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Application-Aware Big Data Deduplication in 
Cloud Environment 

      Yinjin Fu, Nong Xiao, Hong Jiang, Fellow, IEEE, Guyu Hu, and Weiwei Chen 

Abstract—Deduplication has become a widely deployed technology in cloud data centers to improve IT resources efficiency. 

However, traditional techniques face a great challenge in big data deduplication to strike a sensible tradeoff between the 

conflicting goals of scalable deduplication throughput and high duplicate elimination ratio. We propose AppDedupe, an 

application-aware scalable inline distributed deduplication framework in cloud environment, to meet this challenge by exploiting 

application awareness, data similarity and locality to optimize distributed deduplication with inter-node two-tiered data routing 

and intra-node application-aware deduplication. It first dispenses application data at file level with an application-aware routing 

to keep application locality, then assigns similar application data to the same storage node at the super-chunk granularity using 

a handprinting-based stateful data routing scheme to maintain high global deduplication efficiency, meanwhile balances the 

workload across nodes. AppDedupe builds application-aware similarity indices with super-chunk handprints to speedup the 

intra-node deduplication process with high efficiency. Our experimental evaluation of AppDedupe against state-of-the-art, driven 

by real-world datasets, demonstrates that AppDedupe achieves the highest global deduplication efficiency with a higher global 

deduplication effectiveness than the high-overhead and poorly scalable traditional scheme, but at an overhead only slightly 

higher than that of the scalable but low duplicate-elimination-ratio approaches. 

Index Terms — big data deduplication, application awareness, data routing, handprinting, similarity index 

——————————      —————————— 

1 INTRODUCTION

ecent technological advancements in cloud compu-
ting, internet of things and social network, have led to 

a deluge of data from distinctive domains over the past 
two decades. Cloud data centers are awash in digital data, 
easily amassing petabytes and even exabytes of informa-
tion, and the complexity of data management escalates in 
big data. However, IDC data shows that nearly 75% of 
our digital world is a copy [1]. Data deduplication [2], a 
specialized data reduction technique widely deployed in 
disk-based storage systems, not only saves data storage 
space, power and cooling in data centers, also decreases 
significant administration time, operational complexity 
and risk of human error. It partitions large data objects 
into smaller parts, called chunks, represents these chunks 
by their fingerprints, replaces the duplicate chunks with 
their fingerprints after chunk fingerprint index lookup, 
and only transfers or stores the unique chunks for the 
purpose of improving communication and storage effi-
ciency. Data deduplication has been successfully used in 
various application scenarios, such as backup system [1], 
virtual machine storage[3], primary storage [4], and WAN 
replication [5]. 

Big data deduplication is a highly scalable distributed 

deduplication technique to manage the data deluge under 
the changes in storage architecture to meet the service 
level agreement requirements of cloud storage. It is gen-
erally in favor of source inline deduplication design, be-
cause it can immediately identify and eliminate dupli-
cates in datasets at the source of data generation, and 
hence significantly reduce physical storage capacity re-
quirements and save network bandwidth during data 
transfer. It performs in a typical distributed deduplication 
[6], [7], [8], [9], [10], [11], [12] framework to satisfy scala-
ble capacity and performance requirements in massive 
data. The framework includes inter-node data assignment 
from clients to multiple deduplication storage nodes by a 
data routing scheme, and independent intra-node redun-
dancy suppression in individual storage nodes. 

Unfortunately, this chunk-based inline distributed de-
duplication framework at large scales faces challenges in 
both inter-node and intra-node scenarios. First, for the 
inter-node scenario, different from those distributed de-
duplication with high overhead in global match query 
[37], [43], there is a challenge called deduplication node in-
formation island. It means that deduplication is only per-
formed within individual nodes due to the communica-
tion overhead considerations, and leaves the cross-node 
redundancy untouched. Second, for the intra-node sce-
nario, it suffers from the chunk index lookup disk bottleneck. 
There is a chunk index of a large dataset, which maps 
each chunk’s fingerprint to where that chunk is stored on 
disk in order to identify the replicated data. It is generally 
too big to fit into the limited memory of a deduplication 
node [3], and causes the parallel deduplication perfor-
mance of multiple data streams to degrade significantly 
due to the frequent and random disk index I/Os. 
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There are several existing solutions that aim to tackle 
the above two challenges of distributed deduplication by 
exploiting data similarity or locality. Locality means that 
the chunks of a data stream will appear in approximately 
the same order again with a high probability. Locality-
only based approaches [7], [8], [9] distribute data across 
deduplication servers at coarse granularity to achieve 
scalable deduplication throughput across the nodes by 
exploiting locality in data streams, but they suffer low 
duplicate elimination ratio due to high cross-node redun-
dancy.Similarity in this context means that two segments 
[14] of a data stream or two files of a dataset share many 
chunks even though they arrive in a random order. The 
most similar stored segments or files are prefetched to 
deduplicate the processing segment or file in low-locality 
workloads by exploiting a property called logical locality 
[40]. Similarity-only based methods [6], [20], [30] leverage 
data similarity to distribute data among deduplication 
nodes to reduce cross-node duplication, while they also 
often fail to obtain good load balance and high intra-node 
deduplication ratio by fingerprint based mapping and 
allowing some duplicate chunks to be stored. In recent 
years, researchers [32], [33] exploit both data similarity 
and locality to strike a sensible tradeoff between the con-
flicting goals of high deduplication effectiveness and high 
performance scalability for distributed deduplication.  

However, all these schemes are oblivious to the con-
tent and format of application files, and cannot find the 
redundancy in files with complex format, like video and 
audio files [38]. Hence, their space efficiency can be fur-
ther improved by exploiting application awareness. This 
is a codesign of storage and application to optimize 
deduplication based storage systems when the dedupli-
cated storage layer has extensive knowledge about the file 
structures and their access characteristics in the applica-
tion layer.  

As shown in Table 1, the conventional deduplication 
schemes always improve performance in single-node sce-
nario or distributed scenario without considerations on 
application awareness. In the latest research works, appli-
cation aware duplicate detection has been adopted to sin-
gle-node deduplication [17], [18], [19], [22] to improve 
deduplication efficiency with low system overhead. In 
this paper, we propose AppDedupe, a scalable source 
inline distributed deduplication framework by leveraging 
application awareness, as a middleware deployable in 
data centers, to support big data management in cloud 
storage. Our solution takes aim at large-scale distributed 
deduplication with thousands of storage nodes in cloud 
datacenters which would most likely fail in the traditional 
distributed methods due to some of their shortcomings in 
terms of global deduplication ratio, single-node through-
put, data skew, and communication overhead.  

The main idea behind AppDedupe is to optimize dis-
tributed deduplication by exploiting application aware-
ness, data similarity and locality in streams. More specifi-
cally, it performs two-tiered routing decision which firstly 
dispenses application metadata at file level with an appli-
cation-aware routing to keep application locality, then 
assigns chunk fingerprints of intra-app similar data to the  

TABLE 1 

TABLE OF RELATED WORK 

Type 
Application 

Oblivious 

Application 

Awareness 

Single-node 

Deduplication 

DDFS [13], SiLo [16], 

ChunkStash [15], 

D2D[14],RevDedup[42] 

ViDeDup [17] 

ADMAD [18] 

AA-Dedup [22] 

ALG-Dedupe [19] 

Distributed 

Deduplication 

ExtremeBinn [6], 

EMC [7], DEBAR [11], 

CALB [8], MAD2 [10], 

IBM [20], DEDIS [43], 

HYDRAstor [9],  

Symantec [30],  

Produck [32],   

-Dedupe [33] 

AppDedupe 

(This Paper) 

 
same storage node at the super-chunk [7] (i.e. consecutive 
smaller chunks) granularity using a handprinting-based 
stateful data routing scheme to maintain high global 
deduplication efficiency without cross-node deduplica-
tion, meanwhile balances the workload of nodes from 
clients. Finally, it performs application-aware deduplica-
tion in each node independently and in parallel. To re-
duce the overhead of resemblance detection in each node, 
we build an application-aware similarity index to allevi-
ate the chunk index lookup disk bottleneck for the dedup-
lication processes in individual nodes. The client only 
needs to send the unique chunks of the super-chunk to 
the target node, because duplicate detection process is 
performed in the target node before data transfer. 

The proposed AppDedupe distributed deduplication 
system has the following salient features that distinguish 
it from the state-of-the-art mechanisms: 

─ To the best of our knowledge, AppDedupe is the 
first research work on leveraging application aware-
ness in the context of distributed deduplication. 

─ It performs two-tiered routing decision by exploit-
ing application awareness, data similarity and local-
ity to direct data routing from clients to deduplica-
tion storage nodes to achieve a good tradeoff be-
tween the conflicting goals of high deduplication ef-
fectiveness and low system overhead.  

─ It builds a global application route table and inde-
pendent similarity indices with super-chunk hand-
prints over the traditional chunk-fingerprint index-
ing scheme to alleviate the chunk lookup disk bot-
tleneck for deduplication in each storage node. 

─ Evaluation results show that it consistently and sig-
nificantly outperforms the state-of-the-art schemes 
in distributed deduplication efficiency by achieving 
high global deduplication effectiveness with bal-
anced storage usage across the nodes and high par-
allel deduplication throughput at a low inter-node 
communication overhead. 

The rest of the paper is structured as follows. Section 2 
presents the necessary background to motivate the design 
of the AppDedupe framework. Section 3 describes the 
architecture of our distributed deduplication system, the 
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two-tiered data routing scheme and key data structures. 
Section 4 evaluates the AppDedupe prototype with real-
world datasets and traces. Finally, Section 5 summarizes 
the paper. 

2 BACKGROUND AND MOTIVATION  

In this section, we first provide the necessary background 
for our research to motivate our scalable inline distribut-
ed deduplication research for big data management. 

2.1 Distributed Deduplication Techniques 

Traditional distributed deduplication solutions, such as 
[9], [10], [11], [12], support exact deduplication process by 
routing data from clients to server nodes with the same 
chunk granularity as intra-node deduplication operations, 
and the chunk is distributed to storage nodes using a 
hash-bucket or distributed hash table (DHT) based state-
less routing scheme. The stateless routing only uses in-
formation of the processing chunk to direct the assign-
ment, rather than uses information about where the pre-
vious chunks were routed in stateful routing. Though 
they can achieve high capacity saving, these exact distrib-
uted deduplication schemes always suffer low system 
throughput due to weak locality in each storage node. 

Extreme Binning [6] is an approximate distributed de-
duplication technique by exploiting file similarity. It ex-
tracts file similarity characteristic with the minimum 
chunk fingerprint in the file, and routes file to deduplica-
tion nodes using hashing based stateless routing. This 
approach limits deduplication when inter-file similarity is 
poor; it also suffers from increased cache misses and data 
skew. Similar to Extreme Binning, another file-similarity 
based data routing scheme is proposed by Symantec [30], 
but only a rough design is presented.  

EMC designed both stateless and stateful versions of 
super-chunk routing by leveraging data locality in back-
up streams [7]. Its distributed deduplication scheme is 
built over DDFS with chunk level deduplication. The su-
per-chunk routing is superior to using individual chunks 
to achieve scalable throughput while maximizing dedup-
lication. Stateless routing is a simple and efficient way to 
build small deduplication cluster. However, it can’t 
achieve high capacity saving and keep load balance for 
large-scale distributed deduplication. Stateful routing can 
achieve high duplicate elimination ratio and load balance, 
but it has high communication overhead for fingerprint 
query broadcasting.  

EMC also designed a content-aware load balancing 
(CALB) scheme by leveraging client similarity [8]. To re-
duce the amount of data overlapping among different 
deduplication based backup appliances, it repeats a given 
client’s backups on the same appliance, and reassigns 
clients to new servers only be done when the need for 
load balancing exceeds the overhead of data movement. 

Produck tries to reduce the system overhead of stateful 
routing using a probabilistic method for computing the 
cardinality of a multiset [32]. It can significantly reduce 
the super-chunk assignment time, when compared to 
EMC stateful routing. However, its scalability is still lim-
ited due to the global query scheme with high system  

TABLE 2 

COMPARISON OF KEY FEATURES AMONG REPRESENTATIVE 

DISTRIBUTED DEDUPLICATION SCHEMES  

Cluster Dedupe 
Scheme 

Routing 
Granularity 

Dedupe 
Ratio 

Through
put 

Data 
Skew 

Over-
head 

NEC HydraStor Chunk Medium Low Low Low 

Extreme Binning File Medium High Medium Low 

EMC CALB Client Low High High Low 

EMC Stateless Super-chunk Medium High Medium Low 

EMC Stateful Super-chunk High Low Low High 

Produck Super-chunk High Low Low High 

AppDedupe Super-chunk High High Low Low 

 

TABLE 3 

INTER-APP AND INTRA-APP REDUNDANCY ANALYSIS 

Item Linux Mail VM Web Audio Photo Video 

Size(GB) 160 526 313 43 153 208 366 

Intra-App 

Saving(%) 
87.8 90.5 77 47.4 33.7 28.2 11.5 

Inter-App 

Saving(%) 
0.29 0.01 0.27 0.1 0.12 0.27 0.02 

 

overhead in the coordinator node, and its memory over-
head for fingerprint lookup is still very high since the 
data routing scheme without any help on intra-node de-
duplication.   

Table 2 summarizes the differences among some of the 
typical distributed deduplication schemes, as discussed 
above. All these distributed deduplication mechanisms 
are inline methods to immediately identify and eliminate 
data redundancy. Our AppDedupe employs source de-
duplication to remove duplicate before data transfer over 
network rather than target deduplication in other meth-
ods. AppDedupe optimizes the data routing of distribut-
ed deduplication by exploiting application awareness, 
similarity and locality in data streams. In related to the 
existing approaches, our AppDedupe is most relevant to 
Produck, Extreme Binning and EMC stateful and stateless 
routing schemes, and it overcomes many of the weak-
nesses described about these schemes.  

2.2 Application Difference Redundancy Analysis 

In cloud data centers, the massive data comes from a 
large number of applications in clients. We compare the 
chunk fingerprints of test datasets with inter-application 
deduplication (inter-app) and intra-application dedupli-
cation (inter-app) using chunk-level deduplication with a 
fixed chunk size of 4 KB calculate the corresponding MD5 
value as the chunk fingerprint in different applications, 
including Linux kernel source code (Linux), dataset in 
mail server (Mail), virtual machine images (VM),  dataset 
in web server (Web), photo collections (Photo), music 
library (Audio) and movie fileset (Video). As shown in 
Table 3, our empirical observations and analysis reveal 
that the amount of data overlap among different types of 
applications is negligibly small due to the difference in 
data content and format among these applications. These 
results are consistent with previously published studies 
[22], [39]. This phenomenon motivates us to propose an 
application-aware data routing, which tries to route data 
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by mapping each application type to the same deduplica-
tion node. To exploit chunk-level redundancy, the best 
choices of chunking method and chunk size to achieve 
high deduplication efficiency vary with different applica-
tion datasets [19]. This result is echoed in Fig. 9. After we 
concentrately assign the data from each application to the 
same storage node, the efficiency of intra-node deduplica-
tion can be significantly improved by application-aware 
chunking with the priori knowledge on data format in 
files [17], [18], [19], [38]. 

The application aware independent deduplication can 
outperform the centralized deduplication in effectiveness 
due to the high efficiency of application-aware chunking 
and negligible inter-app data overlap. We can divide the 
dataset into small application-affined subsets by exploit-
ing application awareness with metadata information, 
such as file name or directory information in file system. 
Furthermore, the size of subsets is always unevenly dis-
tributed in nature. The load balance problem in the data 
routing decision will be analyzed in Section 4. Each appli-
cation-affined subset will be assigned to a group of de-
duplication storage nodes rather than a single node due 
to the capacity limitation in each node. We will discuss 
the data assignment in each node group with the same 
application-affined data in Section 2.3. 

2.3 Super-chunk Resemblance Analysis 

In the hash based deduplication schemes, cryptographic 
hash functions, such as the MD and SHA family, are used 
for calculating chunk fingerprints due to their very low 
probability of hash collisions that renders data loss ex-
tremely unlikely. Assume that two different data chunks 
have different fingerprint values; we use the Jaccard in-
dex [23] as a measure of super-chunk resemblance. Let h 
be a cryptographic hash function, h(S) denote the set of 
chunk fingerprints generated by h on super-chunk S. 
Hence, for any two super-chunks S1 and S2 with almost 
the same average chunk size, we can define their resem-
blance measure r according to the Jaccard index as ex-
pressed in (1). 

 1 2 1 2

1 2 1 2

| | | ( ) ( ) |

| | | ( ) ( ) |

S S h S h S
r

S S h S h S

 


 
 (1) 

Our similarity based data routing scheme depends on 
the creative feature selection on super-chunks by a hand-
printing technique. The selection method is based on a 
generalization of Broder’s theorem [24]. Before we discuss 
the theorem, let’s first introduce the min-wise independ-
ent hash functions. 

Definition 1. A family of hash functions  = {hi: 
[n][n]} (where [n]={0, 1, … , n-1}) is called min-wise in-
dependent if for any X  [n] and x  X, it can be formally 
stated as in (2), where PrhH denotes the probability space 
obtained by choosing h uniformly at random from H. 

 
  

Pr
hH

(min{h( X )} h(x)) 
1

| X |
 (2) 

As the truly min-wise independent hash functions are 
hard to implement, practical systems only use hash func-
tions that approximate min-wise independence, such as 

functions of the MD/SHA family cryptographic hash 
functions.  

Theorem 1. (Broder’s Theorem): For any two super-
chunks S1 and S2, with h(S1) and h(S2) being the corresponding 
sets of the chunk fingerprints of the two super-chunks, respec-
tively, where h is a hash function that is selected uniformly and 
at random from a min-wise independent family of cryptograph-
ic hash functions. Then (3) is established. It points out that the 
probability that two super-chunks have the same minimum 
chunk fingerprint is the same as their resemblance. 

 
  
Pr(min{h(S

1
)} min{h(S

2
)})  r  (3) 

We consider a generalization of Broder’s Theorem, 
given in [21], for any two super-chunks S1 and S2, and 
then we have a conclusion expressed in (4) when k is far 
smaller than the chunk count in super-chunk, where mink 
denotes the k smallest elements in a set. It means that the 
probability that two super-chunks share at least one fin-
gerprint in their k smallest chunk fingerprints can in-
crease with k. We define the k smallest chunk fingerprints 
of a super-chunk as its handprint, k is the handprint size 
and those chunk fingerprints in the handprint are the rep-
resentative fingerprints of the super-chunk. The sampling 
rate of the handprinting is k over the number of chunks in 
the super-chunk. It is obviously that we can find more 
redundancy in datasets by exploiting strong ability to 
detect similarity with handprinting technique.  

 

  

Pr(min
k
{h(S

1
)}min

k
{h(S

2
)} )

1 Pr(min
k
{h(S

1
)}min

k
{h(S

2
)} )

1 (1 r)k

 (4) 

We define r̂  as the estimated resemblance of the two 
super-chunks by handprinting in (5). The larger k value, 
the more accurate the estimated resemblance is likely to 
be. But we need to pay for a larger handprint in storage 
overhead. The value of chunk fingerprint in the super-
chunk handprint has a hypergeometric distribution. Since 
the size of the handprint is usually much smaller than the 
chunk number of the super-chunk, we can use the bino-
mial distribution to approximate the hypergeometric dis-
tribution. Under this assumption, the accuracy of our es-
timated similarity by handprinting can be given by (6), 

i
kC  is the number of i-combinations from a given set of k 

elements. For a given small error factor  and resemblance 
value r, the probability that the handprint-based estima-
tion r̂  is within [r-, r+] is proportional to the handprint 
size k. 

 1 2

1 2

{ ( )} { ( )}
ˆ

{ ( )} { ( )}

k k

k k

Min h S Min h S
r

Min h S Min h S




 (5) 

  
( ) ( )

ˆPr (1 )i i k i

k
k r i k r

r r C r r
 

 

   

       (6) 

We evaluate the effectiveness of handprinting on su-
per-chunk resemblance detection in the first 8MB super-
chunks of four pair-wise files with different application 
types, including Linux 2.6.7 versus 2.6.8 kernel packages, 
and pair-wise versions of PPT, DOC and HTML files. We 
actually use the Two-Threshold Two-Divisor (TTTD) 
chunking algorithm [25] to subdivide the super-chunk 
into small chunks with 1KB, 2KB, 4KB and 32KB as min-
imum threshold, minor mean, major mean and maximum  
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Fig. 1. The effect of handprinting resemblance detection as a func-
tion of handprint size. The real resemblance values for each appli-
cations are given in the legend entries.  

threshold of chunk size, respectively. TTTD is a variant of 
the basic content defined chunking (CDC) algorithm [26] 
that leads to superior deduplication by setting absolute 
size limits on chunk sizes to increase average chunk size 
while maintaining a reasonable duplication elimination 
ratio. We can calculate the real resemblance values, which 
are shown in the legend entries, based on the Jaccard in-
dex by the whole chunk fingerprint comparison on each 
pair of super-chunks, and estimate the resemblance by 
comparing representative fingerprints in handprint com-
parison with different handprint sizes. The estimated re-
semblance, as shown in Fig. 1 as a function of the hand-
print size, approaches the real resemblance value as the 
handprint size increases. An evaluation of Fig. 1 suggests 
that a reasonable handprint size can be chosen in the 
range from 4 to 16 representative fingerprints. Comparing 
with the conventional schemes [6], [7], [9] that only use a 
single representative fingerprint (when handprint size 
equals to 1), our handprinting method can find more sim-
ilarity for file pairs with poor similarity (with a resem-
blance value of less than 0.5), such as the two PPT ver-
sions and the pair of HTML versions. 

3 APPDEDUPE DESIGN 

In this section, we use the following three design princi-
ples to govern our AppDedupe system design: 

─ Throughput. The deduplication throughput should 
scale with the number of nodes by parallel dedupli-
cation across the storage nodes.  

─ Capacity. Similar data should be forwarded to the 
same deduplication node to achieve high duplicate 
elimination ratio.  

─ Scalability. The distributed deduplication system 
should easily scale out to handle massive data vol-
umes with balanced workload among nodes. 

To achieve high deduplication throughput and good 
scalability with negligible capacity loss, we design a scal-
able inline distributed deduplication framework in this 
section. In what follows, we first show the architecture of 
our AppDedupe system. Then we present our two-tiered 
data routing scheme to achieve scalable performance with 
high deduplication efficiency. This is followed by the de-
scription of the application-aware data structures for high 
deduplication throughput in deduplication nodes. 

Clients

Chunk Fingerprint Caching

Parallel Container Management

Application-aware Similarity 

Index Lookup

Chunk Fingerprinting

Data Partitioning

Two-tiered Data Routing

Dedupe Storage Nodes

fingerprint 

lookup

chunk 

transfer

Director 

File Recipe 

Management

chunk metadata 

update

file metadata 

read and write

Application-aware 

Routing Decision

  
Fig.2. The architectural overview of AppDedupe. 

3.1 System Overview 

The architecture of our distributed deduplication system 
is shown in Fig. 2. It consists of three main components: 
clients, dedupe storage nodes and director. 

Clients. There are three main functional modules in a 
client: data partitioning, chunk fingerprinting and data 
routing. The client component stores and retrieves data 
files, performs data chunking with fixed or variable 
chunk size and super-chunk grouping in the data parti-
tioning module for each data stream, and calculates 
chunk fingerprints by a collision-resistant hash function, 
like MD5, SHA-1 or SHA-2, then routes of each super-
chunk to a dedupe storage node with high similarity by 
the two-tiered data routing scheme. To improve distrib-
uted system scalability by saving the network transfer 
bandwidth during data store, the clients determine 
whether a chunk is duplicate or not by batching chunk 
fingerprint query in the deduplication node at the super-
chunk level before data chunk transfer, and only the 
unique data chunks are transferred over the network. 

Dedupe storage nodes. The dedupe server component 
consists of three important functional modules: applica-
tion-aware similarity index lookup, chunk index cache 
management and parallel container management. It im-
plements the key deduplication and storage management 
logic, including returning the results of application-aware 
similarity index lookup for data routing, buffering the 
recent hot chunk fingerprints in chunk index cache to 
speedup the process of identifying duplicate chunks and 
storing the unique chunks in larger units, called contain-
ers, in parallel.  

Director. It is responsible for keeping track of files on 
the dedupe storage node, and managing file information 
to support data store and retrieve. It consists of file recipe 
management and application-aware routing decision. The 
file recipe management module keeps the mapping from 
files to chunk fingerprints and all other information re-
quired to reconstruct the file. All file-level metadata are 
maintained in the director. The application aware routing 
decision module selects a group of corresponding appli-
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cation storage nodes for each file, and gives the client a 
feedback to direct super-chunk routing. The director sup-
ports up to two servers in an active/passive failover to 
avoid the single node failure with high availability. 

3.2 Two-tiered data routing scheme 

As a new contribution of this paper, we present the two-
tiered data routing scheme including: the file-level appli-
cation aware routing decision in director and the super-
chunk level similarity aware data routing in clients.  

The application aware routing decision is inspired by 
our application difference redundancy analysis in Section 
2.2. It can distinguish from different types of application 
data by exploiting application awareness with filename 
extension, and selects a group of dedupe storage nodes as 
the corresponding application storage nodes, which have 
stored the same type of application data with the file in 
routing. This operation depends on an application route 
table structure that builds a mapping between application 
type and storage node ID. The application aware routing 
algorithm is shown in Algorithm 1, which performs in the 
application aware routing decision module of director. 

The similarity aware data routing scheme is a stateful 
data routing scheme motivated by our super-chunk re-
semblance analysis in Section 2.3. It routes similar super-
chunk to the same dedupe storage node by looking up 
storage status information in only one or a small number 
of nodes, and achieves near-global capacity load balance 
without high system overhead (as described in Section 4). 
In the data-partitioning module, a file is first divided it 
into c small chunks, which are grouped into a super-
chunk S. Then, all the chunk fingerprints {fp1, fp2, …, fpc} 
are calculated by a cryptographic hash function in the 
chunk fingerprinting module. The data routing algorithm, 
shown in Algorithm 2, performs in the data routing mod-
ule of the clients. 

Our handprinting based data routing scheme can im-
prove load balance for the m application dedupe storage 
nodes by adaptively choosing least loaded node in the k 
candidate nodes for each super-chunk. We have proved 
that the global load balance can be approached by virtue 
of the universal distribution of randomly generated hand-
prints by cryptographic hash functions in Section 4.5. Its 
consistent hashing based data assignment is scalable since 
it can avoid re-shuffling all previously stored data when 
adding or deleting a node in the storage cluster. 

3.3 Interconnect communication 

The interconnect communication is critical for the design 
of AppDedupe. We detail the operations carried out 
when storing and retrieving a file. 

A file store request is processed as shown in the Fig. 3: 
a client sends a PutFileReq message to the director after 
file partitioning and chunk fingerprinting. The message 
includes file metadata like: file ID (the SHA-1 value of file 
content), file size, file name, timestamp, the number of 
super-chunk in the file and their checksums. The director 
stores the file metadata as a file recipe [34], and makes 
sure that there has enough space in the distributed stor- 
age systems for the file. It also performs the application 

Algorithm 1. Application Aware Routing Algorithm 

Input: the full name of a file, fullname, and a list of all 
dedupe storage nodes {S1, S2, …, SN} 
Output: a ID list of application storage node, ID_list={A1, 
A2, … , Am} 
1. Extract the filename extension as the application type 

from the file full name fullname, sent from client side; 
2. Query the application route table in director, and find 

the dedupe storage node Ai that have stored the same 
type of application data; We get the corresponding 
application storage nodes ID_list={A1, A2, … , Am} {S1, 
S2, …, SN}; 

3. Check the node list: if ID_list= or all nodes in ID_list 
are overloaded, then add the dedupe storage node SL 
with lightest workload into the list ID_list={SL}; 

4. Return the result ID_list to the client. 

 

Algorithm 2. Handprinting Based Stateful Data Routing 

Input: a chunk fingerprint list of super-chunk S in a file, 
{fp1, fp2, … , fpc}, and the corresponding application stor-
age node ID list of the file, ID_list={A1, A2, … , Am} 
Output: a target node ID, i 
1. Select the k smallest chunk fingerprints {rfp1, rfp2, …, 

rfpk} as a handprint for the super-chunk S by sorting 
the chunk fingerprint list {fp1, fp2, …, fpc}, and sent the 
handprint to k candidate nodes with IDs mapped by 
consistent hashing in the m corresponding application 
storage nodes; 

2. Obtain the count of the existing representative finger-
prints of the super-chunk S in the k candidate nodes 
by comparing the representative fingerprints of the 
previously stored super-chunks in the application-
aware similarity index, are denoted as {r1, r2, …, rk}; 

3. Calculate the relative storage usage, which is a node 
storage usage value divided by the average storage 
usage value, to balance the capacity load in the k can-
didate nodes, are denoted as {w1, w2, …, wk}; 

4. Choose the dedupe storage node with ID i that satis-
fies ri/wi = max{r1/w1, r2/w2, …, rk/wk} as the target node. 
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Fig.3. Message exchanges for store operation 
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Fig.4. Message exchanges for retrieve operation 

aware routing decision to select a group of corresponding 
application storage nodes for each file. The director re-
plies to the client with the file ID and a corresponding 
application storage node list in PutFileResp message. After 
received the PutFileResp, the client sends k LookupSCReq 
requests to the k candidate dedupe storage nodes for each 
super-chunk in the file, respectively, to lookup the appli-
cation-aware similarity index in dedupe storage nodes for 
the representative fingerprints of the super-chunk. These 
candidate nodes reply to the client with a weighted re-
semblance value for the super-chunk. The client selects a 
candidate node as the target route node to store the su-
per-chunk, and notifies the director its node ID by PutSC 
Req message. Then, the client sends all chunk fingerprints 
of the super-chunk in batch to the target node to identify 
whether a chunk is duplicated or not. After the lookup of 
chunk fingerprints, the target dedupe storage node re-
plies to the client with a list of unique chunks in the su-
per-chunk. Moreover, the client only needs to send the 
unique chunks in the super-chunk to the target node in 
batch. We repeat the steps for each super-chunk, until the 
end of file is reached. 

The process of retrieving a file is also initiated by a cli-
ent request GetFileReq to the director, as depicted in Fig. 4. 
The director reacts to this request by querying the file 
recipe, and forwards the GetFileResp message to the client. 
The GetFileResp contains the super-chunk list in the file 
and the mapping from super-chunk to the dedupe stor-
age node where it is stored. Then, the client requests each 
super-chunk in the file from the corresponding dedupe 
storage node with GetSuperChunk message. The dedupe 
server can retrieve super-chunk from data containers, and 
the performance of restore process can be accelerated, like 
[35] [36]. Finally, the client downloads each super-chunk 
and uses the checksums of super-chunks and file ID to 
verify the data integrity. 

3.4 Some key data structures 

We outline the salient features of the key data structures 
designed for the deduplication process in the director and 
dedupe storage nodes. As shown in Fig. 5, an application 
route table is located in the director to conduct applica-
tion aware routing decision, while to support high de-
duplication throughput with low system overhead, a 
chunk fingerprint cache and two key data structures: app- 
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Fig.5. Key data structures in dedupe process. 

lication-aware similarity index and container, are intro-
duced in our dedupe storage architecture design. 

Application route table is built in director to conduct 
application aware routing decision. Each entry of the ta-
ble stores a mapping from application type to node ID 
and the corresponding capacity for that kind of applica-
tion data in the storage node. The director can find out 
the application storage node list for a given application 
type, and calculate the workload level with storage utili-
zation in nodes. In consideration of the application level 
and node level are both coarse grained, the whole appli-
cation route table can easily be fit into the director 
memory to speedup the query operations. 

Application-aware similarity index is an in-memory 
data structure. It consists of an application index and 
small hash-table based indices classified by application 
type. According to the accompanied file type information, 
the incoming super-chunk is directed to a small index 
with the same file type. Each entry contains a mapping 
between a representative fingerprint (RFP) of super-
chunk handprint and the container ID (CID) where it is 
stored. Since our handprinting has very low sampling 
rate, it is much smaller than the traditional chunk finger-
print disk index that builds a mapping from all chunk 
fingerprints to the corresponding containers that they’re 
stored in. To support concurrent lookup operations in 
application-aware similarity index by multiple data 
streams on multicore deduplication nodes, we adopt a 
parallel application-aware similarity index lookup design 
and control the synchronization scheme by allocating a 
lock per hash bucket or for a constant number of consecu-
tive hash buckets. 

Container is a self-describing data structure stored in 
disk to preserve locality, similar to the one described in 
[3], that includes a data section to store data chunks and a 
metadata section to store their metadata information, 
such as chunk fingerprint, offset and length. Our dedupe 
server design supports parallel container management to 
allocate, deallocate, read, write and reliably store contain-
ers in parallel. For parallel data store, a dedicated open 
container is maintained for each coming data stream, and 
a new one is opened up when the container fills up.  

Besides the forementioned data structures, the chunk 



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2710043,
IEEE Transactions on Cloud Computing

8 IEEE TRANSACTIONS ON CLOUD COMPUTING 

 

fingerprint cache also plays an important role in dedupli-
cation performance improvement. It keeps the chunk fin-
gerprints of recently accessed containers in RAM. Once a 
representative fingerprint is matched by a lookup request 
in the application-aware similarity index, all the metadata 
section belonging to the mapped container are prefetched 
into the cache to speedup chunk fingerprint lookup. 
When the cache is full, a reasonable cache replacement 
policy, like Least-Recently-Used(LRU), is applied to make 
room for future prefetching and caching. 

4 EVALUATION 

We have implemented a prototype of AppDedupe in user 
space using C++ and pthreads, on the Linux platform. We 
evaluate the parallel deduplication efficiency in the multi-
core deduplication server with real system implementa-
tion, while use trace-driven simulation to demonstrate 
how AppDedupe outperforms the state-of-the-art distrib-
uted deduplication techniques in terms of deduplication 
efficiency and system scalability. In addition, we conduct 
sensitivity studies on chunking strategy, chunk size, su-
per-chunk size, handprint size and cluster size. 

4.1 Evaluation Platform and Workload 

We use four commodity servers to perform our experi-
ments to evaluate parallel deduplication efficiency in sin-
gle-node dedupe server. All of them run Ubuntu 14.10 
and use a configuration with 4-core 8-thread Intel X3440 
CPU running at 2.53 GHz and 16GB RAM and a Seagate 
ST1000DM 1TB hard disk drive. In our prototype dedup-
lication system, 7 desktops serve as the clients, one server 
serves as the director and the other three servers for 
dedupe storage nodes. It uses Huawei S5700 Gigabit 
Ethernet switch for internal communication. To achieve 
high throughput, our client component is based on an 
event-driven, pipelined design, which utilizes an asyn-
chronous RPC implementation via message passing over 
TCP streams. All RPC requests are batched in order to 
minimize the round-trip overheads. We also perform 
event-driven simulation on one of the four servers to 
evaluate the distributed deduplication techniques in 
terms of deduplication ratio, load distribution, memory 
usage and communication overhead. 

We collect five kinds of real-world datasets and two 
types of application traces for our experiments. The Linux 
dataset is a collection of Linux kernel source code from 
versions 1.0 through 3.3.6, which is downloaded from the 
website [27]. The VM dataset consists of 2 consecutive 
monthly full backups of 8 virtual machine servers (3 for 
Windows and 5 for Linux). The audio, video and photo 
datasets are collected from personal desktops or laptops. 
The mail and web datasets are two traces collected from 
the web-server and mail server of the CS department in 
FIU [28]. The key workload characteristics of these da-
tasets are summarized in Table 4. Here, the “size” column 
represents the original dataset capacity, and “deduplica-
tion ratio” column indicates the ratio of logical to physical 
size after deduplication with 4KB fixed chunk size in stat-
ic chunking (SC) or average 4KB variable chunk size in 
optimized content defined chunking (CDC) based on the  

TABLE 4 

THE WORKLOAD CHARACTERISTICS OF THE REAL-WORLD 

DATASETS AND TRACES 

Datasets Size (GB) Deduplication Ratio 

Linux 160 8.23(CDC) / 7.96(SC) 

VM 313 4.34(CDC) / 4.11(SC) 

Audio 158 1.39(CDC) / 1.21(SC) 

Video 366 1.83(CDC) / 1.14(SC) 

Photo 208 1.58(CDC) / 1.35(SC) 

Mail 526 10.52(SC) 

Web 43 1.9(SC) 

 
open source code in Cumulus [29]. 

4.2 Evaluation Metrics 

The following evaluation metrics are used in our evalua-
tion to comprehensively assess the performance of our 
prototype implementation of AppDedupe against the 
state-of-the-art distributed deduplication schemes. 

Deduplication efficiency(DE): It is first defined in [22], 
to measure the efficiency of different dedupe schemes in 
the same platform by feeding a given dataset. It is calcu-
lated by the difference between the logical size L and the 
physical size P of the dataset divided by the deduplica-
tion process time T. So, deduplication efficiency can be 
expressed in (7). 

 

L P
DE

T


  (7) 

Normalized deduplication ratio(NDR): It is equal to 
the distributed deduplication ratio (DDR) divided by  the 
single-node deduplication ratio (SDR) achieved by a sin-
gle-node, exact deduplication system, and can be ex-
pressed in (8). This is an indication of how close the 
deduplication ratio achieved by a distributed deduplica-
tion method is to the ideal distributed deduplication ratio.  

 
DDR

NDR
SDR

   (8) 

Normalized effective deduplication ratio(NEDR): It is 
equivalent to normalized deduplication ratio divided by 
the value of 1 plus the ratio of standard deviation  of 
physical storage usage to average usage  in all dedupe 
servers, similar to the metric used in [7]. Normalized ef-
fective deduplication ratio can be expressed in (9). It indi-
cates how effective the data routing schemes are in elimi-
nating the deduplication node information island. 

 
DDR

NEDR
SDR


 

 
 (9) 

Number of fingerprint index lookup messages: It in-
cludes that of inter-node messages and intra-node mes-
sages for chunk fingerprint lookup, both of which can be 
easily obtained in our simulation to estimate communica-
tion overhead. 

RAM usage for intra-node deduplication: It is an es-
sential system overhead related to chunk index lookup in 
dedupe server. And it indicates how efficient the chunk 
index lookup optimization is to improve the performance 
of intra-node deduplication. 
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Data skew for distributed storage: We define DS as a 
metric for data skew in the dedupe storage server cluster. 
It can be expressed in (10), and equals to the difference 
between the maximum capacity MaxLoad and the mini-
mum capacity MinLoad in storage cluster divided by the 
mean value MeanLoad. 

 
MaxLoad MinLoad

DS
MeanLoad


   (10) 

4.3 Application-aware Deduplication Efficiency  

In our design, the client performs data partitioning and 
chunk fingerprinting in parallel before data routing deci-
sion. It can divide the files into small chunks with fix-
sized SC or variable-sized CDC chunking methods for 
each kind of application files, and calculates the chunk 
fingerprints with cryptographic hash function. Then, 
hundreds of or thousands of consecutive smaller chunks 
are grouped together as a super-chunk for data routing. 
The implementation of the hash fingerprinting is based 
the OpenSSL library. According to the study in [19], we 
select SHA-1 to reduce the probability of hash collision 
for fix-sized SC chunking, while we choose MD5 for vari-
able-sized CDC chunking for high hashing throughput 
with almost the same hash collision possibility.  

To exploit the multi-core or many-core resource of the 
dedupe storage node, we also develop parallel applica-
tion-aware similarity index lookup in individual dedupe 
servers. For our multiple-data-stream based parallel de-
duplication, each data stream has a deduplication thread, 
but all data streams share a common hash-table based 
application-aware similarity index in each dedupe server. 
We lock the hash-table based application-aware similarity 
index by partitioning the index at the application granu-
larity to support concurrent lookup. As we demonstrated 
in [33], the single-node parallel deduplication perform the 
best in application-aware-similarity-index lookup when 
the number of data streams equals to that of supported 
CPU logical cores, while the performance of more streams 
drops when the number of locks is larger than the num-
ber of data stream because of the overhead of thread con-
text switching that causes data swapping between cache 
and memory. 

We compare our application aware similarity index 
with the traditional similarity index in [33] for parallel 
deduplication throughput in single dedupe storage node 
with multiple data streams. The results in Fig. 6 show the 
parallel deduplication throughput using the VM dataset, 
with data input from RAMFS to eliminate the perfor-
mance interference of the disk I/O bottleneck. We test the 
throughput of both traditional similarity index (Naive) 
and application aware similarity index (Application 
aware) with cold cache or warm cache, respectively. Here, 
“cold cache” means the chunk fingerprint cache is empty 
when we first perform parallel deduplication with multi-
ple streams on the VM dataset. While “warm cache” 
means the duplicate chunk fingerprint had already been 
stored in the cache, when we perform parallel deduplica-
tion with multiple streams again on the same dataset. We 
observe that the parallel deduplication schemes with ap-
plication-aware similarity index perform much better 

 
Fig. 6. The Comparison of parallel deduplication throughput of the 
application aware similarity index structure with that of the traditional 
similarity index structure for multiple data streams. 

 
Fig.7. Deduplication efficiency in single storage node. 

than the naïve parallel deduplication mechanisms, and 
the parallel deduplication schemes with warm cache can 
achieve higher throughput than those regimes with cold 
cache. The throughput of the parallel deduplication with 
both application aware similarity index and warm cache 
goes up to 6.2GB/s with the increasing number of data 
streams; After 16 concurrent streams, the throughput falls 
to 5.5GB/s since the concurrency overheads of index lock-
ing  and disk I/O are becoming obvious. 

We measure the deduplication efficiency in a configu-
ration with two clients, one director and a single dedupe 
storage node to show the tradeoff between deduplication 
effectiveness and system overhead. To eliminate the im-
pact of the disk bottleneck, we store the entire workload 
in memory and perform the deduplication process to skip 
the unique-data-chunk store step. To assess the impact of 
the system overhead on deduplication efficiency, we 
measure “Bytes Saved Per Second”, the deduplication effi-
ciency as defined in Section 4.2, as a function of the chunk 
size. The results in Fig. 7 show that the best choices of 
chunking method and chunk size to achieve high dedup-
lication efficiency vary with different application datasets. 
The single dedupe server can achieve the highest dedup-
lication efficiency when the chunk size is 4KB for statical-
ly chunked Linux workload, 8KB for statically chunked 
VM workload and 2KB for Video workload with CDC. As 
a result, we choose to perform application-aware chunk-
ing, which adaptively select the best chunking scheme 
and the best chunk size for each application with high 
deduplication efficiency. 
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TABLE 5 
RAM USAGE OF INTRA-NODE DEDUPLICATION FOR VARIOUS 

APPLICATION WORKLOADS 

Work-

loads 

Statless&

Stateful 

Extreme 

Binning 
Produck 

-

Dedupe 

App-

Dedupe 

Linux 9.9MB 118.5MB 763.1MB 6.1MB 6.2MB 

VM 37MB 47.2KB 2.8GB 38.6MB 23.1MB 

Mail 25MB  1.9GB 14.3MB 15.6MB 

Web 11.3MB  852.8MB 6.9MB 7.1MB 

Audio 52.3MB 2.45MB 3.9GB 47.1MB 34.2MB 

Video 162MB 103.6KB 12.6GB 101.4MB 106.8MB 

Photo 74.8MB 7MB 5.6GB 53MB 49.5MB 

Total 372.3MB 128.1MB 2.84GB 267.4MB 242.5MB 

 
Since the disk based chunk fingerprint index is always 

too large to fit it into the limited RAM space, an efficient 
RAM data structure is needed to improve the index 
lookup performance and keep high deduplication accura-
cy. In EMC super-chunk based routing schemes, Bloom 
Filter [31] is employed to improve its full index lookup 
performance. A file-level in-RAM primary index over 
chunk-level on-disk indices is provided in Extreme Bin-
ning to achieve excellent RAM economy. In AppDedupe, 
we design an application-aware similarity index in RAM 
to speedup the chunk fingerprint index lookup process. 
To compare the RAM overhead of these three intra-node 
deduplication methods, we show their RAM usage on the 
seven different application workloads in Table 5, to elim-
inate more than 95% duplicate chunks, with 8KB mean 
chunk size in the Bloom Filter design, 48B primary index 
entry size for Extreme Binning, and 40B entry size for 
chunk index of Produck and application-aware similarity 
index of our design. We cannot estimate the RAM usage 
for Extreme Binning on the two traces (i.e., Mail and Web) 
without file metadata information. It is clearly that our 
design outperforms the traditional index lookup design of 
Produck, and the Bloom Filter design of EMC stateless 
and stateful schemes in shrinking the RAM usage for our 
sampling based index design. AppDedupe also outper-
forms the previous -Dedupe design with less RAM us-
age due to its dynamic chunk size selection in applica-
tion-aware chunking scheme. Our application-aware sim-
ilarity index occupies more space than file-level primary 
index in Extreme Binning for datasets with large files, like 
VM and multimedia workloads, but less for Linux source 
code dataset with small files. We can further reduce its 
size by adjusting super-chunk size or handprint size with 
the corresponding deduplication effectiveness loss.  

4.4 Load Balance in Super-Chunk Assignment 

Load balance is an important issue in distributed storage 
technique [41]. It can help improve system scalability by 
en-suring that client I/O requests are distributed equita-
bly across a group of storage servers. The implementation 
of consistent hashing based DHTs in traditional distribut-
ed deduplication [6], [9], [10] are considerable load imbal-
ance due to its stateless assignment design. In particular,  

 

 

Fig. 8. The data skew of super-chunk routing when we select differ-
ent handprint sizes under various node numbers in the storage serv-
er cluster. 

a storage node that happens to be responsible for a larger 
segment of the keyspace will tend to be assigned a greater 
number of data objects. In subsection 4.2, we defined DS 
as a metric for data skew in the storage server cluster. 
Data assignment method can achieve global load balance 
when DS=0. The larger DS value we measured in the test, 
the more serious load imbalance happened in the storage 
cluster.  

To make our conclusion more general, we not only 
consider an ideal scenario that each super-chunk is filled 
with random data in Fig. 8(a), but also perform the tests 
on real-world datasets: VM images, Linux source code, 
and mail datasets with 10 and 1280 nodes, respectively, as 
shown in Fig. 8(b). Super-chunk chooses the least loaded 
node in the k storage nodes that are mapped independ-
ently and uniformly at random by consistent hashing 
with the k representative fingerprints in its handprint. 
The effectiveness of load balancing has been tested with 
different handprint size and node number in Fig. 8. The 
average load of each node is 65536 super-chunks with 1 
MB size. The important implication of the results is that 
even a small amount of representative fingerprints in 
handprint can lead to drastically different results in load 
balancing. It shows that traditional schemes, like DHT [9] 
or hash-bucket [10], with only one representative finger-
print for choice are hard to keep a good load balance in 
the super-chunk assignment. When the cluster scales to 
hundreds or thousands of nodes, our handprint technique 
can keep a good load balance (the metric of data skew is 
less than 1) by routing the super-chunks with 4k   
random choices. We select handprint size from 4 to 16 to 
make a tradeoff between load balance and communica-
tion overhead for large-scale distributed deduplication in 
big data. 
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4.5 Distributed Deduplication Efficiency 

We route data at the super-chunk granularity to preserve 
data locality for high performance of distributed dedup-
lication, while performing deduplication at the chunk 
granularity to achieve high deduplication ratio in each 
server locally. Since the size of the super-chunk is very 
sensitive to the tradeoff between the index lookup per-
formance and the distributed deduplication effectiveness, 
as demonstrated by the sensitivity analysis on super-
chunk size in [7], we also choose the super-chunk size of 
1MB to reasonably balance the conflicting objectives of 
cluster-wide system performance and capacity saving, 
and to fairly compare our design with the previous EMC 
distributed deduplication mechanism.  

In this section, we first conduct a sensitivity study to 
select an appropriate handprint size for our AppDedupe 
scheme, and then compare our scheme with the state-of-
the-art approaches that are most relevant to AppDedupe, 
including EMC’s super-chunk based Stateful and State-
less data routing, -Dedupe, Produck and Extreme Bin-
ning, in terms of the effective deduplication ratio, normal-
ized to that of the traditional single-node exact deduplica-
tion, and communication overhead measured in number 
of fingerprint index lookup messages. We emulate each 
node by a series of independent fingerprint lookup data 
structures, and all results are generated by trace-driven 
simulations on the seven datasets under study. 

Two-tiered data routing can accurately direct similar 
data to the same dedupe server by exploiting application 
awareness and data similarity. We conduct a series of 
experiments to demonstrate the effectiveness of distribut-
ed deduplication by our handprint-based deduplication 
technique with the super-chunk size of 1MB on the Linux 
kernel source code workload. Fig. 9 shows the dedupli-
cation ratio, normalized to that of the single-node exact 
deduplication, as a function of the handprint size. As a 
result, AppDedupe becomes an approximate deduplica-
tion scheme whose deduplication effectiveness neverthe-
less improves with the handprint size because of the in-
creased ability to detect similarity in super chunks with a 
larger handprint size (recall Section 2.3). We can see that 
there is a significant improvement in normalized dedupli-
cation ratio for all cluster sizes when handprint size is 
larger than 8. This means that, for a large percentage of 
super-chunk queries, we are able to find the super-chunk 
that has the largest content overlap with the given super-
chunk to be routed by our handprint-based routing 
scheme. To strike a sensible balance between the distrib-
uted deduplication ratio and system overhead, and match 
the handprint size choice in single-node, we choose a 
handprint consisting of 8 representative fingerprints in 
the following experiments to direct data routing on su-
per-chunks of 1MB in size. 

After the selection on super-chunk size and handprint 
size, we conduct prelimary experiments on AppDedupe 
prototype in small scale to compare it with the two dis-
tributed deduplication schemes with application-aware-
routing-only (AppAware) and hand-print-based-stateful-
routing-only (∑-Dedupe), respectively. We feed the dis-
tributed dedupe storage system with the chunk finger- 

 
Fig. 9. Distributed deduplication ratio normalized to that of single-
node exact deduplication with various cluster size, as a function of 
handprint size. 

TABLE 6 
KEY METRICS OF THE DISTRIBUTED DEDUPLICATION SCHEMES 

Method 
Application

Distribution 

Capacity 

(GB) 
DS EDR Time(s) 

DE 

(MB/s) 

AppAware 2:2:3 610 1.84 0.45 28335 41.8 

∑-Dedupe 7:7:7 657 0.05 0.87 30250 36.6 

AppDedupe 3:4:4 618 0.07 0.95 23775 48.6 

 
prints of the above described seven application work-
loads totalled 1774 GB size, to eliminate the disk I/O bot-
tleneck. In Table 6, in addition to the defined metrics in 
Subsection 4.2, we also define application distribution as the 
number of application type distributed in three dedupe 
storage nodes, record time spent for the deduplication 
processes and indicate capacity to describe the total stor-
age capacity after distributed deduplication in the storage 
cluster. The results in key metrics are shown that our 
AppDedupe performs best in deduplication efficiency 
with high deduplication ratio and low time overhead. 
AppAware scheme has the highest deduplication ratio, 
but it suffers from load imbalance due to the data skew of 
application level data assignment. ∑-Dedupe suffers from 
a low deduplication ratio since it distributes all types of 
application data into each dedupe storage node with the 
highest cross-node redundancy. 

To show the scalability of our AppDedupe design, we 
also perform simulations to compare it with the existing 
data routing schemes in distributed deduplication in 
large scale. We compare our AppDedupe scheme with the 
state-of-the-art data routing schemes of Extreme Binning, 
Produck, -Dedupe, EMC’s stateless routing scheme and 
stateful routing scheme, across a range of datasets. Fig. 10 
plots EDR as a function of the cluster size for the six algo-
rithms on all datasets. Because the last two traces, Mail 
and Web, do not contain file-level information, we are not 
able to perform the file-level based Extreme Binning 
scheme on them. In general, App-Dedupe can achieve the 
highest effective deduplication ratio due to its load bal-
ancing design of inter-node two-tiered data routing and 
high deduplication effectiveness of intra-node applica-
tion-aware chunking by leveraging application awareness 
and data similarity. More specifically, the AppDedupe 
scheme achieves 103.1% of the EDR obtained by the State- 
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Fig.10. Effective deduplication ratio (EDR), normalized to that of 
single-node exact deduplication, as a function of cluster size on 
workloads. 

ful scheme for a cluster of 128 server nodes on the seven 
datasets, while this performance margin narrows to 
103.6% when averaging over all cluster sizes, from 1 
through 128. Stateless routing performs worse than 
AppDedupe, Produck and Stateful routing due to its low 
cluster-wide data reduction ratio and unbalanced capaci-
ty distribution. Extreme Binning underperforms Stateless 
routing on the workloads because of the large file size 
and skewed file size distribution in the datasets, work-
load properties that tend to render Extreme Binning’s 
similarity detection ineffective. Produck achieves higher 
normalized EDR than Stateless routing and Extreme Bin-
ning due to its stateful routing design, but it underper-
forms AppDedupe on all datasets for its low deduplica-
tion ratio and unbalanced load distribution. AppDedupe 
outperforms Extreme Binning in EDR by up to 72.7% for a 
cluster of 128 nodes on the five datasets containing file-
level information. For the seven datasets, AppDedupe is 
better than Stateless routing in EDR by up to 50.5% for a 
cluster of 128 nodes. Our AppDedupe achieves an im-
provement of 28.2% and 11.8% in EDR with respect to 
Produck and -Dedupe on all datasets in a cluster of 128 
nodes, respectively. As can be seen from the trend of 
curves, these improvements will likely be more pro-
nounced with cluster sizes larger than 128. 

In distributed deduplication storage systems, finger-
print lookup tends to be a persistent bottleneck in each 
dedupe storage server because of the costly on-disk 
lookup I/Os, which often adversely impacts the system 
scalability due to the consequent high communication 
overhead from fingerprint lookup. To quantify this sys-
tem overhead, we adopt the number of fingerprint-
lookup messages as a metric. We measure this metric by 
totaling the number of chunk fingerprint-lookup messag-
es on the seven datasets, for the five distributed dedupli-
cation schemes. As shown in Fig. 11 that plots the total 
number of fingerprint-lookup messages as a function of 
the node number, AppDedupe, Extreme Binning and 
Stateless routing have very low system overhead due to 
their constant fingerprint-lookup message count in the 
distributed deduplication process, while the number of 
fingerprint-lookup messages of Stateful routing grows 
linearly with the node number. This is because Extreme 
Binning and Stateless routing only have 1-to-1 client-and- 
server fingerprint lookup communications for source de- 

 
Fig.11. Communication overhead in terms of the number of finger-
print-lookup message for all seven workloads. 

duplication due to their stateless designs. Stateful routing, 
on the other hand, must send the fingerprint lookup re-
quests to all nodes, resulting in 1-to-all communication 
that causes the system overhead to grow linearly with the 
node number even though it can reduce the overhead in 
each node by using a sampling scheme. Produck has high 
communication overhead due to its fine-grained chunk 
size with 1KB, while other deduplication methods adapt 
4KB or 8KB. The number of fingerprint-lookup messages 
in Produck is about four times that of AppDedupe, Ex-
treme Binning and Stateless routing, and it grows as slow 
as these three low-overhead schemes. As described in 
Algorithm 1, the main reason for the low system over-
head in AppDedupe is that the pre-routing fingerprint-
lookup requests for each super-chunk only need to be 
sent to at most 8 candidate nodes, and only for the lookup 
of representative fingerprints, which is 1/32 of the num-
ber of chunk fingerprints, in these candidate nodes. The 
message overhead of AppDedupe in fingerprint lookup is 
about 1.25 times that of Stateless routing and Extreme 
Binning in all scales. -Dedupe is the preliminary version 
of our AppDedupe, and they have almost the same com-
munication overhead due to their consistent interconnect 
protocol. 

5 CONCLUSION 

In this paper, we describe AppDedupe, an application-
aware scalable inline distributed deduplication frame-
work for big data management, which achieves a tradeoff 
between scalable performance and distributed deduplica-
tion effectiveness by exploiting application awareness, 
data similarity and locality. It adopts a two-tiered data 
routing scheme to route data at the super-chunk granular-
ity to reduce cross-node data redundancy with good load 
balance and low communication overhead, and employs 
application-aware similarity index based optimization to 
improve deduplication efficiency in each node with very 
low RAM usage. Our real-world trace-driven evaluation 
clearly demonstrates AppDedupe’s significant adven-
tages over the state-of-the-art distributed deduplication 
schemes for large clusters in the following important two 
ways. First, it outperforms the extremely costly and poor-
ly scalable stateful tight coupling scheme in the cluster-
wide deduplication ratio but only at a slightly higher sys-
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tem overhead than the highly scalable loose coupling 
schemes. Second, it significantly improves the stateless 
loose coupling schemes in the cluster-wide effective de-
duplication ratio while retaining the latter’s high system 
scalability with low overhead.  
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