
Future Generation Computer Systems 91 (2019) 167–176

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

IOFollow: Improving the performance of VM live storage migration
with IO following in the cloud
Bo Mao a,∗, Yaodong Yang b, Suzhen Wu a, Hong Jiang c, Kuan-Ching Li d
a Xiamen University, Xiamen, 361005, China
b Microsoft, Redmond, WA, USA
c University of Texas at Arlington, Arlington, TX 76019, USA
d Providence University, Taiwan

h i g h l i g h t s

• We show IO interference problem between VM IO and migration IO during VMmigration.
• We propose IOFollow that schedules the block migration sequence with VM I/O requests.
• We have built a prototype of IOFollow system and validated its efficiency.

a r t i c l e i n f o

Article history:
Received 17 June 2018
Received in revised form 5 August 2018
Accepted 20 August 2018
Available online 5 September 2018

Keywords:
VM live storage migration
Cloud computing
Resource contention
IO following

a b s t r a c t

VM livemigration becomes critical to deployment in the Cloud, as to enable fast and transparentworkload
rescheduling among unevenly utilized physical nodes, aimed at high performance and energy efficient
utilization of computer server resources. Nevertheless, VM I/O intensity can significantly impact the
performance of VM live storage migration due to contention for the shared disk bandwidth and system
resources. Based on this observation, this paper proposes the IOFollow scheme to improve simultaneously
the VMperformance andmigration performance. IOFollowmitigates the I/O interference between VM I/O
requests andmigration I/O requests, by scheduling themigration sequence according to the access pattern
of VM I/O requests. In addition, it improves the cache management efficiency by exploiting the semantic
information from the VMs and migration threads. Results obtained from trace-based experiments on a
lightweight prototype implementation of IOFollow indicate that IOFollow system is highly competitive,
improving both the VMperformance andmigration performance significantlywhen compared to existing
design.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing has become one of the most important tech-
nologies poised to fundamentally change people’s lives and IT
ecosystems. As one of the most popular products in the cloud
market, VirtualMachines (VMs) have been extensively deployed to
execute different services and applications for customers, such as
web service, mail service, database service and printing service [1,
2]. The underlying hypervisor for the virtualized environment is
responsible for the management of physical devices and provision
of all sorts of virtual devices to VMs. At the same time, hypervisors
are supposed to guarantee the isolation and fairness among differ-
ent VMs on top of a single shared physical server, whilst improving
the overall performance for all VMs with accessibility to physical
resources [3–5].

∗ Corresponding author.
E-mail address: maobo@xmu.edu.cn (B. Mao).

The VM live migration is a built-in module in modern hyper-
visors, that provide support to the migration of a running live VM
from one physical server to another in cloud, either within same
or across data centers in different locations worldwide [6,7]. The
primary purpose of VM live migration is to meet the increasing
need for load balancing and server consolidation, system main-
tenance and upgrade, VM mobility and manageability in cloud
data centers. With the advent and wide deployment of the VM-
based cloud computing infrastructure, VM live migration, as an
essential functional component of the hypervisors, like ESX [8],
XEN [9], QEMU-KVM [10] and HyperV [11], is even more popular
technology. Nearly half of large enterprises have deployed hybrid
cloud infrastructure in data centers by end of 2017 [12].

In a typical cloud infrastructure, data storage can be either
shared or distributed depending on whether the data are stored
in a centralized environment, where all servers share the physical
storage, or distributed (shared-nothing) environment, and each
server has its own dedicated storage [13]. In the shared-storage
environment, VM livemigration only involves the synchronization

https://doi.org/10.1016/j.future.2018.08.036
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.08.036
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.08.036&domain=pdf
mailto:maobo@xmu.edu.cn
https://doi.org/10.1016/j.future.2018.08.036


168 B. Mao et al. / Future Generation Computer Systems 91 (2019) 167–176

of CPU states, memory states and network interfaces of the target
VM between the source and the destination of migration. VM
virtual disk images remain in the shared-storage that is accessible
from both the source and the destination. With the growing trend
of shared-nothing architectures in cloud data centers and the need
for VM live migration across different clouds over WAN, it is de
facto important to consider VM live migration in a distributed,
or shared-nothing storage environment, where VM live storage
migration must also migrates the state of VM virtual disk images
as well snapshots from the source to the destination. In fact, VM
live storage migration has become an integral part of VM live
migration in modern hypervisors [14–16]. As the running VM is
migrating from one node to another, both the VM’s in-memory
states and virtual disk images migrate from the source server to
the destination server. Given the capacity of the VMvirtual storage,
which includes theVM’s virtual disk images and snapshots, ismuch
larger than that of other VM state information, such as memory
state, CPU state and network state, that is crucial to improve the
performance of VM live storage migration.

To be specific, any sound and desirable VM live storage migra-
tion scheme must possess the following properties:

• Short Migration Time [17]: In modern data centers, VMs
are running 24/7 basis to serve customers globally. The time
window for the systemmaintenance and upgrade is short, so
it is crucial to livemigrate VMs quickly. However, the size of a
VM’s storage image is commonly several to tens of GBs and it
may takeminutes or evenhours to complete aVM live storage
migration, which is likely to curtail the capabilities of system
management in the cloud data centers.

• High VM IO Performance [17]: The IO performance within
running VMsmust comply with the Service-Level Agreement
(SLA) at all times. During the VM live storage migration,
applications within the migrating VM are still running and
they should be oblivious of the migration process. However,
available storage resource is severely stretched due to addi-
tional resource hungry migration threads. The cloud service
provider should provide the same performance guarantee
for all those co-located and concurrent running VMs in the
physical server.

• Capability to Migrate Multiple VMs Simultaneously [18]:
Given the wide deployment of VMs in data centers, it is
common to migrate multiple VMs out of a single server, or
migrate multiple VMs into one single server. It is much more
challenging to achieve acceptable VM IO performance for
all running VMs instead of migrating multiple VMs to their
destinations at reasonable migration speed.

A number of approaches have been proposed to improve the
live storage migration performance [19], including optimization
on the data block transmission sequence [6,15] and the migration
workflow [14,20], reducing redundant data transmission [21], and
leveraging heterogeneous storage devices [22]. After an in-depth
examination, we sought that all these approaches fail to address
the vital problem of IO interference between the VM IO process
andmigration IO process, since both types of IO processes share the
same critical IO path by reading from/writing to the same shared
storage device. Owing to IO resource contention and requests
interference between the two different types of IOs, not only will
the I/O request queue lengthen in the disk, but the time-consuming
disk seek operations will also become more frequent. As result,
the performance of the VM IO process will be seriously degraded.
Previous experimental results show that the VM IO throughput
decreases by a factor of up to 6.42 [23,24].

The order of blocks being migrated, sequential or random, does
not impact the performance significantly, sincemigrating VM’s vir-
tual disks cannot be reconstructed until all data blocks are available

in the destination server. However, the order of VM I/O requests
does affect the performance significantly, since I/O requests are
consumed by applications during runtime. For example, if a VM
I/O request accesses to a data block located in LBA-A and migrated
data block locates in LBA-B, then the disk head will move from
LBA-B to LBA-A. If multiple VM I/O streams are interactive with
each other, the disk headwill move back and forth which degrades
both theVM IOperformance and themigration performance. Based
on these observations, this paper proposes IOFollow system that
schedules the block migration sequence in the light of VM I/O
requests, so that the time-consuming disk head movements can
be reduced significantly. In addition, by selectively caching data
blocks from migration threads, incoming VM I/O requests can be
served in the memory, thus minimizing the number of memory
accesses concurrently. In this way, both VM IO performance and
migration performance can be improved significantly.

We highlight the contributions of our study as following:

• From the investigations and the preliminary analysis, we
show a vital problem of IO interference between the VM IO
process andmigration IO process during VMmigration in the
cloud, since both types of IO processes share the same critical
IO path by reading from/writing to the same shared storage
device.

• We propose IOFollow system that schedules the block mi-
gration sequence in the light of VM I/O requests, so that
the time-consuming disk head movements can be reduced
significantly. In addition, by selectively caching data blocks
from migration threads, incoming VM I/O requests can be
served in the memory, thus minimizing the number of mem-
ory accesses concurrently.

• We have built a prototype of IOFollow system. Experimental
results show that the performance improvement is more
compelling inmultiple concurrent VMmigration scenarios by
55% formigration thread and 45% for VM IO thread, compared
to the standard migration schemes.

The rest of this paper is organized as follows. Background and
motivation are presented in Section 2, and the design of the IOFol-
low scheme is depicted in Section 3. The performance evaluation
of a lightweight IOFollow prototype is presented in Section 4 and
related work is provided in Section 5. We conclude this paper and
give the directions for future research in Section 6.

2. Background and motivation

In this section, we provide the necessary background informa-
tion for the proposed research IOFollow, including sequential IO
property and the interference among I/O threads, to motivate this
research.

2.1. Sequential IO property

Sequential IO property has been one of the most fundamental
concepts in system research area [25], mainly due to the perfor-
mancedisparity between Sequential IOs andRandom IOs in storage
systems. Over the past few decades, data transfer bandwidth has
greatly increased, due to higher density of bits in the surface of a
disk drive as well compaction technologies. However, the costs of
seek and rotation delay have slowly reduced, since it is muchmore
challenging to speed up the mechanical movements of disk head
and the spinning speed of the platters. Therefore, the performance
of Sequential IOs is much better than that of Random IOs with
frequent disk seeks and rotations [26].

The sequential IO property is determined bymanymetrics from
both spatial and temporal dimensions [25,27–30]:



B. Mao et al. / Future Generation Computer Systems 91 (2019) 167–176 169

• Spatial Dimension: (1) Consecutive Addresses. The differ-
ence between the Logical Block Addresses (LBA) of consecu-
tive I/O requests is within a predefined threshold. It could be
further classified as Strictly consecutive (no gap between the
LBAs of consecutive I/O requests) and Strided access (bounded
gap between the LBAs of consecutive I/O requests). (2) Con-
secutive Bytes Accessed. The size of data to read or write in
an I/O request on average.

• Temporal Dimension: (1) Interleaved Streams. The mixture
of I/O requests from multiple threads, applications or VMs.
The sequential IO property for individual IO streams may
be affected by the interleaving with other IO streams. For
instance, two consecutive I/O requests (requests 1 and 2)
with consecutive addresses from stream A may experience
poor IO performance, as a long disk headmovement involved
during which the disk serves another I/O request (request
3) from stream B and the LBA of request 3 is far away from
the LBA of either request 1 or 2; (2) Inter-arrival Time. The
time interval between consecutive I/O requests. Once there
is a long waiting time between two I/O requests, some other
background I/O requests may be issued in between, which
will influence the sequential IO property of the original IO
stream.

The interleaving of multiple IO streams will not only affect the
Sequential IO property, but also decrease the IO performance sig-
nificantly for each participating stream. Experiments indicate that
a Random Write IO stream is destructive to all other kinds of in-
terleaving IO streams, such as Sequential Read/Write stream [31].
The performance of the RandomWrite IO stream itself will also be
degraded significantly. Other cases of performance degradation for
multiple interleaving IO streams are found in [31].

Given the nature of disk access characteristics and sequential IO
property of interleaving IO streams,modern file systems, both local
file systems [32–34] and distributed file systems [35,36], improve
the IOperformance by aggressively sending sequential I/O requests
to underlying disk drives. For instance, in the log-based file sys-
tem [32], a sufficient number of updates are buffered in memory
before they are sent to disks as a large sequential segment request,
so that the disk throughput is improved significantly compared
with individual small random write requests. Read requests are
served in a similar manner, which will read a complete segment
from disks at once. In Google File System (GFS) [36], the min-
imal size for each request is 64 KB by default, so that high IO
throughput in disks can be achieved with sequential I/O requests.
Unfortunately, file systems can only affect, but not determine the
sequential IO property of IO streams that are produced by user
applications themselves. Many optimization techniques have been
designed to improve the sequential IO property by leveraging the
semantic hints from the applications [37].

2.2. Interference among I/O threads

In a virtualized system, the IO stream at the gate of the storage
system is a multi-layer interleaving of individual IO streams: First,
an application-level IO stream is produced with the interleaving
of multiple thread-level IO streams within the same application.
Next, for each running VM, one VM-level IO stream is generated
with the interleaving of multiple application-level IO streams as
also theVMOperating system IO stream. Finally, the interleaving of
all VM-level IO streams and the hypervisor IO stream will become
the final IO stream for the storage system. Considering all metrics
related to the Sequential IO property, VM-level IO Streams (named
as VM IOs) are mostly determined by user applications and guest
Operating Systems. Fig. 1 shows the interference among IO threads
in a virtualized system during different phases of VM live storage
migration.

Fig. 1. The interference among IO threads in a virtualized system during different
phases of VM live storage migration.

When it comes to the VM live storage migration, one migration
thread will be assigned for each migrating VM, and it will migrate
all state information of the migrating VM from the source server
to the destination server. Most of the time, the migration thread
will read data of the VM’s virtual disk images from the beginning
to the end, as well sync the updated data to the destination server.
From the perspective of the Sequential IO property, the migration
thread is a perfect sequential workload, as it will read data within
the space of the virtual disk images purely sequentially anddeserve
good performance. Unfortunately, that is not the reality.

It is the interleaving with other IO streams, including VM IOs
and other migration IOs, that undermines the sequential IO prop-
erty of migration threads. Disk head must seek and rotate to other
places to serve other I/O requests between two consecutive read
requests for the migration thread. After the service to other I/O
requests, disk head must seek and rotate back to the neighbor of
previous location, to serve the next read request for the migra-
tion thread. Therefore, the IO performance of all participating IO
streams is degraded significantly, and longer VM migration time
and low VM performance cannot be avoided.

During the VM live storage migration, hypervisors are already
overloaded because of the additional bandwidth hungrymigration
threads [38]. By further destroying the Sequential IO property of
migration threads, additional weight will be placed on the migra-
tion engine, so that is much more challenging to migrate VMs fast
and provide SLA for the IO performance of all participating VMs.

2.3. Motivation

Examining carefully the state-of-the-art of related research
works andmigration workflow internal mechanisms, we have two
observations: (1) Individual I/O requests from the migrating VM
are generated by applications, so that we have limited capabilities
to manipulate the VM IO stream to improve the VM IO perfor-
mance; (2) Only the total migration time and the accuracy of the
VM state transmission matters for migration threads, while the
individual request size, the starting address of each request or the
sequence of migration I/O requests are not included as priority
ones. Therefore, the migration engine has the full flexibility to
generate different kinds of migration I/O requests, as long as all
the state information of themigratingVMarrives in the destination
correctly within a reasonable migration time window.

Inspired by these observations, it is proposed in this paper a
novel VM live storagemigration scheme, named IOFollow, that will
improve both the VM IO performance and migration performance
by generating and scheduling themigration sequence according to
the IO stream of VM requests. Essentially, we will select the next
blockmigration candidate based on two criteria: (1) this data block
has not been migrated to the destination; (2) the address of this
data block is close to the current access region or the position of



170 B. Mao et al. / Future Generation Computer Systems 91 (2019) 167–176

the disk head. In this way, we expect to get rid of unnecessary disk
headmovements, so that the interleaved I/O requests stream at the
gate of the storage system turns sequential. The performance of
all VM IO threads, hypervisor IO thread and migration IO threads
increases significantly during the VM live storage migration pro-
cess. Furthermore, we can selectively cache inmemory data blocks
read by migration threads from the storage system, and utilize
these data to serve the predicted incoming VM I/O requests, so that
these VM I/O requests will not need to reach the storage system
at all. Therefore, both the VM IO performance and migration IO
performance can be improved significantly.

3. System design and implementation

In this section, we first outline the architecture overview of the
IOFollow system, followed by a description of migration blocks
scheduling, IOFollow Block Cache Manager, and finally, issues re-
lated to data consistency of IOFollow are discussed.

3.1. Design objectives

The design of IOFollow aims to achieve the following three
objectives:

• Accelerating the VM live storage migration performance: By
removing most of the unnecessary and time consuming disk
seek operations, the VM live storage process can be signifi-
cantly accelerated.

• Improving the VM IO performance: By improving the block
cache hit ratio and reducing disk seek operations, VM I/O
requests can be either served by the block cache, or served
by storage device faster due to fewer disk seek operations.

• Providing high flexibility: IOFollow is quite flexible and can
be tuned with different parameters for different applications,
such as cache replacement algorithms and migration chunk
sizes.

3.2. IOFollow architecture overview

File-based virtual disk images have been extensively adopted in
the virtualized environment [8,39]. From the VM’s perspective, the
virtual disk image is the same as the physical disk that supports all
classes of block layer’s API, such as iSCSI commands. Additionally,
it is compatible to main stream Guest Operating Systems, such
as Windows and Linux. From the storage system’s point of view,
virtual disk images are viewed as large and regular files that can
be stored inmost file systems. Therefore, all I/O requests from user
applications of the running VM transform the I/O requests for the
underlying large file that hold the virtual disk image. Similarly,
the migration thread will read this large file to migrate the VM’s
storage state information. The performance of virtual disk images
is crucial for the running VM’s performance and the migration
agility. To improve the performance of virtual disk images, several
dedicated file/storage systems have been designed for virtual disk
images only, such as VMWare’s VMFS and Tintri VMStore [40,41].

Fig. 2 shows the architecture overview of the IOFollow sys-
tem within Linux KVM framework [10]. IOFollow is a simple yet
portable module that can be incorporated into any modern hyper-
visors, such as ESX [8] and XEN [9] hypervisors. Moreover, its pa-
rameters asmigration chunk size and block cache replacement can
be tuned to different applicationworkloads. For theVM live storage
migration jobs, only the server in the source side needs to incor-
porate the IOFollow module, while the server in the destination
side remains at no changes. IOFollow is a performance boost layer
that can be combined with conventional live migration approach,
includingDirty Block Tracking and IOMirroring, to further improve
both VM IO performance andmigration performance. IOFollow can

Fig. 2. The architecture of IOFollow System.

be applied to live migrate VMs between servers within the same
cluster or across data centers in different locations.

In current virtualized systems, there are two level caches for
each running VM: guest disk write cache (within the VM), and host
page cache (within the hypervisor). According to the characteris-
tics of different applications, users can select either to enable or
disable one of two level caches or both, before the creation of a
VM or during the lifecycle of a running VM. During the normal
execution period, solely the VM IO stream from the running ap-
plications and guest operating system access these two level cache
systems, economy that could save storage accesses for applications
or guest operating system. When the live storage migration starts,
an additional IO hungry stream of I/O requests from migration
thread comes in, which will occupy a large portion of dedicated
host page cache for the migrating VM. As traditional cache can-
not improve performance for streaming I/O requests (e.g. online
streaming video applications), improvement designs of cache sys-
tem are necessary for the overall system performance.

IOFollow contains two major components: Migration Blocks
Scheduler and Migration-Aware Block Cache Manager. Migration
Blocks Scheduler will analyze the VM I/O requests traffic, identify
the current VM access zone, predict the later IO access region, and
then select the right data chunk to migrate. Once the data chunk
is migrated to the destination server, it will be handed over to the
Migration-aware Block Cache Manager. The selection of migration
data chunks is based on two parts: 1. shorter seek time of the
storage system for the migration I/O request; 2. this data block
fetched by the migration thread may serve later VM I/O requests
with higher possibility.Migration-aware Block CacheManager is to
manage the memory resource and intelligently cache data blocks
for later VM I/O requests. As themigration thread only scan the vir-
tual disk images once, it will not access the same data blocks more
than once, except the updated data blocks. Nevertheless, these
data blocks may be accessed by VM I/O requests, and therefore,
as caching hot migration data blocks in memory, many incoming
VM I/O requests can be served by Migration-aware Block Cache
Manager in memory directly. Once the block cache is full, a cache
replacement algorithm will take actions and cold data blocks will
be evicted.

3.3. IOFollow migration blocks scheduling

In the Migration Blocks Scheduling component, there are three
decisions to make for the VM live storage migration:

The first decision in which system administrators need tomake
is howmuch storage resource should be allocated for themigration



B. Mao et al. / Future Generation Computer Systems 91 (2019) 167–176 171

thread. Given the total storage resource remains unchanged, the
more resource migration thread gets, the less storage bandwidth
VM threads have. Essentially, this is a tradeoff between VM IO
performance and migration performance, and it can be adjusted
for different user cases or preferences.

As soon the storage resource allocation is determined, Migra-
tion Blocks Scheduling will select the next chunk to read from
the storage system, whereas such a chunk will be migrated to the
destination server. Ideally, we prefer to data chunks satisfying the
following conditions: (1) The chunk has not been migrated to the
destination server yet, (2) The starting address of this data chunk is
close to current VM IO access region, (3) High probabilities that the
incomingVM I/O requestswill readpartial or full of this data chunk.
In order to intelligently pick the right data chunk candidate, spatial
and temporal locality of the VM IO stream should be analyzed
online, and the VM’s working set is predicted by the Migration
Blocks Scheduling component.

The last decision is the migration chunk size. While both fixed
and dynamic chunk size are applicable for IOFollow system, the
overall VM and migration performance can be noticeably affected
by the sizes of individual migration data chunks. This is an old
and common problem in many aspects of system design, which
require different techniques, such as online profiling and trace
analysis, to tackle this problem. For instance, dynamic chunk size
has been applied to reduce the number of repeated data chunk
migration [16]. In the proposed IOFollow system, we start from
fixed chunk size and evaluate its performance improvement. There
is no doubt that IOFollow can be combined with other chunk size
determination mechanisms for different workloads. The full algo-
rithm of Migration Blocks Scheduling is presented in Algorithm 1.
Algorithm 1: IOFollow Migration Blocks Scheduling.

1: Initialization:
2: setMigVM: the set of concurrent migrating VMs
3: position: the disk head location of the storage system
4: function IOScheduling(setMigVM)
5: for VM1 in setMigVM do
6: Serve I/O requests for VM1
7: Update positionwith I/O requests’ addresses and sizes
8: vmrange = the block range of VM1 that needs to migrate
9: SelectChunk(vmrange, position)

10: end for
11: end function
12: function SelectChunk(vmrange, position)
13: if vmrange is not empty then
14: Select the data chunk from vmrange whose address is

close to position
15: Remove this chunk from vmrange
16: Issue the I/O request for this data chunk
17: Update the position to the current chunk address
18: else
19: Return Complete
20: end if
21: end function

3.4. Migration-aware block cache manager (MABCM)

During the runtime, each running VM is assigned a number
of memory pages by the hypervisor, so that the VM can cache
information data inmemory, rather than access the storage device.
Normally, these memory pages are classified as guest write disk
cache and host page cache [42], as described in previous section.
As it comes to the VM live storage migration, the whole virtual
disk images will be read from storage system to memory and then
migrated to the destination server. A question comes next: Do we
need to cache these data blocks inmemory or not? It is not possible to

cache all data blocks in memory, as the memory allocated to single
runningVM ismuch smaller than the size of the virtual disk images.
In case we do not cache all data blocks in memory at all, we end up
wasting good portion of storage bandwidth. Considering the cost
it takes to read in data blocks from storage system to memory and
additional read requestswill be issued to the storage systembyVM
thread, even if the target data blocks have already been read in once
by the migration thread. Therefore, caching a set of data chunks
with higher possibility to be accessed by VM thread inmemorywill
greatly improve the VM IOperformance by the reduction of storage
accesses. The challenge is how to identify these data chunks and
how to evaluate and replace data chunks once the cache is full. As
discussed in the previous section, the Migration Blocks Scheduling
component takes charge of the first challenge, while the MABCM
solves the second one.

In MABCM, each entry is a data chunk of virtual disk image
in a specific address, and there are a number of such entries in
the MABCM. For each entry, we can evaluate its liveness value
based on the answers to following questions: (1) Whether the
block has already been migrated to the destination server, (2) The
time this block been in the cache, (3) The possibility that this data
block will be accessed by VM IO threads in future. Upon with
such information, MABCM can sort these entries and replace the
entry with the least liveness value as the cache is full. Since such
information is closely related to the spatial and temporal locality
of workloads, such cache management algorithm has to be tuned
to cater different applications. The more accurate locality we learn
from workloads, the better cache hit ratio and IO performance we
achieve. Compared to the baseline approach, in which traditional
two level cachemanagement algorithm is employed, the proposed
migration-aware cache management scheme can significantly im-
prove the VM live storage migration performance. The skeleton
algorithm of Migration-aware Block Cache Manager is depicted in
Algorithm 2.

4. Performance evaluation

In this section, we present the performance evaluation of the
IOFollow scheme through extensive trace-driven experiments.

4.1. Evaluation methodology

As discussed before, both VM performance and VM live migra-
tion performance are fundamentally important for overall system
performance. The VM live migration performance is determined
by the network performance and storage performance, whilst the
VM performance is mainly determined by the storage system. In
the experimental process, we focus on the evaluations of storage
performance for both VM threads and migration threads.

Specifically, we create a virtual disk image in the disk drive,
and replay the published storage block level traces on top of the
virtual disk image. Concurrently, we generate the migration of I/O
requests on top of the same virtual disk image, in which all data
blocks within this virtual disk image will be read. For both VM
IO performance and migration performance, we use average IO
response time as performance metrics. Shorter response time for
VM I/O requests means higher IO performance for the applications
within the running VM. In addition, shorter response time for the
migration I/O requests indicate faster VM live storage migration.
The proposed IOFollow scheme will be compared to the standard
migration scheme that will ignore the characteristics of the VM
IO stream and migrate the virtual disk images from the beginning
to the end, such as the default VM migration in Linux KVM [10].
The normal state indicates that the system is running without VM
migration.



172 B. Mao et al. / Future Generation Computer Systems 91 (2019) 167–176

Algorithm 2: Migration-aware Block Cache Manager.

1: Initialization:
2: Apply memory pages from the hypervisor.
3: Initialize metadata for the cache manager
4: Start to take requests from VM threads or migration threads
5: function ReadBlock(blockAddr)
6: if blockAddr is in cache then
7: Return the block and update liveness info for this block
8: else
9: Read data block from storage, return data block to the

client
10: Migrate this block to the destination if has not migrated

yet
11: end if
12: end function
13: function WriteBlock(blockAddr, dataBuf)
14: if blockAddr is in cache then
15: Update data block in memory and the liveness info
16: else
17: Read data blocks from storage, and update data inmem-

ory
18: Migration data blocks to destination if has not migrated

yet
19: end if
20: end function
21: function PutBlock(blockAddr, dataBuf)
22: if cache is not full then
23: Put data blocks to the cache and update the liveness info
24: else
25: Evict data blocks with least liveness information
26: Put data blocks to the cache.
27: end if
28: end function

Table 1
The experiment setup.
CPU Intel(R) Xeon(R) CPU, X3440@2.53 GHz
Board Winbond Electronics 0V52N7
Memory 8GB, AMI CMX8GX3M2A1333C9
Drives 1TB Seagate ST31000524AS, SATA
Network 1Gbps Ethernet
Traces Storage Performance Council [43]

During experimentations, several parameters are considered.
First, fixed migration chunk size is considered in the experiments,
and the IOFollow system performance can be further improved
aiming at sophisticated dynamic chunk sizemigration approaches.
Second, we allocate the storage resource between VM threads and
migration threads with pre-determined ratio. For instance, 2:1
means that the storage system will serve two VM I/O requests
before performing onemigration I/O request, unless there is no VM
I/O request waiting in the IO queue. This approach is simple but
effective to achieve a tradeoff between the VM performance and
migration performance. The proposed IOFollow system can also
improve the VM live storage migration performance under other
storage resource allocation policies. Finally, the IOFollow system is
evaluated under different number of concurrent VM live storage
migrations.

The experimental platform consists of a server configured with
one Intel Xeon X3440 processor, 8GB DDR memory and two 1TB
hard drives, 12.10 Ubuntu operating system. Detailed information
of hardware is depicted in Table 1.

In order to measure the performance improvement of IOFollow
scheme,we replay block level traces and collect IO performance in-
formation during the migration process. The Storage Performance

Table 2
The characteristics of four traces.
Trace Read Ratio IOPS Avg. Req. Size (KB)

WebSearch1 100% 113 15.1
WebSearch2 100% 100.3 14.9
WebSearch3 100% 63.52 15.2
Financial2 82.4% 125 2.2

Fig. 3. The Performance Comparison in Single VMMigration.

Council [43] has made available several block level traces for re-
search purposes, and they have been widely employed to evaluate
storage system performance [44,45]. The WebSearch traces are
collected from a web search engine and the Financial2 trace is
collected fromOLTP applications in a large financial institution. The
characteristics of the four traces are summarized in Table 2. From
our experiments, we implemented a trace replay tool thatwill read
trace files and generate themigration I/O requests according to the
VM IO stream.

4.2. Result analysis

In this scenario, there is only one VMmigrating from the source
to the destination. The migration chunk size is 1MB and the stor-
age resource allocation ratio is 2:1 between VM threads and mi-
gration threads. Fig. 3 shows that IOFollow scheme reduces the
average IO response time for the migration thread by 172−129

172 =

25.0%, 166−107
166 = 35.5%, 185−99

185 = 46.5% and 169−112
169 = 33.7%

driven by different traces, compared to the standard migration
scheme. Themain reason is that, with the simple dynamic schedul-
ing of migration block sequence, individual blocks are migrated
when the disk head is moving close to it, so that unnecessary
seek and rotation operations are reduced noticeably in migration
I/O requests. Moreover, such scheduling makes easier for the disk
controller to invoke internal optimizations, such as the requests
merge, in order to further improve the IO performance. Therefore,
the overall migration IO performance is improved significantly.

Fig. 4 shows the performance evaluation result for the VM
IO thread. We have the following observations: (1) The Stan-
dard scheme increases the average IO response time by 60−35

35 =

71.4%, 52−22
22 = 136.4%, 68−25

25 = 172.0%, 62−37
37 = 67.6% than

that in the normal state driven by the four traces. This clearly
indicates that the VM IO performance is significantly affected by
the live storage migration jobs. Not only more I/O requests are
generated by the migration thread, but also the access locality of
the applications is destroyed but the new coming migration I/O
requests. For instance, two consecutive read requests from the
application become non-consecutive requests when a migration
request is served in between, and the address of the migration
request is far from that of the application requests, and (2) Com-
pared to the standardmigration approach, the average IO response



B. Mao et al. / Future Generation Computer Systems 91 (2019) 167–176 173

Fig. 4. The VM Performance Comparison in Single VMMigration.

time in the proposed IOFollow scheme is decreased by 60−42
60 =

30.0%, 52−31
52 = 40.4%, 68−45

68 = 33.8% and 62−49
62 = 20.9% driven

by the four traces. The reason behind such improvement is that the
interleaved IO stream at the gate of the storage system is becoming
more sequential in the IOFollow scheme than that in the standard
scheme. Therefore, the access locality of the applications can be
reserved.

4.3. Sensitivity studies

In order to investigate how the migration chunk size, the stor-
age allocation policy and the number of concurrent VM migra-
tions affect the performance of IOFollow system, trace driven ex-
periments are performed. The normalized response time of the
IOFollow scheme based on the standard scheme under the same
experiment configuration is analyzed.

4.3.1. Chunk size
The migration performance and VM performance between IO-

Follow and standard migration approach are analyzed and com-
pared for traces under different migration chunk sizes (128 KB,
256 KB, 512 KB, 1MB and 2MB). The IO response time in IOFollow is
normalized based on that in the standardmigration. Fig. 5(a) shows
IOFollow reduces the average IO response time for the migration
thread from45% to 65%with amean value of 57.4%, for all the traces
under different chunk sizes. Meanwhile, Fig. 5(b) shows IOFollow
reduces the IO response time for the VM thread from 70% to 88%
with a mean value of 80.3%. As a result, IOFollow can improve the
VM live storage migration performance under different migration
chunk sizes.

4.3.2. Resource allocation policy
Before the start of the VM live storage migration, the policy of

storage resource allocation between VM IO threads and migration
threads is determined either by system administrators or automat-
ically. In this group of experiments, we evaluate the performance
improvement of IOFollow scheme over standard migration under
different storage allocation ratio (VM IO resource: migration re-
source) from 1:1, to 2:1, 3:1 and 4:1. As Fig. 6 shows, IOFollow
scheme can improve the VM IO performance by up to 74% with
a mean value of 58.7%, and reduce the IO response time for the
migration thread by up to 50% with a mean value of 80.6%. As
a number of running VMs share a single server and the server
cannot satisfy the requirement of storage IO bandwidths for each
individual VMs, one or more VMs will need to be live migrated to
other servers. However, there is very limited storage IO bandwidth
available for the new migration threads, as the total storage IO
bandwidth is fixed. In this scenario, IOFollow is farmore important
for the VM IO performance, as it introduce less bandwidth con-
sumption for the storage server when compared to the standard
migration.

4.3.3. Concurrent VM migration
As discussed in previous sections, multiple concurrent VM live

storage migration is common in current data center design. In
such scenarios, the source server will undergo larger pressure
as multiple IO hungry migration streams are introduced and the
overall storage capacity for the source server remains the same
as previous state. In order to investigate how much can IOFollow
scheme improve the VM live storage migration performance com-
pared to standardmigration scheme in these scenarios,we conduct
experiments to evaluate performance improvement under differ-
ent traces as also different concurrent VM live storage migration.

Fig. 7 shows the migration performance and the VM perfor-
mance by IOFollow, normalized to the standardmigration scheme.
We can see that IOFollow reduces the average IO response time
by 55% for migration thread and 45% for VM IO thread, compared
to standard migration. In addition, as the number of the concur-
rent migrating VMs increase, the performance improvement by
IOFollow highlights. As multiple migration threads are introduced,
it is better to schedule the VM I/O requests and migration I/O
request of a single VM as a unit, and then round robin scheduling
between multiple concurrent migrating VMs. Due to the targeting
addresses of VM I/O requests and migration I/O requests for a
single VM are close to each other, they will make the final I/O
request stream in the disk control more sequential. Therefore, the
IO performance is improved and the VM migration speed is also
accelerated accordantly.

5. Related work

Most existing researches on the VM livemigration can be classi-
fied into three categories: Live VMMemoryMigration, Live Storage
Migration, and Live Multiple VMMigrations.

Live VM Memory Migration: The VM live memory migration
is very popular in the shared-storage environment, where both
source and destination servers retain the access to the shared
storage system. Besides the transfer of a variety of VM states,
such as CPU state, network state, memory state and device state,
transferring VM’s memory state usually takes the largest portion
of migration time and a number of approaches are proposed to
accelerate the memory migration [46,47]. Changyeon et al. [48]
proposed to track the duplicated memory pages in the source
server during the runtime. As migration is triggered, instead of
migrating these duplicated pages over the rate-limited connection
to the destination server, it fetches these pages directly from the
shared storage server. Therefore, the total data transmission is
reduced significantly, whilst the live migration performance is
improved as well [48]. Hai et al. [49] proposed to classify memory
pages to several types according to different characteristics, such
as high/low word similarity, number of zero bytes, and then adopt
different compression algorithms to compressmemory pageswith
different properties.

Live VM Storage Migration: Shrinker [21] is a distributed sys-
tem that is capable of migrating a virtual cluster over WAN. It
has two built-in services: Coordination Service (in the source site)
and Indexing Service (in the destination site). The Coordination
Service tracks the hash values of memory pages and virtual disk
blocks that have already been transferred to the destination site,
so that hypervisors in the source side can perform data dedupli-
cation by replacing duplicated transmission of memory pages and
disk blocks with their corresponding hash values. The Indexing
Service records the hash values and the location information of the
memory pages and disk blocks in the destination side. Hypervisors
in the destination can reconstruct the VM’s memory and virtual
disk images with the communication between Indexing Service
and other hypervisors that hold the real data. Zhou et al. [50] take
the speed discrepancy between HDDs and SSDs, and the wear-
out issue of SSDs into consideration in order to optimize the live



174 B. Mao et al. / Future Generation Computer Systems 91 (2019) 167–176

Fig. 5. The Migration Performance and the VM Performance Comparison in Single VMMigration among Different Migration Chunk Size.

Fig. 6. The Migration Performance and the VM Performance Comparison in Single VMMigration among Different Storage Allocation Policy.

Fig. 7. The Migration Performance and the VM Performance Comparison among Multiple VMs Migration.

storage migration. Ali et al. [51] build XvMotion, a VM live stor-
age migration system to migrate VMs over long distance across
heterogeneous systems, with performance similar to that of VM
migration in Local Area Networks. Xu et al. [52] propose SRVM
that enables live migration with passthrough SRIOV VFs. Both
XvMotion and SRVM improves the live VM storage migration by
improving the network performance. Noting that the performance
of the storage system in virtualized environments plays a vital
role for the VM live storage migration performance. Several other
studies also indirectly improve the VM live storage migration per-
formancewith contributions in IO scheduler [53], file systems [54],
Solid State Drives [55] and data deduplication techniques [56].

Live Multiple VM Migrations: Given the widely deployment of
VMs in current cloud data centers, it is not uncommon to migrate

multiple VMs from/to a single server simultaneously. VMScat-
ter [18] is a multicast-based VM live migration system, which can
efficientlymigrate a group of VMs fromone shared source server to
multiple destination servers. Sandpiper et al. [57] is designed and
implemented as a system that contains two components: hotspot
detection algorithm and hotspot migration algorithm. The hotspot
detection algorithm will decide when to migrate VMs, whilst the
hotspot migration algorithm will determine where to migrate and
howmuch resources to allocate after the migration. Live Gang Mi-
gration [58] is inspired by the fact that co-located VMs often have
many identical memory pages, such as same operating system,
applications and libraries, same Java Virtual Machine (JVM). In this
approach [58], identical memory pages will be duplicated prior to



B. Mao et al. / Future Generation Computer Systems 91 (2019) 167–176 175

the transmission of VM state, so that only a single memory page
copy is migrated.

In principle, IOFollow system shares the same goal as previous
research works, which is to speed up the VM live storage migra-
tion performance and provide reasonable IO performance for the
migrating VM. However, this goal can be achieved in a few of
different ways. IOFollow system leverages the existing idle base
images and previous snapshots in backup servers for transmission
of VM state information. Previous research works focused on the
performance optimization techniques of the aggregate IO streams
in the source server, such as leveraging the fast read performance
of SSD and removing the redundant data transmission. As IOFollow
system introduce very limitedmigration traffic to the source server
during multiple VM live storage migrations, its performance is
higher than the existing approaches. In addition, the proposed
IOFollow system can be combined with these research works to-
gether to achieve higher VM live storage migration performance.
The inevitable disadvantage involves more workloads generated
on the backup servers. Given that such backup servers are avail-
able outside of the backup window, the workload rebalancing is
admissible.

6. Conclusions and future work

Current VM live storage migration approaches ignore the Se-
quential IO property of the interleaving IO streams at the gate
of the storage server, by simply migrating the VM’s virtual disk
images sequentially, regardless of the concurrent VM IO streams as
well other migration streams. Therefore, many unnecessary time
consuming disk head seek and rotation operations that degrades
both the VM IO performance and migration performance were
introduced. Based upon these observations, this paper presents
IOFollow, a novel VM live storage migration scheme that improves
both the VM IO performance and migration performance by gen-
erating and scheduling migration sequence according to the IO
stream of VM requests. In this way, it is expected to minimize
and get rid of unnecessary disk head movements, so the over-
all VM live storage migration performance can significantly be
improved. Evaluations of trace-based experiments demonstrated
that IOFollow can reduce the average I/O response time by 55%
for migration thread and 45% for VM IO thread, compared to the
standard migration.

IOFollow is an ongoing research project and we are currently
exploring several directions as future research. First, we will lever-
age filesystem semantics, such as the block liveness, to reduce
the amount of data transferred. Second, we will eliminate unnec-
essary transfer of redundant and similar data with the judicious
combination of data deduplication and delta compression, thus
reducing the total data transferred during the VM live storage
migration [56]. Third, we will evaluate the IOFollow on SSDs and
other non-volatile memory devices to investigate how does the
performance of storage devices affect the VMmigration efficiency.

Acknowledgment

This work is supported by the National Natural Science Foun-
dation of China under Grant No. 61872305, No. U1705261, No.
61772439, and No. 61472336, the US NSF under Grant No. CCF-
1704504 and CCF-1629625.

References

[1] The virtualization techniques. https://www.fluxlabs.net/solutions/
virtualization.

[2] T. Saber, J. Thorburn, L. Murphy, A. Ventresque, VM reassignment in hybrid
clouds for large decentralised companies: Amulti-objective challenge, Future
Gener. Comput. Syst. 73 (3) (2018) 751–764.

[3] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, E. Thereska, End-to-end per-
formance isolation through virtual datacenters, in: Proceedings of the 11th
USENIX conference on Operating Systems Design and Implementation, 2014,
pp. 233–248.

[4] C. Jo, E. Gustafsson, J. Son, B. Egger, Efficient livemigration of virtualmachines
using shared storage, in: Proceedings of the 9th International Conference on
Virtual Execution Environments, VEE’13, 2013, pp. 41–50.

[5] T. Hirofuchi, H. Ogawa,H.Nakada, S. Itoh, S. Sekiguchi, A live storagemigration
mechanism over WAN for relocatable virtual machine services on clouds,
in: Proceedings of the 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, CCGrid’09, 2009, pp. 41–50.

[6] T. Huang, Y. Zhu, Y. Wu, S. Bressan, G. Dobbie, Anomaly detection and iden-
tification scheme for vm live migration in cloud infrastructure, Future Gener.
Comput. Syst. 56 (2016) 736–745.

[7] F. Zhang, X. Fu, R. Yahyapour, LayerMover: Fast virtual machine migration
over WAN with three-layer image structure, Future Gener. Comput. Syst. 83
(2018) 37–49.

[8] VMware vSphere ESX Support. https://www.vmware.com/support/esx.html.
[9] XenServer: open source virtualization. http://xenserver.org/. (Accessed 14

March 2016).
[10] Kernel based virtual machine. http://www.linux-kvm.org/page/Main_Page.
[11] Microsoft virtualization platform. https://www.microsoft.com/en-us/server-

cloud/solutions/virtualization.aspx. (Accessed 19 April 2016).
[12] Gartner special report. http://www.gartner.com/newsroom/id/2599315.
[13] K. Tsakalozos, V. Verroios,M. Roussopoulos, A. Delis, Live VMmigration under

time-constraints in share-nothing IaaS-clouds, IEEE Trans. Parallel Distrib.
Syst. 28 (2017) 2285–2298.

[14] A. Mashtizadeh, E. Celebi, T. Garfinkel, M. Cai, et al., The design and evolution
of live storage migration in VMware ESX, in: 2011 USENIX Annual Technical
Conference, USENIX, 2011.

[15] J. Zheng, T.S.E. Ng, K. Sripanidkulchai, Workload-aware live storagemigration
for clouds, in: ACM Sigplan Notices, vol. 46(7), ACM, 2011, pp. 133–144.

[16] J. Zheng, T.S.E. Ng, K. Sripanidkulchai, Z. Liu, Comma: coordinating the mi-
gration of multi-tier applications, in: ACM SIGPLAN Notices, vol. 49(7), ACM,
2014, pp. 153–164.

[17] V. Medina, J. García, A survey of migration mechanisms of virtual machines,
ACM Comput. Surv. 46 (2014) Article No. 30.

[18] L. Cui, J. Li, B. Li, J. Huai, C. Hu, T. Wo, H. Al-Aqrabi, L. Liu, VMScatter: migrate
virtual machines to many hosts, in: ACM SIGPLAN Notices, vol. 48(7), ACM,
2013, pp. 63–72.

[19] S. Nathan, U. Bellur, P. Kulkarni, On selecting the right optimizations for
virtual machine migration, in: Proceedings of the 12th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE’16, 2016,
pp. 37–49.

[20] J. Zhang, E. Dong, J. Li, H. Guan, MigVisor: Accurate prediction of VM live
migration behavior using a working-set pattern model, in: Proceedings of
the 13th ACMSIGPLAN/SIGOPS International Conference onVirtual Execution
Environments, VEE’17, 2017, pp. 30–43.

[21] P. Riteau, C. Morin, T. Priol, Shrinker: improving live migration of virtual
clusters over wans with distributed data deduplication and content-based
addressing, in: Proceedings of the International European Conference on
Parallel and Distributed Computing, Springer, 2011, pp. 431–442.

[22] R. Zhou, F. Liu, C. Li, T. Li, Optimizing virtual machine live storage migration
in heterogeneous storage environment, in: ACM SIGPLAN Notices, vol. 48(7),
ACM, 2013, pp. 73–84.

[23] Y. Yang, H. Jiang, B. Mao, L. Tian, Y. Yang, J. Qian,WAIO: Improving virtual ma-
chine live storagemigration for the cloud by workload-aware IO outsourcing,
in: Proceedings of the IEEE 7th International Conference on Cloud Computing
Technology and Science, 2015, pp. 314–321.

[24] Y. Yang, B. Mao, H. Jiang, H. Luo, Y. Yang, S. Wu, SnapMig: Accelerating VM
live storage migration by leveraging the existing VM snapshots in the cloud,
IEEE Trans. Parallel Distrib. Syst. 29 (2018) 1416–1427.

[25] C. Li, P. Shilane, F. Douglis, D. Sawyer, H. Shim, Assert (! Defined (Sequential
I/O)), in: Proceedings of the USENIX conference on Hot Topics in Storage and
File Systems, 2014.

[26] R.H. Arpaci-Dusseau, A.C. Arpaci-Dusseau, Operating Systems: Three Easy
Pieces, Arpaci-Dusseau Books, 2015.

[27] M. Lillibridge, K. Eshghi, D. Bhagwat, Improving restore speed for backup
systems that use inline chunk-based deduplication, in: Proceedings of the
11thUSENIXConference on File and Storage Technologies, 2013, pp. 183–197.

[28] S. Jiang, X. Ding, F. Chen, E. Tan, X. Zhang, DULO: an effective buffer cacheman-
agement scheme to exploit both temporal and spatial locality, in: Proceedings
of the 4th conference onUSENIX Conference on File and Storage Technologies,
vol. 4, 2005, p. 8.

[29] Y. Zhou, J. Philbin, K. Li, The multi-queue replacement algorithm for second
level buffer caches, in: USENIX Annual Technical Conference, General Track,
2001, pp. 91–104.

[30] A. Wildani, E.L. Miller, L. Ward, Efficiently identifying working sets in block
i/o streams, in: Proceedings of the 4th Annual International Conference on
Systems and Storage, ACM, 2011, p. 5.

https://www.fluxlabs.net/solutions/virtualization
https://www.fluxlabs.net/solutions/virtualization
https://www.fluxlabs.net/solutions/virtualization
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb2
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb2
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb2
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb2
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb2
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb3
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb3
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb3
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb3
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb3
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb3
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb3
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb4
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb4
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb4
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb4
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb4
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb5
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb5
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb5
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb5
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb5
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb5
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb5
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb6
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb6
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb6
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb6
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb6
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb7
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb7
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb7
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb7
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb7
https://www.vmware.com/support/esx.html
http://xenserver.org/
http://www.linux-kvm.org/page/Main_Page
https://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
https://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
https://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb13
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb13
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb13
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb13
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb13
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb14
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb14
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb14
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb14
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb14
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb15
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb15
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb15
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb16
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb16
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb16
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb16
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb16
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb17
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb17
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb17
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb18
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb18
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb18
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb18
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb18
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb19
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb19
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb19
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb19
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb19
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb19
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb19
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb20
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb20
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb20
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb20
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb20
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb20
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb20
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb21
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb21
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb21
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb21
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb21
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb21
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb21
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb22
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb22
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb22
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb22
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb22
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb23
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb23
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb23
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb23
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb23
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb23
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb23
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb24
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb24
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb24
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb24
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb24
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb25
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb25
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb25
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb25
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb25
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb26
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb26
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb26
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb27
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb27
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb27
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb27
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb27
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb28
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb28
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb28
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb28
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb28
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb28
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb28
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb29
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb29
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb29
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb29
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb29
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb30
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb30
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb30
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb30
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb30


176 B. Mao et al. / Future Generation Computer Systems 91 (2019) 167–176

[31] X. Lin, Y. Mao, F. Li, R. Ricci, Towards fair sharing of block storage in a multi-
tenant cloud, in: Proceedings of the 4th USENIX conference on Hot Topics in
Cloud Computing, 2012, p. 15.

[32] M. Rosenblum, J.K. Ousterhout, The design and implementation of a log-
structured file system, ACM Trans. Comput. Syst. 10 (1) (1992) 26–52.

[33] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, L. Vivier, The new
ext4 filesystem: current status and future plans, in: Proceedings of the Linux
symposium, vol. 2, Citeseer, 2007, pp. 21–33.

[34] O. Rodeh, J. Bacik, C. Mason, BTRFS: The Linux B-tree filesystem, ACM Trans.
Storage 9 (3) (2013) 9.

[35] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed file
system, in: Proceedings of the IEEE 26th SymposiumonMass Storage Systems
and Technologies, IEEE, 2010, pp. 1–10.

[36] S. Ghemawat, H. Gobioff, S.T. Leung, The Google file system, in: ACM SIGOPS
operating systems review, vol. 37(5), ACM, 2003, pp. 29–43.

[37] M. Sivathanu, L.N. Bairavasundaram, A.C. Arpaci-Dusseau, R.H. Arpaci-
Dusseau, Database-Aware semantically-smart storage, in: Proceedings of the
USENIX Conference on File and Storage Technologies, vol. 5, 2005, p. 18.

[38] A. Ruprecht, D. Jones, D. Shiraev, G. Harmon, M. Spivak, M. Krebs, M. Baker-
Harvey, T. Sanderson, VM live migration at scale, in: Proceedings of the
14th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, VEE’18, 2018, pp. 45–56.

[39] QEMU system main page. http://wiki.qemu.org/Main_Page.
[40] VMWare virtual machine file system overview. https://www.vmware.com/

pdf/vmfs-best-practices-wp.pdf.
[41] Tintri VMStore storage system. https://www.tintri.com.
[42] QEMU storage stack. https://events.linuxfoundation.org/slides/2011/

linuxcon-japan/lcj2011_hajnoczi.pdf.
[43] Umass storage trace repository. http://traces.cs.umass.edu/index.php/

Storage/Storage.
[44] A. Miranda, T. Cortes, CRAID: online RAID upgrades using dynamic hot data

reorganization, in: Proceedings of the USENIX Conference on File and Storage
Technologies, 2014, pp. 133–146.

[45] S. Wu, H. Jiang, D. Feng, L. Tian, B. Mao, WorkOut: I/O workload outsourcing
for boosting RAID reconstruction performance, in: Proceedings of the USENIX
Conference on File and Storage Technologies, vol. 9, 2009, pp. 239–252.

[46] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield,
Livemigration of virtualmachines, in: Proceedings of the USENIX Symposium
on Networked Systems Design & Implementation, 2005, pp. 273–286.

[47] M. Nelson, B.H. Lim, G. Hutchins, et al., Fast transparent migration for virtual
machines, in: USENIX Annual Technical Conference, General Track, 2005, pp.
391–394.

[48] C. Jo, E. Gustafsson, J. Son, B. Egger, Efficient livemigration of virtualmachines
using shared storage, in: ACM Sigplan Notices, vol. 48(7), ACM, 2013, pp. 41–
50.

[49] H. Jin, L. Deng, S.Wu, X. Shi, X. Pan, Live virtual machinemigrationwith adap-
tive,memory compression, in: Proceedings of the International Conference on
Cluster Computing, IEEE, 2009, pp. 1–10.

[50] R. Zhou, F. Liu, C. Li, T. Li, Optimizing virtual machine live storage migration
in heterogeneous storage environment, in: ACM SIGPLAN Notices, vol. 48(7),
ACM, 2013, pp. 73–84.

[51] A.J. Mashtizadeh, M. Cai, G. Tarasuk-Levin, R. Koller, T. Garfinkel, S. Setty, Xv-
Motion: unified virtualmachinemigration over long distance, in: Proceedings
of the 2014 USENIX Annual Technical Conference, 2014, pp. 97–108.

[52] X. Xu, B. Davda, SRVM: Hypervisor support for live migration with
passthrough SR-IOV network devices, in: Proceedings of the 12th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments,
VEE’16, 2016, pp. 65–77.

[53] S. Yang, T. Harter, N. Agrawal, S.S. Kowsalya, A. Krishnamurthy, S. Al-
Kiswany, R.T. Kaushik, A.C. Arpaci-Dusseau, R.H. Arpaci-Dusseau, Split-level
I/O scheduling, in: Proceedings of the 25th Symposium on Operating Systems
Principles, ACM, 2015, pp. 474–489.

[54] D. Le, H. Huang, H. Wang, Understanding performance implications of nested
file systems in a virtualized environment, in: Proceedings of the USENIX
Conference on File and Storage Technologies, 2012, p. 8.

[55] T.Y. Kim, D.H. Kang, D. Lee, Y.I. Eom, Improving performance by bridging the
semantic gap betweenmulti-queue SSD and I/O virtualization framework, in:
Proceedings of the 31st Symposium on Mass Storage Systems and Technolo-
gies, IEEE, 2015, pp. 1–11.

[56] H. Li, W. Li, Q. Feng, S. Zhang, H. Wang, J. Wang, Leveraging content similarity
among vmi files to allocate virtual machines in cloud, Future Gener. Comput.
Syst. 79 (2018) 528–542.

[57] T. Wood, P.J. Shenoy, A. Venkataramani, M.S. Yousif, Black-box and gray-
box strategies for virtual machine migration, in: Proceedings of the USENIX
Symposium on Networked Systems Design & Implementation, vol. 7, 2007, p.
17.

[58] U. Deshpande, X. Wang, K. Gopalan, Live gang migration of virtual machines,
in: Proceedings of the 20th International Symposium on High Performance
Distributed Computing, ACM, 2011, pp. 135–146.

BoMao received the B.E. degree in Computer Science and
Technology in 2005 from Northeast University; and the
Ph.D degree in Computer Architecture in 2010 from the
Huazhong University of Science and Technology. His re-
search interests include storage system, Cloud computing
and Big Data. He is an associate professor at the Software
School of Xiamen University. He has over 40 publica-
tions in IEEE-TC, IEEE-TPDS, IEEE-TCAD, ACM-TOS, FGCS,
USENIX FAST, LISA, ICS, IPDPS, ICCD, and Cluster. Dr. Mao
is a Member of IEEE and ACM.

Yaodong Yang received the B.Sc. degree in Computer
Engineering in 2008 from Tianjin University, China; the
M.A.Sc. degree in Computer Engineering in 2011 from the
Huazhong University of Science and Technology, China;
and the Ph.D. degree in Computer Science and Engineer-
ing Department in 2016 from the University of Nebraska-
Lincoln, USA. His research interests include flash-based
storage systems, VM storage migration, and cloud stor-
age. He is currently a software engineer in the Azure
Service Fabric division within Microsoft, in Redmond,
USA.

Suzhen Wu received the B.E. and Ph.D. degrees in Com-
puter Science and Technology and Computer Architec-
ture from Huazhong University of Science and Technol-
ogy, in 2005 and 2010 respectively. She is an associate
professor at Computer Science Department of Xiamen
University since August 2014. Her research interests in-
clude computer architecture and storage system. She has
over 40 publications in IEEE-TC, IEEE-TPDS, IEEE-TCAD,
ACM-TOS, FGCS, USENIX FAST, LISA, IPDPS, ICS, ICCD, and
ICPADS. Dr. Wu is a Member of IEEE and ACM.

Hong Jiang received the B.Sc. degree in Computer Engi-
neering in 1982 fromHuazhongUniversity of Science and
Technology, China; the M.A.Sc. degree in Computer Engi-
neering in 1987 from the University of Toronto, Canada;
and the PhD degree in Computer Science in 1991 from
the Texas A&M University, USA. He is currently Chair and
Wendell H. Nedderman Endowed Professor of Computer
Science and Engineering Department at the University
of Texas at Arlington. Prior to joining UTA, he served
as a Program Director at National Science Foundation
(2013.1-2015.8) and he was at University of Nebraska-

Lincoln since 1991, where he was Willa Cather Professor of Computer Science
and Engineering. His present research interests include computer architecture,
computer storage systems and parallel I/O, high performance computing, big data
computing, cloud computing. He has over 200 publications in major journals and
international Conferences in these areas, including IEEE-TPDS, IEEE-TC, PIEEE, ACM-
TACO, JPDC, ISCA, MICRO, USENIX ATC, FAST, EuroSys, LISA, SIGMETRICS, ICDCS,
IPDPS, MIDDLEWARE, OOPLAS, ECOOP, SC, ICS, HPDC, INFOCOM, ICPP, etc., and
his research has been supported by NSF, DOD, the State of Texas and the State of
Nebraska. Dr. Jiang is a Fellow of IEEE, Member of ACM and USENIX.

Kuan-Ching Li is a Professor of Computer Science and En-
gineering at Providence University, Taiwan. He is a recip-
ient of guest and distinguished chair professorships from
universities in China and other countries, and awards and
funding support fromanumber of agencies and industrial
companies. He is a fellow of the IET, a senior member of
the IEEE and a member of the AAAS. Besides publishing
numerous research papers, he is the co-author/co-editor
of more than 10 technical professional books published
by CRC Press, Springer, McGraw-Hill and IGI Global. His
research interests include GPU/many-core computing,

Big Data and Cloud.

http://refhub.elsevier.com/S0167-739X(18)31458-4/sb31
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb31
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb31
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb31
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb31
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb32
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb32
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb32
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb33
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb33
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb33
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb33
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb33
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb34
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb34
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb34
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb35
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb35
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb35
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb35
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb35
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb36
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb36
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb36
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb37
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb37
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb37
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb37
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb37
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb38
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb38
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb38
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb38
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb38
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb38
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb38
http://wiki.qemu.org/Main_Page
https://www.vmware.com/pdf/vmfs-best-practices-wp.pdf
https://www.vmware.com/pdf/vmfs-best-practices-wp.pdf
https://www.vmware.com/pdf/vmfs-best-practices-wp.pdf
https://www.tintri.com
https://events.linuxfoundation.org/slides/2011/linuxcon-japan/lcj2011_hajnoczi.pdf
https://events.linuxfoundation.org/slides/2011/linuxcon-japan/lcj2011_hajnoczi.pdf
https://events.linuxfoundation.org/slides/2011/linuxcon-japan/lcj2011_hajnoczi.pdf
http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb44
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb44
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb44
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb44
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb44
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb45
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb45
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb45
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb45
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb45
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb46
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb46
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb46
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb46
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb46
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb47
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb47
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb47
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb47
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb47
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb48
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb48
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb48
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb48
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb48
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb49
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb49
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb49
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb49
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb49
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb50
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb50
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb50
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb50
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb50
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb51
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb51
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb51
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb51
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb51
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb52
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb52
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb52
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb52
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb52
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb52
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb52
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb53
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb53
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb53
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb53
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb53
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb53
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb53
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb54
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb54
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb54
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb54
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb54
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb55
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb55
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb55
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb55
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb55
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb55
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb55
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb56
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb56
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb56
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb56
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb56
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb57
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb57
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb57
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb57
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb57
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb57
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb57
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb58
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb58
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb58
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb58
http://refhub.elsevier.com/S0167-739X(18)31458-4/sb58

	IOFollow: Improving the performance of VM live storage migration with IO following in the cloud
	Introduction
	Background and Motivation
	Sequential IO Property
	Interference among I/O Threads
	Motivation

	System Design and Implementation
	Design Objectives
	IOFollow architecture overview
	IOFollow Migration Blocks Scheduling
	Migration-aware Block Cache Manager (MABCM)

	Performance Evaluation
	Evaluation Methodology
	Result Analysis
	Sensitivity Studies
	Chunk Size
	Resource Allocation Policy
	Concurrent VM Migration


	Related Work
	Conclusions and Future Work
	Acknowledgment
	References


