
A Fast Asymmetric Extremum Content Defined
Chunking Algorithm for Data Deduplication

in Backup Storage Systems
Yucheng Zhang, Dan Feng,Member, IEEE, Hong Jiang, Fellow, IEEE, Wen Xia,Member, IEEE,

Min Fu, Fangting Huang, and Yukun Zhou

Abstract—Chunk-level deduplication plays an important role in backup storage systems. Existing Content-Defined Chunking (CDC)

algorithms, while robust in finding suitable chunk boundaries, face the key challenges of (1) low chunking throughput that renders the

chunking stage a serious deduplication performance bottleneck, (2) large chunk size variance that decreases deduplication efficiency,

and (3) being unable to find proper chunk boundaries in low-entropy strings and thus failing to deduplicate these strings. To address

these challenges, this paper proposes a new CDC algorithm called the Asymmetric Extremum (AE) algorithm. The main idea behind

AE is based on the observation that the extreme value in an asymmetric local range is not likely to be replaced by a new extreme value

in dealing with the boundaries-shifting problem. As a result, AE has higher chunking throughput, smaller chunk size variance than the

existing CDC algorithms, and is able to find proper chunk boundaries in low-entropy strings. The experimental results based on real-

world datasets show that AE improves the throughput performance of the state-of-the-art CDC algorithms by more than 2:3�, which is

fast enough to remove the chunking-throughput performance bottleneck of deduplication, and accelerates the system throughput by

more than 50 percent, while achieving comparable deduplication efficiency.

Index Terms—Storage systems, data deduplication, content-defined chunking algorithm, performance evaluation

Ç

1 INTRODUCTION

ACCORDING to a study of International Data Corporation
(IDC), the amount of digital information generated in

the whole world is about 4.4 ZB in 2013, and that amount
will reach 44 ZB by 2020 [1]. How to efficiently store and
transfer such large volumes of digital data is a challenging
problem. However, recent work reveals the existence of a
large amount of duplicate data in storage systems [2]. As a
result, data deduplication, a space- and bandwidth-efficient
lossless compression technology that prevents redundant
data from being stored in storage devices and transmitted
over the networks, is one of the most important methods to
tackle this challenge. Due to its significant data reduction
efficiency, chunk-level deduplication is used in various
fields, such as storage systems [2], Redundancy Elimination
(RE) in networks [3], file-transfer systems (rsync [4]) and
remote-file systems (LBFS [5]).

Chunk-level deduplication schemes split the data stream
into multiple chunks, hash each chunk to generate a digest,
called a fingerprint, with a secure hash function (such as

SHA-1 or MD5). Two chunks with identical fingerprints are
considered duplicates. By checking fingerprints, duplicate
chunks can be identified and removed, only unique chunks
whose fingerprints do not find a match are stored. There-
fore, deduplication is considered to consist of four stages,
namely chunking, fingerprinting, indexing and writing. As
the first and key stage in the deduplication workflow, the
chunking stage is responsible for dividing the data stream
into chunks of either fixed size or variable size, which is
decided by the chunking algorithm applied. Fixed-Size
Chunking (FSC) algorithm marks chunks’ boundaries by
their positions and generates fixed-size chunks. This
method is simple and extremely fast, but it suffers from low
deduplication efficiency that stems from the boundary-shift-
ing problem. For example, if one byte is inserted at the
beginning of an data stream, all current chunk boundaries
declared by FSC will be shifted and no duplicate chunks
will be identified and eliminated. Content-Defined Chunk-
ing (CDC) algorithm divides the data stream into variable-
size chunks. It solves the boundary-shifting problem by
declaring chunk boundaries depending on local content of
the data stream. If the local content is not changed, the
chunks’ boundaries will not be shifted. As a result, the CDC
algorithm outperforms the FSC algorithm in terms of dedu-
plication efficiency and has been widely used in various
fields including storage systems. To provide the necessary
basis to facilitate the discussion of and comparison among
different CDC algorithms, we list below some key proper-
ties that a desirable CDC algorithm should have [6].

1) Content defined. To avoid the loss of deduplication
efficiency due to the boundaries-shifting problem,

� Y. Zhang, D. Feng, W. Xia, M. Fu, F. Huang, and Y. Zhou are with
Wuhan National Laboratory for Optoelectronics, School of Computer
Science and Technology, Huazhong University of Science and Technology,
Wuhan, Hubei 430074, China. E-mail: hust.yczhang@gmail.com, {dfeng,
xia, fumin, huangfangting, ykzhou}@hust.edu.cn.

� H. Jiang is with the Department of Computer Science and Engineering,
University of Texas at Arlington, 640 ERB, 500 UTA Blvd, Arlington,
TX 76019. E-mail: hong.jiang@uta.edu.

Manuscript received 21 Jan. 2016; revised 13 June 2016; accepted 6 July 2016.
Date of publication 27 July 2016; date of current version 20 Jan. 2017.
Recommended for acceptance by Z. Shao.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2016.2595565

IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 2, FEBRUARY 2017 199

0018-9340� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

the algorithm should declare the chunk boundaries
based on local content of the data stream.

2) Low computational overhead. CDC algorithms need to
check almost every byte in an data stream to find the
chunk boundaries. This means that the algorithm
execution time is approximately proportional to the
number of bytes of the data stream, which can take
up significant CPU resources. Hence, in order to
achieve higher deduplication throughput, the
chunking algorithm should be simple and devoid of
time-consuming operations.

3) Small chunk size variance. The variance of chunk size
has a significant impact on the deduplication effi-
ciency. The smaller the variance of the chunk size is,
the higher the deduplication efficiency will be
achieved [7].

4) Efficient for low-entropy strings. The content of real
data may sometimes include low-entropy strings [8].
These strings include very few distinct characters
but a large amount of repetitive bytes. In order to
achieve higher deduplication efficiency, it is desir-
able for the algorithm to be capable of finding proper
chunk boundaries in such strings and eliminating
them as many as possible.

5) Less artificial thresholds on chunk size. Minimum and
maximum thresholds are often imposed on chunk
size to avoid chunks being too short or too long.
These measures reduce chunk size variance, but also
make the chunk boundaries position-dependent and
thus not truly content-defined, which also reduces
the deduplication efficiency [9].

The Rabin fingerprint [10] based CDC algorithm (Rabin) is
widely employed in deduplication systems [11], [12]. The
main problems of the Rabin algorithm are its low chunking
throughput, which renders the chunking stage the perfor-
mance bottleneck of the deduplication workflow [13], [14],
and large chunk size variance that lowers the deduplication
efficiency [7]. MAXP [15] is a CDC approach that addresses
the chunk-size variance problem of Rabin by treating the
local extreme values as cut-points. Owing to its smaller chunk
size variance and lower memory overhead than Rabin,
MAXPwas recommended to be used in redundancy elimina-
tion in networks [16], [17].MAXP slides a fix-sized symmetric
window over the byte stream on a byte-by-byte basis, and
checks whether the value of the byte at the center of the cur-
rent window is the extreme value in the window. The byte
found to be the extreme value is declared a cut-point (chunk
boundary). This strategy of finding the local extreme values
dictates that the MAXP algorithm recheck some previously
compared bytes in the reverse direction of the stream, which
significantly lowers its chunking throughput.

We propose the Asymmetric Extremum chunking
algorithm (AE), a new CDC algorithm that significantly
improves the chunking throughput of the above existing
algorithms while providing comparable deduplication effi-
ciency by using the local extreme value in a variable-sized
asymmetric window to overcome the aforementioned
boundary-shifting problem. With a variable-sized asymmet-
ric window, instead of a fix-sized symmetric window as in
MAXP, the AE algorithm finds the extreme value in the
window without having to backtrack and thus requiring

only one comparison and two conditional branch operations
per byte scanned. Therefore, AE’s simplicity makes it very
fast. It also has smaller chunk size variance than existing
CDC algorithms and imposes no limitation on chunk size.
Moreover, AE is able to eliminate more low-entropy strings
than the other algorithms. To further the advantages of AE,
we propose two optimizations to AE, with one optimization
providing higher chunking throughput while the other
offering higher deduplication efficiency by eliminating
more low-entropy strings. Our experimental evaluations
based on three real-world datasets show that AE improves
the throughput performance of the state-of-the-art CDC
algorithms by at least 2:3� and accelerates the overall dedu-
plication system throughput performance by more than 50
percent, while attaining comparable deduplication effi-
ciency. More specifically, the optimization for higher chunk-
ing throughput speedups the performance by 56.9 and 73.1
percent on the i7-930 and i7-4770 CPUs respectively. The
optimization to detect more low-entropy strings eliminates
on average 8:8� and 2:09� more low-entropy strings than
the Rabin and the original AE algorithms respectively, with
only slight and no reduction in system throughput com-
pared with the system using AE on the i7-930 and i7-4770
CPUs respectively.

The rest of paper is organized as follows. In Section 2, we
present the background and motivation. We describe the
detailed design and implementation of our AE and analyze
some of its key properties in Section 3.We present the experi-
mental setup and evaluation results in Section 4 and conclude
the paper in Section 5.

2 BACKGROUND AND MOTIVATION

In this section, we first provide the necessary background
for the AE research by introducing the challenges facing the
existing CDC algorithms, and then motivate our research
by analyzing our key observations.

2.1 Background

The Rabin fingerprint [10] based CDC algorithm (Rabin) was
first used to eliminate redundant network traffic [18]. It runs a
sliding-window hash along the byte stream, declaring a
chunk boundarywhenever the k-lowest-order bits of the hash
are equal to a pre-determined value. Though being efficient in
dealingwith boundaries-shifting problem, Rabin suffers from
two major drawbacks, namely, its time-consuming finger-
print computation that results in low chunking throughput
and its large chunk size variance that reduces deduplication
efficiency. Moreover, Rabin is not capable of finding proper
chunk boundaries in low-entropy strings (either all or none of
the positions in the low-entropy strings will be considered as
chunk boundaries). This, combined with the drawback of
large chunk size variance, makes Rabin having to impose a
minimum and a maximum threshold on chunk size to avoid
chunks being too short or too long, since very short chunks
imply more fingerprints to be stored and processed by dedu-
plication systems and thus not cost-effective, while very long
chunks reduce the deduplication efficiency.

Recognizing the impact of the chunk-size variance on
deduplication efficiency, Eshghi et al. [7] proposed the
TTTD algorithm to reduce Rabin’s chunk-size variance. The

200 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 2, FEBRUARY 2017

TTTD algorithm introduces an additional backup divisor
that has a higher probability of finding cut-points. When it
fails to find a cut-point using the main divisor within a max-
imum threshold, it returns the cut-point found by the
backup divisor, if any. If no cut-point is found by either of
the divisors, it returns the maximum threshold. In fact,
TTTD is not a new chunking algorithm but an optimization
strategy of Rabin to reduce the chunk-size variance. This
strategy can also be applied to the other chunking algo-
rithms. There are some other optimization strategies that
are similar to TTTD, for example, Regression chunking algo-
rithm [9] uses multiple divisors to reduce forced cut-points
declaration at maximum chunk size.

MAXP [15], [16] is a state-of-the-art CDC algorithm, which
is first used in remote differential compression of files. Unlike
Rabin that must compute a hash first, the MAXP algorithm
treats the bytes directly as digits, which helps reduce the
computational overhead. MAXP attempts to find the strict
local extreme values in a fixed-size symmetric window, and
then uses these points as chunk boundaries to divide the
input stream. The main disadvantages of this strategy is that
when declaring an extreme value, the algorithm must move
backwards by a fixed-size region to check if there is any value
greater (if the extreme value is the maximum value) than the
value of the current position being examined. This backtrack-
ing process requires many extra conditional branch opera-
tions and increases the number of comparison operations for
each byte examined. Since MAXP needs to check every byte
in the data stream, any additional conditional branch opera-
tions result in a decreased chunking throughput.

EndRE [17] proposes an adaptive SampleByte algorithm
for declaring fingerprints. The SampleByte algorithm com-
bines the CDC algorithm’s robustness to small changes in
content with the efficiency of the FSC algorithm. It uses one
byte to declare a fingerprint and stores 1=p representative
fingerprints for content matching, where p is the sampling
period. To avoid over-sampling, it skips p=2 bytes when a
fingerprint has been found. SampleByte is fast since it (1)
only needs one conditional branch per byte to judge the
chunk boundaries and (2) skips about one third of bytes on
the input data. However, the design principle of Sample-
Byte dictates that the sampling period p be smaller than 256
Bytes, which means that the expected average chunk size
must be smaller than 256 Bytes when used in the chunk-
level deduplication. Unfortunately, a chunk granularity of
256 bytes or smaller is too fine to be cost efficient or practi-
cal, which makes the SampleByte algorithm inappropriate
for coarse-grained chunk-level deduplication in backup sys-
tems. Moreover, it requires a lookup table that needs to be
generated before deduplication according to the workload
characteristics, which further restricts its applications.

Some other Rabin-based CDC variants are also proposed
to improve the deduplication efficiency but introduce more
computation overhead for chunking. For example, FBC [19]
re-chunks the chunks which contains subchunks with high
frequency to detect more finer-grained redundancy.
Bimodal chunking [11] divides the data stream into large
chunks, and then re-chunks the non-duplicate but dupli-
cate-adjacent chunks into smaller chunks to eliminate more
redundancy. Subchunk [20] is similar to Bimodal chunking,
but it re-chunks all of the non-duplicate chunks for higher
deduplication efficiency. MHD [21] dynamically merges
consecutively duplicate chunks into a big chunk to reduce
the chunk fingerprints that need to be stored. Fingerdiff [22]
divides the data stream into small chunks and merges con-
secutively duplicate or unique chunks into big chunks to
reduce the metadata overhead.

2.2 Challenges and Motivation

Chunk-level deduplication is faster than the traditional com-
pression technology, such as GZip [23]. Further, because of its
coarse-grained compression scheme, it achieves a higher com-
pression ratio than the traditional compression technology in
backup systems [24]. For certain backup datasets, the ratio of
deduplication efficiency of chunk-level deduplication to that
of GZip-only compression is 15:2 [19], [25]. Therefore, chunk-
level deduplication ismore commonlyused in backup storage
systems.Moreover, because of their higher deduplication effi-
ciency than FSC [26], CDC algorithms are preferred in chunk-
level deduplication. However, the low chunking throughput
of the existing CDC algorithms hinders their wider applica-
tions because of the deduplication performance bottleneck
[14], [27]. To alleviate the performance bottleneck and
increase the throughput of the deduplication system, P-
Dedupe [14] harnesses the idle CPU resources to pipeline and
parallelize the compute-intensive processes. StoreGPU [27]
and Shredder [13] exploit underutilized GPU resources to
improve the chunking throughput. However, these schemes
achieve their performance improvement from either addi-
tional resources or parallelization of the deduplication pro-
cesses, but not from improving the chunking algorithm itself.

Table 1 compares the state-of-the-art CDC algorithms by
summarizing their key properties. The SampleByte algorithm
is confined to the fine-grained deduplication (the expected
average chunk size should be smaller than or equal to 256
Bytes), and thus is not applicable to backup systems. The
Rabin algorithm has the problems of high computational
overheads and high chunk size variance. The MAXP algo-
rithm is computationally expensive and cannot eliminate
low-entropy strings. Obviously, the Rabin and MAXP algo-
rithms share the common problem of high computational
overhead that results in low chunking throughput.

As indicated by P-dedupe [14], the workflow of CDC-
based deduplication consists of four independent stages of
chunking, fingerprinting, indexing, and writing. Therefore,
to make full use of the computation resources in multicore-
or manycore-based computer systems and accelerate the
throughput of deduplication system, some deduplication
systems, such as ZFS [28], THCAS [29], Data Domain’s file
system [30], and P-dedupe, pipeline the deduplication
workflow. As a result, the stage that has the lowest through-
put performance will be the performance bottleneck of the

TABLE 1
Properties of the State-of-the-Art CDC Algorithms

Properties SampleByte Rabin MAXP AE

Content Defined Yes Yes Yes Yes
Computational overheads Low High High Low
Chunk size variance High High Low Low
Efficient for low-entropy strings No No No Yes
Artificial thresholds on chunk size Yes Yes No No

ZHANG ETAL.: A FASTASYMMETRIC EXTREMUM CONTENT DEFINED CHUNKING ALGORITHM FOR DATA DEDUPLICATION IN BACKUP... 201

whole deduplication workflow. In the four stages of the
workflow, the throughput of the writing stage is decided by
two factor: deduplication efficiency and storage device. The
amount of data needs to be stored is decided by the dedu-
plication efficiency. The higher the deduplication efficiency
is, the less the amount of data to be written.

Another factor is the storage devices, different storage
devices have different sequential writing throughput,
including some enterprise class storage devices that can eas-
ily achieve a throughput of several GB per second. As for
the indexing stage, its throughput is much higher than the
chunking and fingerprinting stages when chunk size is a
few KB [31], [32]. As a result, the remaining two stages,
namely, the chunking and fingerprinting stages, have the
lowest throughput. We evaluate the average throughput of
the chunking and fingerprinting stages in the i7-930 and i7-
4770 CPUs, with evaluation results summarized in Table 2
where Rabin_0.25 and SHA-1 are the most common meth-
ods used in the chunking and fingerprinting stages respec-
tively of today’s deduplication systems. Without
consideration of writing performance, we can draw the fol-
lowing observations from this table. First, chunking is the
main performance bottleneck of the deduplication work-
flow since its throughput is much lower than the finger-
printing throughput. Second, the large difference between
the chunking throughput and the fingerprinting throughput
means that the improvement of system throughput will be
significant if the chunking-throughput performance bottle-
neck is removed.

The various problems facing the state-of-the-art CDC
algorithms summarized in Table 1, particularly that of the
low throughput, stem from the high computation over-
heads and motivate us to propose a new chunking algo-
rithm with low computation overhead to overcome these
problems. In fact, our experimental observation finds that
detecting local extreme values in an asymmetric window
can not only deal with the boundaries-shift problem for
Content-Defined Chunking, but also increase the chunking
throughput and detect more low-entropy strings. As a
result, our proposed Asymmetric Extremum chunking
algorithm, by using an asymmetric window to find the
local extreme value for chunking as elaborated in the next
section, is able to better satisfy the key desirable properties
of CDC algorithm to achieve high deduplication efficiency,
and remove the chunking-throughput performance bottle-
neck of deduplication and improve performance of the
whole deduplication system.

3 ASYMMETRIC EXTREMUM CHUNKING

ALGORITHM

In this section we describe the design of the AE chunking
algorithm and analyze its key properties.

3.1 The AE Algorithm Design

In AE, a byte has two attributes: position and value. Each
byte in the data stream has a position number, and the posi-
tion of the nth byte (14n4stream length) in the stream is
n. Each interval of S consecutive characters/bytes in the
data stream is treated as a value. For example, eight conse-
cutive characters/bytes are converted to a value that is a 64-
bit integer. The value of every such interval in the data
stream is associated with the position of the first byte of the
S consecutive characters/bytes that constitute this value.
Therefore, each byte in the stream, except for the very last
S � 1 bytes, has a value associated with it. For convenience
of description, we assume that data stream start from the
leftmost byte. If a byte A is on the left of byte B, A is said to
be before B, and B appears after A. Given a byte P in the
data stream, the w consecutive bytes immediately after P
are defined to be the right window of P , and w is referred to
as the window size.

The extreme value in the AE algorithm can be either the
maximum value or the minimum value. For convenience of
discussion, in what follows in this section, we assume that
the extreme value is the maximum value. Starting from the
very first byte of the stream or the first byte after the last
cut-point (chunk boundary), AE attempts to find the first
byte of the data stream that satisfies the following two
conditions.

� It is the first byte or its value is greater than the val-
ues of all bytes before it.

� Its value is not less than the values of all bytes in its
right window.

The first byte found to meet these conditions is referred
to as a maximum point. These two conditions make sure that
the maximum point has the maximum value in the region
from the very first byte of the stream or the first byte after the
last cut-point to the rightmost byte of the maximum point’s
right window. There are two further implications. First, this
first byte can be a maximum point. Second, AE allows for ties
between the byte being examined and bytes in its
right window. If a maximum point has been found, AE
returns the rightmost byte in its right window, which is also
the byte being processed, as a cut-point (chunk boundary).
AE does not need to backtrack, since the process after the
returned cut-point is independent of the content before the
cut-point. Moreover, the position and the value of the bytes
processed (except for the byte having the temporary local
maximum value) need not be kept in memory. The workflow
of AE is described in Fig. 1. Algorithm 1 below provides a
more detailed implementation of the AE chunking algorithm.

From the algorithm description above, we know that the
minimum chunk size of AE is wþ 1. In what follows we dis-
cuss the expected chunk size of AE.

Theorem 1. Consider a byte in position p in the current data
stream, starting from the first byte after the last cut point (i.e.,
excluding the bytes in the data stream that have already been
chunked), the probability of this byte being a maximum point is
1=ðwþ pÞ, where w is the window size.

Proof. We assume that the content of real data is random,
an assumption that is reasonably justified by our experi-
mental evaluation and previous work such as MAXP [15].

TABLE 2
Traditional Chunking and Fingerprinting Throughput

on the i7-930 and i7-4770 CPUs

i7-930 i7-4770

Rabin_0.25 sha-1 Rabin_0.25 sha-1
354 MB/s 526 MB/s 463 MB/s 888 MB/s

202 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 2, FEBRUARY 2017

According to the conditions set for a maximum point, if
byte p is a maximum point, it should have the maximum
value in the interval ½1; pþ w�. In this interval, each byte
is equally likely to be of the maximum value. Thus, the
probability of byte p being the maximum point is
1=ðwþ pÞ. Note that if position p is the maximum point,
the chunk size will be pþ w. tu
Now we determine the range of possible position of

the maximum point, namely, the position x that makes
the cumulative probability equal to 1. According to Theo-
rem 1, we can compute the position x using the following
equation:

1

wþ 1
þ 1

wþ 2
þ 1

wþ 3
þ � � � þ 1

wþ x
¼ 1:

The left side of this equation is approximately equal to
lnðwþ xÞ � lnw. Thus, the value of x is approximately
ðe� 1Þ � w. For each possible position, the expected chunk
size is equal to the probability of being the maximum point
multiplying by the chunk size if it is the maximum point.
Finally, we compute the expected chunk size by adding the
expected chunk size of all possible positions, and the result,
namely, the expected chunk size, is ðe� 1Þ � w.

3.2 Properties of the AE Algorithm

In this section, we analyze the AE algorithm in regards to
the desirable properties of CDC algorithms listed in
Section 1.

Content Defined. The MAXP algorithm considers a byte
with the local maximum value a chunk boundary. There-
fore, any modifications within a chunk, as long as they do
not replace the local maximum value, will not affect the
adjacent chunks, since the chunk boundaries will simply be
re-aligned. Unlike MAXP, the AE algorithm returns the wth
position after the maximum point as the chunk boundary. It
puts the maximum points inside the chunks instead of con-
sidering them as chunk boundaries. This strategy may
slightly decrease the deduplication efficiency, but AE is still
content defined since the maximum points inside the
chunks can also re-align the chunk boundaries.

Take Fig. 2 for example, E1, E2, E3 are the three maxi-
mum points, C1, C2, C3 are the cut-points of the three corre-
sponding chunks. Assume that all modifications in the
example will not replace the local maximum value. If there
is an insertion (or deletion) in the interval [B1, E1) in Chunk
1, Chunk 2 will not be affected since the chunk boundary
will be re-aligned by the maximum point E1. If the insertion
is in the interval (E1, C1], the starting point of Chunk 2 will
be changed, and E2 will re-align the boundary to keep
Chunk 3 from being affected. If a sequence of consecutive
chunks has been modified, the loss of efficiency is deter-
mined by the position of the modification in the last modi-
fied chunk. If the modification is before the maximum point,
there is no efficiency loss. Otherwise, only one duplicate
chunk that is immediately after this modified region will be
affected. In addition, the deduplication efficiency is also
determined by many other factors, such as chunk-size vari-
ance and the ability to eliminate low-entropy strings. As we
will see shortly, AE’s ability to eliminate low-entropy
strings and reduce chunk-size variance has more than com-
pensated for this relatively small loss of deduplication
efficiency.

Algorithm 1. Algorithm of AE Chunking

Input: input string, Str; left length of the input string, L;
Output: chunked position (cut-point), i;
1: Predefined values: window size w;
2: function AECHUNKING (Str, L)
3: i 1
4: max:value Str½i�:value
5: max:position i
6: i iþ 1
7: while i < L do
8: if Str½i�:value � max:value then
9: if i ¼ max:positionþ w then
10: return i
11: end if
12: else
13: max:value Str½i�:value
14: max:position i
15: end if
16: i iþ 1
17: end while
18: return L
19: end function

Computational Overheads. Table 3 shows the computa-
tional overheads of the three algorithms, AE, MAXP and
Rabin. As shown in the table, the Rabin algorithm needs 1
OR, 2 XORs, 2 SHIFTs and 2 ARRAY LOOKUPs per byte
examined to compute the fingerprints and one conditional
branch to judge the chunk boundaries. While both the
MAXP and AE algorithms use comparison operations to
find the local maximum values, their strategies are quite dif-
ferent and it is this difference that makes AE much faster
than MAXP. Fig. 3 shows the difference between the two

Fig. 1. The workflow of the AE chunking algorithm, where N, M, D in the
figure are neighboring positions, and so are the positions of C and B0.

Fig. 2. An example of efficiency loss of AE.

ZHANG ETAL.: A FASTASYMMETRIC EXTREMUM CONTENT DEFINED CHUNKING ALGORITHM FOR DATA DEDUPLICATION IN BACKUP... 203

algorithms. As shown in the figure, MAXP finds the maxi-
mum values in a fixed-size window [A, D]. If the byte M
that is in the center of this window has the maximum value
in the window, its value must be strictly greater than that of
any byte in both regions of [A, B] and [C, D]. Assuming that
all bytes in the window [A, D] have been scanned and M
has the maximum value and has been returned as a cut-
point, some of the bytes in region [C, D] must be scanned
again when MAXP processes the byte E. This means that
MAXP needs an array to store the information of the bytes
in the fixed-size region immediately before the current byte.
Therefore, it requires two modular operations to update the
array, and 2� 1

p comparison and 5þ 1
p conditional branch

operations to find the local maximum value.
In contrast, AE only needs to find the maximum value in

an asymmetric window [F, I], which includes a fixed-size
region [H, I] and a variable-size region [F, G], whose size is
determined by the content of the data stream. As a result,
we only need to store a candidate maximum point and the
position of the candidate maximum point, and do not need
to backtrack to declare the local maximum value. Therefore,
AE only needs one comparison and two conditional branch
operations. Clearly, AE requires much fewer operations,
particularly the time-consuming conditional branch and
table lookup operations, than the other two algorithms.

Chunk Size Variance. Here we analyze the chunk size vari-
ance of the AE algorithm. We use the probability of a long
region not having any cut-point to estimate the chunk size
variance.

Theorem 2. AE has no maximum point in a given range, if and
only if in each interval of w consecutive bytes in this range,
there exists at least one byte that satisfies the first condition of
the maximum point, namely, it is the first byte or its value is
greater than the values of all bytes before it.

Proof. In this range, if there exists one byte in each interval
of w consecutive bytes whose value is greater than the
values of all bytes before it, then the second condition of
the maximum point, namely, its value is not less than the
values of all bytes in its right window, will never be satis-
fied. In other words, there is no maximum point in the
range. tu
Given an interval ½cwþ aþ 1; cwþ aþ w�, where c is a

constant, the probability of no byte satisfying the first condi-
tion of maximum point is

Yw

i¼1
1� 1

aþ i

� �
¼ a

aþ w
:

So the complementary probability, that there exists at least
one byte satisfying the first condition of the maximum
point, is w=ðwþ aÞ. Divide the interval into subintervals
with the length of w and then number them from 1 to m.
Consider the pth subinterval ½ðp� 1Þwþ 1; pw�. The proba-
bility of no maximum point in it is

w

ðp� 1Þ � wþ w
¼ 1

p
:

Multiplying the probabilities of the continuousm subinterv-

als, we have 1
m!. Given that the average chunk size of AE is

ðe� 1Þ � w, the probability of no maximum point in m con-
secutive chunks of average chunk size becomes

P ðAEÞ ¼ 1

½ðe� 1Þ �m�! ;

herem should be more than 1.
Next we compare the probabilities of very long chunks

among the AE, MAXP and Rabin algorithms. Table 4 shows
formulas to calculate the theoretical probability of no cut-
points in a region of length m� average-chunk-size [15] and
lists such probabilities when m ¼ 2; 3; . . . ; 8 for the three
algorithms, where Rabin_0 represents the Rabin algorithm
without minimum threshold, and Rabin_0.25 represents
Rabin with a minimum threshold on chunk size, and the
ratio of the minimum threshold to the expected chunk size
is 0.25. As can be seen from the table, the probability of gen-
erating exceptionally long chunks by AE is much lower
than the other two algorithms, which also means that AE
has smaller chunk-size variance.

Dealing with Low-Entropy Strings. Ties between the byte
being examined and the bytes in the right window may

TABLE 3
Computational Overheads of the Three Algorithms

Algorithm Computational overhead per byte scanned

Rabin 1 or, 2 xors, 2 shifts, 2 array lookups,
1 conditional branch

MAXP 2 mod, 2� 1
p comparisons,

5þ 1
p conditional branches

AE 1 comparison, 2 conditional branches

p is the expected chunk size.

TABLE 4
Probability of No Cut-Points in a Region of Length

m�Average-Chunk-Size

m AE Rabin_0 Rabin_0.25 MAXP

1
½ðe�1Þ�m�! e�m e�1:2m 22m

ð2mÞ!
2 0.0938 0.1353 0.0907 0.6667
3 0.0064 0.0498 0.0273 0.0889
4 2:56� 10�4 0.0183 0.0082 0.0063
5 6:85� 10�6 0.0067 0.0025 2:82� 10�4
6 1:32� 10�7 0.0025 7:47� 10�4 8:55� 10�6
7 1:94� 10�9 9:12� 10�4 2:25� 10�4 1:88� 10�7
8 2:25� 10�11 3:35� 10�4 6:77� 10�5 3:13� 10�9

Fig. 3. Illustration of the key difference between the MAXP and AE algo-
rithms, where B, M, C are neighboring positions, so are the positions of
D and E and positions of G, N, and H.

204 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 2, FEBRUARY 2017

appear in the data stream. If a tie happens to be between
two local maximum values, we can break the tie by one of
the following two strategies: (1) selecting the first maximum
value or (2) going beyond the right window to search for a
strictly maximum value. Strategy (1) can help identify and
eliminate low-entropy strings. AE allows for ties in its right
window and the maximum point can be the first byte, so
that it can divide the low-entropy strings into fixed-size
chunks whose size is wþ 1. On the other hand, Strategy (2),
which is used in the MAXP algorithm, will lead the algo-
rithm to miss detecting and eliminating low-entropy
strings. Note that the AE algorithm cannot detect all low-
entropy strings. If the length of a low-entropy string is
greater than 2wþ 2, then AE can identify a part of it. Fur-
thermore, Strategy (2) requires more conditional branch
operations in finding the maximum points. For these rea-
sons, we chose Strategy (1) for AE.

Artificial Thresholds on Chunk Size. AE’s strategy of finding
the maximum values implies that the length of its chunk
will be greater than or equal to wþ 1, so that an artificial
minimum threshold on chunk size is unnecessary. In addi-
tion, according to Table 4, the probability of AE generating
exceptionally long chunks is extremely small. This, com-
bined with the fact that AE is able to find cut-points in low-
entropy strings, makes it unnecessary for AE to impose the
maximum threshold on chunk size, a point that is amply
demonstrated in the detailed sensitivity study of the AE
algorithm in the next section.

3.3 Optimizations

The First Optimization. In fact, AE uses the comparison oper-
ation to find the extreme point, which provides us with an
opportunity to optimize the algorithm. As shown in Algo-
rithm 1, every time the algorithm moves forward one byte,
the value of the new byte Str½i�:value must be compared
with the temporary maximum value max:value. However,
max:value, which is selected out of the values of all bytes
between the starting point and the current position i, is
expected to be greater than Str½i�:value. In other words, lines
8 through 10 in the Algorithm 1 are expected to be executed
much more frequently than lines 12 through 14, which
means that optimizing lines 8 through 10 in the algorithm
will significantly improves the chunking throughput. We
found that declaring boundary by Algorithm 1 (line 9) is
unnecessary in the region between max:position and
max:positionþ w due to AE’s strategy of declaring bound-
aries. Therefore, we optimize the algorithm by removing as
many of the boundary declaring operations as possible in
the region mentioned above as described in Algorithm 2.
For simplicity, we use max:v and max:pos instead of
max:value and max:position in Algorithm 2. This optimiza-
tion helps increase the chunking throughput since it only
needs one comparison and one conditional branch in the
region between max:position and max:positionþ w when
max:value is greater than Str½i�:value, rather than one com-
parison and two conditional branches required by the origi-
nal AE algorithm. Note that, while the chunking stage is not
the performance bottleneck in the deduplication workflow,
higher chunking throughput translates into less computa-
tional overheads and thus frees up more CPU resources for
the other tasks.

Algorithm 2. The First Optimization to AE

Input: input string, Str; left length of the input string, L;
Output: chunked position (cut-point), i;
1: Predefined values: window size w;
2: function AECHUNKING-OPT1(Str, L)
3: i 1
4: max:v Str½i�:v
5: max:pos i
6: i iþ 1
7: while i < L do
8: if L < max:posþ w then
9: endPos ¼ L
10: else
11: endPos ¼ max:posþ w
12: end if
13: while Str½i�:v < max:v and i < endPos do
14: i iþ 1
15: end while
16: if Str½i�:v > max:v then
17: max:v Str½i�:v
18: max:pos i
19: else
20: returnmax:posþ w
21: end if
22: i iþ 1
23: end while
24: return L
25: end function

The Second Optimization. Low-entropy strings may exist
in two patterns [8]. One pattern is of a string that contains
only one unique character, such as

0000000000000000 . . . :

Another pattern is of a string that contains repetitive
substrings, such as

abcabcabcabcabcabc . . . :

Recall that AE declares the cut-point (chunk boundary) by
finding the local maximum values, which provides us with
another opportunity to further optimize the algorithm to
detect more low-entropy strings of the first pattern. We
know that the maximum value and the minimum value in a
region being equal means that all values in the region are
equal. As a result, we can define a low-entropy-string-
threshold LEST that is smaller than the expected chunk
size and optimize the algorithm using the following
strategy:

� AE also finds the minimum value when finding the maxi-
mum value and the cut-point. When the algorithm is proc-
essing the LEST th byte of the input stream, it checks if
the maximum value is equal to the minimum value. If the
maximum value and the minimum value are equal, the
algorithm outputs the LEST th byte as a cut-point. Other-
wise, it continues processing the subsequent bytes of the
stream.

This optimization makes AE capable of detecting more
low-entropy strings of the first pattern and outputting them
with a shorter chunk size LEST . A smaller LEST is helpful
since it only reduces the average size of the low-entropy

ZHANG ETAL.: A FASTASYMMETRIC EXTREMUM CONTENT DEFINED CHUNKING ALGORITHM FOR DATA DEDUPLICATION IN BACKUP... 205

chunks without affecting the other chunks. This optimized
algorithm is described in Algorithm 3. Compared with
Algorithm 1, the optimized algorithm requires more condi-
tional branches, leading to decreased throughput perfor-
mance. Further, the strategy used by the first optimization
to speedup the chunking throughput is not applicable to
this optimization. Therefore, AE can use either of the two
optimizations described above, but can not use both of
them simultaneously. We suggest the use of the second opti-
mization if the dataset includes many low-entropy string,
such as source code. Otherwise, the use of the first optimiza-
tion is recommended.

Algorithm 3. The Second Optimization to AE

Input: input string, Str; left length of the input string, L;
Output: chunked position (cut-point), i;
1: Predefined values: window size w; threshold LEST ;
2: function AECHUNKING-OPT2(Str, L)
3: i 1
4: max:v Str½i�:v
5: min:v Str½i�:v
6: max:pos i
7: i iþ 1
8: while i < L do
9: if Str½i�:v � min:v and Str½i�:v � max:v then
10: ifmin:v ¼ max:v and i ¼ LEST then
11: return i
12: end if
13: if i ¼ max:posþ w then
14: return i
15: end if
16: else if Str½i�:v > max:v then
17: max:v Str½i�:v
18: max:pos i
19: else
20: min:v Str½i�:v
21: if i ¼ max:posþ w then
22: return i
23: end if
24: end if
25: i iþ 1
26: end while
27: return L
28: end function

4 PERFORMANCE EVALUATION

In this section, we present the experimental evaluation of
our AE and its two optimization chunking algorithms in
terms of multiple performance metrics. To characterize the
benefits of AE, we also compare it with two existing CDC
algorithms, namely, Rabin and MAXP.

4.1 Evaluation Setup

We implement the MAXP and AE algorithms, along with
AE’s two optimizations, in an open-source deduplicaiton
prototype system called Destor [33], [34] on two servers.
One server has an 8-core Intel i7-930 2.8 GHz, running the
Ubuntu 12.04 operating system. Another and more power-
ful one has an 8-core Intel i7-4770 3.4 GHz system, running
the Ubuntu 14.04 operating system. Note that Destor uses

the SHA-1 hash function to generate chunk fingerprints for
the detection and elimination of duplicate chunks. To evalu-
ate the improvement on system throughput by using AE
and its optimizations, we also implemented them in the P-
dedupe deduplication system [14] on the two servers men-
tioned above. We index all fingerprints to evaluate the exact
deduplication efficiency for both the Destor and P-dedupe
systems, and put all fingerprint index in RAM for P-dedupe
to maximally examine the impact of different chunking
algorithms on the system throughput.

Datasets. To evaluate the three CDC algorithms, we use
the following three real-world datasets.

Bench: This dataset is generated from the snapshots of a
cloud storage benchmark. We simulate common operations
of file systems, such as file create/delete/modify operations
as suggested by [35] and [36] on the snapshots, and obtain a
108 GB dataset with 20 versions.

Open-source: This dataset includes 10 versions of Emacs,
15 versions of SciLab, 20 versions of GCC, 15 versions of
GDB, 40 versions of Linux kernels, 23 versions of CentOS,
18 versions of Fedora, 24 versions of FreeBSD, 17 versions
of Ubuntu. The total size of this dataset is 169.5 GB.

VMDK: This dataset is from a virtual machine installed
Ubuntu 12.04 LTS, which is a common use-case in real-
world [37]. We run a HTTP server on this virtual machine
and backup it regularly. Finally we obtain a 1.9 TB dataset
with 125 backups. Since all backups are full backup, there
exists a large amount of duplicate content in this dataset.

Evaluation Methodology. Every dataset was tested several
times by each chunking algorithm with different average
chunk sizes. For the Rabin algorithm, we still use the typical
configuration Rabin_0.25 (see Section 3). We also impose a
maximum threshold on chunk size whose value is eight
times the expected chunk size. Because of the minimum
threshold, the real average chunk size of Rabin will be
greater than the expected chunk size. It is approximately
equal to the expected chunk size plus the minimum thresh-
old. For the sake of fairness, for each test, we first processed
using Rabin to get the real average chunk size, and then
adjusted the real average chunk size to the same value
when using other algorithms. For convenience of discus-
sion, Rabin’s expected chunk sizes are used as labels to dis-
tinguish different tests on each dataset.

Since the AE algorithm is extreme-value based, the
extreme value can be either maximum value or minimum
value. As such, it is necessary to find out how sensitive is
the AE algorithm to the choice of the form of extreme
value, maximum or minimum. Therefore, in Destor [33]
we implemented both versions of AE, AE_MAX and
AE_MIN, to carry out a sensitivity study. In addition, in
order to experimentally verify our theoretic analysis and
conclusion that it is not necessary to impose a maximum
threshold on AE, as summarized in Table 4, we evaluated
AE’s sensitivity to the maximum chunk-size threshold by
implementing the same threshold on AE as that imposed
on Rabin, which leads to two more AE versions of
AE_MAX_T and AE_MIN_T. To evaluate the two optimi-
zations of AE, we include them in our test. We label the
original AE as AE, its optimization for higher chunking
throughput as AE-Opt1 and its optimization for low-
entropy strings as AE-Opt2 to distinguish them.

206 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 2, FEBRUARY 2017

4.2 Deduplication Efficiency

In this section, we evaluate the deduplication efficiency of
our algorithm. We use deduplication elimination ratio
(DER), which we define as the ratio of the size of input data
to the size of data need to be actually stored, to measure the
deduplication efficiency. Therefore, the greater the value of
DER is, the higher the deduplication efficiency is.

Sensitivity of AE to Design Parameters. Fig. 4 shows AE’s
sensitivity to the key design parameters, i.e., the form of
extreme value (maximum versus minimum) and the neces-
sity of imposing a maximum chunk-size threshold, in terms
of deduplication efficiency across the three datasets under
AE_MAX, AE_MIN, AE_MAX_T and AE_MIN_T. Consis-
tent with our theoretic analysis of Table 4, the experimental
results show that the AE without a maximum threshold
achieves nearly identical deduplication efficiency as the AE
with it. Specifically, the gains in deduplication efficiency
from adding the maximum threshold are negligibly small
(i.e., on average 0.003 percent). But for some datasets, it
actually reduces the deduplication efficiency, since the cut-
points declared by AE with a maximum threshold is no lon-
ger strictly content-defined but position dependent.

Another key observation is that AE_MAX achieve higher
DER than AE_MIN in three datasets. Recall that, just like the
MAXP, the AE algorithm treats the bytes directly as digits.
The deduplication efficiency of AE_MAX and AE_MIN
depends on the frequency and the encoding of the characters
in the data stream. We also tested other datasets including
network traffic, video files, different types of compressed files,
etc., and we found that AE_MAX can obtain the same or

higher deduplication efficiency than AE_MIN on all datasets
except for the network traffic dataset. This implies that we
should useAE_MAX in backup storage systems andAE_MIN
in Redundancy Elimination in networks. In this paper we
only focus on backup storage systems. In what follows, based
on the AE sensitivity study above, we used maximum value
for AE algorithm. We also tested the MAXP algorithm using
either the maximum or the minimum value on the three data-
sets, and the results are similar to and consistent with those of
AE. Therefore, we usedMAXPwithmaximumvalue.

Now we discuss the selection of the low-entropy-string-
threshold LEST (see Section 3.3) for AE-Opt2 and evaluate
the benefits brought by AE and AE-Opt2 with their ability
to detect the low-entropy strings. As mentioned in Section
3.3, low-entropy strings may exist in two patterns [8], here
we only focus on the first pattern, namely, a string that con-
tains only one unique character, since the second pattern of
such strings is difficult to detect. The Rabin algorithm can
also detect some low-entropy strings with the help of the
maximum threshold when the low-entropy strings are long
enough. However, MAXP does not have this capability. In

this evaluation, we set the value of LEST to 1
2,

1
4 and

1
8 of the

expected chunk size (ECS) respectively for AE-Opt2. Table 5
shows the ratio of the size of the low-entropy strings
detected to the size of the input data for the open-source
and VMDK datasets (bench dataset is not included in the
table since it contains very few low-entropy strings). As
shown in the table, AE and AE-Opt2 detect more low-
entropy strings than Rabin and MAXP in both datasets. Spe-
cifically, AE detects up to 7:9�, with an average of 3:9�,

Fig. 4. Deduplication efficiency of AE. AE_MAX and AE_MIN respectively represent AE using maximum and minimum as extreme values.
AE_MAX_Tand AE_MIN_T denote the AE_MAX and AE_MIN with a maximum threshold.

TABLE 5
Ratio of the Size of the Low-Entropy Strings Detected to the Size of Data Stream,

Where ECS in the Table Means Expected Chunk Size

algorithm open-source vmdk

2 KB 4 KB 8 KB 16 KB 2 KB 4 KB 8 KB 16 KB

Rabin 0 0 0 0 0 0 0 0
Rabin_0.25 1.04% 0.59% 0.23% 0.14% 2.34% 1.78% 1.49% 1.38%
MAXP 0 0 0 0 0 0 0 0
AE 5.47% 1.98% 1.49% 1.11% 6.07% 3.27% 2.84% 2.43%
AE-opt2 (LEST ¼ 1

2� ECS) 8.62% 5.04% 3.26% 1.49% 7.95% 5.41% 3.02% 2.67%

AE-opt2 (LEST ¼ 1
4� ECS) 9.54% 5.58% 3.69% 2.32% 8.48% 5.78% 4.14% 2.84%

AE-opt2 (LEST ¼ 1
8� ECS) 10.04% 6.27% 4.2% 2.61% 8.73% 6.24% 4.81% 3.68%

ZHANG ETAL.: A FASTASYMMETRIC EXTREMUM CONTENT DEFINED CHUNKING ALGORITHM FOR DATA DEDUPLICATION IN BACKUP... 207

more low-entropy strings than Rabin_0.25. AE-opt2 with an

LEST of 1
8 of ECS detects up to 18:6� (8:8� on average)

more such strings than Rabin_0.25 and up to 3:16� (2:09�
on average) more than AE. Furthermore, for AE-Opt2, a
smaller LEST contributes to detecting more low-entropy
string, but too small chunks cause higher metadata over-
head. In the following evaluations, we set the value of

LEST to 1
8 of ECS. Note that all detected low-entropy strings

have the same length. For Rabin, the length is equal to
Rabin’s maximum chunk-size threshold. For AE and AE-
Opt2, it is equal to wþ 1 and LEST respectively. Therefore,
all of these low-entropy strings can be eliminated directly
by chunk-level deduplication.

Next we compare the deduplication efficiency of the four
chunking algorithms, namely Rabin_0.25, MAXP, AE, AE-
Opt2. AE-Opt1 is not included in this comparison since it is
an optimization of AE focusing on improving the chunking
throughput performance and thus has the same deduplica-
tion efficiency as AE. Fig. 5 shows the results of this compar-
ison. As shown in the figure, on the bench dataset, four
algorithms achieve almost the same DER, and Rabin_0.25
achieves slightly higher DER than the other three algo-
rithms when real chunk size is greater than 10 KB. On the
open-source and VMDK datasets, Rabin_0.25 achieves com-
parable or higher DER than MAXP, AE attains higher DER
than Rabin_0.25 and MAXP, while AE-Opt2 achieves the
highest DER among the four algorithms. Obviously the rea-
son for AE-Opt2’s superior DER performance to AE is its
ability to detect and eliminate more low-entropy strings.

Chunk Size Variance. Chunk size variance also has a sig-
nificant impact on deduplication efficiency [7]. We have
proved that AE has smaller chunk size variance than the

other algorithms in theory in Table 4, here we test it using
the real-world datasets. We selected a gcc file in the open-
source dataset, and processed it using the three algorithms
with the expected chunk size of 4, 8, and 16 KB respectively.
Fig. 6 depicts the distribution. In this figure we can see that
AE achieve more uniform chunk-size distribution, which
also means that AE has smaller chunk-size variance than
the other two algorithms.

4.3 Chunking Throughput

Next we evaluate the chunking throughput. In this evalua-
tion we use a Ramdisk-driven emulation that uses RAM
exclusively, which is the same as that used in Shredder [13],
to avoid the performance bottleneck caused by read and
write operations on the disks. Fig. 7 compare the chunking
throughput measure among the Rabin_0.25, MAXP, AE,
AE-Opt1, and AE-Opt2 algorithms on the i7-4770 CPU
across the three datasets. On each dataset, the expected
chunk size is set at 2, 4, 8, and 16 KB respectively. To better
present the throughput bottleneck of the deduplication
workflow, we also present the throughput of SHA-1 in the
figure.

From the figure, we can draw the following observations.
First, AE outperforms the Rabin_0.25 and MAXP algorithms
in terms of the chunking throughput. Specifically, on
average, AE improves the throughput performance of
Rabin_0.25 and MAXP by 3:21� and 2:55� respectively.
Second, AE-Opt1 significantly improves the chunking
throughput. On average, it accelerates the chunking speed
of AE by 73.1 percent. Third, AE-Opt2 decreases the chunk-
ing throughput. However, its throughput is still signifi-
cantly greater than that of SHA-1.

Fig. 5. Deduplication efficiency of the three chunking algorithms on the three real-world datasets.

Fig. 6. Distribution of the chunk size for the three algorithms. Expected chunk sizes are 4, 8, and 16 KB respectively.

208 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 2, FEBRUARY 2017

4.4 Impact of the Chunking Algorithms on the
System Throughput

Now we discuss the impact of the chunking algorithms on
the overall throughput of the deduplication system encom-
passing the entire deduplication workflow, or system
throughput for brevity. As mentioned before, the chunking
stage is the performance bottleneck of the deduplication
workflow, which means that improvement on the chunking
throughput can directly benefit the system throughput
before the system meets another performance bottleneck.
For the convenience of description, we refer to the P-dedupe
systems with the Rabin_0.25, MAXP, AE, AE-Opt1 and AE-
Opt2 algorithms as P-dedup-Rabin, P-dedup-MAXP, P-
dedup-Rabin-AE, P-dedup-AE-Opt1 and P-dedup-AE-Opt2
respectively. In this evaluation we still use a Ramdisk-
driven emulation to avoid the performance bottleneck
caused by disk I/O. For each dataset, we only use 3 GB, a
small part of its total size in the evaluation, while the
VMDK dataset is not included since even a single file in this
dataset is too large to fit in the RAM.

Fig. 8 shows the system throughput of the two systems
with an expected chunk size of 8 KB. As shown in the figure,
P-dedup-MAXP attains almost the same system throughput
as P-dedup-Rabin on the i7-930 CPU and slightly higher

system throughput than P-dedup-Rabin on the i7-4770
CPU. P-dedup-AE-Opt1 obtains almost the same system
throughput as P-dedup-AE. In addition, P-dedup-AE out-
performs P-dedup-Rabin significantly in terms of system
throughput, by a speedup factor of up to 1:63�, with an
average factor of 1:54� on the i7-930 CPU. On the i7-4770
CPU, the improvement is even greater, with the system
throughput achieved by P-dedup-AE reaching up to 2� (on
average 1:84�) higher than that of P-dedup-Rabin. As for P-
dedup-AE-Opt2, its system throughput is slightly lower
than P-dedup-AE on the i7-930 CPU. This is because
the chunking stage is not fast enough to totally remove the
chunking stage performance bottleneck. Despite of the
lower system throughput compared with P-dedup-AE
(with a decrease of 8.3 percent on average), it still acceler-
ates the system throughput of P-dedup-Rabin by more than
1:4�. On the i7-4770 CPU, the system throughput of P-
dedup-AE-Opt2 and P-dedup-AE are almost the same,
which also means that the performance bottleneck of the
deduplication workflow has been shifted from the chunking
stage to the fingerprinting stage since the chunking
throughput has no effect on the system throughput. This,
combined with the results of Table 5, shows that AE-Opt2
is useful for the datasets that contain large amounts of

Fig. 7. Throughput of SHA-1 and the five algorithms on the i7-4770 CPU.

Fig. 8. System throughput of P-dedup-Rabin, P-dedup-MAXP, P-dedup-AE, P-dedup-AE-opt1 and P-dedup-AE-opt2 on the i7-930 and i7-4770 CPUs
with Ramdisk.

ZHANG ETAL.: A FASTASYMMETRIC EXTREMUM CONTENT DEFINED CHUNKING ALGORITHM FOR DATA DEDUPLICATION IN BACKUP... 209

low-entropy strings since it can detect and eliminate more
low-entropy strings (by up to 3:16�), while has marginal or
no affect on the system throughput performance.

5 CONCLUSION

High computational overheads of the existing CDC algo-
rithms render the chunking stage the performance bottle-
neck of the deduplication workflow. We presented AE, a
new CDC algorithm that effectively employs an asymmetric
sliding window to find the local extreme value for fast con-
tent-defined chunking. As a result, AE is shown to have
lower computational overheads and thus higher chunking
throughput, smaller chunk size variance, and the ability to
eliminate more low-entropy strings than the state-of-the-art
algorithms. To strengthen the superiority of AE, we present
two optimizations to AE, with one optimization providing
higher chunking throughput while the other offering higher
deduplication efficiency by eliminating more low-entropy
strings. Our experimental evaluation based on three real-
world datasets demonstrates the robustness of AE in terms
of deduplication efficiency and superior chunking through-
put performance that is able to shift the performance bottle-
neck of the deduplication workflow from the chunking
stage to the fingerprinting stage and significantly improve
the system throughput performance.

ACKNOWLEDGMENTS

The work was partly supported by NSFC Nos. 61502190,
61502191, 6140050892, 61232004, and 61402061; 863 Project
2013AA013203, 2015AA016701, and 2015AA015301; Funda-
mental Research Funds for the Central Universities, HUST,
under Grant No. 2015MS073; US National Science Founda-
tion under Grants CNS-1116606 and CNS-1016609; the work
was also supported by NSFC under Grant No. 61502191,
CCF-Tencent Open Fund 2015, Key Laboratory of Informa-
tion Storage System, Ministry of Education, China. An early
version of this paper appeared in the proceedings of IEEE
INFOCOM, 2015. Dan Feng is the corresponding author.

REFERENCES

[1] The Digital Universe of Opportunities: Rich Data and the Increas-
ing Value of the Internet of Things, Apr. 2014. [Online]. Available:
http://www.emc.com/leadership/digital-universe/2014iview/
executive-summary.htm, EMC Digital Universe with Research &
Analysis by IDC.

[2] S. Quinlan and S. Dorward, “Venti: A new approach to archival
storage,” in Proc. 1st USENIX Conf. File Storage, 2002, Art. no. 7.

[3] S. Sanadhya, R. Sivakumar, K.-H. Kim, P. Congdon,
S. Lakshmanan, and J. P. Singh, “Asymmetric caching: Improved
network deduplication for mobile devices,” in Proc. 18th Annu.
Int. Conf. Mobile Comput. Netw., 2012, pp. 161–172.

[4] A. Tridgell, Efficient Algorithms for Sorting and Synchronization.
Canberra, Australia: Australian Nat. Univ., 1999.

[5] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” in Proc. 18th Symp. Operating Syst. Principles,
2001, pp. 174–187.

[6] W. Xia, et al., “A comprehensive study of the past, present,
and future of data deduplication,” Proc. IEEE, 2016, Doi: 10.1109/
JPROC.2016.2571298.

[7] K. Eshghi and H. K. Tang, “A framework for analyzing and
improving content-based chunking algorithms,” Hewlett-Packard
Labs Palo Alto, CA, USA, vol. 30, Tech. Rep. HPL-2005–30R1,
2005.

[8] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: Local
algorithms for document fingerprinting,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2003, pp. 76–85.

[9] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and S. Sengupta,
“Primary data deduplication—large scale study and system
design,” in Proc. USENIXConf. Annu. Tech. Conf., 2012, pp. 26–26.

[10] M. O. Rabin, Fingerprinting by Random Polynomials. Cambridge,
MA, USA: Center for Research in Computing Techn., Aiken Com-
putation Laboratory, Harvard Univ., 1981.

[11] E. Kruus, C. Ungureanu, and C. Dubnicki, “Bimodal content
defined chunking for backup streams,” in Proc. 8th USENIX Conf.
File Storage Technologies, 2010, pp. 18–18.

[12] W. Xia, H. Jiang, D. Feng, and L. Tian, “Combining deduplication
and delta compression to achieve low-overhead data reduction on
backup datasets,” in Proc. IEEE Data Compression Conf., 2014,
pp. 203–212.

[13] P. Bhatotia, R. Rodrigues, and A. Verma, “Shredder: GPU-
accelerated incremental storage and computation,” in Proc. 10th
USENIX Conf. File Storage Technologies, 2012, pp. 14–14.

[14] W. Xia, H. Jiang, D. Feng, L. Tian, M. Fu, and Z. Wang, “P-Dedupe:
Exploiting parallelism in data deduplication system,” in Proc. IEEE
7th Int. Conf. Netw. Architecture Storage, 2012, pp. 338–347.

[15] N. Bjørner, A. Blass, and Y. Gurevich, “Content-dependent chunk-
ing for differential compression, the local maximum approach,”
J. Comput. Syst. Sci., vol. 76, no. 3, pp. 154–203, 2010.

[16] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee,
“Redundancy in network traffic: Findings and implications,” in
Proc. ACM 11th Int. Joint Conf. Meas. Modeling Comput. Syst., 2009,
pp. 37–48.

[17] B. Agarwal, et al., “EndRE: An end-system redundancy elimina-
tion service for enterprises,” in Proc. 7th USENIX Conf. Networked
Syst. Des. Implementation, 2010, pp. 28–28.

[18] N. T. Spring and D. Wetherall, “A protocol-independent tech-
nique for eliminating redundant network traffic,” in Proc. ACM
Conf. Appl. Technologies Architectures Protocols Comput. Commun.,
2000, pp. 87–95.

[19] G. Lu, Y. Jin, and D. H. Du, “Frequency based chunking for data
de-duplication,” in Proc. IEEE Int. Symp. Modeling Anal. Simulation
Comput. Telecommun. Syst., 2010, pp. 287–296.

[20] B. Roma�nski, º. Heldt, W. Kilian, K. Lichota, and C. Dubnicki,
“Anchor-driven subchunk deduplication,” in Proc. ACM 4th
Annu. Int. Conf. Syst. Storage, 2011, pp. 16:1–16:13.

[21] B. Zhou and J. Wen, “Hysteresis re-chunking based metadata har-
nessing deduplication of disk images,” in Proc. IEEE 42nd Int.
Conf. Parallel Process., 2013, pp. 389–398.

[22] D. R. Bobbarjung, S. Jagannathan, and C. Dubnicki, “Improving
duplicate elimination in storage systems,” ACM Trans. Storage,
vol. 2, no. 4, pp. 424–448, 2006.

[23] J.-l. Gailly, Gzip: The Data Compression Program. Bloomington, IN,
USA: iUniverse, 2000.

[24] G. Wallace, et al., “Characteristics of backup workloads in produc-
tion systems,” in Proc. 10th USENIX Conf. File Storage Technologies,
2012, pp. 4–4.

[25] T. Summers, “Hardware compression in storage and network
attached storage,” SNIA tutorial, Spring 2007. [Online]. Available:
http://www.snia.org/education/tutorials/2007/spring

[26] D. T. Meyer andW. J. Bolosky, “A study of practical deduplication,”
Proc. 9thUSENIX Conf. File Stroage Technologies, 2011, pp. 1–1.

[27] S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, and
M. Ripeanu, “StoreGPU: Exploiting graphics processing units to
accelerate distributed storage systems,” in Proc. 17th Int. Symp.
High Performance Distrib. Comput., 2008, pp. 165–174.

[28] J. Bonwick, ZFS deduplication, Nov. 2009. [Online]. Available:
https://blogs.oracle.com/bonwick/entry/zfs_dedup

[29] C. Liu, Y. Xue, D. Ju, and D. Wang, “A novel optimization method
to improve de-duplication storage system performance,” in Proc.
IEEE 15th Int. Conf. Parallel Distrib. Syst., 2009, pp. 228–235.

[30] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck
in the data domain deduplication file system,” in Proc. 6th USE-
NIX Conf. File Storage Technologies, 2008, pp. 18:1–18:14.

[31] W. Xia, H. Jiang, D. Feng, and Y. Hua, “SiLo: A similarity-locality
based near-exact deduplication scheme with low RAM overhead
and high throughput,” in Proc. USENIX Conf. USENIX Annu.
Tech. Conf., 2011, pp. 26–28.

[32] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezis,
and P. Camble, “Sparse indexing: Large scale, inline deduplica-
tion using sampling and locality,” in Proc. 7th Conf. File Storage
Technologies, 2009, pp. 111–123.

[33] M. Fu, “Destor: An experimental platform for chunk-level data
deduplication,” 2014. [Online]. Available: https://github.com/
fomy/destor

210 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 2, FEBRUARY 2017

[34] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, and W. Xia, “Design
tradeoffs for data deduplication performance in backup work-
loads,” in Proc. 13th USENIX Conf. File Storage Technologies, 2015,
pp. 331–344.

[35] V. Tarasov, A. Mudrankit, W. Buik, P. Shilane, G. Kuenning, and
E. Zadok, “Generating realistic datasets for deduplication analy-
sis,” in Proc. USENIX Conf. Annu. Tech. Conf., 2012, pp. 24–24.

[36] M. Lillibridge, K. Eshghi, and D. Bhagwat, “Improving restore
speed for backup systems that use inline chunk-based
deduplication,” in Proc. 11th USENIX Conf. File Storage Technolo-
gies, 2013, pp. 183–198.

[37] F. Guo and P. Efstathopoulos, “Building a high-performance
deduplication system,” in Proc. Conf. USENIX Annu. Tech. Conf.,
2011, pp. 25–25.

Yucheng Zhang is currently working toward the
PhD degree majoring in computer architecture at
Huazhong University of Science and Technology,
China. His research interests include data dedu-
plication, storage systems, etc.

Dan Feng received the BE, ME, and PhD
degrees in computer science and technology
from Huazhong University of Science and Tech-
nology (HUST), China, in 1991, 1994, and 1997,
respectively. She is a professor and the dean of
the School of Computer Science and Technology,
HUST. Her research interests include computer
architecture, massive storage systems, and par-
allel file systems. She has more than 100 publica-
tions in major journals and international
conferences, including the IEEE Transactions on

Computers, the IEEE Transactions on Parallel and Distributed Systems,
the ACM Transactions on Storage, the Journal of Computer Science
and Technology, FAST, USENIX ATC, ICDCS, HPDC, SC, ICS, IPDPS,
and ICPP. She has served as the program committees of multiple inter-
national conferences, including SC 2011, 2013 and MSST 2012, 2015.
She is a member of the IEEE and the ACM.

Hong Jiang received the BSc degree in com-
puter engineering from Huazhong University of
Science and Technology, Wuhan, China, in 1982,
the MASc degree in computer engineering from
the University of Toronto, Toronto, Canada, in
1987, and the PhD degree in computer science
from Texas A&M University, College Station, TX,
USA, in 1991. He is currently a chair and Wendell
H. Nedderman Endowed professor in Computer
Science and Engineering Department, University
of Texas at Arlington. Prior to joining UTA, he

served as a program director at the National Science Foundation (Jan.
2013-Aug. 2015) and he was at the University of Nebraska-Lincoln since
1991, where he was Willa Cather professor of computer science and
engineering. He has graduated 13 PhD students who upon their gradua-
tions either landed academic tenure-track positions in PhD-granting US
institutions or were employed by major US IT corporations. His current
research interests include computer architecture, computer storage sys-
tems and parallel I/O, high-performance computing, big data computing,
cloud computing, and performance evaluation. He recently served as an
associate editor of the IEEE Transactions on Parallel and Distributed
Systems. He has more than 200 publications in major journals and inter-
national conferences in these areas, including the IEEE Transactions on
Parallel and Distributed Systems, the IEEE Transactions on Computers,
Proceedings of the IEEE, the ACM Transactions on Architecture and
Code Optimization, the Journal of Parallel and Distributed Computing,
the International Science Congress Association, MICRO, USENIX ATC,
FAST, EUROSYS, LISA, SIGMETRICS, ICDCS, IPDPS, MIDDLEWARE,
OOPLAS, ECOOP, SC, ICS, HPDC, INFOCOM, ICPP, etc., and his
research has been supported by US National Science Foundation,
DOD, the State of Texas and the State of Nebraska. He is a fellow of the
IEEE, and a member of the ACM.

Wen Xia received the PhD degree in computer
science from Huazhong University of Science
and Technology (HUST), Wuhan, China, in 2014.
He is currently an assistant professor in the
School of Computer Science and Technology,
HUST. His research interests include deduplica-
tion, data compression, storage systems, cloud
storage, etc. He has published more than 20
papers in major journals and international confer-
ences including the IEEE Transactions on Com-
puters, the IEEE Transactions on Parallel and

Distributed Systems, USENIX ATC, USENIX FAST, INFOCOM, IFIP Per-
formance, IEEE DCC, MSST, IPDPS, HotStorage, etc. He is a member
of the ACM, CCF, and the IEEE.

Min Fu is currently working toward the PhD
degree majoring in computer architecture at
Huazhong University of Science and Technology,
Wuhan, China. His current research interests
include data deduplication, storage systems, and
reliability. He has several papers in major journals
and conferences including the IEEE Transactions
on Parallel and Distributed Systems, USENIX
ATC, FAST, etc.

Fangting Huang received the BE degree in soft-
ware engineering from Sun Yet-sen University,
China, in 2010. She is currently working toward
the PhD degree in computer architecture at
Huazhong University of Science and Technology.
Her research interest includes computer architec-
ture and storage systems.

Yukun Zhou is currently working toward the PhD
degree majoring in computer architecture at
Huazhong University of Science and Technology,
China. His research interests include data dedu-
plication, storage security, etc. He has several
papers in refereed journals and conferences
including Performance Evaluation, MSST, etc.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ETAL.: A FASTASYMMETRIC EXTREMUM CONTENT DEFINED CHUNKING ALGORITHM FOR DATA DEDUPLICATION IN BACKUP... 211

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

