specific type of data compression. It splits files into multiple
data chunks that are each uniquely identified by a fingerprint that usually is a hash
signature of the data chunk and removes the duplicate data chunks by checking their
fingerprints, which avoids a byte-by-byte comparison. Data deduplication has been an
essential and critical component in cloud backup and archiving storage systems. It
not only reduces the storage space requirements but also improves throughput of the
backup and archiving systems by eliminating the network transmission of redundant
data, as well as reduces energy consumption by deploying fewer HDDs. Recently, data
deduplication has been applied to primary storage systems, such as the VM servers
and ZFS® [Clements et al. 2009; Dong et al. 2011; Meyer and Bolosky 2011; Zhang
et al. 2010].

Based on how data is placed in disks, data deduplication methods can be classified
into backward-reference deduplication and forward-reference deduplication. In the for-
mer, the newest duplicate data chunks are associated with pointers that point back-
ward to older identical data chunks. In the latter, the newest duplicate data chunks
are maintained in their entirety and all past identical data chunks are associated
with pointers that point forward to the newest data chunks. The forward-reference
approach will provide the fastest read performance on the newest backups and is used
by SEPATON’s DeltaStor.> However, it will also introduce much more fragmentation
for the old data chunks and induce more index update and metadata update oper-
ations, which degrades system performance. Therefore, most existing data deduplica-
tion methods are based on the backward-reference deduplication, especially in primary
storage platforms, such as VM servers in the cloud.

2.2. Data Fragmentation Phenomenon

Data deduplication reduces the storage space by replacing redundant data chunks
with pointers, which often renders originally sequential data nonsequential on disks
as a side effect. Thus, a subsequent read request to the data will incur many small
disk I/O operations, a phenomenon called data fragmentation in deduplication-based
storage systems [Jones 2011; Lillibridge et al. 2013; Srinivasan et al. 2012]. However,
the data fragmentation phenomenon that is much less understood and rarely studied
in the literature can result in increased read response times.

To better understand the impact of data fragmentation associated with data dedupli-
cation on restore efficiency, we conduct experiments to evaluate the restore efficiency
of a system with and without data deduplication by measuring the response time and
power consumption of read requests to the deduplicated data. Figure 1 shows the ex-
perimental results of VM restore of a system with and without data deduplication. We
can see that the restore times with deduplication are significantly higher than those
without deduplication, by an average of 2.9x and up to 4.2x. The power consumption
also increases by an average of 2.1x and up to 3.2x. Our trace-driven evaluations with
real-world traces show that the average read response time of the system with dedu-
plication is 45.8%, 29.7%, and 49.6% higher than that without deduplication for the
web-vm, homes, and mail traces, respectively. The power consumption also increases
by an average of 25.5%. The reason behind this read-performance degradation and

5ht‘cp ://www.sun.com/software/solaris/zfs. jsp
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Fig. 1. Comparisons of restore times for VM disk images between systems with and without data
deduplication.
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Fig. 2. Process workflow in the traditional deduplication system.

power consumption increase with data deduplication can be explained by reviewing
the deduplication process, as follows.

Figure 2 shows the process workflow in the traditional deduplication process. When
data arrives, it will be split into multiple data chunks, each of which is associated with
a computed hash value (i.e., fingerprint). Then the index-lookup process tries to find
the duplicate data chunks from the index table according to the hash values. When a
duplicate data chunk is found, the LBA (logic block address) value of the data chunk
in the index table will be obtained and kept in the metadata. Then only the unique
data chunks are written, and the duplicate data chunks are replaced with the pointers
in the metadata. For example, as shown in Figure 2, data chunks a, b, and ¢ are the
unique data chunks that are already stored. Only data chunks 1, 2, and 3 are written
to the HDDs. The data’s metadata will contain the LBA values of data chunks a, b, c,
1, 2, and 3. Later, a read request to the data will first fetch the metadata to obtain the
LBA values of the data chunks, namely, a, b, ¢, 1, 2, and 3. Then three I/O requests
will be generated to fetch the corresponding data chunks. When all the read requests
complete, the data will be reconstructed from the fetched unique data chunks and
returned to the upper layer.

However, if there is no data deduplication process enabled during the data storing
process, the data will be sequentially laid out on the HDD, which then allows a subse-
quent read request to fetch the data with a single I/O request. Thus, while the system
with deduplication saves storage space, its restore efficiency will significantly degrade
due to the extra HDD I/O requests. Statistics from our experiments also indicate that
the overall I/O count of the deduplication-based storage system is much higher than
that of the system without deduplication, which further confirms that the read per-
formance can be negatively affected by the data deduplication process. Moreover, the
increased I/O requests involving many HDDs during system idle periods will cause
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Fig. 3. A comparison between SSD and HDD in random and sequential read performances as a function of
the request size.

many more HDDs to spin up/down, which in turn consumes much more power. As a
result, the read performance decreases significantly compared with storage systems
without data deduplication.

On the other hand, chunk size is an important factor affecting read-performance
degradation in deduplication-based storage systems [Kruus et al. 2010; Srinivasan
et al. 2012]. With large chunk size, the read-performance degradation problem is al-
leviated to some extend, but the deduplication rate (i.e., redundancy elimination) is
reduced. A recent study has shown that the deduplication rate drops from 23% to
15% when the chunk size is changed from 4KB to 8KB for engineering departments’
data [Srinivasan et al. 2012]. Our analysis on the FIU traces also finds that small
I/O redundancy (i.e., 4KB or 8KB) dominates the primary storage systems. Among
the 4KB requests, 53.4%, 34.5%, and 92.7% are eliminated by data deduplication for
the web-vm, homes, and mail traces, respectively. It has been suggested that the 4KB
chunk size might be a good idea for VM platforms [Jin and Miller 2009]. These studies
have revealed that small files dominate the enterprise and HPC datasets and have
high deduplication rates [EI-Shimi et al. 2012; Meister et al. 2012]. Eliminating these
small files could not only save storage space, but also significantly improve I/O perfor-
mance in primary storage systems and VM servers in the cloud. Thus, in this article,
we use the 4KB chunk size in our experiments.

2.3. Understanding Flash-Based SSDs

Different from HDDs, flash-based SSDs are made of silicon memory chips and have
no moving parts. Two characteristics of flash-based SSDs underlie the efficiency of the
SAR design.

— High random-read performance. Figure 3 shows comparisons of the random and se-
quential read performance between SSD and HDD as a function of request size.
From Figure 3(a), we can see that the random-read response times of SSD are sig-
nificantly less than those of HDD, and the difference narrows as the request size
increases. On the other hand, from Figure 3(b), we can see that the gap of sequential-
read response times between HDD and SSD is insensitive to the request size and
remains at roughly 2x. The high random-read performance of SSD is one of its main
advantages over HDD [Polte et al. 2008].

— Low power consumption. The power consumed by SSD is only 150mW in the active
mode,® which is significantly less than HDD which consumes about 10W in the ac-
tive mode [Caulfield et al. 2009; Zhu et al. 2005]. Flash-based SSD is over two orders
of magnitude more efficient than HDD in terms of I/O counts per joule [Andersen
et al. 2009].

61ntel X25-M mainstream SATA SDD. http: //www.intel.com/design/flash/nand/mainstream/index.htm.
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On the other hand, flash-based SSDs also have two limitations: limited write-erase
cycles and low random-write performance. However, in SAR, the backup data are se-
quentially laid out in SSDs and almost unchanged due to characteristics of content-
aware storage, to be elaborated upon in Section 3. Thus, the two issues are avoided.
Moreover, the cost per gigabyte of current-generation SSDs is about 20 times more
than that of HDDs. It is not cost effective to replace all the HDDs with SSDs. SAR,
similar to the existing optimizations [Guerra et al. 2011; Koltsidas and Viglas 2008],
utilizes an appropriate and cost-effective amount of SSD capacity to significantly
improve the read performance of existing deduplication-based storage systems.

2.4. Motivation and Rationale

Data deduplication has been demonstrated in the literature and by commercial prod-
ucts to be an effective technique in applications such as backup and archiving, and
even in primary storage systems, such as VM servers that host hundreds of thou-
sands of VMs in the cloud environment [Armbrust et al. 2009; Hansen and Jul 2010].
Thus, data deduplication has become a necessity in these applications, particularly in
light of the explosive growth in the volume of digital contents and availability require-
ments in the cloud storage’ [Himelstein 2011]. On the other hand, we also observe
that data deduplication has the unintended effect of degrading read performance. Yet,
the whole point of backup (or write in the cloud) is to restore (or read) in case of dis-
aster (or on-demand) and reduce the storage space to save cost and network band-
width. This makes data deduplication a two-edged sword. While its advantages have
been extensively exploited in the literature and by commercial products, its disadvan-
tages, particularly its negative effect on read performance, have been largely ignored
thus far.

On the other hand, a recent study of the 113 VMs from 32 VMware ESX hosts re-
veals that a high degree of similarity among the VM disk images results in more than
80% reduction in storage space. Moreover, about 6% of the unique data chunks are ref-
erenced more than 10 times, and some data chunks are referenced over 100,000 times
at the 4KB block size [Clements et al. 2009]. Our analysis of the mail workload, a
real-world trace, indicates that the unique data chunks referenced more than 5 times
amount to about 4.5% of all data chunks but account for over 42.2% of the total ac-
cesses. These unique data chunks with high reference count are likely to be accessed
much more frequently, because they are shared by many files (or data blocks). More-
over, the access latency of these unique data chunks with high reference count affects
the read performance directly.

These important observations, combined with the urgent need to address the read-
performance problem associated with data deduplication, motivate us to propose SAR,
an SSD-assisted read scheme. SAR is designed to overcome the key bottleneck of read
efficiency by effectively exploiting the high random-read performance nature of SSDs
and the unique data-sharing characteristic of deduplication-based storage system in
the cloud.

3. SAR

In this section, we first outline the main principles guiding the design of SAR. Then we
present a system overview of SAR and the key data structures in SAR, followed by a
description of the selective data promotion, data demotion, and data restore processes
in SAR.

7ht‘cp://riverbed. com/us/ and http://www.symantec.com
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3.1. Design Principles

SAR aims to achieve high performance, high reliability, and high portability, following
the design principles outlined here.

— High performance. To avoid any degradation in read performance and any violation
of SLAs, the data restore performance must be significantly improved. SAR strives
to achieve this goal by significantly reducing the expensive random-read IOs origi-
nally to the magnetic disks, by selectively storing the unique data chunks in SSDs.
Read performance is improved as a result of the high random-read performance of
SSDs.

— High reliability. With data deduplication, the backup window and storage space
are reduced for the backup and cloud storage applications. However, the recovery
window and restore time are also increased due to the random scattering and place-
ment of the unique data chunks. SAR improves reliability by significantly improv-
ing the data random-read performance in order to shorten the recovery window and
restore time.

— High portability. SAR has very little negative impact on the efficiency of the
data deduplication process and is independent of and orthogonal to any particu-
lar data deduplication scheme being used. Thus it can be easily deployed in any
deduplication-based storage system.

3.2. System Overview

Figure 4 shows a system overview of our proposed SAR. As shown in Figure 4, SAR
interacts with the Data Deduplicator module and can be incorporated into any existing
deduplication scheme. In SAR, the storage pool is composed of an SSD array and an
HDD array. Data reliability is maintained by the redundancy schemes adopted by the
arrays. When the data is deduplicated, only the unique data chunks are stored, and
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the duplicate data chunks are replaced by the pointers to the unique data chunks that
are already stored in the HDD array. As shown in Figure 4, SAR is located below the
Data Deduplicator module and only handles the unique data chunks that are already
deduplicated.

SAR has four key functional modules incorporated into the existing deduplication-
based storage system: Administration Interface, Selective Promotion, Data Demotion
and Data Distributor. The Administration Interface module provides an interface for
system administrators to configure the SAR design parameters and monitor the SAR
runtime status. The Selective Promotion module is responsible for monitoring and
identifying the chunk size, sequentiality, and the reference counts of the unique data
chunks that have been processed by the Data Deduplicator module, and the access
popularity of the unique data chunks. Based on the information, SAR selectively stores
the “hot” unique data chunks in SSD array. The Data Demotion module is responsible
for evicting the “cold” unique data chunks from the SSD array when there is no free
space available in the SSD array. The Data Distributor module is also responsible for
appropriately directing I/O requests to either the SSD array or the HDD array.

In SAR, it is obviously not cost-effective to store all the unique data chunks in SSDs,
because the cost/GB ratio of current-generation SSDs is much higher (e.g., 20X) than
that of HDDs. To make the SAR design cost effective and optimally trade off between
efficiency and cost, SAR exploits the characteristics of unique data chunks and the per-
formance difference between SSDs and HDDs. In other words, SAR only stores in SSDs
a small percentage of the unique data chunks but allows SSDs to absorb most small
and hot random-read requests, by selecting the unique data chunks with high refer-
ence count, small size, and nonsequential in access patterns. The cost/performance
analysis of SAR is discussed in Section 4.5.1.

3.3. Data Structures in SAR

There are three key data structures in SAR, namely, the index, the LRU list, and the
Map_table, as shown in Figure 5. The index is an important data structure in the data
deduplication process. After the data is deduplicated, the index is used to identify the
duplicate data chunks based on the hash values (i.e., fingerprints) of the chunks, by
using hash functions such as SHA-1 and SHA-256. Since each unique data chunk has
a fingerprint in the index, the space required by the index increases with the number
of incoming new unique data chunks. For example, with an average chunk size of 4KB,
the space required by the index is about 8 GB for 1TB storage. The server cannot keep
such a huge structure in memory, making it necessary to store part of the index in
HDDs, where in-disk index-lookup operations can become a performance bottleneck in
deduplication-based storage systems. Most existing research on data deduplication fo-
cuses on alleviating this problem [Debnath et al. 2010; Meister and Brinkmann 2010;
Xia et al. 2011; Zhu et al. 2008]. However, since SAR tries to improve the restore effi-
ciency, the in-disk index-lookup problem is out of the scope of this article and arguably
orthogonal to SAR. We leave this problem as part of our future work.

In order to improve reliability and support garbage collections, exploitation of the
reference management becomes popular and common in studies on deduplication-
based storage systems [Bhagwat et al. 2006; Guo and Efstathopoulos 2011]. Figure 5
shows the index structure used in SAR. The count variable indicates the reference
count of the unique data chunk. When a unique data chunk is stored, its count vari-
able is initialized to be 1 and increased by 1 when it is referenced again. When the
count variable reaches a threshold (e.g., 5), the corresponding unique data chunk will
be promoted to the SSD array. The reference count is tracked on the write path.

As shown in Figure 5, another data structure used in SAR is the LRU list that tracks
the read-access popularity on the read path. LRU list is an LRU list that stores the

ACM Transactions on Storage, Vol. 10, No. 2, Article 6, Publication date: March 2014.



6:10 B. Mao et al.

Index LRU list Map _table
Key ‘ LBA ‘ lcn‘ Count Offset ‘ len ‘ Hioffset‘Dioffset‘ len ‘
Key ‘ LBA ‘ len ‘ Count Offset ‘ len ‘ H_offset‘D_offset‘ len ‘
Key ‘ LBA ‘ lcn‘ Count Offset ‘ len ‘ Hioffsel‘Dioffset‘ len ‘

Fig. 5. Key data structures in SAR.

information of the most recent read requests, that is, the Offset and Length of the
unique data chunks. Based on the LRU list, the popular unique data chunks can be
identified and promoted to the SSD array. The third data structure is the Map table, as
shown in Figure 5, which stores the mapping information for the unique data chunks
that are promoted from the HDD array to the SSD array. The memory overhead in-
curred by SAR to store the data structures is acceptable and discussed in Section 4.5.2.

3.4. Selective Data Promotion

The cost per GB of current-generation SSDs is about 20 times more than that of HDDs.
Based on the observations from Figure 3(a), the SAR design aims to use the SSD ar-
ray and HDD array in a cost-effective way so that the unique data chunks are kept
in the SSD array that can absorb most small random-read requests. The Selective
Promotion module is responsible for selecting the unique data chunks to store on the
SSD array. First, unique data chunks with small sizes (e.g., smaller than 128KB) and
nonsequential access characteristics are selected. The size characteristics of these
unique data chunks are extracted from the len variable of the index structure, and the
nonsequential characteristics are determined by both the len and LBA variables. Then
the Selective Promotion module stores the unique data chunks with high reference
count in SSDs to exploit the reference locality of the unique data chunks and to reduce
the expensive random I/O requests to HDDs. This is because, in deduplication-based
storage systems, unique data chunks with high reference count are shared by many
files and have a high probability of being accessed frequently [Clements et al. 2009;
Koller and Rangaswami 2010]. On the other hand, to exploit the access locality, the
unique and popular read data chunks are also promoted to the SSD array according to
the LRU list.

Figure 6 shows the process workflows of read and write requests in SAR. When a
write request arrives, the Data Deduplicator module first splits the data into multi-
ple data chunks, identifies the duplicate data chunks by comparing the fingerprints of
these data chunks with those in the index structure, and increments by one the cor-
responding reference counts of the unique data chunks that hit in the index lookups.
Then the Selective Promotion module decides whether the unique data chunks of the
data (i.e., those that hit the index lookups) should be promoted to the SSD array.
Note that the new unique data chunks with the reference count of 1 will be written
to the HDD array directly. If the unique data chunk is selected to be promoted to the
SSD array and is not in the Map_table, the unique data chunk will be written to the
SSD array, and a new item will be added to the Map_table to maintain the mapping
information.

When a read request arrives, the Selective Promotion module first checks whether it
hits the Map_table. If it does, the read data is fetched from the SSD array. Otherwise,
the Selective Promotion module checks whether the read data hits the LRU list. If
the read data is considered popular, it will be promoted to the SSD array after it is
fetched from the HDD array. Once the read data is promoted to the SSD array, the
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Fig. 6. Read/write process workflows in SAR.

corresponding item in the LRU list is deleted and a new item is added to the Map_table
to maintain the mapping information.

For example, as shown in Figure 6, the unique data chunks a and b are selected to
be stored in the SSD array, since the corresponding reference count is 5 and their total
size is small, although a and b are sequential. However, unique data chunk d with a
high reference count is stored in the HDD array because of its large size.

There is little overhead for the Selective Promotion module to migrate the unique
data chunks from the HDD array to the SSD array. On the write path, when the unique
data chunk is chosen to be promoted, the unique data chunk is directly written to the
SSD array without reading the HDD array, because the unique data chunk is already
included in the write data. On the read path, if the fetched read data chunk is con-
sidered popular, it is written to the SSD array directly. Moreover, the data chunks
are sequentially written to the SSD array to accelerate the write process by exploit-
ing the high sequential-write performance of SSDs. Though the read requests to the
SSD array may be random, the SSDs can achieve high random-read performance, as
discussed in Section 2.3. Therefore, the performance advantages of SSDs can be fully
exploited in SAR.

3.5. Data Demotion

When the number of data blocks continues to increase, the SSD array will not have
free space to accommodate the newly promoted unique data chunks. Moreover, if the
administrator changes the parameters, such as the reference count threshold, some
data chunks will be evicted from the SSD array. Thus, a data migration module is
required to evict the unique data chunks from the SSD array. The Data Demotion
module in SAR is responsible for evicting the unique data chunks from the SSD array.
Different from the data promotion process that needs to write the unique data chunks
to the SSD array, the Data Demotion module removes the unique data chunks from
the SSD array by only deleting the corresponding items in the Map_table. Thus, the
Data Demotion process adds very little performance overhead to the overall system.
The eviction rules by the Data Demotion module for determining which data chunk
to demote from the SSD array are based on two conditions. First, if the eviction process
is triggered by the system administrator, the evicted unique data chunks are selected
according to the changed system parameter values. For example, if the reference count
threshold is changed from 5 to 10, all the unique data chunks with reference count
below 10 will be evicted. Second, if there is no free space available in the SSD array,
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a unique data chunk with a larger size and lower reference count will be evicted first.
When the evicted list of data chunks is determined, the Data Demotion module evicts
the data chunks from the SSD array. At the same time, the corresponding space in the
SSD array will be marked as invalid for erasing.

3.6. Data Restore

When a read request arrives, the metadata (also called inode) is first checked to locate
the corresponding data chunks. In the traditional deduplication process, all the data
chunks are stored in the HDD array. In SAR, however, the data chunks may be located
in the SSD array if they have been promoted to the SSD array, so the Data Distributor
module will redirect the read request to the SSD array according to the Map_table. If
the request hits the Map_table, it will be served by the SSD array. When all the data
chunks have been retrieved, the Data Restore module reconstructs them and returns
the restored data to the upper layer.

For example, as shown in Figure 6, reading data will require three I/O requests, two
to the SSD array and one to the HDD array (after merging). Since reading data from
the SSD array is very fast, the overall read response time is determined by the read
latency of the HDD array, which is the fetch time of data chunks 7, 2, and 3. However,
in the traditional deduplication process, all three requests will be forwarded to the
HDD array, which results in significantly longer user response time.

4. PERFORMANCE EVALUATIONS

In this section, we first describe the prototype implementation of SAR, followed by an
introduction to the experimental setup and methodology. Then we evaluate the per-
formance of SAR through both extensive trace-driven and real VM-disk-image restore
experiments.

4.1. Prototype Implementation

We have implemented a prototype of SAR by integrating it into the open-source data-
deduplication project called SDFS.# SDFS is a file system that provides the inline
deduplication for applications. It is applicable for services such as backup, archiving,
VM primary, and secondary storage. SDFS is composed of three basic components:
SDF'S volume, SDF'S file system service, and DSE (deduplication storage engine). The
SDF'S volume is a mounted file system presented to the operating system and can be
shared by SAMBA or NFS. The SDFS file system service provides a typical POSIX
interface of the deduplicated files and folders to volumes. It stores the metadata for
the files and folders and manages the file mappings that identify the data locations
to the deduped/undeduped chunk mappings. Within SAR, the file mappings are also
related to the SSD array in addition to the HDD array. DSE is responsible for storing,
retrieving, and removing all deduplicated data chunks.

In traditional deduplication-based storage systems such as SDFS, the unique data
chunks are stored on HDDs and indexed for retrieval with an in-memory hash table.
In SAR, we extend the store rules by selectively promoting some unique data chunks
to the SSD array. Since SDF'S does not maintain the reference count for each unique
data chunk, the hash index structure HashChunk in SDFS is also extended with the
count variable to indicate the reference counts of the unique data chunks. Setting and
retrieving the count value are exported by the setCount and getCount functions.

SDFS has a flexible configuration management file that can set the chunk size,
store locations, and other parameters. The configuration management file is valid on
the operation of the mkfs.sdfs command. In order to achieve a high deduplication ra-
tio [Clements et al. 2009; Gupta et al. 2008; Jin and Miller 2009], we set the chunk
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Table I. The Trace Replay Period

Traces Start | End Length System Size
Web-vm 1:30 | 12:25 | 10.9 Hours 70 GB
Homes 15:50 | 19:10 3.3 Hours 500 GB
Mail 18:40 | 23:45 5.1 Hours 470 GB

Table Il. The SSD Space Setting of SAR

SSD space size
SAR (1) | SAR (2) | SAR (3)
Web-vm | 100MB 500MB 2GB
Homes 100MB 500MB 2GB
Mail 1GB 4GB 8GB

Trace

size to 4KB in the VM-disk-image restore experiments and store the hash index in the
SSD by setting the chunk-store-hashdb-location parameter be the SSD volume. SDFS
uses a fixed chunk size, which is sufficient for VM disk images [Jin and Miller 2009].

4.2. Experimental Setup and Methodology

We use both trace-driven and real-application-driven experiments to evaluate the
efficiency of our proposed SAR. In real application evaluations, SAR is integrated into
SDFS. We compare three systems: (1) an SAR-based deduplication-based storage sys-
tem (SAR), (2) a deduplication-based storage system without SAR (Dedupe), and (3) a
conventional system without deduplication (Native).

In the trace-driven experiments, the three traces were obtained from the SyLab of
FIU [Koller and Rangaswami 2010] and cover a duration of three weeks. They are col-
lected from a virtual machine running two Web servers (web-vm), a file server (homes),
and an email server (mail), respectively. Each request in the traces includes the hash
value of the requested data. In order to obtain the reference count information, we first
gather the statistics of the reference count for each data chunk and apply them to the
subsequent workload. For example, in order to obtain the reference count of the first
request on the eighth day, we analyze the statistics of the first seven days’ workloads
to find how many times a data chunk has been referenced, and set the corresponding
reference count for that request.

We replay the traces at the block level and evaluate the user response time of the
storage device. It is time consuming to replay the whole day’s trace, so we chose to
replay the eighth day’s trace with both burst periods and idle periods. The replayed
period of the three traces are shown in Table I. Moreover, because the footprints of the
three traces are small and different, we adjust the SSD space size to 100MB, 500MB,
and 2GB for the web-vm and homes traces, and 1GB, 4GB, and 8GB for the mail trace
in the experiments to activate the data-demotion functionality. These three SSD con-
figurations form the basis for the three SAR systems, SAR (1)—(3), used throughout
our evaluation in this section, as summarized in Table II. The SSD space is warmed
up with the first seven days’ traces and part of the eighth day’s trace immediately
preceding the start of the replay.

For the VM-disk-image restore evaluations, we downloaded 62 pre-made VM disk
images from VMware’s virtual appliance marketplace®, Bagvapp’s Virtual Appli-
ances?, and Thoughtpolicel? with different guest OSs, applications, and versions, such

8http ://www.vmware.com/appliances/
9http://bagside.com/bagvapp
1Ohttp ://www.thoughtpolice.co.uk/vmware/
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Fig. 7. Normalized read performance for the three traces.

as CentOS, Debian, Fedora, FreeBSD, OpenSUSE, and Ubuntu. The total size is about
178 GB, and the deduplication ratio is 48.9% with 4KB chunk size. In the VM-disk-
image restore evaluations, we also use the iodump utility to collect disk I/O operations.

All our experiments are conducted on a single system with an Intel Xeon X3440
CPU and two HighPoint RocketRAID 2640 SAS/SATA controllers. In the system, a
SAMSUNG 250GB HDD is used to host the operating system (Ubuntu Linux
2.6.35) and other software, and a RAID5 disk array consisting of eight HDDs (WDC
WD1600AAJS) serves as the persistent storage for storing data chunks. The SSD de-
vice is Intel X25-M 80GB SSD (model SSDSA2MHO080G2K5).

4.3. Trace-Driven Evaluations

Figure 7 shows the normalized average response times of the different schemes under
the three traces. First, we observe that Dedupe increases the average response times of
the Native system by 45.8%, 29.7%, and 49.6% for the web-vm, homes, and mail traces,
respectively. The reason for this performance degradation was explained in Section 2.2.
For the three traces, the average read response times increase because read requests
require many more disk seeks and processing in the Dedupe system, compared with
the Native system.

Second, SAR improves the average response-time performance significantly with a
speedup of 28.18, 1.14, and 3.44, respectively, over the Dedupe system under the three
traces when SAR uses the largest SSD space size in the SAR configurations (Table II),
resulting in an average speedup of 5.8 over the Dedupe system. The significant im-
provement achieved for the web-vm and mail traces is attributed to the fact that a
large portion of I/0O requests are performed on the SSD, 95.88% and 49.59% for the
web-vm and mail traces, respectively. However, for the homes trace, only 14.51% of I/O
requests are performed on the SSD, resulting in a performance improvement of only
14.1%, the reason being that for the homes trace, the most unique data chunks are
referenced fewer times, a fact identified in our workload analysis.

Third, we note that the performance of SAR is very sensitive to the SSD space size,
where with the increased SSD space size, the average read response time reduces sig-
nificantly for the web-vm and mail traces, the reason being that with a larger SSD
space size, the more popular unique data chunks can be stored in the SSD, thus allow-
ing the random-read efficient SSD to absorb many more random read requests. For the
homes trace, however, the response times remain almost unchanged when increasing
the SSD space size, because there is little locality in the trace, and the most unique
data chunks are referenced less than five times from our workload analysis.

We also plot the average response times as a function of the trace replay time for the
three traces, as shown in Figure 8. In these experiments, SAR uses the largest SSD
space size, which is 2GB for the web-vm and homes traces, and 8GB for the mail trace.
From Figure 8, we can see that SAR reduces the average response time significantly for
the web-vm trace, the reason being that a large number of I/O requests are redirected
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Fig. 10. Percentage of I/O requests performed on the SSD as a function of the SSD space size.

from HDDs to SSDs with SAR. Moreover, SSD has much higher random-read perfor-
mance than HDD, as shown in Figure 3(a). For example, the average response time
of a 4KB-request random-read is about 0.06ms for SSD, much less than the 13.29ms
for HDD.

Figure 9 shows the number of I/O requests that are performed in the HDD array
as a function of the trace replay time of the three traces for Dedupe and SAR. From
Figure 9, we can see that SAR reduces the HDD I/O requests significantly for the web-
vm and mail traces. SAR translates many HDD I/O requests to SSD I/O requests, thus
significantly reducing the I/O queue length for HDDs, which enables SAR to signif-
icantly reduce the average response times of the Dedupe system. Moreover, directly
reducing the HDD I/O requests during the system bursty periods improves the aver-
age response times. In other words, SAR improves the average read response times by
redirecting a large number of HDD-bound I/O requests to SSDs.

To better understand the performance impact of the SSD space size in SAR, we plot
the percentage of I/O requests that are performed in the SSD array as a function of
the SSD space size, as shown in Figure 10. From Figure 10, we can see that with the
increased SSD space size, the number of I/O requests that are performed on the SSD
array increases significantly, leading to significant reductions in the average response
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Table Ill. VM Disk Images for Restore Evaluation

VM disk images || Size (GB) | Dedupe. ratio
Centos-5.1 2.7 81.1%
Fedora-12 3.5 63.3%
FreeBSD-7.0 1.2 56.4%
Ubuntu-10.10 1.0 49.3%
OpenSUSE-11.2 3.4 24.6%

times of the web-vm and mail traces. For example, the percentage of the I/O requests
performed on the SSD array is 28.4% when the SSD space size is 100MB and jumps to
95.9% when the SSD space size is increased to 2GB for the web-vm trace. However, for
the homes trace, when the SSD space size is less than 500MB, the percentage of I/O
requests performed on the SSD array is less than 3%. Thus, the performance impact
of the increased SSD space size is insignificant for the homes trace.

In order to compare SAR with the flash-based disk cache scheme, we also set up
a system based on an SSD-HDD hybrid architecture, where SSD serves as the LBA-
and content-based cache for HDDs (Cache). For the Cache scheme, we set the SSD
size to the same as that for SAR(2) in the experiments: 500MB for web-vm and homes
traces, 4GB for mail trace. Figure 11 shows the results. We can see that for web-vm and
mail traces, SAR is significantly better than the Cache scheme by 75.6% and 41.9% in
terms of average response times, respectively, the reason being that SAR captures the
data popularity when the data is written to the disks. The Cache scheme needs the
access history information to identify the popular data and move them to the SSDs.
Moreover, data blocks in backup and archiving applications are typically one-shot to
read, so there are no past read traces to go by for the Cache scheme. For homes trace,
the performance difference is small, since there is little locality in the homes trace, and
the most unique data chunks are referenced few times.

4.4. VM Restore Evaluations

In the VM-disk-image restore experiments, we selected five VM disk images to restore.
The five VM disk images are of different sizes and deduplication ratios, as shown in
Table III. In order to obtain accurate results, the RAID device is remounted and refor-
matted after the evaluation for each scheme to prepare for the next experiment. Since
the dataset is small in our experiments, SAR puts the unique data chunks with the
reference count of 2 in the SSD.

Figure 12 shows the restore performance results among the different schemes for
the five VM disk images. From Figure 12, we can see that the deduplication pro-
cess affects the restore performance significantly. For example, the Dedupe system
increases the restore time by up to 4.2x for the Centos-5.1 VM disk image and 3.3 x
for the OpenSUSE-11.2 VM disk image over the Native system. In contrast, SAR only
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Fig. 12. Restore times of the different schemes in the VM restore evaluations.

increases the restore time by 60.0% on average over the Native system, which is a re-
duction of 183.4% on average from the traditional deduplication system without SAR.
The reason for the longer restore time in SAR than in the Native system is that, for
the VM disk image restore, the requests are sequential and the files are large, which is
different from the trace-driven experiments where most requests are small. The good
sequential-read performance of HDDs enables the Native system to achieve good re-
store performance. With deduplication both in the Dedupe and SAR systems, a large
file is split into multiple small data chunks, and thus reading the large file entails
many random-read requests to multiple small nonsequential data chunks.

However, SAR improves the restore performance significantly over the Dedupe sys-
tem by an average of 83.4% and up to 176.6% for the CentOS-5.1 VM disk image.
Thus, SAR improves the overall restore performance over the Dedupe system. For ex-
ample, the restore time reduces from 213s to 77s for the CentOS-5.1 VM disk image.
SAR improves the restore time by significantly reducing the number of read requests
that are performed on HDDs. For example, the total number of read requests that
are performed on the HDD array are 36,961, 118,509, and 79,365, respectively, for the
Native, Dedupe, and SAR systems in the CentOS-5.1 VM-disk-image restore opera-
tions. Note that the number of HDD read requests is not consistent with the total num-
ber of I/O requests for the deduplication-based system that uses 4KB chunk size, the
reason being that the merge functions in the I/O path have coalesced the multiple 4KB
sequential I/O requests into a large read request. However, we still notice substantial
increase in the large number of HDD read requests, about 2.2 x, for the deduplication-
based systems over the Native system. On the other hand, SAR redirects some HDD
read requests to the SSD array that has high random-read performance.

In the experiments, we also collected statistics on the deduplication throughput mea-
sured for different schemes. For the Native system, the throughput is the bandwidth
achieved by writing the VM disk images. SAR only reduces the deduplication through-
put of the Dedupe system by 4.1%. The main reason for this degradation is the extra
index update operations performed on the SSD. However, since most index update
operations are processed in memory and updated to the SSD in the background, the
performance impact is small in SAR. Moreover, existing deduplication storage systems
already integrate the reference count variable in the index structure for reliability and
garbage collections [Bhagwat et al. 2006; Guo and Efstathopoulos 2011]. Thus, SAR in-
troduces no additional overhead for the index update operations on top of the Dedupe
system.

4.5. Overhead Analysis

There are two overhead issues that must be addressed when integrating SAR into
existing deduplication-based storage systems: SSD cost considerations and memory
overhead.
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4.5.1. SSD Cost Considerations. As shown in the trace-driven experiments, SAR incurs
the highest cost when SAR uses the largest SSD space size. For example, the SSD
storage space required is about 2.86% of the whole storage for the web-vm trace. Since
SSDs are 20 times more expensive than HDDs, the cost of the overall system increases
about 1.57 times. However, the corresponding performance improvement of SAR is
28.18 times for the web-vm trace. Thus, the performance/cost ratio of SAR is 17.95
times higher than the Dedupe system for the web-vm trace. We believe that the signif-
icant restore performance improvement by SAR justifies the additional investment to
upgrade deduplication-based storage systems. Moreover, from these results, it is clear
that the overall read performances are both inversely proportional to the SSD stor-
age space used. Though larger SSD storage space is needed at a much higher cost, it
buys much more improved read performance. Therefore, it is possible to strike a sen-
sible balance between the performance and cost by appropriately adjusting the SSD
space size.

On the other hand, in storage systems, while the storage bandwidth can be improved
by purchasing many extra disks, the read response times cannot be improved signif-
icantly due to the mechanical characteristics of HDDs. Currently, it is not cost ef-
fective to replace all the HDDs with SSDs. SAR improves the read response times
significantly by adding a few SSDs with relatively small additional cost. Moreover,
in dedupvl [Meister and Brinkmann 2010] and ChunkStash [Debnath et al. 2010]
systems, the SSD is already integrated into the deduplication-based storage systems
to accelerate index lookup operations. SAR simply adds another dimension to their
approaches to achieve significant improvement of read efficiency.

4.5.2. Memory Overhead. SAR requires extra memory space on top of traditional
deduplication-based storage systems in the forms of LRU list and Map_table. Tradi-
tional deduplication-based storage systems also need memory space to store the hash
index, so there is no extra memory overhead to store the hash index for SAR.

To prevent data loss, SAR uses nonvolatile memory to store Map_table. The amount
of memory consumed is the largest when the SSD space is 8GB with the 4KB re-
quest size for the mail trace. Each item in Map_table consumes 24 bytes. In this set-
ting, the maximum nonvolatile memory overhead is 48MB. Different from Map_table,
SAR uses volatile memory to store LRU list, because the loss of LRU list will not in-
cur data loss. Each item in LRU list consumes 16 bytes. The volatile memory space
overhead for storing LRU list is about 16MB for one million items, which is sufficient
in our evaluations. Thus, the maximal memory overhead in our evaluations is 64MB
for SAR. However, with the rapid increase in memory size and decrease in cost of
nonvolatile memory, this memory overhead is arguably reasonable and acceptable to
end-users.

5. RELATED WORK

Exploiting workload reference locality and the high random-read performance of
SSDs to selectively store unique data chunks to speed up restore performance in
deduplication-based storage systems is the key contribution of our work. We briefly
review the published work most relevant to our SAR research from the following
aspects: data deduplication, read performance with deduplication, and SSD-assisted
performance optimization.

Data deduplication is an active research area in both the industry and academia.
Existing research work on deduplication generally focuses on how to improve dedupli-
cation efficiency by solving the index-lookup disk bottleneck problem and how to find
the duplicate data blocks. DDFS [Zhu et al. 2008], Sparse Indexing [Lillibridge et al.
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2009], Bimodal CDC [Kruus et al. 2010], and SiLo [Xia et al. 2011] focus on accelerat-
ing the chunk-lookup performance and reducing the RAM requirement. Venti [Quinlan
and Dorward 2002] and Foundation [Nath et al. 2006] focus on a single-node system,
while HYDRAstor [Ungureanu et al. 2010] and Super-chunk Routing [Dong et al. 2011]
are proposed to apply data deduplication to a global system with multiple storage
nodes. Data deduplication technology is widely applied in backup and archiving appli-
cations to shorten the backup window and save network bandwidth and storage space,
while Difference Engine [Gupta et al. 2008] and DEDE [Clements et al. 2009] apply
data deduplication in VM servers to save storage space. Other studies utilize data
deduplication technology to improve I/O performance. The I/O Deduplication [Koller
and Rangaswami 2010] and LPU [Ren and Yang 2010] schemes use the combined
content-based and sector-based cache to improve I/O performance. SAR, being inde-
pendent of and orthogonal to any specific data deduplication scheme, can be easily
incorporated into any of them to improve their read performance.

In contrast, the problem of degraded read efficiency caused by data deduplication
has by and large been ignored by the preceding studies. In evaluations of Foundation
[Rhea et al. 2008], the authors also noticed that fragmentation induced by data dedu-
plication is a visible problem that slow downs read efficiency, but they left it as future
work. They suggested using the defragmentation technique to copy the blocks of one
snapshot into a contiguous region. However, this technique typically requires numer-
ous I/0 requests as well as frequent updates to the index, which causes significant pro-
cessing overhead and reduces system performance. HydraFS [Ungureanu et al. 2010]
supports high-throughput read performance by sacrificing some write performance. In
HydraF'S, the block store API allows the caller to specify a stream hint for every block
write, and then attempts to co-locate blocks with the same stream hint by delaying
the writes until a sufficiently large number of blocks arrive with the same hint. How-
ever, this optimization only improves the performance of read requests addressed to
the grouped blocks. The read requests addressed to the unique data chunks located
on different HDDs still require many expensive disk seeks. In fact, read requests ad-
dressed to unique data chunks with high reference count are the key performance
bottleneck caused by data deduplication. Our proposed SAR aims to address this key
performance bottleneck and can be well incorporated into HydraF'S to further improve
system performance.

Recently, the data fragmentation problem associated with data deduplication has
attracted eyes from the storage research community. Sequence-based deduplica-
tion [Jones 2011] and iDedup [Srinivasan et al. 2012] are two capacity-oriented data
deduplication schemes that target primary storage systems by exploiting spatial local-
ity to only selectively deduplicate the consecutive file data blocks. Their schemes try to
alleviate the data fragmentation problem by selective data deduplication to only dedu-
plicate the sequence and large data blocks. Lillibridge et al. studied three techniques,
increasing cache size, container capping, and using a forward assembly area, for allevi-
ating the data fragmentation problem in backup applications [2013]. CABdedupe [Tan
et al. 2011] attempts to improve both backup and restore performance for the cloud
backup service using data deduplication technology. Different from CABdedupe, SAR
targets the read degradation problem induced by data deduplication, thus allowing
SAR to potentially coexist and complement CABdedupe to further improve the restore
efficiency of the cloud backup services.

There is a large body of research conducted on how to improve storage system per-
formance with the help of SSDs (or flash memory). Gordon [Caulfield et al. 2009] and
FAWN [Andersen et al. 2009] are two cluster storage systems that utilize the flash
memory as the storage device to improve system performance and energy efficiency.
MixStor [Kim et al. 2008] employs both SSDs and HDDs in an enterprise-level storage
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system. In MixStor, the SSD arrays and HDD arrays are independent, and requests are
distributed based on their characteristics at the application level. Dedupvl [Meister
and Brinkmann 2010] and ChunkStash [Debnath et al. 2010] are deduplication-based
storage systems that utilize flash-based SSDs to store the hash index, thus improv-
ing write throughput by accelerating the index-lookup process. However, the unique
data chunks are stored in HDDs, thus their read performance is also degraded. Differ-
ent from these, SAR incorporates flash-based SSDs into deduplication-based storage
systems for a very different reason of improving read performance. Therefore, SAR
is orthogonal to and can be incorporated into dedupvl and ChunkStash to boost the
restore efficiency of deduplication-based storage systems.

6. CONCLUSION

Data deduplication is a two-edged sword in storage systems. On the one hand, it has
been demonstrated to be an effective technique in shortening the backup window, and
saving network bandwidth and storage space, as evidenced by commercial products in
not only backup and archiving but also primary storage systems, such as VM servers
in the cloud. On the other hand, the data fragmentation caused by data deduplica-
tion degrades read performance. This article proposes a solution, SAR, for improving
the read performance by selectively storing in SSDs unique data chunks with high
reference count, small size, and nonsequential workload characteristics. SAR effec-
tively exploits high random-read performance properties of SSDs and the unique data-
sharing characteristics of deduplication-based storage system. With SAR, many read
requests to multiple HDDs are replaced by read requests to SSDs, thus significantly
improving read efficiency. Extensive trace-driven and VM-disk-image restore evalua-
tions of the SAR prototype implementation show that SAR outperforms the traditional
deduplication-based storage system significantly in terms of the average read response
times.
In conclusion, this article makes the following main contributions.

— From the quantitative experimental data, we have verified that read efficiency, much
like write efficiency, is critical to overall performance of deduplication-based storage
systems, especially for storage systems which use HDDs as storage devices.

— We propose SAR, which selectively stores in SSDs the hot unique data chunks with
high reference count, small size, and nonsequential workload characteristics, to
effectively exploit the unique data-sharing characteristic of deduplication-based
storage system and the high random-read performance of SSDs.

— We conduct comprehensive experiments on our lightweight prototype implementa-
tion to evaluate SAR efficiency. The results show that SAR improves read perfor-
mance significantly.

SAR is an ongoing research project, and we are currently exploring several directions
for future work. One is to conduct more detailed experiments to measure the prototype
of SAR with larger datasets, multiple disks, and in other applications, such as the
backup application. Another is to build a power measurement module to evaluate the
energy efficiency of the proposed SAR. Because energy efficiency is also an important
system design factor, we believe that SAR will improve energy efficiency in large-scale
data centers over traditional deduplication-based storage systems.
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