
2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2710043,
IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING 1

Application-Aware Big Data Deduplication in
Cloud Environment

 Yinjin Fu, Nong Xiao, Hong Jiang, Fellow, IEEE, Guyu Hu, and Weiwei Chen

Abstract—Deduplication has become a widely deployed technology in cloud data centers to improve IT resources efficiency.

However, traditional techniques face a great challenge in big data deduplication to strike a sensible tradeoff between the

conflicting goals of scalable deduplication throughput and high duplicate elimination ratio. We propose AppDedupe, an

application-aware scalable inline distributed deduplication framework in cloud environment, to meet this challenge by exploiting

application awareness, data similarity and locality to optimize distributed deduplication with inter-node two-tiered data routing

and intra-node application-aware deduplication. It first dispenses application data at file level with an application-aware routing

to keep application locality, then assigns similar application data to the same storage node at the super-chunk granularity using

a handprinting-based stateful data routing scheme to maintain high global deduplication efficiency, meanwhile balances the

workload across nodes. AppDedupe builds application-aware similarity indices with super-chunk handprints to speedup the

intra-node deduplication process with high efficiency. Our experimental evaluation of AppDedupe against state-of-the-art, driven

by real-world datasets, demonstrates that AppDedupe achieves the highest global deduplication efficiency with a higher global

deduplication effectiveness than the high-overhead and poorly scalable traditional scheme, but at an overhead only slightly

higher than that of the scalable but low duplicate-elimination-ratio approaches.

Index Terms — big data deduplication, application awareness, data routing, handprinting, similarity index

—————————— ——————————

1 INTRODUCTION

ecent technological advancements in cloud compu-
ting, internet of things and social network, have led to

a deluge of data from distinctive domains over the past
two decades. Cloud data centers are awash in digital data,
easily amassing petabytes and even exabytes of informa-
tion, and the complexity of data management escalates in
big data. However, IDC data shows that nearly 75% of
our digital world is a copy [1]. Data deduplication [2], a
specialized data reduction technique widely deployed in
disk-based storage systems, not only saves data storage
space, power and cooling in data centers, also decreases
significant administration time, operational complexity
and risk of human error. It partitions large data objects
into smaller parts, called chunks, represents these chunks
by their fingerprints, replaces the duplicate chunks with
their fingerprints after chunk fingerprint index lookup,
and only transfers or stores the unique chunks for the
purpose of improving communication and storage effi-
ciency. Data deduplication has been successfully used in
various application scenarios, such as backup system [1],
virtual machine storage[3], primary storage [4], and WAN
replication [5].

Big data deduplication is a highly scalable distributed

deduplication technique to manage the data deluge under
the changes in storage architecture to meet the service
level agreement requirements of cloud storage. It is gen-
erally in favor of source inline deduplication design, be-
cause it can immediately identify and eliminate dupli-
cates in datasets at the source of data generation, and
hence significantly reduce physical storage capacity re-
quirements and save network bandwidth during data
transfer. It performs in a typical distributed deduplication
[6], [7], [8], [9], [10], [11], [12] framework to satisfy scala-
ble capacity and performance requirements in massive
data. The framework includes inter-node data assignment
from clients to multiple deduplication storage nodes by a
data routing scheme, and independent intra-node redun-
dancy suppression in individual storage nodes.

Unfortunately, this chunk-based inline distributed de-
duplication framework at large scales faces challenges in
both inter-node and intra-node scenarios. First, for the
inter-node scenario, different from those distributed de-
duplication with high overhead in global match query
[37], [43], there is a challenge called deduplication node in-
formation island. It means that deduplication is only per-
formed within individual nodes due to the communica-
tion overhead considerations, and leaves the cross-node
redundancy untouched. Second, for the intra-node sce-
nario, it suffers from the chunk index lookup disk bottleneck.
There is a chunk index of a large dataset, which maps
each chunk’s fingerprint to where that chunk is stored on
disk in order to identify the replicated data. It is generally
too big to fit into the limited memory of a deduplication
node [3], and causes the parallel deduplication perfor-
mance of multiple data streams to degrade significantly
due to the frequent and random disk index I/Os.

xxxx-xxxx/0x/$xx.00 © 200x IEEE

R

————————————————
 Yinjin Fu, Guyu Hu and Weiwei Chen are with the College of Command

Information System, PLA University of Science and Technology, Nanjing,
Jiangsu 210007, China. Email: yinjinfu@gmail.com, huguyu@189.cn,
njcww@qq.com.

 Nong Xiao is with the School of Data and Computer Science, Sun Yat-
Sen University, Guangzhou, Guangdong 510006, China. E-mail: xiaon6
@mail.sysu.edu.cn.

 Hong Jiang is with the Department of Computer Science and Engineering,
University of Texas at Arlington, Arlington TX 76019, USA. E-mail:
hong.jiang@uta.edu.

Manuscript received 5 Dec. 2016; revised 31 Apr. 2017.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2710043,
IEEE Transactions on Cloud Computing

2 IEEE TRANSACTIONS ON CLOUD COMPUTING

There are several existing solutions that aim to tackle
the above two challenges of distributed deduplication by
exploiting data similarity or locality. Locality means that
the chunks of a data stream will appear in approximately
the same order again with a high probability. Locality-
only based approaches [7], [8], [9] distribute data across
deduplication servers at coarse granularity to achieve
scalable deduplication throughput across the nodes by
exploiting locality in data streams, but they suffer low
duplicate elimination ratio due to high cross-node redun-
dancy.Similarity in this context means that two segments
[14] of a data stream or two files of a dataset share many
chunks even though they arrive in a random order. The
most similar stored segments or files are prefetched to
deduplicate the processing segment or file in low-locality
workloads by exploiting a property called logical locality
[40]. Similarity-only based methods [6], [20], [30] leverage
data similarity to distribute data among deduplication
nodes to reduce cross-node duplication, while they also
often fail to obtain good load balance and high intra-node
deduplication ratio by fingerprint based mapping and
allowing some duplicate chunks to be stored. In recent
years, researchers [32], [33] exploit both data similarity
and locality to strike a sensible tradeoff between the con-
flicting goals of high deduplication effectiveness and high
performance scalability for distributed deduplication.

However, all these schemes are oblivious to the con-
tent and format of application files, and cannot find the
redundancy in files with complex format, like video and
audio files [38]. Hence, their space efficiency can be fur-
ther improved by exploiting application awareness. This
is a codesign of storage and application to optimize
deduplication based storage systems when the dedupli-
cated storage layer has extensive knowledge about the file
structures and their access characteristics in the applica-
tion layer.

As shown in Table 1, the conventional deduplication
schemes always improve performance in single-node sce-
nario or distributed scenario without considerations on
application awareness. In the latest research works, appli-
cation aware duplicate detection has been adopted to sin-
gle-node deduplication [17], [18], [19], [22] to improve
deduplication efficiency with low system overhead. In
this paper, we propose AppDedupe, a scalable source
inline distributed deduplication framework by leveraging
application awareness, as a middleware deployable in
data centers, to support big data management in cloud
storage. Our solution takes aim at large-scale distributed
deduplication with thousands of storage nodes in cloud
datacenters which would most likely fail in the traditional
distributed methods due to some of their shortcomings in
terms of global deduplication ratio, single-node through-
put, data skew, and communication overhead.

The main idea behind AppDedupe is to optimize dis-
tributed deduplication by exploiting application aware-
ness, data similarity and locality in streams. More specifi-
cally, it performs two-tiered routing decision which firstly
dispenses application metadata at file level with an appli-
cation-aware routing to keep application locality, then
assigns chunk fingerprints of intra-app similar data to the

TABLE 1

TABLE OF RELATED WORK

Type
Application

Oblivious

Application

Awareness

Single-node

Deduplication

DDFS [13], SiLo [16],

ChunkStash [15],

D2D[14],RevDedup[42]

ViDeDup [17]

ADMAD [18]

AA-Dedup [22]

ALG-Dedupe [19]

Distributed

Deduplication

ExtremeBinn [6],

EMC [7], DEBAR [11],

CALB [8], MAD2 [10],

IBM [20], DEDIS [43],

HYDRAstor [9],

Symantec [30],

Produck [32],

-Dedupe [33]

AppDedupe

(This Paper)

same storage node at the super-chunk [7] (i.e. consecutive
smaller chunks) granularity using a handprinting-based
stateful data routing scheme to maintain high global
deduplication efficiency without cross-node deduplica-
tion, meanwhile balances the workload of nodes from
clients. Finally, it performs application-aware deduplica-
tion in each node independently and in parallel. To re-
duce the overhead of resemblance detection in each node,
we build an application-aware similarity index to allevi-
ate the chunk index lookup disk bottleneck for the dedup-
lication processes in individual nodes. The client only
needs to send the unique chunks of the super-chunk to
the target node, because duplicate detection process is
performed in the target node before data transfer.

The proposed AppDedupe distributed deduplication
system has the following salient features that distinguish
it from the state-of-the-art mechanisms:

─ To the best of our knowledge, AppDedupe is the
first research work on leveraging application aware-
ness in the context of distributed deduplication.

─ It performs two-tiered routing decision by exploit-
ing application awareness, data similarity and local-
ity to direct data routing from clients to deduplica-
tion storage nodes to achieve a good tradeoff be-
tween the conflicting goals of high deduplication ef-
fectiveness and low system overhead.

─ It builds a global application route table and inde-
pendent similarity indices with super-chunk hand-
prints over the traditional chunk-fingerprint index-
ing scheme to alleviate the chunk lookup disk bot-
tleneck for deduplication in each storage node.

─ Evaluation results show that it consistently and sig-
nificantly outperforms the state-of-the-art schemes
in distributed deduplication efficiency by achieving
high global deduplication effectiveness with bal-
anced storage usage across the nodes and high par-
allel deduplication throughput at a low inter-node
communication overhead.

The rest of the paper is structured as follows. Section 2
presents the necessary background to motivate the design
of the AppDedupe framework. Section 3 describes the
architecture of our distributed deduplication system, the

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2710043,
IEEE Transactions on Cloud Computing

FU ET AL.: APPLICATION-AWARE BIG DATA DEDUPLICATION IN CLOUD ENVIRONMENT 3

two-tiered data routing scheme and key data structures.
Section 4 evaluates the AppDedupe prototype with real-
world datasets and traces. Finally, Section 5 summarizes
the paper.

2 BACKGROUND AND MOTIVATION

In this section, we first provide the necessary background
for our research to motivate our scalable inline distribut-
ed deduplication research for big data management.

2.1 Distributed Deduplication Techniques

Traditional distributed deduplication solutions, such as
[9], [10], [11], [12], support exact deduplication process by
routing data from clients to server nodes with the same
chunk granularity as intra-node deduplication operations,
and the chunk is distributed to storage nodes using a
hash-bucket or distributed hash table (DHT) based state-
less routing scheme. The stateless routing only uses in-
formation of the processing chunk to direct the assign-
ment, rather than uses information about where the pre-
vious chunks were routed in stateful routing. Though
they can achieve high capacity saving, these exact distrib-
uted deduplication schemes always suffer low system
throughput due to weak locality in each storage node.

Extreme Binning [6] is an approximate distributed de-
duplication technique by exploiting file similarity. It ex-
tracts file similarity characteristic with the minimum
chunk fingerprint in the file, and routes file to deduplica-
tion nodes using hashing based stateless routing. This
approach limits deduplication when inter-file similarity is
poor; it also suffers from increased cache misses and data
skew. Similar to Extreme Binning, another file-similarity
based data routing scheme is proposed by Symantec [30],
but only a rough design is presented.

EMC designed both stateless and stateful versions of
super-chunk routing by leveraging data locality in back-
up streams [7]. Its distributed deduplication scheme is
built over DDFS with chunk level deduplication. The su-
per-chunk routing is superior to using individual chunks
to achieve scalable throughput while maximizing dedup-
lication. Stateless routing is a simple and efficient way to
build small deduplication cluster. However, it can’t
achieve high capacity saving and keep load balance for
large-scale distributed deduplication. Stateful routing can
achieve high duplicate elimination ratio and load balance,
but it has high communication overhead for fingerprint
query broadcasting.

EMC also designed a content-aware load balancing
(CALB) scheme by leveraging client similarity [8]. To re-
duce the amount of data overlapping among different
deduplication based backup appliances, it repeats a given
client’s backups on the same appliance, and reassigns
clients to new servers only be done when the need for
load balancing exceeds the overhead of data movement.

Produck tries to reduce the system overhead of stateful
routing using a probabilistic method for computing the
cardinality of a multiset [32]. It can significantly reduce
the super-chunk assignment time, when compared to
EMC stateful routing. However, its scalability is still lim-
ited due to the global query scheme with high system

TABLE 2

COMPARISON OF KEY FEATURES AMONG REPRESENTATIVE

DISTRIBUTED DEDUPLICATION SCHEMES

Cluster Dedupe
Scheme

Routing
Granularity

Dedupe
Ratio

Through
put

Data
Skew

Over-
head

NEC HydraStor Chunk Medium Low Low Low

Extreme Binning File Medium High Medium Low

EMC CALB Client Low High High Low

EMC Stateless Super-chunk Medium High Medium Low

EMC Stateful Super-chunk High Low Low High

Produck Super-chunk High Low Low High

AppDedupe Super-chunk High High Low Low

TABLE 3

INTER-APP AND INTRA-APP REDUNDANCY ANALYSIS

Item Linux Mail VM Web Audio Photo Video

Size(GB) 160 526 313 43 153 208 366

Intra-App

Saving(%)
87.8 90.5 77 47.4 33.7 28.2 11.5

Inter-App

Saving(%)
0.29 0.01 0.27 0.1 0.12 0.27 0.02

overhead in the coordinator node, and its memory over-
head for fingerprint lookup is still very high since the
data routing scheme without any help on intra-node de-
duplication.

Table 2 summarizes the differences among some of the
typical distributed deduplication schemes, as discussed
above. All these distributed deduplication mechanisms
are inline methods to immediately identify and eliminate
data redundancy. Our AppDedupe employs source de-
duplication to remove duplicate before data transfer over
network rather than target deduplication in other meth-
ods. AppDedupe optimizes the data routing of distribut-
ed deduplication by exploiting application awareness,
similarity and locality in data streams. In related to the
existing approaches, our AppDedupe is most relevant to
Produck, Extreme Binning and EMC stateful and stateless
routing schemes, and it overcomes many of the weak-
nesses described about these schemes.

2.2 Application Difference Redundancy Analysis

In cloud data centers, the massive data comes from a
large number of applications in clients. We compare the
chunk fingerprints of test datasets with inter-application
deduplication (inter-app) and intra-application dedupli-
cation (inter-app) using chunk-level deduplication with a
fixed chunk size of 4 KB calculate the corresponding MD5
value as the chunk fingerprint in different applications,
including Linux kernel source code (Linux), dataset in
mail server (Mail), virtual machine images (VM), dataset
in web server (Web), photo collections (Photo), music
library (Audio) and movie fileset (Video). As shown in
Table 3, our empirical observations and analysis reveal
that the amount of data overlap among different types of
applications is negligibly small due to the difference in
data content and format among these applications. These
results are consistent with previously published studies
[22], [39]. This phenomenon motivates us to propose an
application-aware data routing, which tries to route data

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2710043,
IEEE Transactions on Cloud Computing

4 IEEE TRANSACTIONS ON CLOUD COMPUTING

by mapping each application type to the same deduplica-
tion node. To exploit chunk-level redundancy, the best
choices of chunking method and chunk size to achieve
high deduplication efficiency vary with different applica-
tion datasets [19]. This result is echoed in Fig. 9. After we
concentrately assign the data from each application to the
same storage node, the efficiency of intra-node deduplica-
tion can be significantly improved by application-aware
chunking with the priori knowledge on data format in
files [17], [18], [19], [38].

The application aware independent deduplication can
outperform the centralized deduplication in effectiveness
due to the high efficiency of application-aware chunking
and negligible inter-app data overlap. We can divide the
dataset into small application-affined subsets by exploit-
ing application awareness with metadata information,
such as file name or directory information in file system.
Furthermore, the size of subsets is always unevenly dis-
tributed in nature. The load balance problem in the data
routing decision will be analyzed in Section 4. Each appli-
cation-affined subset will be assigned to a group of de-
duplication storage nodes rather than a single node due
to the capacity limitation in each node. We will discuss
the data assignment in each node group with the same
application-affined data in Section 2.3.

2.3 Super-chunk Resemblance Analysis

In the hash based deduplication schemes, cryptographic
hash functions, such as the MD and SHA family, are used
for calculating chunk fingerprints due to their very low
probability of hash collisions that renders data loss ex-
tremely unlikely. Assume that two different data chunks
have different fingerprint values; we use the Jaccard in-
dex [23] as a measure of super-chunk resemblance. Let h
be a cryptographic hash function, h(S) denote the set of
chunk fingerprints generated by h on super-chunk S.
Hence, for any two super-chunks S1 and S2 with almost
the same average chunk size, we can define their resem-
blance measure r according to the Jaccard index as ex-
pressed in (1).

 1 2 1 2

1 2 1 2

| | | () () |

| | | () () |

S S h S h S
r

S S h S h S

 (1)

Our similarity based data routing scheme depends on
the creative feature selection on super-chunks by a hand-
printing technique. The selection method is based on a
generalization of Broder’s theorem [24]. Before we discuss
the theorem, let’s first introduce the min-wise independ-
ent hash functions.

Definition 1. A family of hash functions = {hi:
[n][n]} (where [n]={0, 1, … , n-1}) is called min-wise in-
dependent if for any X [n] and x X, it can be formally
stated as in (2), where PrhH denotes the probability space
obtained by choosing h uniformly at random from H.

Pr
hH

(min{h(X)} h(x))
1

| X |
 (2)

As the truly min-wise independent hash functions are
hard to implement, practical systems only use hash func-
tions that approximate min-wise independence, such as

functions of the MD/SHA family cryptographic hash
functions.

Theorem 1. (Broder’s Theorem): For any two super-
chunks S1 and S2, with h(S1) and h(S2) being the corresponding
sets of the chunk fingerprints of the two super-chunks, respec-
tively, where h is a hash function that is selected uniformly and
at random from a min-wise independent family of cryptograph-
ic hash functions. Then (3) is established. It points out that the
probability that two super-chunks have the same minimum
chunk fingerprint is the same as their resemblance.

Pr(min{h(S

1
)} min{h(S

2
)}) r (3)

We consider a generalization of Broder’s Theorem,
given in [21], for any two super-chunks S1 and S2, and
then we have a conclusion expressed in (4) when k is far
smaller than the chunk count in super-chunk, where mink
denotes the k smallest elements in a set. It means that the
probability that two super-chunks share at least one fin-
gerprint in their k smallest chunk fingerprints can in-
crease with k. We define the k smallest chunk fingerprints
of a super-chunk as its handprint, k is the handprint size
and those chunk fingerprints in the handprint are the rep-
resentative fingerprints of the super-chunk. The sampling
rate of the handprinting is k over the number of chunks in
the super-chunk. It is obviously that we can find more
redundancy in datasets by exploiting strong ability to
detect similarity with handprinting technique.

Pr(min
k
{h(S

1
)}min

k
{h(S

2
)})

1 Pr(min
k
{h(S

1
)}min

k
{h(S

2
)})

1 (1 r)k

 (4)

We define r̂ as the estimated resemblance of the two
super-chunks by handprinting in (5). The larger k value,
the more accurate the estimated resemblance is likely to
be. But we need to pay for a larger handprint in storage
overhead. The value of chunk fingerprint in the super-
chunk handprint has a hypergeometric distribution. Since
the size of the handprint is usually much smaller than the
chunk number of the super-chunk, we can use the bino-
mial distribution to approximate the hypergeometric dis-
tribution. Under this assumption, the accuracy of our es-
timated similarity by handprinting can be given by (6),

i
kC is the number of i-combinations from a given set of k

elements. For a given small error factor and resemblance
value r, the probability that the handprint-based estima-
tion r̂ is within [r-, r+] is proportional to the handprint
size k.

 1 2

1 2

{ ()} { ()}
ˆ

{ ()} { ()}

k k

k k

Min h S Min h S
r

Min h S Min h S

 (5)

() ()

ˆPr (1)i i k i

k
k r i k r

r r C r r

 (6)

We evaluate the effectiveness of handprinting on su-
per-chunk resemblance detection in the first 8MB super-
chunks of four pair-wise files with different application
types, including Linux 2.6.7 versus 2.6.8 kernel packages,
and pair-wise versions of PPT, DOC and HTML files. We
actually use the Two-Threshold Two-Divisor (TTTD)
chunking algorithm [25] to subdivide the super-chunk
into small chunks with 1KB, 2KB, 4KB and 32KB as min-
imum threshold, minor mean, major mean and maximum

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2710043,
IEEE Transactions on Cloud Computing

FU ET AL.: APPLICATION-AWARE BIG DATA DEDUPLICATION IN CLOUD ENVIRONMENT 5

Fig. 1. The effect of handprinting resemblance detection as a func-
tion of handprint size. The real resemblance values for each appli-
cations are given in the legend entries.

threshold of chunk size, respectively. TTTD is a variant of
the basic content defined chunking (CDC) algorithm [26]
that leads to superior deduplication by setting absolute
size limits on chunk sizes to increase average chunk size
while maintaining a reasonable duplication elimination
ratio. We can calculate the real resemblance values, which
are shown in the legend entries, based on the Jaccard in-
dex by the whole chunk fingerprint comparison on each
pair of super-chunks, and estimate the resemblance by
comparing representative fingerprints in handprint com-
parison with different handprint sizes. The estimated re-
semblance, as shown in Fig. 1 as a function of the hand-
print size, approaches the real resemblance value as the
handprint size increases. An evaluation of Fig. 1 suggests
that a reasonable handprint size can be chosen in the
range from 4 to 16 representative fingerprints. Comparing
with the conventional schemes [6], [7], [9] that only use a
single representative fingerprint (when handprint size
equals to 1), our handprinting method can find more sim-
ilarity for file pairs with poor similarity (with a resem-
blance value of less than 0.5), such as the two PPT ver-
sions and the pair of HTML versions.

3 APPDEDUPE DESIGN

In this section, we use the following three design princi-
ples to govern our AppDedupe system design:

─ Throughput. The deduplication throughput should
scale with the number of nodes by parallel dedupli-
cation across the storage nodes.

─ Capacity. Similar data should be forwarded to the
same deduplication node to achieve high duplicate
elimination ratio.

─ Scalability. The distributed deduplication system
should easily scale out to handle massive data vol-
umes with balanced workload among nodes.

To achieve high deduplication throughput and good
scalability with negligible capacity loss, we design a scal-
able inline distributed deduplication framework in this
section. In what follows, we first show the architecture of
our AppDedupe system. Then we present our two-tiered
data routing scheme to achieve scalable performance with
high deduplication efficiency. This is followed by the de-
scription of the application-aware data structures for high
deduplication throughput in deduplication nodes.

Clients

Chunk Fingerprint Caching

Parallel Container Management

Application-aware Similarity

Index Lookup

Chunk Fingerprinting

Data Partitioning

Two-tiered Data Routing

Dedupe Storage Nodes

fingerprint

lookup

chunk

transfer

Director

File Recipe

Management

chunk metadata

update

file metadata

read and write

Application-aware

Routing Decision

Fig.2. The architectural overview of AppDedupe.

3.1 System Overview

The architecture of our distributed deduplication system
is shown in Fig. 2. It consists of three main components:
clients, dedupe storage nodes and director.

Clients. There are three main functional modules in a
client: data partitioning, chunk fingerprinting and data
routing. The client component stores and retrieves data
files, performs data chunking with fixed or variable
chunk size and super-chunk grouping in the data parti-
tioning module for each data stream, and calculates
chunk fingerprints by a collision-resistant hash function,
like MD5, SHA-1 or SHA-2, then routes of each super-
chunk to a dedupe storage node with high similarity by
the two-tiered data routing scheme. To improve distrib-
uted system scalability by saving the network transfer
bandwidth during data store, the clients determine
whether a chunk is duplicate or not by batching chunk
fingerprint query in the deduplication node at the super-
chunk level before data chunk transfer, and only the
unique data chunks are transferred over the network.

Dedupe storage nodes. The dedupe server component
consists of three important functional modules: applica-
tion-aware similarity index lookup, chunk index cache
management and parallel container management. It im-
plements the key deduplication and storage management
logic, including returning the results of application-aware
similarity index lookup for data routing, buffering the
recent hot chunk fingerprints in chunk index cache to
speedup the process of identifying duplicate chunks and
storing the unique chunks in larger units, called contain-
ers, in parallel.

Director. It is responsible for keeping track of files on
the dedupe storage node, and managing file information
to support data store and retrieve. It consists of file recipe
management and application-aware routing decision. The
file recipe management module keeps the mapping from
files to chunk fingerprints and all other information re-
quired to reconstruct the file. All file-level metadata are
maintained in the director. The application aware routing
decision module selects a group of corresponding appli-

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2710043,
IEEE Transactions on Cloud Computing

6 IEEE TRANSACTIONS ON CLOUD COMPUTING

cation storage nodes for each file, and gives the client a
feedback to direct super-chunk routing. The director sup-
ports up to two servers in an active/passive failover to
avoid the single node failure with high availability.

3.2 Two-tiered data routing scheme

As a new contribution of this paper, we present the two-
tiered data routing scheme including: the file-level appli-
cation aware routing decision in director and the super-
chunk level similarity aware data routing in clients.

The application aware routing decision is inspired by
our application difference redundancy analysis in Section
2.2. It can distinguish from different types of application
data by exploiting application awareness with filename
extension, and selects a group of dedupe storage nodes as
the corresponding application storage nodes, which have
stored the same type of application data with the file in
routing. This operation depends on an application route
table structure that builds a mapping between application
type and storage node ID. The application aware routing
algorithm is shown in Algorithm 1, which performs in the
application aware routing decision module of director.

The similarity aware data routing scheme is a stateful
data routing scheme motivated by our super-chunk re-
semblance analysis in Section 2.3. It routes similar super-
chunk to the same dedupe storage node by looking up
storage status information in only one or a small number
of nodes, and achieves near-global capacity load balance
without high system overhead (as described in Section 4).
In the data-partitioning module, a file is first divided it
into c small chunks, which are grouped into a super-
chunk S. Then, all the chunk fingerprints {fp1, fp2, …, fpc}
are calculated by a cryptographic hash function in the
chunk fingerprinting module. The data routing algorithm,
shown in Algorithm 2, performs in the data routing mod-
ule of the clients.

Our handprinting based data routing scheme can im-
prove load balance for the m application dedupe storage
nodes by adaptively choosing least loaded node in the k
candidate nodes for each super-chunk. We have proved
that the global load balance can be approached by virtue
of the universal distribution of randomly generated hand-
prints by cryptographic hash functions in Section 4.5. Its
consistent hashing based data assignment is scalable since
it can avoid re-shuffling all previously stored data when
adding or deleting a node in the storage cluster.

3.3 Interconnect communication

The interconnect communication is critical for the design
of AppDedupe. We detail the operations carried out
when storing and retrieving a file.

A file store request is processed as shown in the Fig. 3:
a client sends a PutFileReq message to the director after
file partitioning and chunk fingerprinting. The message
includes file metadata like: file ID (the SHA-1 value of file
content), file size, file name, timestamp, the number of
super-chunk in the file and their checksums. The director
stores the file metadata as a file recipe [34], and makes
sure that there has enough space in the distributed stor-
age systems for the file. It also performs the application

Algorithm 1. Application Aware Routing Algorithm

Input: the full name of a file, fullname, and a list of all
dedupe storage nodes {S1, S2, …, SN}
Output: a ID list of application storage node, ID_list={A1,
A2, … , Am}
1. Extract the filename extension as the application type

from the file full name fullname, sent from client side;
2. Query the application route table in director, and find

the dedupe storage node Ai that have stored the same
type of application data; We get the corresponding
application storage nodes ID_list={A1, A2, … , Am} {S1,
S2, …, SN};

3. Check the node list: if ID_list= or all nodes in ID_list
are overloaded, then add the dedupe storage node SL
with lightest workload into the list ID_list={SL};

4. Return the result ID_list to the client.

Algorithm 2. Handprinting Based Stateful Data Routing

Input: a chunk fingerprint list of super-chunk S in a file,
{fp1, fp2, … , fpc}, and the corresponding application stor-
age node ID list of the file, ID_list={A1, A2, … , Am}
Output: a target node ID, i
1. Select the k smallest chunk fingerprints {rfp1, rfp2, …,

rfpk} as a handprint for the super-chunk S by sorting
the chunk fingerprint list {fp1, fp2, …, fpc}, and sent the
handprint to k candidate nodes with IDs mapped by
consistent hashing in the m corresponding application
storage nodes;

2. Obtain the count of the existing representative finger-
prints of the super-chunk S in the k candidate nodes
by comparing the representative fingerprints of the
previously stored super-chunks in the application-
aware similarity index, are denoted as {r1, r2, …, rk};

3. Calculate the relative storage usage, which is a node
storage usage value divided by the average storage
usage value, to balance the capacity load in the k can-
didate nodes, are denoted as {w1, w2, …, wk};

4. Choose the dedupe storage node with ID i that satis-
fies ri/wi = max{r1/w1, r2/w2, …, rk/wk} as the target node.

Client Director
Dedupe

Server1

Dedupe

Server2

PutFileReq
PutFileResp

PutSCReq_1
PutSCResp_1

UniqueChunksSC_1

EOF

SCAck_1

Dedupe

Server3

LookupSCReq_1
LookupSCReq_1

LookupSCResp_1
LookupSCResp_1

SimIndex

Lookup
SimIndex

Lookup

Store Unique

Chunks

...

...

... ...

T
im

e

LookupChunksSCReq_1

LookupChunksSCResp_1

Chunk FPs

Lookup

Fig.3. Message exchanges for store operation

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2710043,
IEEE Transactions on Cloud Computing

FU ET AL.: APPLICATION-AWARE BIG DATA DEDUPLICATION IN CLOUD ENVIRONMENT 7

Client Director
Dedupe

Server1

Dedupe

Server2

T
im

e

GetFileReq

GetFileResp

GetSuperChunk_1

GetSuperChunk_2

SuperChunk_1

SuperChunk_2

Retrieve

SuperChunk_2

Retrieve

SuperChunk_1

Fig.4. Message exchanges for retrieve operation

aware routing decision to select a group of corresponding
application storage nodes for each file. The director re-
plies to the client with the file ID and a corresponding
application storage node list in PutFileResp message. After
received the PutFileResp, the client sends k LookupSCReq
requests to the k candidate dedupe storage nodes for each
super-chunk in the file, respectively, to lookup the appli-
cation-aware similarity index in dedupe storage nodes for
the representative fingerprints of the super-chunk. These
candidate nodes reply to the client with a weighted re-
semblance value for the super-chunk. The client selects a
candidate node as the target route node to store the su-
per-chunk, and notifies the director its node ID by PutSC
Req message. Then, the client sends all chunk fingerprints
of the super-chunk in batch to the target node to identify
whether a chunk is duplicated or not. After the lookup of
chunk fingerprints, the target dedupe storage node re-
plies to the client with a list of unique chunks in the su-
per-chunk. Moreover, the client only needs to send the
unique chunks in the super-chunk to the target node in
batch. We repeat the steps for each super-chunk, until the
end of file is reached.

The process of retrieving a file is also initiated by a cli-
ent request GetFileReq to the director, as depicted in Fig. 4.
The director reacts to this request by querying the file
recipe, and forwards the GetFileResp message to the client.
The GetFileResp contains the super-chunk list in the file
and the mapping from super-chunk to the dedupe stor-
age node where it is stored. Then, the client requests each
super-chunk in the file from the corresponding dedupe
storage node with GetSuperChunk message. The dedupe
server can retrieve super-chunk from data containers, and
the performance of restore process can be accelerated, like
[35] [36]. Finally, the client downloads each super-chunk
and uses the checksums of super-chunks and file ID to
verify the data integrity.

3.4 Some key data structures

We outline the salient features of the key data structures
designed for the deduplication process in the director and
dedupe storage nodes. As shown in Fig. 5, an application
route table is located in the director to conduct applica-
tion aware routing decision, while to support high de-
duplication throughput with low system overhead, a
chunk fingerprint cache and two key data structures: app-

Application-aware Similarity Index

...

Disk Array

FingerprintsCID

764

..
.

513

Chunk Fingerprint Cache

RAM

containers containers containers

3c5e, ef2d, ...

e43b, 9fd1, ...

Dedupe Storage Node

Director

Type NodeID

doc 5

jpg 5

Application Route Table

Capacity

235 MB

..
.

43 GB

rmvb 7 910 GB

rmvb 28 367 GB

RFP CID

c15f 412

..
. ..
.

3ad3 805

RFP CID

a1cb 359

..
.

..
.

ef2d 764

doc jpg ...
...

...

..
.

..
.

RAM

Fig.5. Key data structures in dedupe process.

lication-aware similarity index and container, are intro-
duced in our dedupe storage architecture design.

Application route table is built in director to conduct
application aware routing decision. Each entry of the ta-
ble stores a mapping from application type to node ID
and the corresponding capacity for that kind of applica-
tion data in the storage node. The director can find out
the application storage node list for a given application
type, and calculate the workload level with storage utili-
zation in nodes. In consideration of the application level
and node level are both coarse grained, the whole appli-
cation route table can easily be fit into the director
memory to speedup the query operations.

Application-aware similarity index is an in-memory
data structure. It consists of an application index and
small hash-table based indices classified by application
type. According to the accompanied file type information,
the incoming super-chunk is directed to a small index
with the same file type. Each entry contains a mapping
between a representative fingerprint (RFP) of super-
chunk handprint and the container ID (CID) where it is
stored. Since our handprinting has very low sampling
rate, it is much smaller than the traditional chunk finger-
print disk index that builds a mapping from all chunk
fingerprints to the corresponding containers that they’re
stored in. To support concurrent lookup operations in
application-aware similarity index by multiple data
streams on multicore deduplication nodes, we adopt a
parallel application-aware similarity index lookup design
and control the synchronization scheme by allocating a
lock per hash bucket or for a constant number of consecu-
tive hash buckets.

Container is a self-describing data structure stored in
disk to preserve locality, similar to the one described in
[3], that includes a data section to store data chunks and a
metadata section to store their metadata information,
such as chunk fingerprint, offset and length. Our dedupe
server design supports parallel container management to
allocate, deallocate, read, write and reliably store contain-
ers in parallel. For parallel data store, a dedicated open
container is maintained for each coming data stream, and
a new one is opened up when the container fills up.

Besides the forementioned data structures, the chunk

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2710043,
IEEE Transactions on Cloud Computing

8 IEEE TRANSACTIONS ON CLOUD COMPUTING

fingerprint cache also plays an important role in dedupli-
cation performance improvement. It keeps the chunk fin-
gerprints of recently accessed containers in RAM. Once a
representative fingerprint is matched by a lookup request
in the application-aware similarity index, all the metadata
section belonging to the mapped container are prefetched
into the cache to speedup chunk fingerprint lookup.
When the cache is full, a reasonable cache replacement
policy, like Least-Recently-Used(LRU), is applied to make
room for future prefetching and caching.

4 EVALUATION

We have implemented a prototype of AppDedupe in user
space using C++ and pthreads, on the Linux platform. We
evaluate the parallel deduplication efficiency in the multi-
core deduplication server with real system implementa-
tion, while use trace-driven simulation to demonstrate
how AppDedupe outperforms the state-of-the-art distrib-
uted deduplication techniques in terms of deduplication
efficiency and system scalability. In addition, we conduct
sensitivity studies on chunking strategy, chunk size, su-
per-chunk size, handprint size and cluster size.

4.1 Evaluation Platform and Workload

We use four commodity servers to perform our experi-
ments to evaluate parallel deduplication efficiency in sin-
gle-node dedupe server. All of them run Ubuntu 14.10
and use a configuration with 4-core 8-thread Intel X3440
CPU running at 2.53 GHz and 16GB RAM and a Seagate
ST1000DM 1TB hard disk drive. In our prototype dedup-
lication system, 7 desktops serve as the clients, one server
serves as the director and the other three servers for
dedupe storage nodes. It uses Huawei S5700 Gigabit
Ethernet switch for internal communication. To achieve
high throughput, our client component is based on an
event-driven, pipelined design, which utilizes an asyn-
chronous RPC implementation via message passing over
TCP streams. All RPC requests are batched in order to
minimize the round-trip overheads. We also perform
event-driven simulation on one of the four servers to
evaluate the distributed deduplication techniques in
terms of deduplication ratio, load distribution, memory
usage and communication overhead.

We collect five kinds of real-world datasets and two
types of application traces for our experiments. The Linux
dataset is a collection of Linux kernel source code from
versions 1.0 through 3.3.6, which is downloaded from the
website [27]. The VM dataset consists of 2 consecutive
monthly full backups of 8 virtual machine servers (3 for
Windows and 5 for Linux). The audio, video and photo
datasets are collected from personal desktops or laptops.
The mail and web datasets are two traces collected from
the web-server and mail server of the CS department in
FIU [28]. The key workload characteristics of these da-
tasets are summarized in Table 4. Here, the “size” column
represents the original dataset capacity, and “deduplica-
tion ratio” column indicates the ratio of logical to physical
size after deduplication with 4KB fixed chunk size in stat-
ic chunking (SC) or average 4KB variable chunk size in
optimized content defined chunking (CDC) based on the

TABLE 4

THE WORKLOAD CHARACTERISTICS OF THE REAL-WORLD

DATASETS AND TRACES

Datasets Size (GB) Deduplication Ratio

Linux 160 8.23(CDC) / 7.96(SC)

VM 313 4.34(CDC) / 4.11(SC)

Audio 158 1.39(CDC) / 1.21(SC)

Video 366 1.83(CDC) / 1.14(SC)

Photo 208 1.58(CDC) / 1.35(SC)

Mail 526 10.52(SC)

Web 43 1.9(SC)

open source code in Cumulus [29].

4.2 Evaluation Metrics

The following evaluation metrics are used in our evalua-
tion to comprehensively assess the performance of our
prototype implementation of AppDedupe against the
state-of-the-art distributed deduplication schemes.

Deduplication efficiency(DE): It is first defined in [22],
to measure the efficiency of different dedupe schemes in
the same platform by feeding a given dataset. It is calcu-
lated by the difference between the logical size L and the
physical size P of the dataset divided by the deduplica-
tion process time T. So, deduplication efficiency can be
expressed in (7).

L P
DE

T

 (7)

Normalized deduplication ratio(NDR): It is equal to
the distributed deduplication ratio (DDR) divided by the
single-node deduplication ratio (SDR) achieved by a sin-
gle-node, exact deduplication system, and can be ex-
pressed in (8). This is an indication of how close the
deduplication ratio achieved by a distributed deduplica-
tion method is to the ideal distributed deduplication ratio.

DDR

NDR
SDR

 (8)

Normalized effective deduplication ratio(NEDR): It is
equivalent to normalized deduplication ratio divided by
the value of 1 plus the ratio of standard deviation of
physical storage usage to average usage in all dedupe
servers, similar to the metric used in [7]. Normalized ef-
fective deduplication ratio can be expressed in (9). It indi-
cates how effective the data routing schemes are in elimi-
nating the deduplication node information island.

DDR

NEDR
SDR

 (9)

Number of fingerprint index lookup messages: It in-
cludes that of inter-node messages and intra-node mes-
sages for chunk fingerprint lookup, both of which can be
easily obtained in our simulation to estimate communica-
tion overhead.

RAM usage for intra-node deduplication: It is an es-
sential system overhead related to chunk index lookup in
dedupe server. And it indicates how efficient the chunk
index lookup optimization is to improve the performance
of intra-node deduplication.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2710043,
IEEE Transactions on Cloud Computing

FU ET AL.: APPLICATION-AWARE BIG DATA DEDUPLICATION IN CLOUD ENVIRONMENT 9

Data skew for distributed storage: We define DS as a
metric for data skew in the dedupe storage server cluster.
It can be expressed in (10), and equals to the difference
between the maximum capacity MaxLoad and the mini-
mum capacity MinLoad in storage cluster divided by the
mean value MeanLoad.

MaxLoad MinLoad

DS
MeanLoad

 (10)

4.3 Application-aware Deduplication Efficiency

In our design, the client performs data partitioning and
chunk fingerprinting in parallel before data routing deci-
sion. It can divide the files into small chunks with fix-
sized SC or variable-sized CDC chunking methods for
each kind of application files, and calculates the chunk
fingerprints with cryptographic hash function. Then,
hundreds of or thousands of consecutive smaller chunks
are grouped together as a super-chunk for data routing.
The implementation of the hash fingerprinting is based
the OpenSSL library. According to the study in [19], we
select SHA-1 to reduce the probability of hash collision
for fix-sized SC chunking, while we choose MD5 for vari-
able-sized CDC chunking for high hashing throughput
with almost the same hash collision possibility.

To exploit the multi-core or many-core resource of the
dedupe storage node, we also develop parallel applica-
tion-aware similarity index lookup in individual dedupe
servers. For our multiple-data-stream based parallel de-
duplication, each data stream has a deduplication thread,
but all data streams share a common hash-table based
application-aware similarity index in each dedupe server.
We lock the hash-table based application-aware similarity
index by partitioning the index at the application granu-
larity to support concurrent lookup. As we demonstrated
in [33], the single-node parallel deduplication perform the
best in application-aware-similarity-index lookup when
the number of data streams equals to that of supported
CPU logical cores, while the performance of more streams
drops when the number of locks is larger than the num-
ber of data stream because of the overhead of thread con-
text switching that causes data swapping between cache
and memory.

We compare our application aware similarity index
with the traditional similarity index in [33] for parallel
deduplication throughput in single dedupe storage node
with multiple data streams. The results in Fig. 6 show the
parallel deduplication throughput using the VM dataset,
with data input from RAMFS to eliminate the perfor-
mance interference of the disk I/O bottleneck. We test the
throughput of both traditional similarity index (Naive)
and application aware similarity index (Application
aware) with cold cache or warm cache, respectively. Here,
“cold cache” means the chunk fingerprint cache is empty
when we first perform parallel deduplication with multi-
ple streams on the VM dataset. While “warm cache”
means the duplicate chunk fingerprint had already been
stored in the cache, when we perform parallel deduplica-
tion with multiple streams again on the same dataset. We
observe that the parallel deduplication schemes with ap-
plication-aware similarity index perform much better

Fig. 6. The Comparison of parallel deduplication throughput of the
application aware similarity index structure with that of the traditional
similarity index structure for multiple data streams.

Fig.7. Deduplication efficiency in single storage node.

than the naïve parallel deduplication mechanisms, and
the parallel deduplication schemes with warm cache can
achieve higher throughput than those regimes with cold
cache. The throughput of the parallel deduplication with
both application aware similarity index and warm cache
goes up to 6.2GB/s with the increasing number of data
streams; After 16 concurrent streams, the throughput falls
to 5.5GB/s since the concurrency overheads of index lock-
ing and disk I/O are becoming obvious.

We measure the deduplication efficiency in a configu-
ration with two clients, one director and a single dedupe
storage node to show the tradeoff between deduplication
effectiveness and system overhead. To eliminate the im-
pact of the disk bottleneck, we store the entire workload
in memory and perform the deduplication process to skip
the unique-data-chunk store step. To assess the impact of
the system overhead on deduplication efficiency, we
measure “Bytes Saved Per Second”, the deduplication effi-
ciency as defined in Section 4.2, as a function of the chunk
size. The results in Fig. 7 show that the best choices of
chunking method and chunk size to achieve high dedup-
lication efficiency vary with different application datasets.
The single dedupe server can achieve the highest dedup-
lication efficiency when the chunk size is 4KB for statical-
ly chunked Linux workload, 8KB for statically chunked
VM workload and 2KB for Video workload with CDC. As
a result, we choose to perform application-aware chunk-
ing, which adaptively select the best chunking scheme
and the best chunk size for each application with high
deduplication efficiency.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2710043,
IEEE Transactions on Cloud Computing

10 IEEE TRANSACTIONS ON CLOUD COMPUTING

TABLE 5
RAM USAGE OF INTRA-NODE DEDUPLICATION FOR VARIOUS

APPLICATION WORKLOADS

Work-

loads

Statless&

Stateful

Extreme

Binning
Produck

-

Dedupe

App-

Dedupe

Linux 9.9MB 118.5MB 763.1MB 6.1MB 6.2MB

VM 37MB 47.2KB 2.8GB 38.6MB 23.1MB

Mail 25MB 1.9GB 14.3MB 15.6MB

Web 11.3MB 852.8MB 6.9MB 7.1MB

Audio 52.3MB 2.45MB 3.9GB 47.1MB 34.2MB

Video 162MB 103.6KB 12.6GB 101.4MB 106.8MB

Photo 74.8MB 7MB 5.6GB 53MB 49.5MB

Total 372.3MB 128.1MB 2.84GB 267.4MB 242.5MB

Since the disk based chunk fingerprint index is always

too large to fit it into the limited RAM space, an efficient
RAM data structure is needed to improve the index
lookup performance and keep high deduplication accura-
cy. In EMC super-chunk based routing schemes, Bloom
Filter [31] is employed to improve its full index lookup
performance. A file-level in-RAM primary index over
chunk-level on-disk indices is provided in Extreme Bin-
ning to achieve excellent RAM economy. In AppDedupe,
we design an application-aware similarity index in RAM
to speedup the chunk fingerprint index lookup process.
To compare the RAM overhead of these three intra-node
deduplication methods, we show their RAM usage on the
seven different application workloads in Table 5, to elim-
inate more than 95% duplicate chunks, with 8KB mean
chunk size in the Bloom Filter design, 48B primary index
entry size for Extreme Binning, and 40B entry size for
chunk index of Produck and application-aware similarity
index of our design. We cannot estimate the RAM usage
for Extreme Binning on the two traces (i.e., Mail and Web)
without file metadata information. It is clearly that our
design outperforms the traditional index lookup design of
Produck, and the Bloom Filter design of EMC stateless
and stateful schemes in shrinking the RAM usage for our
sampling based index design. AppDedupe also outper-
forms the previous -Dedupe design with less RAM us-
age due to its dynamic chunk size selection in applica-
tion-aware chunking scheme. Our application-aware sim-
ilarity index occupies more space than file-level primary
index in Extreme Binning for datasets with large files, like
VM and multimedia workloads, but less for Linux source
code dataset with small files. We can further reduce its
size by adjusting super-chunk size or handprint size with
the corresponding deduplication effectiveness loss.

4.4 Load Balance in Super-Chunk Assignment

Load balance is an important issue in distributed storage
technique [41]. It can help improve system scalability by
en-suring that client I/O requests are distributed equita-
bly across a group of storage servers. The implementation
of consistent hashing based DHTs in traditional distribut-
ed deduplication [6], [9], [10] are considerable load imbal-
ance due to its stateless assignment design. In particular,

Fig. 8. The data skew of super-chunk routing when we select differ-
ent handprint sizes under various node numbers in the storage serv-
er cluster.

a storage node that happens to be responsible for a larger
segment of the keyspace will tend to be assigned a greater
number of data objects. In subsection 4.2, we defined DS
as a metric for data skew in the storage server cluster.
Data assignment method can achieve global load balance
when DS=0. The larger DS value we measured in the test,
the more serious load imbalance happened in the storage
cluster.

To make our conclusion more general, we not only
consider an ideal scenario that each super-chunk is filled
with random data in Fig. 8(a), but also perform the tests
on real-world datasets: VM images, Linux source code,
and mail datasets with 10 and 1280 nodes, respectively, as
shown in Fig. 8(b). Super-chunk chooses the least loaded
node in the k storage nodes that are mapped independ-
ently and uniformly at random by consistent hashing
with the k representative fingerprints in its handprint.
The effectiveness of load balancing has been tested with
different handprint size and node number in Fig. 8. The
average load of each node is 65536 super-chunks with 1
MB size. The important implication of the results is that
even a small amount of representative fingerprints in
handprint can lead to drastically different results in load
balancing. It shows that traditional schemes, like DHT [9]
or hash-bucket [10], with only one representative finger-
print for choice are hard to keep a good load balance in
the super-chunk assignment. When the cluster scales to
hundreds or thousands of nodes, our handprint technique
can keep a good load balance (the metric of data skew is
less than 1) by routing the super-chunks with 4k
random choices. We select handprint size from 4 to 16 to
make a tradeoff between load balance and communica-
tion overhead for large-scale distributed deduplication in
big data.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2710043,
IEEE Transactions on Cloud Computing

FU ET AL.: APPLICATION-AWARE BIG DATA DEDUPLICATION IN CLOUD ENVIRONMENT 11

4.5 Distributed Deduplication Efficiency

We route data at the super-chunk granularity to preserve
data locality for high performance of distributed dedup-
lication, while performing deduplication at the chunk
granularity to achieve high deduplication ratio in each
server locally. Since the size of the super-chunk is very
sensitive to the tradeoff between the index lookup per-
formance and the distributed deduplication effectiveness,
as demonstrated by the sensitivity analysis on super-
chunk size in [7], we also choose the super-chunk size of
1MB to reasonably balance the conflicting objectives of
cluster-wide system performance and capacity saving,
and to fairly compare our design with the previous EMC
distributed deduplication mechanism.

In this section, we first conduct a sensitivity study to
select an appropriate handprint size for our AppDedupe
scheme, and then compare our scheme with the state-of-
the-art approaches that are most relevant to AppDedupe,
including EMC’s super-chunk based Stateful and State-
less data routing, -Dedupe, Produck and Extreme Bin-
ning, in terms of the effective deduplication ratio, normal-
ized to that of the traditional single-node exact deduplica-
tion, and communication overhead measured in number
of fingerprint index lookup messages. We emulate each
node by a series of independent fingerprint lookup data
structures, and all results are generated by trace-driven
simulations on the seven datasets under study.

Two-tiered data routing can accurately direct similar
data to the same dedupe server by exploiting application
awareness and data similarity. We conduct a series of
experiments to demonstrate the effectiveness of distribut-
ed deduplication by our handprint-based deduplication
technique with the super-chunk size of 1MB on the Linux
kernel source code workload. Fig. 9 shows the dedupli-
cation ratio, normalized to that of the single-node exact
deduplication, as a function of the handprint size. As a
result, AppDedupe becomes an approximate deduplica-
tion scheme whose deduplication effectiveness neverthe-
less improves with the handprint size because of the in-
creased ability to detect similarity in super chunks with a
larger handprint size (recall Section 2.3). We can see that
there is a significant improvement in normalized dedupli-
cation ratio for all cluster sizes when handprint size is
larger than 8. This means that, for a large percentage of
super-chunk queries, we are able to find the super-chunk
that has the largest content overlap with the given super-
chunk to be routed by our handprint-based routing
scheme. To strike a sensible balance between the distrib-
uted deduplication ratio and system overhead, and match
the handprint size choice in single-node, we choose a
handprint consisting of 8 representative fingerprints in
the following experiments to direct data routing on su-
per-chunks of 1MB in size.

After the selection on super-chunk size and handprint
size, we conduct prelimary experiments on AppDedupe
prototype in small scale to compare it with the two dis-
tributed deduplication schemes with application-aware-
routing-only (AppAware) and hand-print-based-stateful-
routing-only (∑-Dedupe), respectively. We feed the dis-
tributed dedupe storage system with the chunk finger-

Fig. 9. Distributed deduplication ratio normalized to that of single-
node exact deduplication with various cluster size, as a function of
handprint size.

TABLE 6
KEY METRICS OF THE DISTRIBUTED DEDUPLICATION SCHEMES

Method
Application

Distribution

Capacity

(GB)
DS EDR Time(s)

DE

(MB/s)

AppAware 2:2:3 610 1.84 0.45 28335 41.8

∑-Dedupe 7:7:7 657 0.05 0.87 30250 36.6

AppDedupe 3:4:4 618 0.07 0.95 23775 48.6

prints of the above described seven application work-
loads totalled 1774 GB size, to eliminate the disk I/O bot-
tleneck. In Table 6, in addition to the defined metrics in
Subsection 4.2, we also define application distribution as the
number of application type distributed in three dedupe
storage nodes, record time spent for the deduplication
processes and indicate capacity to describe the total stor-
age capacity after distributed deduplication in the storage
cluster. The results in key metrics are shown that our
AppDedupe performs best in deduplication efficiency
with high deduplication ratio and low time overhead.
AppAware scheme has the highest deduplication ratio,
but it suffers from load imbalance due to the data skew of
application level data assignment. ∑-Dedupe suffers from
a low deduplication ratio since it distributes all types of
application data into each dedupe storage node with the
highest cross-node redundancy.

To show the scalability of our AppDedupe design, we
also perform simulations to compare it with the existing
data routing schemes in distributed deduplication in
large scale. We compare our AppDedupe scheme with the
state-of-the-art data routing schemes of Extreme Binning,
Produck, -Dedupe, EMC’s stateless routing scheme and
stateful routing scheme, across a range of datasets. Fig. 10
plots EDR as a function of the cluster size for the six algo-
rithms on all datasets. Because the last two traces, Mail
and Web, do not contain file-level information, we are not
able to perform the file-level based Extreme Binning
scheme on them. In general, App-Dedupe can achieve the
highest effective deduplication ratio due to its load bal-
ancing design of inter-node two-tiered data routing and
high deduplication effectiveness of intra-node applica-
tion-aware chunking by leveraging application awareness
and data similarity. More specifically, the AppDedupe
scheme achieves 103.1% of the EDR obtained by the State-

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2710043,
IEEE Transactions on Cloud Computing

12 IEEE TRANSACTIONS ON CLOUD COMPUTING

Fig.10. Effective deduplication ratio (EDR), normalized to that of
single-node exact deduplication, as a function of cluster size on
workloads.

ful scheme for a cluster of 128 server nodes on the seven
datasets, while this performance margin narrows to
103.6% when averaging over all cluster sizes, from 1
through 128. Stateless routing performs worse than
AppDedupe, Produck and Stateful routing due to its low
cluster-wide data reduction ratio and unbalanced capaci-
ty distribution. Extreme Binning underperforms Stateless
routing on the workloads because of the large file size
and skewed file size distribution in the datasets, work-
load properties that tend to render Extreme Binning’s
similarity detection ineffective. Produck achieves higher
normalized EDR than Stateless routing and Extreme Bin-
ning due to its stateful routing design, but it underper-
forms AppDedupe on all datasets for its low deduplica-
tion ratio and unbalanced load distribution. AppDedupe
outperforms Extreme Binning in EDR by up to 72.7% for a
cluster of 128 nodes on the five datasets containing file-
level information. For the seven datasets, AppDedupe is
better than Stateless routing in EDR by up to 50.5% for a
cluster of 128 nodes. Our AppDedupe achieves an im-
provement of 28.2% and 11.8% in EDR with respect to
Produck and -Dedupe on all datasets in a cluster of 128
nodes, respectively. As can be seen from the trend of
curves, these improvements will likely be more pro-
nounced with cluster sizes larger than 128.

In distributed deduplication storage systems, finger-
print lookup tends to be a persistent bottleneck in each
dedupe storage server because of the costly on-disk
lookup I/Os, which often adversely impacts the system
scalability due to the consequent high communication
overhead from fingerprint lookup. To quantify this sys-
tem overhead, we adopt the number of fingerprint-
lookup messages as a metric. We measure this metric by
totaling the number of chunk fingerprint-lookup messag-
es on the seven datasets, for the five distributed dedupli-
cation schemes. As shown in Fig. 11 that plots the total
number of fingerprint-lookup messages as a function of
the node number, AppDedupe, Extreme Binning and
Stateless routing have very low system overhead due to
their constant fingerprint-lookup message count in the
distributed deduplication process, while the number of
fingerprint-lookup messages of Stateful routing grows
linearly with the node number. This is because Extreme
Binning and Stateless routing only have 1-to-1 client-and-
server fingerprint lookup communications for source de-

Fig.11. Communication overhead in terms of the number of finger-
print-lookup message for all seven workloads.

duplication due to their stateless designs. Stateful routing,
on the other hand, must send the fingerprint lookup re-
quests to all nodes, resulting in 1-to-all communication
that causes the system overhead to grow linearly with the
node number even though it can reduce the overhead in
each node by using a sampling scheme. Produck has high
communication overhead due to its fine-grained chunk
size with 1KB, while other deduplication methods adapt
4KB or 8KB. The number of fingerprint-lookup messages
in Produck is about four times that of AppDedupe, Ex-
treme Binning and Stateless routing, and it grows as slow
as these three low-overhead schemes. As described in
Algorithm 1, the main reason for the low system over-
head in AppDedupe is that the pre-routing fingerprint-
lookup requests for each super-chunk only need to be
sent to at most 8 candidate nodes, and only for the lookup
of representative fingerprints, which is 1/32 of the num-
ber of chunk fingerprints, in these candidate nodes. The
message overhead of AppDedupe in fingerprint lookup is
about 1.25 times that of Stateless routing and Extreme
Binning in all scales. -Dedupe is the preliminary version
of our AppDedupe, and they have almost the same com-
munication overhead due to their consistent interconnect
protocol.

5 CONCLUSION

In this paper, we describe AppDedupe, an application-
aware scalable inline distributed deduplication frame-
work for big data management, which achieves a tradeoff
between scalable performance and distributed deduplica-
tion effectiveness by exploiting application awareness,
data similarity and locality. It adopts a two-tiered data
routing scheme to route data at the super-chunk granular-
ity to reduce cross-node data redundancy with good load
balance and low communication overhead, and employs
application-aware similarity index based optimization to
improve deduplication efficiency in each node with very
low RAM usage. Our real-world trace-driven evaluation
clearly demonstrates AppDedupe’s significant adven-
tages over the state-of-the-art distributed deduplication
schemes for large clusters in the following important two
ways. First, it outperforms the extremely costly and poor-
ly scalable stateful tight coupling scheme in the cluster-
wide deduplication ratio but only at a slightly higher sys-

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2710043,
IEEE Transactions on Cloud Computing

FU ET AL.: APPLICATION-AWARE BIG DATA DEDUPLICATION IN CLOUD ENVIRONMENT 13

tem overhead than the highly scalable loose coupling
schemes. Second, it significantly improves the stateless
loose coupling schemes in the cluster-wide effective de-
duplication ratio while retaining the latter’s high system
scalability with low overhead.

ACKNOWLEDGMENT

This research was partially supported by the National
Key Research and Development Program of China under
Grant 2016YFB1000302, the National Natural Science
Foundation of China under Grant 61232003 and 61402518,
and the US NSF under Grants CNS-1116606 and CNS-
1016609. A preliminary version of the paper was present-
ed at the 2012 ACM/IFIP/USENIX Middleware Confer-
ence.

REFERENCES

[1] J. Gantz, D. Reinsel, “The Digital Universe Decade-Are You
Ready?” White Paper, IDC, May 2010.

[2] H. Biggar, “Experiencing Data De-Duplication: Improving
Efficiency and Reducing Capacity Requirements,” White Paper,
the Enterprise Strategy Group, Feb. 2007.

[3] K.R. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen, H. Lei. “An
Empirical Analysis of Similarity in Virtual Machine Images,”
Proc. Of the ACM/IFIP/USENIX Middleware Industry Track
Workshop (Middleware’11), Dec. 2011.

[4] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti.
“iDedup: Latency-aware, inline data deduplication for prima-
ry storage,” Proc. of the 10th USENIX Conference on File and
Storage Technologies (FAST’12). Feb. 2012.

[5] P. Shilane, M. Huang, G. Wallace, and W. Hsu. “WAN opti-
mized replication of backup datasets using stream-informed
delta compression,” ACM Transactions on Storage (TOS), 8(4):
915-921, Nov. 2012.

[6] D. Bhagwat, K. Eshghi, D.D. Long, M. Lillibridge, “Extreme
Binning: Scalable, Parallel Deduplication for Chunk-based File
Backup,” Proc. of the 17th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Tele-
communication Systems (MASCOTS’09), pp.1-9, Sep. 2009.

[7] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, P. Shilane,
“Tradeoffs in Scalable Data Routing for Deduplication Clus-
ters,” Proc. of the 9th USENIX Conf. on File and Storage Tech-
nologies (FAST’11), pp. 15-29, Feb. 2011.

[8] F. Douglis, D. Bhardwaj, H. Qian, P. Shilane, “Content-aware
Load Balancing for Distributed Backup,” Proc. of the 25th
USENIX Conf. on Large Installation System Administration
(LISA’11), pp.151-168, Dec. 2012.

[9] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P.
Strzelczak, J. Szczepko-wski, C. Ungureanu, M. Welnicki,
“HYDRAstor: a Scalable Secondary Storage,” Proc. of the 7th
USENIX Conf. on File and Storage Technologies (FAST‘09), pp.
197-210, Feb. 2009.

[10] J. Wei, H. Jiang, K. Zhou, D. Feng, “MAD2: A Scalable High
Throughput Exact Deduplication Approach for Network
Backup Services,” Proc. of the 26th IEEE Conf. on Mass Storage
Systems and Technologies (MSST’10), pp. 1-14, May 2010.

[11] T. Yang, H. Jiang, D. Feng, Z. Niu, K. Zhou, Y. Wan, “DEBAR:
a Scalable High-Performance Deduplication Storage System
for Backup and Archiving,” Proc. of the 24th IEEE Internation-
al Parallel and Distributed Processing Symposium (IPDPS’10),
pp. 1-12, Apr. 2010.

[12] H. Kaiser, D. Meister, A. Brinkmann, S. Effert, “Design of an
Exact Data Deduplication Cluster,” Proc. of the 28th IEEE
Symposium on Mass Storage Systems and Technologies
(MSST’12), pp. 1-12, Apr. 2012.

[13] B. Zhu, K. Li, H. Patterson, “Avoiding the Disk Bottleneck in

the Data Domain Deduplication File System,” Proc. of the 6th
USENIX Conf. on File and Storage Technologies (FAST‘08), pp.
269-282, Feb. 2008.

[14] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deola- likar, G.
Trezise, P. Camble, “Sparse indexing: large scale, inline
deduplication using sampling and locality,” Proc. of the 7th
Conf. on File and Storage Technologies (FAST ’09), pages 111-
123, Feb. 2009.

[15] B. Debnath, S. Sengupta, and J. Li. “ChunkStash: speeding up
inline storage deduplication using flash memory.” In Proceed-
ings of the 2010 USENIX conference on USENIX annual tech-
nical conference (2010), USENIX Association, p. 16.

[16] W. Xia, H. Jiang, D. Feng, Y. Hua, “Silo: a Similarity-locality
based Near-exact Deduplication Scheme with Low RAM
Overhead and High Throughput,” Proc. of 2011 USENIX An-
nual Technical Conference (ATC’11), pp. 285-298, Jun. 2011.

[17] A. Katiyar, J. Weissman. “ViDeDup: An Application-Aware
Framework for Video Deduplication,” Proc. of the 3rd USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage’11), pp. 31-35, 2011.

[18] C. Liu, Y. Lu, C. Shi, G. Lu, D. Du, and D.-S Wang, “ADMAD:
Application-driven metadata aware de-deduplication archival
storage systems,” Proc. of the 5th IEEE International Work-
shop on Storage Network Architecture and Parallel I/Os
(SNAPI’08), pp.29-35, 2008.

[19] Y. Fu, H. Jiang, N. Xiao, L. Tian, F. Liu, L. Xu. “Application-
Aware Local-Global Source Deduplication based Cloud Back-
up Services for Personal Storage.” In Proc. of IEEE Transac-
tions on Parallel and Distributed Systems, 25(5): 1155-1165,
2014.

[20] L. Aronovich, R. Asher, E. Bachmat, H. Bitner, M. Hirsch, and
S. T. Klein, “The design of a similarity based deduplication
system,” Proc. of 2nd ACM Annual Int. Systems and Storage
Conf. (SYSTOR ’09), pp. 6-6, Jun. 2009.

[21] D. Bhagwat, K. Eshghi, P. Mehra, “Content-based Document
Routing and Index Partitioning for Scalable Similarity-based
Searches in a Large Corpus,” Proc. of the 13th ACM Interna-
tional Conf. on Knowledge Discovery and Data Mining
(SIGKDD’07), pp. 105-112, Aug. 2007.

[22] Y. Fu, H. Jiang, N. Xiao, L. Tian, F. Liu, “AA-Dedupe: An Ap-
plication-Aware Source Deduplication Approach for Cloud
Backup Services in the Personal Computing Environment,”
Proc. of the 13th IEEE Conf. on Cluster Computing (Cluster’11),
pp. 112-120, Sep. 2011.

[23] Jaccard Index. http://en.wikipedia.org/wiki/Jaccard_index.
2012.

[24] A.Z. Broder, M. Charikar, A.M. Frieze, M. Mitzenmacher,
“Min-wise Independent Permutations,” Journal of Computer
and System Sciences, vol. 60, no. 3, pp. 630–659, Jun. 2000,
doi:10.1006/jcss.1999.1690.

[25] K. Eshghi, H.K. Tang, “A framework for Analyzing and Im-
proving Content-based Chunking Algorithms,” Technical Re-
port, HPL-2005-30R1, HP Lab., Palo Alto, Sep. 2005.

[26] A. Muthitacharoen, B. Chen, D. Mazieres, “A low-bandwidth
network file system,” Proc. of the 18th ACM symposium on
Operating systems principles (SOSP'01), pp.174-187, Oct. 2001.

[27] The Linux Kernel Archives. http://www.kernel.org/, 2012
[28] FIU IODedup Traces. http://iotta.snia.org/traces/391, 2010
[29] M. Vrable, S. Savage, G.M. Voelker, “Cumulus: Filesystem

Backup to the Cloud,” Proc. of the 8th USENIX Conf. on File
and Storage Technologies (FAST’09), pp. 225-238, Feb. 2009.

[30] P. Efstathopoulos, “File Routing Middleware for Cloud
Deduplication,” Proc. of 2nd ACM Interanational Workshop
on Cloud Computing Platforms (CloudCP’12), Apr. 2012.

[31] B. H. Bloom, “Space/time trade-offs in hash coding with al-
lowable errors,” Communications of the ACM, vol. 13, no. 7,
pp. 422-426, Jul. 1970.

[32] D. Frey, A-M. Kermarrec, K. Kloudas, “Probabilistic
Deduplication for Cluster-Based Storage Systems,” Proc. of the
3rd ACM Symposium on Cloud Computing (SOCC’12), pp. 1-

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2710043,
IEEE Transactions on Cloud Computing

14 IEEE TRANSACTIONS ON CLOUD COMPUTING

19, Oct. 2012.
[33] Y. Fu, H. Jiang, N. Xiao, “A Scalable Inline Cluster Dedupli-

cation Framework for Big Data Protection,” Proc. of the 13th
ACM/IFIP/ USENIX Conf. on Middleware (Middleware’12),
pp. 354-373, Dec. 2012.

[34] D. Meister, A. Brinkmann, T. Sub, “File Recipe Compression in
Data Deduplication Systems,” Proc. of the 11th USNIX Conf.
on File and Storage Technologies (FAST’13), Feb. 2013.

[35] M. Lillibridge, K. Eshghi, D. Bhagwat, “Improving Restore
Speed for Backup Systems that Use Inline Chunk-Based
Deduplication,” Proc. of the 11th USNIX Conf. on File and
Storage Technologies (FAST’13), Feb. 2013.

[36] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, F. Huang, Q.
Liu. “Accelerating Restore and Garbage Collection in
Deduplication-based Backup Systems via Exploiting Historical
Information,” Proc. Of the USENIX Annual Techinical Confer-
ence (ATC’14), Jun. 2014.

[37] Q. Liu, Y. Fu, G. Ni, R. Hou. "Hadoop Based Scalable Cluster
Deduplication for Big Data." Proc. Of the ICDCS Workshops
2016: 98-105.

[38] S. Dewakar, S. Subbiah, G. Soundararajan, M. Wilson, M.W.
Storer, K. Udayashankar, K. Voruganti, M. Shao, “Storage Effi-
ciency Opportunities and Analysis for Video Repositories,” In
7th USENIX Workshop on Hot Topics in Storage and File Sys-
tems (HotStorage'15), May 2015.

[39] A. Shimi, R. Kalach, A. Kumar, J. Li, A. Oltean, and S.
Sengupta, “Primary Data Deduplication-Large Scale Study and
System Design,” Proc. of the USENIX Annual Techinical Con-
ference (ATC’12), Jun. 2012.

[40] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen, Wen Xia,
Yucheng Zhang, Yujuan Tan. "Design Tradeoffs for Data
Deduplication Performance in Backup Workloads," Proc. of the
13th USNIX Conf. on File and Storage Technologies (FAST’13),
pp. 331-344, Feb. 2015.

[41] Min Xu, Yunfeng Zhu, Patrick P. C. Lee, Yinlong Xu. "Even
Data Placement for Load Balance in Reliable Distributed
Deduplication Storage Systems," In Proc. of IEEE International
Symposium on Quality of Service (IWQoS), pp. 349-358, 2015.

[42] Yan-Kit Li, Min Xu, Chun-Ho Ng, and Patrick P. C. Lee. "Effi-
cient Hybrid Inline and Out-of-line Deduplication for Backup
Storage," ACM Transactions on Storage, 11(1): 1-21, 2014.

[43] Joao Paulo and Jose Pereira. "Efficient Deduplication in a Dis-
tributed Primary Storage Infrastructure," ACM Transactions
on Storage, 12(4): 1-35, 2016.

Yinjin Fu is an assistant professor in computer
science in PLA University of Science and Tech-
nology. He received the B.S. degree in Mathe-
matics from Nanjing University, Nanjing, China,
in 2006, the M.S. degree and Ph.D. degree in
computer science from the College of Computer
at National University of Defense Technology,
Changsha, China, in 2008 and 2013, respectively.
He joined the Department of Computer Science
and Engineering at University of Nebraska-

Lincoln as a visiting scholar from 2010 to 2012. His current research inter-
ests include data deduplication, cloud storage and distributed file systems.
He has more than 30 publications in journals and international conferences
including IEEE TPDS, ACM ToS, Commun. Lett., JCST, MIDDLEWARE, MSST,
CLUSTER, FCS, ICA3PP, NAS. He is a member of the IEEE, ACM and CCF.

Nong Xiao received the B.S. and Ph.D. degrees in
computer science from the College of Computer
at National University of Defense Technology
(NUDT) in China, in 1990 and 1996, respectively.
He is currently a professor in the State Key La-
boratory of High Performance Computing at
NUDT, China. His current research interests
include large-scale storage system, network
computing, and computer architecture. He has

more than 130 publications to his credit in journals and international con-
ferences including IEEE TPDS, TSC, TC, TMM, JPDC, JCST, HPCA, ICCAD,
MIDDLEWARE, MSST, DATE, DAC, IPDPS, CLUSTER, CLOUD, SYSTOR and
MASCOTS. He is a distinguished member of the CCF and a member of the
IEEE and ACM.

Hong Jiang received the B.S. degree in computer
engineering from Huazhong University of Sci-
ence and Technology, Wuhan, China, in 1982,
the M.S. degree in computer engineering from
the University of Toronto, Canada, in 1987, and
the Ph.D. degree in computer science from the
Texas A&M University, College Station, in 1991.
Since August 1991, he has been at the University
of Nebraska-Lincoln (UNL), where he served as
the vice chair of the Department of Computer

Science and Engineering (CSE), and is a professor of CSE. Now he is the
chair of Department of Computer Science and Engineering at University of
Texas at Arlington. His present research interests include computer archi-
tecture, computer storage systems and parallel I/O, parallel/distributed
computing, cluster and grid computing. He has more than 180 publications
in major journals and international conferences in these areas, including
IEEE TPDS, IEEE TC, JPDC, USENIX-ATC, ISCA, MICRO, FAST, ICDCS, IPDPS,
OOPLAS, ECOOP, SC, ICS, MIDDLEWARE, HPDC, ICPP, etc. He is a fellow of
the IEEE and a member of the ACM and ACM SIGARCH.

Guyu Hu received the B.S. degree in radio-
technics from Univeristy of Zhejiang, Hangzhou,
China, in 1983, the Master degree and Ph.D.
degree in communication engineering from PLA
Institution of Communication Engineering, Nan-
jing, China, in 1989 and 1992, respectively. Now
he is a professor in network engineering of PLA
University of Science and Technology. His current
research interests include computer network and
machine learning. He has more than 160 publica-

tions in journals and conferences in these areas. He is a senior member of
the Chinese Institute of Electronics.

Weiwei Chen received her B.S. degree in com-
puter science from PLA Institute of Electronic
Technology, Zhengzhou, China, in 1990, the
Master degree in computer science from Na-
tional University of Defense Technology, Chang-
sha, China. Now she is a professor in computer
science of PLA University of Science and Tech-
nology. Her current research interests include
computer storage and cloud computing. She has
more than 30 publications in journals and con-

ferences in these areas, and is a member of the IEEE and China Computer
Federation.

