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With the explosive growth in data volume, the I/O bottleneck has become an increasingly daunting challenge
for big data analytics. Economic forces, driven by the desire to introduce flash-based Solid-State Drives
(SSDs) into the high-end storage market, have resulted in hybrid storage systems in the cloud. However, a
single flash-based SSD cannot satisfy the performance, reliability, and capacity requirements of enterprise
or HPC storage systems in the cloud. While an array of SSDs organized in a RAID structure, such as RAID5,
provides the potential for high storage capacity and bandwidth, reliability and performance problems will
likely result from the parity update operations. In this article, we propose a Log Disk Mirroring scheme
(LDM) to improve the performance and reliability of SSD-based disk arrays. LDM is a hybrid disk array
architecture that consists of several SSDs and two hard disk drives (HDDs). In an LDM array, the two HDDs
are mirrored as a write buffer that temporally absorbs the small write requests. The small and random write
data are written on the mirroring buffer by using the logging technique that sequentially appends new data.
The small write data are merged and destaged to the SSD-based disk array during the system idle periods.
Our prototype implementation of the LDM array and the performance evaluations show that the LDM array
significantly outperforms the pure SSD-based disk arrays by a factor of 20.4 on average, and outperforms
HPDA by a factor of 5.0 on average. The reliability analysis shows that the MTTDL of the LDM array is 2.7
times and 1.7 times better than that of pure SSD-based disk arrays and HPDA disk arrays.
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1. INTRODUCTION

In today’s large-scale storage systems, two storage devices coexist: Hard Disk Drives
(HDDs) and flash-based Solid-State Drivers (SSDs). The HDDs are mechanical devices
that require head seeks and plate rotations to locate the requested data; thus, the data
access latency is very high. With the rapid development of high-performance processors,
the HDD-based storage system has become a performance bottleneck of the overall
computer system. Thus, the emergent flash-based SSDs have received a great deal of
attention from both academia and industry [Agrawal et al. 2008; Chen et al. 2009;
Dirik and Jacob 2009]. In contrast, the flash-based SSDs are based on semiconductor
chips with no mechanical parts, thus having many advantages over HDDs, such as low
power consumption and high small-random-read performance. Besides the deployment
of SSDs on mobile devices and desktop and laptop PCs, many have also proposed to use
SSDs in the high-performance computing and enterprise environments [Narayanan
et al. 2009; Mao and Wu 2015].

However, due to the flash characteristics, SSDs also have shortcomings, such as the
low small-random-write performance and limited lifetime. Moreover, the cost/GB of
SSDs is much higher than that of HDDs. These limitations, along with the high ca-
pacity and low cost advantages of HDDs, have made these two storage devices coexist
in today’s large-scale storage systems. Many creative ideas have been proposed for
HDD-based storage systems, such as RAID (Redundant Array of Independent Disks)
[Patterson et al. 1988], one of the most important techniques that has become a stan-
dard in storage systems. With the wide deployment of SSDs in enterprise and HPC
environments, applying the RAID technique to SSDs is also a necessary and likely
promising approach to building large-scale high-performance and highly reliable SSD-
based storage systems [Balakrishnan et al. 2010a; Mao et al. 2010; Meza et al. 2015].
For brevity, throughout this article, RAIS stands for Redundant Array of Indepen-
dent SSDs, along with different levels of RAIS being denoted by RAIS0, RAIS5, and
so on.

Among these different RAIS levels, previous studies have demonstrated that RAIS5
is a better solution for SSD-based disk arrays [Balakrishnan et al. 2010a]. However,
the inherent parity update problem will not only degrade performance but also affect
the reliability of RAIS5 due to the write amplification problem [Moon and Reddy 2013].
Moreover, a recent study has revealed that updates in storage traces are frequent and
small [Chan et al. 2014], thus making the parity update problem in parity- and SSD-
based disk arrays an urgent issue to address. Our previous study HPDA [Mao et al.
2010] aims to address the parity update problem by replacing the parity SSD with an
HDD in a RAIS4 system. Because the parity SSD is replaced by an HDD, the flash
wearout and erase-before-write problems caused by the parity-update operations can
be avoided. However, HPDA is only applicable to RAIS4 systems, and its parity HDD
becomes a performance bottleneck under write-intensive workloads.

To address this problem, in this article, we propose an SSD-HDD hybrid disk array
architecture, called Log Disk Mirroring (LDM), which combines an array of SSDs with
two HDDs to improve the performance and reliability of SSD-based storage systems. In
LDM, the SSDs (data disks) compose a RAIS5 disk array. The two HDDs are mirrored
as a write buffer that temporarily absorbs small write requests and acts as a surrogate
RAID1 set [Wu et al. 2011] during recovery when an SSD fails. The write data is
reclaimed to the data disks during system idle periods. Since the small updates are
temporarily and sequentially stored on the two HDDs, the write amplification and
flash wearout problems on SSDs caused by the parity-update operations are avoided.
Moreover, the mirroring buffer improves the small-random-write performance using a
log-structured write scheme [Chan et al. 2014]. Our prototype implementation of the
LDM array and the performance evaluations show that the LDM array significantly
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outperforms pure SSD-based disk arrays by a factor of 20.4 on average, and outperforms
HPDA [Mao et al. 2012] by a factor of 5.0 on average. The reliability analysis shows
that the MTTDL of the LDM array is 2.7 times and 1.7 times better than that of pure
SSD-based and HPDA disk arrays, respectively.

The rest of this article is organized as follows. Background and motivation are pre-
sented in Section 2. We describe the design details of LDM in Section 3. The per-
formance evaluation is presented in Section 4, and reliability analysis is presented in
Section 5. We review the related work in Section 6, and discussion appears in Section 7.
We conclude this article in Section 8.

2. BACKGROUND AND MOTIVATION

In this section, we describe the key characteristics of flash-based SSDs in contrast to
those of magnetic HDDs. Then we elaborate on how the parity update process affects
the performance and reliability of RAIS5. These observations motivate our proposed
new hybrid disk array architecture for RAIS.

2.1. Characteristics of Flash-Based SSD

Like HDDs, data in SSDs remain persistent when the power supply is turned off.
However, unlike mechanical HDDs, flash-based SSDs are made of silicon memory
chips and do not have moving parts (i.e., mechanical positioning parts). Besides of the
high energy efficiency and high cost-per-GB advantages of flash-based SSDs, they have
the following two main unique characteristics different from HDDs.

First, flash-based SSDs suffer from the poor performance of small-random-write re-
quests. The reason is that, in the flash storage, each 64-128KB flash block must be
erased in advance before any part of it can be rewritten, which is a characteristic fea-
ture of SSD known as “erase-before-write.” Due to the sheer size of a block, an erase
operation typically takes milliseconds to complete, one or two orders of magnitude
slower than the read operation. Previous studies have shown that random writes can
cause the data pages in NAND flash blocks to be copied elsewhere and erased, thus
leading to internal fragmentation of SSDs and performance degradation by an order
of magnitude [Agrawal et al. 2008; Chen et al. 2009; Min et al. 2012]. Many sophisti-
cated FTL algorithms and embedded buffer management methods have been proposed
to alleviate the flash small-random-write problem. According to the test specification
drafted by SNIA SSSI [Solid State Storage Initiative 2010], the small-random-write
performance of current flash-based SSDs is not stable and will drop after a varied
amount of time depending on the venders. More importantly, small-random-write re-
quests to SSDs will aggravate the flash wearout problem and reduce their lifetime
accordingly.

Second, the flash wearout problem after repeated write-erase cycles impacts the
reliability of SSDs. Generally, the expected number of erasures per block is 100,000
for the single-level cell (SLC) NAND flash memory, and it reduces to 10,000 for the
multilevel cell (MLC) NAND flash memory. In recent years, the MLC or TLC (triple-
level cell) NAND flash memory has been developed as an effective medium to increase
the storage density and reduce the cost of flash-based SSDs. However, compared with
the SLC-based flash, the MLC- and TLC-based flash has lower performance and less
endurance [Grupp et al. 2012]. Thus, the reliability problem is still a critical issue when
designing large-scale SSD-based storage systems using MLC- or TLC-based NAND
flash memory.

Given their significant performance and reliability implications, these two limita-
tions of flash-based SSDs must be taken into serious consideration when designing
SSD-based storage systems, especially SSD-based disk arrays.
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Fig. 1. The parity update process in RAIS5 consisting of five SSDs. Each small write to a data block, say,
D9, entails a total of two SSD reads (for old data block D9 and old parity block P3) and two SSD updates
(writing new data block D′

9 and new parity block P ′
3).

2.2. Parity Update Problem in RAIS5

In face of the high cost/GB of the current generation of SSDs and the reliability re-
quirements of SSD-based disk arrays, RAID5 is arguably the best choice for SSD-based
disk arrays [Balakrishnan et al. 2010a; Mao et al. 2010]. However, in order to apply
RAID5 to SSD-based disk arrays, the two SSD-specific problems, namely, the endurance
problem aggravated by hot parity updates and the performance problem due to small
random writes, must be solved efficiently.

RAIS5 offers parity redundancy to protect data upon a disk failure. The parity up-
date operations for small write requests exacerbate the flash wearout problem due to
the additional and concentrated erase-before-write operations that occur in the parity
blocks [Greenan et al. 2009; Balakrishnan et al. 2010a]. For example, Figure 1 shows
a RAIS5 disk array consisting of five SSDs (SSD1–SSD5). Updating a data block D9 on
SSD2 will cause the updating of the corresponding parity block P ′

3 of the same stripe on
SSD5, which incurs a total of two SSD reads (for old data block D9 and old parity block
P3) and two SSD updates (writing new data block D′

9 and new parity block P ′
3). Obvi-

ously, the parity blocks are the hottest updated blocks because each of them is updated
for each write to a data block in its corresponding stripe, thus receiving much more
write traffic than their data counterparts for random write accesses. This, combined
with the poor small-random-write performance and erasure limitations of SSDs, will
severely degrade the overall I/O performance and reliability of the RAIS5 disk array.

A recent study has revealed that updates in storage traces are frequent and small
[Chan et al. 2014]. For example, their analysis of the MSR Cambridge and Harvard
NFS traces has found that more than 90% of the write requests are updates, and more
than 60% of updates in the MSR traces are smaller than 4KB. These findings further
indicate that the parity update in parity-based disk arrays, particularly SSD-based
arrays, is an important and urgent issue to address.

2.3. Motivation

When deploying SSDs in the enterprise and HPC environments [Caulfield et al. 2010;
Narayanan et al. 2009], a single SSD cannot satisfy the performance, capacity, and
reliability requirements of storage systems. Moreover, failures of SSDs typically occur
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in the controller silicon rather than in the flash device as indicated by recent studies
[Samsung report 2008; Meza et al. 2015]. Thus, it is necessary to apply the RAID
technique to SSDs for applications that require high reliability, high performance, and
high capacity [Mao et al. 2010]. However, applying the RAID technique to SSDs can
be nontrivial due to SSDs’ unique characteristics that are different from HDDs. In
face of the high cost/GB of the current SSDs and the reliability requirements, RAIS5
is arguably the best choice [Balakrishnan et al. 2010a]. However, the parity-update
and small-random-write problems in RAIS5, unabated, will likely cause RAIS5 to
experience serious performance degradation and shortened lifespan [Mao et al. 2010].

On the other hand, previous studies and our own analysis have shown that the
accesses exhibit a mixed pattern of burstiness and idleness in terms of I/O intensity
in enterprise and HPC environments [Golding et al. 1995; Mao et al. 2012]. With the
help of the upper-layer optimizing techniques such as buffer and I/O scheduling, the
I/Os seen at the disk level are usually bursty and clustered. If I/O requests can be
postponed or shifted from busy periods to less busy ones, the resource contention and
queue length during the busy periods can be reduced, and the user-perceived system
performance can be improved.

Based on the previous observations and analysis, we proposed LDM to exploit the
high sequential performance characteristics of HDDs and the logging technique to
eliminate or alleviate the negative impact of the parity update process on RAIS perfor-
mance and reliability. By buffering and merging the small and random write requests
into large write requests, and then flushing them to the SSD-based disk arrays during
the system idle period, the performance and reliability of SSD-based disk arrays are
significantly improved.

3. LOG DISK MIRRORING

In this section, we first outline the main principles guiding the design of LDM. Then
we present a system overview of the LDM array, followed by a description of the data
structure, the request processing workflow, and the data consistency in the LDM array.

3.1. Design Principles

The design of LDM aims to achieve high performance, high reliability, and high porta-
bility, as explained next.

—High performance. LDM strives to remove the user’s small write requests that
originally target the RAIS5 by first sequentially buffering them on the HDD-based
RAID1 and then destaging them in a large block to the SSD-based RAIS5 during a
later, idle period of the system.

—High reliability. By merging multiple small write requests into a large write re-
quest, LDM is able to significantly reduce the number of parity updates, thus notice-
ably alleviating the write amplification problem.

—High portability. Low random-write performance is a common problem for most
commercial SSDs. LDM can be easily extended to any existing RAIS system, such as
RAIS0, RAIS1, and RAIS6.

3.2. System Overview of LDM Array

Figure 2 shows a system overview of our proposed LDM array. As shown in Figure 2,
LDM interacts with the RAID Functional module and can be incorporated into any
existing RAIS5 schemes, such as hardware and software RAIS systems. In Figure 2, the
disk subsystem is composed of four SSDs (RAIS5) and two HDDs (RAID1), where the
HDD-based RAID1 serves as a write buffer for the SSD-based RAIS5. Noticeably,
the write data is laid out sequentially as in a log file system (LFS) [Rosenblum and
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Fig. 2. System overview of an LDM array consisting of four SSDs and two HDDs.

Ousterhout 1992] in the HDD-based RAID1. Rewrites only render the old data invalid
instead of overwriting the old data, which makes writing to the HDD-based RAID1
very fast.

LDM consists of two functional modules added into the RAID controller in an existing
storage system: Data Migrator and Request Redirector. The Data Migrator module is
responsible for moving data from the HDD-based RAID1 to the SSD-based RAIS5.
The Request Redirector module is responsible for issuing a user I/O request to the
appropriate location, either the SSD-based RAIS5 or the HDD-based RAID1, according
to the Map_table. Besides the two functional modules, LDM uses an important data
structure to record the mapping information of the redirected write data.

As shown in Figure 2, the Map_table is used to log all the redirected write data stored
on the HDD-based RAID1. Each entry in the Map_table consists of three important
parameters: the original address S-LBA on the SSD-based disk array, the temporally
stored address H-LBA on the HDD-based disk array, and the request size length. Each
entry needs 20 bytes. The size of the Map_table is 20 * (m/r), where m is the size of
the RAID1-based disk buffer, and r is the request size. For example, if the size of the
used RAID1-based disk buffer is 10GB and the average request size is 8KB, the total
size of the Map_table is only around 25MB. LDM uses nonvolatile memory to store
the Map_table to protect data in case of power failure. Since the redirected write data
is only temporarily stored on the HDD-based RAID1, the nonvolatile memory used to
store the mapping information is small. After all the write data on the HDD-based
RAID1 is reclaimed, the nonvolatile memory is also released. Thus, the extra memory
space can be further reduced by periodically reclaiming the write data from RAID1 to
RAIS5 during system idle periods.

3.3. Data Migration

In the LDM array, the small write data from user applications is only temporarily stored
on the HDD-based RAID1 and will be migrated to the SSD-based RAIS5 eventually,
which is controlled by the Data Migration module. As discussed in Section 2.1, the
small-random-write requests are the key bottleneck of performance and reliability for
flash-based SSDs. For SSD-based RAIS5, the problem will be even more pronounced
due to the write amplification problem that is further exacerbated by the parity update
operations in the parity-based RAIS5. To address the problem, the LDM array uses a
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Fig. 3. The workflow of data migration and user request processing.

pair of mirroring log disks (i.e., the HDD-based RAID1) to absorb the small writes on
HDDs and merge them into large writes to SSDs.

By using log-structured and append-only write strategies for the HDD-based RAID1,
a good write performance is guaranteed. Figure 3 shows the data migration process.
LDM first merges multiple adjacent write requests into a large write request. The size
of the large write request is dependent on the stripe unit size and the number of SSDs
in the SSD-based RAIS5. For example, given an SSD-based RAIS5 consisting of four
SSDs and a chunk size of 16KB, the size of the large request is 48KB. In this way, a
large write to the SSD-based RAIS5 constitutes a full-stripe write, which achieves the
best write performance of an SSD-based RAIS5 with four SSDs. Moreover, by converting
write requests into full-stripe writes in this way, the write amplification problem caused
by the parity update operations is significantly alleviated, thus improving the write
performance and reliability for the SSD-based RAIS5.

The data migration process is by default triggered during a system idle period to
reduce the performance impact on the foreground user applications. However, during
an IO-intensive period, if the user read requests addressed to the HDD-based RAID1
intensify, the data migration process is also triggered automatically to move the re-
quested data from the HDDs to the SSDs to improve the read performance. Once
the write data is migrated from the HDD-based RAID1 to the SSD-based RAIS5, the
corresponding entries in the Map_table are deleted.

3.4. Request Processing Workflow

Upon receiving a read request, the Request Redirector first checks whether there is an
entry corresponding to the request in the Map_table. If so, the data is read from the
HDD-based RAID1, as illustrated in Figure 3. Otherwise, the request will be processed
by the SSD-based RAIS5.

Upon receiving a write request, the Request Redirector first obtains the size of the
write request. Based on the size, the Request Redirector will determine whether the
request is serviced by the HDD-based RAID1 or the SSD-based RAIS5. For example, if
the write request size is smaller than 48KB, the request is written to the HDD-based
RAID1 sequentially, as illustrated in Figure 3. At the same time, the Map_table is
updated to record the redirected write data. Thus, the subsequent read requests can
be checked in the Map_table to determine whether the requested data is stored on the
HDD-based RAID1. If the write request already exists in the Map_table, the previous
log entry will be replaced by the new log entry, but the new write data is written by
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Fig. 4. The concurrent data reconstruction and migration operations in the data recovery process.

appending. Otherwise, a new log entry is created according to the request and inserted
into the log list.

3.5. Recovery from a Disk Failure

Disk failure can occur among either the SSDs or the HDDs. If an SSD fails, the recovery
operation is initiated in the SSD-based RAIS5. During recovery within the SSD-based
RAIS5, all write requests are directed to the HDD-based RAID1 and read requests are
served as usual. Since the two HDDs are mirrored as a write buffer that temporarily
absorbs write requests and acts as a surrogate device [Wu et al. 2009], the recovery
efficiency is improved significantly as evidenced in our experiments (see Section 4).

If an HDD fails, the Data Migrator is triggered to migrate the write data from the
HDD-based RAID1 to the SSD-based RAIS5 according to the Map_table. Along with
the data migration process, the data reconstruction operation within the HDD-based
RAID1 is also in progress. Moreover, the data migration and data reconstruction oper-
ations are processed concurrently to reduce the data read overhead from the surviving
HDD, as indicated in Figure 4. After the data migration and data reconstruction pro-
cesses complete, the newly formed HDD-based RAID1 again acts as a write buffer for
the SSD-based RAIS5 in the form of a pair of mirroring log disks. During the data mi-
gration period, all user requests are served by the SSD-based RAIS5. The Map_table is
also checked to ensure data consistency; that is, if the write request is in the Map_table,
the corresponding entry should be deleted after the data is written to the SSD-based
RAIS5.

3.6. Data Consistency

Data consistency in the LDM array means that (1) the key data structure must be
safely stored, (2) the redirected write data must be reliably stored on the HDDs, and
(3) the user read requests must fetch the up-to-date data.

First, to prevent the loss of the Map_table in the event of a power supply failure or
a system crash, LDM stores the Map_table in a nonvolatile RAM (NVRAM). Since the
size of the Map_table is generally small, it will not incur significant hardware cost. In
order to improve the write performance by using the write-back strategy, NVRAM is
commonly deployed in the RAID controller. It is usually buildup of DRAM backed with
a battery. Thus, it is easy and reasonable to use a small amount of NVRAM to store
the Map_table. Moreover, in the high-end RAID-based storage products, the NVRAM
is mirrored in the multiple RAID controllers to prevent a single point of failure.
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Table I. Experimental Setup

Machine Intel Xeon E5-2407, 8GB RAM
OS Linux 2.6.21.1

Device adapter PERC H710 SATA controller
Disk driver Intel X25-E 64GB SATA SSD

Seagate Savvio 73GB SATA HDD
Traces OLTP [UMass Trace Repository 2010]

MSR Traces [Microsoft Enterprise Traces 2009]
Trace replay tool RAIDmeter [Wu et al. 2012]

Second, the redirected write data must be safely stored on the HDD-based RAID1.
The LDM array uses two strategies to guarantee the data availability: mirroring and
concurrent failure recovery. In the former, two HDDs are used to form a RAID1 to
protect data loss caused by an HDD failure. For the latter, when an HDD fails, the
LDM array first migrates the write data to the SSD-based RAIS5 and reconstructs the
fetched data to the replacement HDD.

Third, since the up-to-date data for a read request can be stored on either the
SSD-based RAIS5 or the HDD-based RAID1, each read request is first checked in
the Map_table to determine whether it should be serviced by the former or the latter
to keep the fetched data always up-to-date, until all redirected write data is migrated
to the SSD-based RAIS5.

4. PERFORMANCE EVALUATIONS

In this section, we first describe the experimental setup and evaluation methodology.
Then we evaluate the performance of the LDM array through trace-driven simulations.

4.1. Experimental Setup and Evaluation Methodology

We have implemented an LDM array prototype on top of the Linux Software RAID
framework as an independent module. The performance evaluation is conducted on a
Dell PowerEdge T320 with an Intel Xeon E5-2407 processor and 8GB DDR memory.
In the system, there is a PERC H710 SATA controller card to house different SATA
disks, including both SSDs and HDDs. The SSD module is the Intel X25-E 64GB SATA
Solid-State Drive and the HDD module is the Seagate Savvio 73GB SATA Disk. A
separate hard disk is used to house the operating system (Linux kernel 2.6.21.1) and
other software (MD, mdadm, and RAIDmeter). The experimental setup is outlined in
Table I.

The traces used in our experiments are obtained from the Storage Performance
Council [UMass Trace Repository 2010] and realistic enterprise-scale environments
[Microsoft Enterprise Traces 2009]. The two financial traces (Financial1 and Finan-
cial2) were collected from OLTP applications running at a large financial institution.
The four enterprise-scale workloads (src1_2, usr_0, proj_0, and prxy_0) are collected
from Microsoft enterprise platforms. These traces represent different access patterns
in terms of read/write ratio, IOPS, and average request size, with the main workload
parameters summarized in Table II. Performance evaluation uses the RAIDmeter [Wu
et al. 2015] that is a block-level trace replay software capable of replaying traces and
evaluating the I/O response time of the storage device.

To evaluate the LDM array, we compare it with other architectures of SSD-based
disk arrays. The first disk array architecture is the basic RAIS5 of different sizes
(e.g., 4-RAIS5 represents RAIS5 consisting of four SSDs and 6-RAIS5 indicates RAIS5
consisting of six SSDs). The second disk array architecture is HPDA, which consists
of four SSDs and two HDDs [Mao et al. 2012], where one HDD serves as the parity
disk for the SSD-based RAID4. The third disk array architecture is the same as the
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Table II. The Workload Characteristics

Trace Characteristic
Trace Read Ratio IOPS Aver. Req. Size (KB)
Fin1 32.8% 52 11.9
Fin2 82.4% 127 6.2

src1_2 21.5% 14 30.0
usr_0 49.4% 26 17.1
proj_0 46.7% 28 14.8
prxy_0 8.3% 224 2.7

Fig. 5. Response time comparison among the different disk array schemes.

Table III. Average Response Time Improvement of LDM over 4-RIAS5 and HPDA

Traces
Response Time Improvement Fin1 Fin2 src usr proj prxy

Over 4-RAIS5 51.7 2.0 5.1 25.3 22.1 16.5
Over HPDA 12.1 1.2 1.4 6.7 5.8 2.6

LDM array except that the HDD-based RAID1 is replaced by SSD-based RAIS1 that
consists of two SSDs (S-LDM). The purpose of this comparison is to show how the log
disk mirroring scheme improves the system performance and reliability with the same
number of SSDs.

4.2. Performance Results and Analysis

Figure 5 and Table III show the performance results in the normal mode where all disks
perform normally. In the normal mode during the evaluations, 4-RAIS5 consists of four
SSDs, and 6-RAIS5 consists of six SSDs. Both HPDA and LDM consist of four SSDs
and two HDDs. S-LDM consists of six SSDs. In terms of the average response time, the
LDM array outperforms the SSD-based disk array 4-RAIS5 by a factor of up to 51.7,
2.0, 5.1, 25.3, 22.1, and 16.5, and outperforms the HPDA by a factor of up to 12.1, 1.2,
1.4, 6.7, 5.8, and 2.6 for the Fin1, Fin2, src, usr, proj, and prxy traces, respectively. The
reason is that for the OLTP and MSR workloads, the I/O requests are usually small and
random. Moreover, the updates are common in these storage traces [Chan et al. 2014].
Thus, for the SSD-based RAIS5, the access latency for random small write requests is
very long. In particular, since most requests of these workloads are smaller than the
size of a flash page (as shown in Table II), these write requests incur substantial erase-
before-write operations for SSDs, thus adversely impacting performance. However, the
disk head seeks between the buffer area and the parity area on the parity HDD in
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HPDA will degrade the system performance [Mao et al. 2012]. In contrast, both the
LDM array and S-LDM array use the log-structured buffer to store the small writes,
which significantly reduces the negative performance impact to the SSD-based RAIS5.
Moreover, the LDM array and S-LDM array merge small updates into large write
requests, further improving the storage performance.

It is also clear that the S-LDM array performs better than 6-RAIS5, further validat-
ing the efficacy of the use of the log mirroring buffer architecture for small updates.
Moreover, the LDM array performs comparably with the S-LDM array. The reason is
that the writes to the mirroring buffer are sequentially appended, and the sequential
performance gap between HDDs and SSDs is negligible, thus making the performances
of sequential accesses to the SSD-based RAIS1 (in the S-LDM array) and the HDD-
based RAID1 (in the LDM array) almost identical. It is interesting to note that, despite
its two extra SSDs, 6-RAIS5 performs almost the same as 4-RAIS5 for all the traces.
The reason is that, with a large stripe width (i.e., number of disks), the parity updates
are much more frequent. Thus, the increased parity updates will offset the benefit
from the increased parallelism by the two additional SSDs in 6-RAIS5. These results
are also consistent with the previous studies [Mao et al. 2010; Soundararajan et al.
2010].

Figure 6 compares in more detail the user I/O performances of LDM, 4-RAIS5, and
a single SSD during the trace replay period, and highlights the significant advan-
tage of LDM over 4-RAIS5. Two aspects of the significant improvement in the user
response time are demonstrated in these figures. First, LDM has much better stable
user response times than that of a single SSD and 4-RAIS5. The reason is that for pure
SSD-based storage systems, the garbage collection processes will significantly affect
the system performance by overlapping with foreground user I/O requests. In contrast,
LDM uses the disk mirroring buffer, which can absorb the foreground user I/O requests
to alleviate the interaction, thus providing better stable performance. Though the onset
of the user response times is much higher than 4-RAIS5, the stability of user response
times is much better than 4-RAIS5. Second, LDM has fewer high-response time points
than that of a single SSD and 4-RAIS5. In Figure 6, we can see that both a single SSD
and 4-RAIS5 have many time points where the response times exceed 1ms and even
go up to 10ms. The high user response times will significantly affect the QoS (Qual-
ity of Service) of the applications, thus violating the SLA (Service-Level Agreement).
In contrast, the highest user average response time of LDM is less than 1ms, which
guarantees the service qualities.

Besides the evaluation on response time (latency), we also compare the performance/
cost ratio among the different disk array schemes, illustrated in Figure 7. For the
performance/cost calculation, we use the evaluated response times as the performance
values and the total cost of the storage devices as the cost values. For the current
generation of flash-based SSDs, the cost/GB is about 10 times that of HDDs [Solid
State Storage Initiative 2010]. That is, when we set the cost value of 1GB HDD space
as 1, we will set the cost value of 1GB SSD space as 10. Figure 7 shows that both
the LDM array and S-LDM array are more cost efficient than the SSD-based disk
arrays (4-RAIS5 and 6-RAIS5) and HPDA. Moreover, the LDM array performs the best
among all five disk array schemes. Though HPDA and LDM have the same devices, the
performance of LDM is much better than HPDA with the different data layout schemes.
Thus, the LDM array has a higher performance/cost ratio than HPDA. Compared with
the S-LDM array, the LDM array achieves comparable performance but at a lower
cost, as indicated in Figure 5, making the LDM array the most cost-efficient scheme
among all five disk array schemes. This is also the key reason that we choose a 2-HDD-
based RAID1 in the LDM array as the log mirroring buffer, rather than a 2-SSD-based
RAID1.
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Fig. 6. The user average response times for the different disk array schemes.
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Fig. 7. Performance/cost ratio comparison among the different disk array schemes. Note that a higher ratio
is better.

Fig. 8. Normalized average response time and reconstruction time for the different disk array schemes.

To evaluate how effectively the LDM array handles failure recovery, we also con-
ducted experiments on the recovery process of different disk array schemes. Figures 8(a)
and 8(b) show respectively the average response time during recovery and the recon-
struction time for the five disk array schemes driven by the three traces of Fin1, src, and
usr. Similar to the normal mode, the LDM array and S-LDM array significantly outper-
form both 4-RAIS5 and 6-RAIS5 in terms of average response times and reconstruction
time. The reason is that, in the cases of 4-RAIS5 and 6-RAIS5, the reconstruction I/Os
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Fig. 9. State-transition diagram for an LDM array consisting of four SSDs and two HDDs.

and user I/Os compete for disk resources, thus increasing the reconstruction time and
user response time simultaneously. In the LDM array and S-LDM array, the log mir-
roring buffer absorbs all write requests, thus significantly alleviating the contentions
between the user I/Os and reconstruction I/Os. This results in the simultaneous reduc-
tion in the reconstruction time and user response time [Wu et al. 2012].

5. RELIABILITY ANALYSIS

In this section, we adopt the MTTDL metric to estimate the reliability of the LDM
array, taking into account the impact of the reconstruction time. To the best of our
knowledge, there is no consensus on an acceptable MTTDL in the industry for storage
systems. What is generally accepted is that the higher the MTTDL, the higher the
reliability of the storage system. Thus, when we design a reliable storage system, we
should pursue as high an MTTDL as possible [Mao et al. 2015; Kao et al. 2013].

Our system model consists of a disk array with independent failure processes for all
disks. When a disk fails, a reconstruction process is immediately initiated for that disk.
We assume that HDD failures, SSD failures, and the reconstruction process are inde-
pendent events following an exponential distribution of rate λ, ϕ, and μ, respectively.
While some of these assumptions are not necessarily true for real systems, they are
used in order to use stochastic models with finite numbers of states [Mao et al. 2010;
Kao et al. 2013], and all the disk array schemes are based on the same assumptions.

According to the conclusion about the MTTDL results of RAIS5 [Kao et al. 2013], the
MTTDL of RAIS5 consisting of four SSDs is

MTTDL4–RAIS5 = 7ϕ + μ

12ϕ2 , (1)

and the MTTDL of RAIS5 consisting of six SSDs is

MTTDL6–RAIS5 = 11ϕ + μ

30ϕ2 . (2)

Figure 9 shows the state transition diagram for an LDM array consisting of four
SSDs and two HDDs. State <0> represents the normal state of the disk array when
its six disks are all operational. A failure of any of the four SSDs would bring the disk
array to state <1>. A failure of any of the two HDDs would bring the disk array to
state <2>. A failure of any of the two HDDs in state <1> or a failure of any of the
four SSDs in state <2> will bring the disk array to state <3>. A failure of a second
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SSD in state <1> or a failure of a second HDD in state <2> would result in data loss.
Any disk failure in state <3> would result in data loss. The reconstruction transition
brings the disk array back from state <3> to state <1> or state <2>, then from state
<2> to state <0> or from state <1> to state <0>. The failure of the other HDD does
not incur data loss in the mirroring buffer. Thus, we omit the condition of other HDD
failure events from the state-transition diagram, which does not impact the results.

The Kolmogorov system of differential equations describing the behavior of this LDM
array is expressed in Equation (3):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp0(t)
dt

= −(4ϕ + 2λ)p0(t) + μp1(t) + μp2(t)

dp1(t)
dt

= −(3ϕ + 2λ + μ)p1(t) + 4ϕp0(t) + μp3(t)

dp2(t)
dt

= −(4ϕ + λ + μ)p2(t) + 2λp0(t) + μp3(t)

dp3(t)
dt

= −(3ϕ + λ + 2μ)p3(t) + 2λp1(t) + 4ϕp2(t),

(3)

where pi(t) is the probability that the disk array is in state <i> with the initial condition
p0(0) = 1 and pi(0) = 0 for i �= 0.

The Laplace transformation of Equation (3) is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sp∗
0(s) − 1 = −(4ϕ + 2λ)p∗

0(s) + μp∗
1(s) + μp∗

2(s)
sp∗

1(s) = −(3ϕ + 2λ + μ)p∗
1(s) + 4ϕp∗

0(s) + μp∗
3(s)

sp∗
2(s) = −(4ϕ + λ + μ)p∗

2(s) + 2λp∗
0(s) + μp∗

3(s)
sp∗

3(s) = −(3ϕ + λ + μ)p∗
3(s) + 2λp∗

1(s) + 4ϕp∗
2(s).

(4)

Observing that MTTDL of the disk array is given by Kao et al. [2013]:

MTTDL =
∑

i

p∗
i (0). (5)

Using Equation (5), we solve the Laplace transformation for s = 0 and use Equa-
tion (4) to compute MTTDL of an LDM array consisting of four SSDs and two HDDs:

MTTDLLDM = 9λμ + 21ϕμ + 2μ2

6λ3 + 4λ2μ + 24ϕ2μ + 42ϕλ2 + 108ϕ2λ
. (6)

Similarly, MTTDL of an S-LDM array consisting of four SSDs and two SSDs is

MTTDLS–LDM = 15ϕμ + μ2

14ϕ2μ + 120ϕ3 . (7)

Figure 10 plots MTTDL as a function of MTTR (Mean Time To Repair/Reconstruct)
for the different disk array architectures. The MTTDL of HPDA, which consists of four
SSDs and two HDDs, is quoted from the analysis results [Mao et al. 2012]. The HDD
failure rate, λ, is assumed to be one failure every 50,000 hours, which was derived from
a recent study on real production disk array systems [Schroeder and Gibson 2007].
The SSD failure rate, ϕ, is assumed to be one failure every 200,000 hours, based on
recent studies on SSD failure rates [Driver 2015]. For the SSD-based RAIS5 (4-RAIS5
or 6-RAIS5), due to the flash wearout of the parity update operation, the value of ϕ
is doubled with respect to the basic reliability value of SSD (without frequent parity
update operations) [Mao et al. 2012; Meza et al. 2015]. MTTR is expressed in terms
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Fig. 10. MTTDL achieved by different disk array levels. Note that a higher MTTDL value indicates a higher
reliability.

of days, and MTTDL is expressed in terms of years. From Figure 10, we can see that
MTTDL of either the LDM array or S-LDM array is better than that of SSD-based
disk arrays (4-RAIS5 and 6-RAIS5) and HPDA. As MTTR increases, the LDM array
consistently outperforms the other two schemes in terms of MTTDL. The trend of
relative results among the four schemes remains consistent as the total number of
disks increases. In summary, compared with the SSD-based RAIS5, our proposed LDM
array architecture is much more reliable.

6. RELATED WORK

Flash-based devices have been used in the embedded systems as the persistent storage
device of choice for a long time. Along with the popularity and wide deployment of flash-
based SSDs, a lot of studies have been conducted to improve the reliability, performance,
and energy consumptions from the aspects of FTL design, buffer management, garbage
collection, and so on. Recently, many studies have been focused on how to improve
the utilization of and exploit the advantages of SSDs. Areas of focus include system
optimizations, such as I/O scheduler, file systems, and disk array organizations. Our
work falls within the latter category.

Since both HDDs and SSDs have advantages and disadvantages, a lot of studies try
to combine them together effectively and avoid their disadvantages [Kim et al. 2011a;
Mao et al. 2010; Xie and Sun 2010; Lin et al. 2011; Yang and Ren 2011; Zeng et al. 2012;
Mao et al. 2014]. For example, HIT [Xie and Sun 2010] exploits the data access patterns
to distribute the data between HDD-based disk arrays and SSD-based disk arrays. By
periodically migrating data, it achieves a good balance among system performance,
reliability, and energy efficiency. However, the write amplification problem of the SSD-
based disk arrays are not addressed. Similar to HIT, HybridStore [Kim et al. 2011a]
also employs both SSD-based disk arrays and HDD-based disk arrays in an enterprise-
level storage system. The optimizations in HybridStore work above the two disk arrays
and are not aware of the internal problems of the SSD-based disk arrays. In contrast,
LDM works inside the SSD-based disk arrays; thus, it is orthogonal to and can further
improve system efficiency of HIT and HybridStore.

HPDA [Mao et al. 2010] is an enhanced hybrid RAID4 disk array composed of both
HDDs and SSDs. In HPDA, the SSDs (data disks) and part of one HDD (parity disk)
compose a RAID4 disk array. The second HDD and the free space of the parity HDD
are mirrored as a write buffer that temporarily absorbs small write requests and acts
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as a surrogate RAID1 set. It uses an HDD to serve as the dedicated parity device,
thus avoiding the parity updates on the parity SSD. HRAID6ML [Zeng et al. 2012]
extends the HPDA idea in a RAID6 storage architecture with an HDD-based parity
device, thus improving both the performance and reliability of SSD-based disk arrays.
However, since both HPDA and RAID6ML use the HDD storage space as a mirroring
buffer that is shared with the parity HDD space, the contention between the parity
area and the buffer area during the write-intensive and data migration periods will
significantly degrade the system performance [Mao et al. 2012]. The parity HDD will
also become a performance bottleneck under write-intensive workloads. Moreover, the
read requests addressed to the shared HDD storage space will further degrade system
performance. In contrast, the LDM scheme uses dedicated HDD space to absorb the
small write data, thus avoiding the disk seek movement between disjoint regions of
the shared HDD space, which significantly improves the system performance.

Griffin [Soundararajan et al. 2010] is a hybrid storage device that uses a hard disk
drive as a write cache for an SSD. By maintaining a log-structured HDD cache and mi-
grating cached data periodically, the hybrid design reduces writes to the SSD while
retaining its performance advantages. CR5M [Wang et al. 2014] is also a hybrid
RAID1/RAID5 scheme for the flash chips within a single SSD. Our study is related
in spirit to Griffin and CR5M; it targets improving performance and reliability of an
SSD-based disk array, not of a single SSD. More importantly, LDM exploits the paral-
lelism and parity update characteristics of SSD-based disk arrays to merge the small
writes into full-stripe writes to avoid the frequent parity-update operations, thus sig-
nificantly improving system performance and reliability. As a result, the LDM array
is more suitable for enterprise and HPC storage systems that require high capacity,
performance, and reliability.

There are also some studies focused on pure SSD-based disk arrays consisting of
exclusively SSDs [Balakrishnan et al. 2010a; Chung and Hsu 2014; Du et al. 2011;
Im and Shin 2011; Yi et al. 2013; Zhang et al. 2013; Wu et al. 2015]. For example,
Diff-RAID [Balakrishnan et al. 2010a] distributes the parity unevenly across SSDs in
the SSD-based RAIS5 and pre-replaces the faster-degraded SSD to improve the sys-
tem reliability. However, Diff-RAID does not alleviate the write amplification problem
induced by the parity updates on the RAIS5. It deliberately makes the SSD failures
uneven in the disk array, one by one, thus increasing the reliability of the SSD-based
RAIS5. It essentially trades performance for reliability for pure SSD-based disk ar-
rays. In contrast to Diff-RAID, WeLe-RAID [Du et al. 2011] enhances the endurance
by using an even and global wear-leveling mechanism among the SSDs in the entire
RAIS system. It improves the performance by achieving better load balance across the
SSDs. The GGC scheme [Kim et al. 2011b] aims to alleviate the performance variability
induced by the individual and uncoordinated garbage collections of SSDs in the RAIS
system by using a global collaborated garbage collection. Flash-aware RAID [Im and
Shin 2011] utilizes the cache in the storage system to reduce the number of internal
write operations to alleviate the garbage collection overhead. Two optimizations, de-
layed parity update and partial parity techniques, are embedded inside the SSD-based
disk arrays, which is orthogonal to our proposed LDM scheme.

As a summary, Table IV compares the characteristics between LDM and the state-of-
the-art schemes. We can see that compared with HPDA, LDM is much more applicable
to parity-based disk arrays. In order to address the applicable and scalable issues with
LDM, we also provide a discussion section, which follows.

7. DISCUSSION

The idea of LDM is motivated by a simple goal of simultaneously reducing the small-
random-write traffic and avoiding the write amplification problem through a log disk
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Table IV. Comparison between LDM and the State-of-the-Art Schemes

Characteristics
Schemes Hybrid RAID Level Parity Disk Write Buffer

HIT [Xie and Sun 2010] Yes RAID10 No No
Diff-RAID [Balakrishnan et al. 2010b] No RAID5 SSD No

Griffin [Soundararajan et al. 2010] Yes Single No Yes
HPDA [Mao et al. 2012] Yes RAID4 HDD Yes

LDM Yes RAID5 SSD Yes

mirroring buffer for SSD-based disk arrays. However, our process of turning this design
goal into a practical deployment reveals several interesting insights and considerations.

First, the log disk mirroring buffer in LDM is a RAID1 consisting of two HDDs.
The write requests on the RAID1 are sequentially processed since they are organized
in a log-structured manner with an append-only strategy. Besides RAID1, LDM also
can use RAID5 or RAID6 acting as a log disk buffer for RAIS5. However, by using
parity-based disk arrays, such as RAID5/6, the write accesses on the log disk buffer
may be significantly slowed down due to the extra parity calculation and maintenance
overhead. However, since the writes to the log disk buffer are sequential, the extra
parity update overhead will be much less significant. Moreover, the RAID5/6-based log
disk buffer will provide comparable or better read performance and reliability than the
RAID1-based 2-HDD log disk buffer, though they may need many more disks.

Second, SSDs are able to deliver very high data rates. However, it changes as the
system scales up to deal with the combined data rates of several drives that are accessed
in parallel in an SSD-based disk array [Jeremic et al. 2011]. Thus, in SATA SSD-based
disk arrays, the total number of disks is limited to four or six for performance and
reliability considerations [EMC Symmetrix DMX Architecture 2010; Jeremic et al.
2011]. In these applications, the latency, rather than the throughput, is the desired
objective. In order to achieve high throughput, they usually employ the PCIe SSDs
in server platforms. In an HPC environment, they usually employ SAS/FC HDDs
to satisfy both the high throughput and high capacity requirements. Though SATA
SSD-based disk arrays may not scale up by adding more disks, they can provide high
access bandwidth by using multiple storage nodes in a cluster or distributed storage
environment. Each storage node is configured with a SATA SSD-based disk array. Thus,
our LDM scheme also works well in these environments to provide fast data accesses.
Moreover, in order to support better reliability, performance, and scalability, large-scale
storage systems usually employ the LVM (Logical Volume Manager) technology, which
provides storage virtualization capabilities [Virtualizing Storage for Scale, Resiliency,
and Efficiency 2012; Logical Volume Manager (Linux) 2015]. LVM usually works on top
of the multiple RAID sets. It allows the system administrators to combine the multiple
physical storage elements into a collective storage pool, which can then be allocated and
managed according to the application requirements, without regard for the specifics of
the underlying physical disk systems.

8. CONCLUSION

The trick to maintaining the cloud as an active storage tier is compensating for latency.
Flash-based SSDs are a promising assistant to HDDs to reduce the access latency. In
this article, we propose an LDM scheme to improve the performance and reliability of
SSD-based disk arrays. LDM is a hybrid disk array architecture that consists of several
SSDs and two HDDs. In the LDM array, the SSDs (data disks) compose a RAIS5 disk
array, whereas the two HDDs are mirrored as a write buffer that temporarily absorbs
small write requests and acts as a surrogate RAID1 set during recovery when a disk
fails. The write data is reclaimed to the data disks during system idle periods. Our
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prototype implementation of the LDM array and its performance evaluation show that
the LDM array significantly outperforms other SSD-based disk arrays by a factor of
20.4 on average, and outperforms HPDA by a factor of 5.0 on average. The reliability
analysis shows that the MTTDL of the LDM array is 2.7 times and 1.7 times better
than that of pure SSD-based and HPDA disk arrays, respectively.

Our proposed LDM array architecture is an ongoing research project, and we are cur-
rently exploring several directions for the future work. First, we will evaluate LDM for
other RAID levels of SSD-based arrays, such as RAIS0, RAIS1, and RAIS6. Second, we
will investigate a garbage-collection-aware data layout and coding scheme for RAIS to
further improve the performance and reliability simultaneously. Last, we will conduct
many more experiments with benchmark tools to evaluate the bandwidth performance
in the HPC environment. In these environments, not only response times but also the
system throughput would be the main objective.
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