
Received July 30, 2019, accepted September 21, 2019, date of publication September 26, 2019, date of current version October 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2943876

EdgeDB: An Efficient Time-Series Database
for Edge Computing
YANG YANG 1, QIANG CAO 1, (Senior Member, IEEE), AND HONG JIANG 2, (Fellow, IEEE)
1Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System, Ministry of Education, Huazhong University of Science and
Technology, Wuhan 430074, China
2Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX 76019, USA

Corresponding author: Qiang Cao (caoqiang@hust.edu.cn)

This work was supported in part by the Creative Research Group Project of NSFC under Grant 61821003, in part by the NSFC under
Grant 61872156, in part by the National Key Research and Development Program of China under Grant2018YFA0701804, in part by
the Fundamental Research Funds for the Central Universities under Grant 2018KFYXKJC037, in part by the U.S. NSF under
Grant CCF-1704504 and Grant CCF-1629625, and in part by the Alibaba Group through Alibaba Innovative Research (AIR) Program.

ABSTRACT Massive time-series data streams from high-sampling-frequency sensors in Internet of
Things (IoT) can overwhelm the networks connecting the sensors to centralized clouds. Thus, edge com-
puting servers have to be introduced to locally store and analyze growing time-series data. Unfortunately,
conventional time-series databases exhibit low efficiency on edge nodes with limited resources for both
computation and storage. In this paper, we propose a highly efficient time-series database, called EdgeDB,
to fully utilize the capacity of the edge nodes. EdgeDB effectively improves the performances of both
inserting and retrieving data from ingest streams by efficiently merging multiple streams and optimizing
the storage data structure concurrently. EdgeDB first compactly organizes multiple online streams into
a tablet within a time window and embeds predefined aggregate query results together. EdgeDB adopts
Time Partitioned Elastic Index (TPEI) to build indexing on all tablets, enhancing the time-range query
performance while reducing thememory usage by optimizing the indexing storage. EdgeDB further develops
Time Merged Tree (TMTree) to combine a set of tablets into a large one, significantly boosting the write
throughput and potentially strengthening the performance of inter-tablet query. Extensive experiments based
on real-world datasets show that, compared with the state-of-the-art time-series database BTrDB, EdgeDB
achieves performance improvements of up to 2.2× in insert throughput, 3.6× in write throughput, and 67%
in query latency with lower memory consumption.

INDEX TERMS Time-series database, edge computing, time partitioned elastic index, I/O optimization.

I. INTRODUCTION
Internet of Things (IoT) applications, commonly deploying
a myriad of sensors to collect a large amount of time-series
data from physical environments around human beings, are
designed to help us monitor [22], [31], analyze [10], [34],
forecast our concerned events [14], [28], and then make
timely and correct responses.

With the explosive growth of time-series data generated
by high-sampling-frequency sensors, the long-distance net-
works between sensors and data centers have become a per-
formance bottleneck for traditional datamanagement systems
running in the datacenter-based cloud environment, as illus-
trated in Figure 1a, due to high data transfer overhead [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Shaojun Wang.

This necessitates IoT infrastructures to embrace edge com-
puting that locally processes the data on edge nodes effi-
ciently, in order to improve the responsiveness and prevent
sensor-generated data from flooding the centralized cloud.

Although existing databases have the ability to process
large-scale time-series data streams on cloud-based infras-
tructure, they are not well designed to run on the edge nodes
with limited hardware resources, power budget, and scalabil-
ity. Existing time-series databases [2], [12], [22] separately
ingest, organize, store, and query data of each stream in a
rational table. And they provide standard inter-table opera-
tions to enable inter-stream data retrieval and processing, but
at very high resource cost. This limitation can be overcome by
scaling resources up and/or out to ensure high overall perfor-
mance, a solution that is clearly not suitable nor applicable
for emerging edge nodes with limited hardware resources.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 142295

https://orcid.org/0000-0003-2570-6993
https://orcid.org/0000-0001-9124-0533
https://orcid.org/0000-0002-1477-9751


Y. Yang et al.: EdgeDB: Efficient Time-Series Database for Edge Computing

FIGURE 1. A comparison of cloud-centralized framework vs edge-database based framework for IoT. Cloud-centralized framework needs to
transfer all time-series data to remote cloud for data management with significant network overhead. Edge-database based framework can utilize
the edge node to locally process the collected data, and transfers important data and aggregated values to cloud, then collaborates with the
centralized databases to perform detailed queries.

Nevertheless, it is desirable for the edge nodes to accommo-
date not only high-throughput data ingestion but also real-
time data retrieval from both fresh and historical data in local
storage to satisfy the requirements of IoT applications.

In this paper, we present EdgeDB, an efficient time-series
database with edge servers (shown in Figure 1b) designed to
manage thousands of high-sampling-frequency sensors while
providing higher insert performance, query performance, and
write speed, with lower resource requirement than existing
databases. The key idea behind EdgeDB is to design an opti-
mal organization and process flow by efficiently combining
multiple online streams in both query-friendly and store-
friendly ways, enabled by the three key mechanisms of multi-
stream merging, indexing, and storing. The multi-stream
merging mechanism is designed to compactly re-organizes
multiple correlated data streams within a time window into
a tablet. Then, the multi-stream indexing mechanism, called
Time Partitioned Elastic Index (TPEI), is proposed to index
these tablets efficiently, enabling real-time queries. Finally,
a write-optimized strategy is developed to combine multiple
tablets into a group to allow fast inter-stream accesses.

In summary, the contributions of this paper are as follows:
1) We propose a multi-stream merging mechanism

to compactly organize multiple correlated streams
together at runtime, supporting highly efficient inser-
tion and join query operations; and introduce Time
Partitioned Elastic Index to accelerate time-range
queries with small memory overheads.

2) We present TimeMerged Tree tomergemultiple tablets
into a large group to flush to the storage devices with a
single write operation, to improve the write throughput
and to speed up inter-tablet join query operations.

3) We implement and evaluate the EdgeDB prototype.
The experimental results driven by real-world datasets
demonstrate that EdgeDB outperforms a state-of-the-
art time-series database BTrDB by up to 3.6× in write
throughput, 2.2× in insert throughput, and up to 67%
in query latency, with lower memory consumption.

The remainder of this paper is organized as follows:
Section II presents background and motivation. The design
details of EdgeDB are described in Section III. In Section IV,
we evaluate EdgeDB with experimental results. Section V
concludes this paper.

II. BACKGROUND AND MOTIVATION
A. EDGE COMPUTING OF IoT
Internet of Things (IoT) is poised to fundamentally
change how we interact with our surrounding environments
[31], [35]. By deploying a variety of increasing numbers of
sensors with high-sampling-frequency, we are able to per-
ceive the surrounding environment quickly and clearly. More
importantly, we can make informed and timely decisions
in emergency situations using the sensor-generated data.
However, the considerable volumes of data make the long-
distance networks a severe performance bottleneck, as illus-
trated in Figure 1a, because of a long time required for data
transfer to remote servers. For example, a small electricity
grid with 1,000 smart meters will produce 22.4 MB data
per second, and the data must be transferred to datacenters
over intermittent LTEwith high transmission delays [2]. Even
though these servers have powerful hardware, the high trans-
fer latency makes it difficult, if not impossible, for the cloud
to make real-time decisions based on these data. To overcome
this problem, edge computing is introduced to provide near-
data processing [15], [33].

With the help of edge computing, we have the poten-
tial to store and process all collected data in a timely
manner on the edge nodes, instead of remote servers. For
example, an autonomous vehicle generates gigabytes of
data every second [6] that require real-time processing to
make correct decisions under various circumstances. The
vehicle-mounted computer is a typical edge node, which can
manage and analyze these data locally, and provide quick
responses or advance warnings for the driver.

Therefore, edge nodes should be able to support extremely
high insertion throughput, as well as real-time responses to
various types of queries. For instance, users not only need to
query the raw data tuples of any time-series stream to analyze
detailed phenomena, but also need to get the time-range based
aggregated values to see the holistic views, or perform join
query to get the correlated data tuples from a number of
streams within a period of time to further comprehensively
analyze these streams. As a concrete example, in order to cal-
culate the Pearson Correlation Coefficients among all streams
within a (T1, T2) time period, we need to first perform
‘‘Select * from all streams where Time>T1 & Time<T2’’
to get the data of these streams for further processing.

142296 VOLUME 7, 2019



Y. Yang et al.: EdgeDB: Efficient Time-Series Database for Edge Computing

However, the edge nodes generally have limited compute
and storage resources partly due to power and size con-
straint. Therefore, edge nodes with common desktop or server
configurations have to sufficiently exploit their poten-
tials to process and manage tremendous volumes of time-
series data from sensors with a highly efficient time-series
database.

B. EXISTING DATABASES
Traditionally, mainstream databases have been employed to
manage time-series data, such as Redis [25], Cassandra [4],
MySQL [21], and VoltDB [27]. These databases are generic
and full-feature data management systems, and use a single
big rational table to organize all time-series streams. Each row
in the table represents a sampling data record from a stream at
a given timestamp. They can support a variety of simple and
complex queries. However, these generic databases exhibit
relatively low insertion performance for highly intensive
time-series streams due to various sophisticated mechanisms
to support ACID transactions, which might not be neces-
sary for time-series data. Previous study [24] reveals that
Cassandra provides the highest request-processing through-
put among these databases, but can only insert 19k records
per second at a single processing node. Therefore, they can
only satisfy IoT applications with small-scale low-sampling-
frequency sensors for simple data analytics.

With the development in IoT technologies and big data
applications, the need to understand some transient and
instantaneous phenomena has resulted in high-sampling-
frequency sensors being increasingly deployed to collect
massive time-series data in many key application scenar-
ios including smart power grids [5], building systems [11],
industrial processes [9], etc. Therefore, some dedicated time-
series databases have been developed to provide adequate
performance for these applications in recent years, such as
Gorilla [22], BTrDB [2] and InfluxDB [12]. Considering that
different streams are relatively independent, these databases
organize each data stream separately, and insert every stream
into an individual schema, where one column only contains
the defined field of the corresponding stream. These time-
series databases share a common workflow in which data are
separately imported, organized, stored, and queried, in an
independent table for each time-series data stream, referred
to as the single-stream data organization. They can perform
standard inter-table operations to process inter-stream data,
but at a very high resource cost. Therefore, they are usu-
ally designed to run on high-performance servers or scalable
clusters, and are not suitable for resource-constrained edge
nodes with low/mid configurations such as desktops or low-
end servers. In summary, the design principles of these
databases limit their applicability to the edge nodes due to
the inappropriate data organization, inefficient index struc-
tures, and lack of write optimizations. Next, we will ana-
lyze these three limitations in existing dedicated time-series
databases.

1) DATA ORGANIZATION
The single-stream organization exhibits low efficiency due
to its independent management of each stream. With such
organization, the system inserts, indexes, and writes each data
stream separately, resulting in high resource consumption and
I/O overhead when processing large-scale time-series data
streams. Furthermore, any query involving multiple streams,
needs one or more expensive join operations that entail
reading from disjoint tables associated with these multiple
streams in a random-access pattern, leading to exceedingly
long response time. As a result, the single-stream organiza-
tion is not an optimal choice for edge nodes.

2) WRITING MECHANISM
The incoming time-series data need to be persisted onto
storage devices as soon as possible, because edge nodes gen-
erally have limited memory and power, in addition to being
vulnerable to accidental crashes. However, such persistency
requirement results in a large number of small writes for
the collected data, which can become a performance bottle-
neck for the edge nodes owing to limited storage resources.
Existing works [22], [26], implicitly or explicitly assuming
reliance on high-performance distributed storage systems,
pay little attention to this potentially serious write problem.

BTrDB [2] randomly merges data to be written into a batch
in order to flush them with a single write operation. This
merge strategy, however, ignores the correlation among data
sources and the time ranges of merged data, resulting in dis-
ordered data layout on disks and thus significantly degrading
future query performance.

LSM-tree is a write-optimized structure for key/value
stores, and consists of a number of indexed components with
an exponentially increasing size with the levels. LSM-tree-
based databases [4], [12] periodically write the in-memory
components of the time-series data to storage devices in
order to compact them with their on-disk counterparts.
Consequently, these databases achieve high write through-
put, but at the expense of significant read and write
amplifications [18], [19].

3) INDEXING MECHANISM
The databases heavily depend on an indexing mechanism to
quickly serve query and analysis on massive time-series data.

B+ tree index is one of the most widely used indexing
structure in existing databases, such as MySQL [21] and
Waterwheel [32]. For the continuously incoming time-series
data streams, B+ tree needs to frequently split index nodes
to create substantial branches to index them, resulting in
excessive overhead of node splits, and accumulates into a
large index tree structure gradually, which incurs significant
performance overhead when querying.

Emerging time-series databases primarily focus on the
time-range query, instead of value-range query, for time-
series data. Kairosdb, OpenTSDB, and InfluxDB adopt
LSM-tree [20] or its variants to index time-series data in

VOLUME 7, 2019 142297



Y. Yang et al.: EdgeDB: Efficient Time-Series Database for Edge Computing

the order of timestamps. However, the unavoidable data
compaction limits their performance under continuous data
ingestion.

BTrDB uses TPTree [2] to index the collected time-series
data based on timestamps, and to record the aggregated values
of the data in internal index nodes to speed up the aggrega-
tion query. These index data take up large memory space.
Although the indexes can be stored on disks, their query
performance is significantly degraded, because the traditional
query algorithm requires traversing the TPTree from the root
to leaf nodes, and fetching multiple unnecessary internal
nodes in a random access pattern.

LittleTable [26] and Gorilla adopt a mapping table to
record start-times and addresses of all tablet blocks. This
index structure works well for range query, but is inefficient
for aggregation query and join query.

C. MOTIVATION
Existing time-series databases cannot adequately exploit the
potentials offered by the underlying hardware to maximize
the performances of both data organization and analysis in
real-time as expected by IoT applications. This inefficiency
can be mitigated by scaling the underlying hardware in data-
centers with thousands of powerful servers and largememory.
However, this is hardly possible in a typical IoT environment
where time-series data streams are to be stored and processed
locally by single edge node with limited resources, scale and
power.

Thus, we are motivated to design a novel dedicated time-
series database, EdgeDB, to ingest, store and query mas-
sive time-series data streams efficiently on edge nodes. The
database is desired to have several necessary capabilities,
including high insertion throughput, high write performance,
low query response time, and low resource requirement.
In addition, the database should be able to effectively coop-
erate with the large-scale databases in the cloud to process
these data.

EdgeDB is designed to effectively merge multiple time-
series streams on front-end edge nodes by efficiently orga-
nizing and storing correlated data streams. EdgeDB further
optimizes the indexing and writing processes for multiple
streams by designing I/O friendly data structures. Data and
indexes from the optimized data and index organizations can
be delivered to the centralized databases in the cloud effi-
ciently for further analysis. Additionally, EdgeDB can also
perform queries on local data, effectively collaborating with
the centralized databases to perform global queries.

III. EDGEDB DESIGN
Figure 2 shows the architecture of EdgeDB, which consists
of a data merging module, an indexing module, and a data
storing module. When receiving a set of sampling data from
sensors in a given time window, the data merging module
re-organizes the dataset into a tablet for each stream group.
Then, the indexing module builds Time Partitioned Elastic
Indexes (TPEIs) on these tablets of each stream group,

FIGURE 2. The architecture of EdgeDB.

and periodically writes the index data to disks for persis-
tency. The data storing module constructs Time Merged Tree
(TMTree) to combine tablets of different stream groups into
larger tablet groups, which can be flushed onto disks with
large writes, thus boosting the write throughput.

A. MERGING: MULTI-STREAM DATA ORGANIZATION
In order to overcome the drawbacks of the single-stream data
organization, EdgeDB merges multiple correlated streams
from their corresponding sensors and pre-processes them
into a stream group. First, EdgeDB splits a time-series data
stream into a sequence of shards by timestamp within a
time window, such as 2t -ns window where t is pre-defined.
Second, the shards of different streams belonged to a stream
group but within the same time range are merged into a tablet.
The main purpose of the merge strategy is to enable the cor-
related streams to be kept together to process in batches. The
correlation can be defined based on properties with regard
to, e.g., sensor location, type, owners, etc. We expect the
frequently-queried streams to be merged in a stream group.
Likewise, users can define a specific-correlation among
streams. The number of the merged streams can also be
dynamically adjusted during runtime according to the change
of properties.

Once the correlated streams and the time windows are
determined, EdgeDB can construct these tablets with received
data, each of which contains the shards of these streams, and
every shard has a set of rows. Each stream has its own table
schema which defines a set of columns (i.e., fields), each of
which has a name, type, and default value. And each row is
a sampling record, and keeps a data tuple with any number
of key fields and data fields collected by a sensor at a certain
point in time, and the timestamp is defined as the primary key.
The rows in a shard are stored in chronological order.

All shards from different streams in a stream group are
successively placed in the tablet space. The tablet records
the start addresses and offsets of its constituent shards in a
tablet descriptor, which is located in the head of the tablet.
The descriptor also records a set of pre-defined aggregated
values from these correlated shards, such as the maximal
values among the set of streams in the time window. These
aggregated values can be easily computed once all shards
are gotten available. Users can also define their concerned
aggregated values. More detailed aggregated values also can
be recorded in the index, as described below in Section III-B.

142298 VOLUME 7, 2019



Y. Yang et al.: EdgeDB: Efficient Time-Series Database for Edge Computing

Additionally, the time-series data reduction techniques,
such as compression [13], [22], approximation [16], [23], can
be further employed to reduce the size of shards. And the
tablet descriptor can record the corresponding metadata of
these approaches.

Merging multiple small shards into a large tablet can
greatly improve insert performance owing to fewer processes
and I/O operations. Meanwhile, we record the raw data tuples
and the aggregated values of these streams in the same tablets,
potentially boosting the join query performance for the cor-
related streams. When there is an intra-tablet join query for
several correlated streams in a tablet, EdgeDB only needs to
search on an index to locate the addresses of queried data,
and obtains the requested data by performing a single read
operation. Even if a query is not hit on those pre-prepared
aggregated values, and needs to retrieve from raw data, it still
benefits from the data layout of merged correlated streams.

B. INDEXING: TIME-PARTITIONED ELASTIC INDEX
In order to speed up the time-range query and reduce the
memory usage of index data, we propose a Time-Partitioned
Elastic Index (TPEI) based on Time Partitioned K-ary
Tree (TPTree).

Time Partitioned K-ary Tree (TPTree) is first introduced
by BTrDB [2]. Its every leaf node contains a set of the
original data tuples (i.e., a tablet) collected within a 2t -ns time
window; every internal index node records the addresses and
aggregated values (e.g., min, mean, max, count, and standard
deviation, etc.) of its child nodes, and its timewindow (power-
of-two ns) is equal to the sum of time windows of the child
nodes. The top part of Figure 3 illustrates a Time Partitioned
2-ary Tree with 6 leaf nodes (tablets) and 6 internal nodes.
Each internal node indexes two child nodes and records
aggregated values about its child nodes to support efficient
aggregation queries.

Upon receiving the tablets from the data merging module,
we compute the aggregated values within a stream, or among
multiple streams, then insert index these tablets into TPTree
as leaf nodes, according to their time ranges. Finally,
we repeatedly update the aggregated values of the corre-
sponding upper internal nodes until the root of the TPTree
is reached.

However, TPTree can consume a significant amount of
memory space with the continuous influx of new data tuples.
For example, the size of index data for a single stream col-
lected from a smart grid meter in a year is up to 20GB,
making it almost impossible to keep all index data in mem-
ory, especially for the resource-constrained edge nodes. As a
result, long-running databases have to flush the index data
to the storage devices to make room for incoming data. This
means that a query needing to retrieve the historical time-
series data that are not likely to be hit in the in-memory
index, must traverse on-disk TPTrees from the root to leaf
nodes to read intermediate index nodes from disks, generating
multiple random read I/Os. Hence, this query procedure is
very inefficient for the historical data. To save memory space

while enabling real-time queries for both fresh and historical
data, we propose a new TPEI with a novel query procedure.

First, to avoid unnecessary memory usage in edge nodes,
we design a TPEI containing multiple TPTrees with dif-
ferent time granularity, including at most 7 daily TPTrees
(TPTreed ), at most 5 weekly TPTrees (TPTreew), at most
12 monthly TPTrees (TPTreem), and a global TPtree
(TPTreeg). TPTreed indexes the tablets collected every day
within the latest week, TPTreew indexes the tablets collected
every week within the latest month except the tablets in
TPTreed s; TPTreem indexes the tablets collected every month
of the latest year, but does not index the tablets collected
within the latest month; TPTreeg indexes all tablets collected
before the latest year. Because time-series data tuples come
into the system in chronological order, EdgeDB only needs
to hold the latest TPTreed in memory to build index for new
incoming data tuples. All previous TPTrees will never be
updated again, and can be persisted on disks to reduce the
memory usage of the index.

Furthermore, to support timely query for the historical
data, we design a novel query procedure for on-disk TPTree.
We observe that, according to the queried time range, we can
directly locate the target index nodes that contain the queried
aggregated results or the addresses of the queried data tuples,
without traversing the intermediate index nodes between the
root and the target index nodes, reducing unnecessary read
I/Os. For each on-disk TPTree, it has the determined structure
information, which includes the node layout, the number of
nodes in each layer, its number of branches (which is K in
K-ary), its height, the window length of its leaf node (2t -ns),
the time range covered by the TPTree (i.e., the time window
of the root node). Moreover, according to the time window
of any parent node, we can calculate the time window of
each of its child node, and its branch ID (branchch_pa) in
the parent node. Further, given the branch ID of the parent
node (branchpa_TP) in the TPTree, that of its child node
(branchch_TP) in the TPTree can be calculated using the fol-
lowing formula:

branchch_TP = branchpa_TP ∗ K + branchch_pa.

The layer ID (layerch_TP) of the child node can also be
obtained based on that of its parent node (layerpa_TP) as
follows:

layerch_TP = layerpa_TP + 1.

The branch ID and layer ID of each node are referred to as its
position information in the corresponding TPTree, and thus
can be calculated from the position of its parent.

Therefore, based on the above features of TPTree, for a
time-range query, we can calculate the position information
of the target index nodes as follows. First, we use the start
time and time window of the TPTree’s root node to calcu-
late the start times and time windows of its child nodes.
We compare the queried time range with the time windows
of these child nodes, then determine which subtrees to con-
tinue retrieving, and calculate the position information of the

VOLUME 7, 2019 142299



Y. Yang et al.: EdgeDB: Efficient Time-Series Database for Edge Computing

corresponding child nodes in the subtrees. This process is
repeated for the subtrees until the queried target index nodes
that contain the requested aggregated values are found, or the
lowest-level internal nodes that directly point to the requested
data are reached, and finally yields the position information
of the target index nodes in the TPTree. EdgeDB can further
calculate the offsets (called nodeoffs) of the target index nodes
within all internal nodes of the TPTree using the position
information as follows:

nodeoff =
∑layer−1

n=1
countn + branchch_TP,

where layer represents the layerch_TP of the node, and countn
represents the number of nodes in the nth layer of the TPTree.
Next, we need to determine the storage addresses of these
target index nodes using the nodeoffs.
For the TPTree, each internal node contains the same data

structure with the same data size. We can store all index
nodes of each TPTree into an identical file. Each node is
stored in order of its layer into the corresponding file, and
all index nodes in a layer are contiguously stored (see the
bottom of Figure 3). According to such a storage layout,
EdgeDB can calculate the file offsets by multiplying their
nodeoffs with the size of the internal node, then fetch these
target index nodes from disks, avoiding reading unnecessary
intermediate nodes. The pseudo code for this query procedure
is shown in Algorithm 1. The algorithm starts by getting the
in-memory structure information of the queried TPTree (line
2), then calculates the position information of the target index
nodes (line 4-18). Finally, the algorithm obtains their off-
sets within the corresponding files according to the position
informantion, and reads the nodes from disks (line19-25). In
summary, for any on-disk TPTree, EdgeDB only maintains
the TPTree’s structure information and corresponding file
path (collectively referred to as TPTree_attr henceforth) in
memory, and can directly locate the storage address of any
index node in the TPTree.

FIGURE 3. An example of a TPEI consisting of an in-memory TPTree and
an on-disk TPTree. These two 3-layer TPTrees each contain 6 internal
nodes and 7 internal nodes, respectively.

At the beginning of a day, EdgeDB creates a new TPTreed
to index new incoming data tuples. Meanwhile, the system
flushes the previous TPTreed into a new file, and maintains

Algorithm 1 Query Algorithm With On-Disk TPTree
Input: Trange: queried time range; TPTree_attr ; Nodesize:

the size of node;
Output: LeafNodes[]: leaf nodes within Trange;
1: Initialize Indexnodes[][], height← 0, pnode, cnode;
2: cnode.timewindow ← TPTree_attr.timerange,

cnode.branchch_TP← 0, cnode.layerch_TP← 0;
3: Indexnodes[0][]← cnode;
4: for pnode← each node in Indexnodes[height] do
5: for cnode← each child node of pnode do
6: cnode.timewindow ← ComputeWin-

dow(pnode.timewindow);
7: if Trange overlaps with cnode.timewindow then
8: /∗ calculate on this cnode (subtree)∗/
9: cnode.branchch_TP ← pnode.branchch_TP*K
+ branchch_pa;

10: cnode.layerch_TP← pnode.layerch_TP + 1;
11: Indexnodes[height+1][]← cnode;
12: end if
13: end for
14: height← height+1;
15: if height ≥ TPTree_attr.height then
16: break; /∗ search until the lowest index nodes∗/
17: end if
18: end for
19: for pnode← each node in Indexnodes[height] do
20: nodeoff ← GetOffset(pnode.branchch_TP,

pnode.layerch_TP);
21: offset← nodeoff * Nodesize;
22: indexnode← ReadIndexNode(TPTree_attr.

filename, offset);
23: address← GetAddress(indexnode);
24: LeafNodes[]← ReadLeafNode(address);
25: end for
26: return LeafNodes;

its TPTree_attr in memory. Furthermore, in order to avoid
excessive TPTrees in this index structure, EdgeDB com-
bines on-disk TPTrees periodically (i.e., every week, every
month, and every year). For example, when a new week
comes, EdgeDB combines all last seven TPTreed s into a new
TPTreew, and stores the TPTreew to disks, then reclaims these
old TPTreed s. The combining operation is simple and light-
weight. For two TPTrees with adjacent time ranges, we only
need to combine the rightmost node in the previous TPree
with the leftmost node in the following TPTree at each layer
into a new node, from bottom to up.

In summary, an in-memory TPTreed only takes at most
53MB space. We can further reduce the memory usage of the
index by adding finer-grained TPTrees (e.g., hourly TPTrees)
into TPEI. In addition, with the in-memory TPTreed , we can
efficiently index incoming time-series data, and update the
aggregated values of the upper internal nodes from bot-
tom to top, and finally respond to user requests with these

142300 VOLUME 7, 2019



Y. Yang et al.: EdgeDB: Efficient Time-Series Database for Edge Computing

results in a timely manner. More importantly, for the on-disk
TPTrees, EdgeDB only needs a single read operation
to fetch a target index node, resulting in better query
performance.

C. STORING: WRITE OPTIMIZATION
In practice, an IoT system with thousands of high-sampling-
frequency sensors can generate hundreds of, even thousands
of tablets into the memory of an edge node every second [2].
Edge nodes generally are required to fast write these tablets
into disks, avoiding memory out-of-space. Typically, the size
of a tablet is limited to a few hundreds of KBs. In this sce-
nario, the time-series databases running on edge nodes gen-
erate a large number of small writes every second. By testing
this write process in EdgeDB with a single disk, we find that
the disk utilization (the fraction of time with busy periods) is
close to 100%, but the actual write speed is only 28MB/s,
far below its peak speed (about 150MB/s). Furthermore,
the write-intensive process will also interfere with the user
queries that need to fetch the related data for the storage
devices. Hence, disk I/Os can easily become the primary
performance bottleneck of the database, especially for edge
nodes with limited storage resources, and significantly affect
the insert and query performances.

Due to high redundancy in time-series data collected from
high-sampling-frequency sensors [1], [29], we can tolerate
the loss of small amounts of data. Even in the presence
of node failures, the lost data might be re-transferred from
the sensors after recovery [26]. Therefore, we can relax the
persistence guarantee to defer and merge many writes using
TMTree to address the storing problem.

Time-series data tuples come into the system in chrono-
logical order, the tablets of same stream are generated at
different points in time, and have different time ranges.
It is thus hard to merge them to flush together. Therefore,
EdgeDB presents Time Merged K-ary Tree (TMTree) to
merge multiple tablets of different stream groups, which are
collected by all sensors under the same time range, into a
tablet group. These tablets are referred to as STR-tablets
(Same Time Range tablets), and may be generated at similar
points in time. A tablet group can be flushed to disks with a
single write operation, reducing the number of I/O operations.
In addition, by storing these inter-tablet STR-tablets on disks
contiguously, EdgeDB can gain higher inter-tablet join-query
performance.

The TMTree structure is illustrated in Figure 4. The inter-
nal node in TMTree consists of two parts: a time window,
which holds the time range of its subtree; and a pointer array,
which records the addresses of its K child nodes. The leaf
node is used to locate these STR-tablets. The leaf node con-
sists of three parts: a time range, which is equal to the tablet
window of these indexed tablets; a bitmap, which is n bits
wide and indicates which sensors’ tablets have been indexed
by the leaf node, where n is the number of sensors pro-
cessed by TMTree; and a pointer array, which has n pointers
and records the memory addresses of these indexed tablets.

FIGURE 4. An example of a Time Merged K-ary Tree (k = 2) (Binary
TMTree) with three layers for all sensors. The leaf nodes index
STR-tablets. The tablets in dashed boxes can be written immediately.

Since each sensor has a unique id, when one tablet of a sensor
is inserted into a leaf node, the system can determine a unique
position in the bitmap (or in the pointer array) of the leaf node
by hashing the sensor’s id, and then updates the value at the
position of the bitmap (or the pointer array).

Once a tablet is inserted into a TPTreed , EdgeDB will
launch the insert function of TMTree. The system first deter-
mines the leaf node to index the tablet according to its tablet
window, and records the memory address of the tablet into
the pointer array by hashing its id, then updates the bitmap of
the leaf node to determine whether the tablet in this position
already exists. Note that all STR-tablets are indexed by the
same leaf node. EdgeDB periodically checks the bitmap in
the leftmost leaf node, determines whether the leaf node has
indexed all sensors’ STR-tablets. If so, the system will merge
these tablets together to flush to disks with a write operation.
When the write operation is completed, EdgeDB reclaims
the corresponding leaf node, and updates these tablets’ on-
disk addresses in the bottom index nodes of TPTreed s which
directly index these tablets. As shown in Figure 4, we find
that the leftmost leaf node is full after the check process,
these indexed tablets can be written to disks. The system frees
this leaf node after the write operation, and inserts incoming
tablets.

However, when some tablets are lost due to either sen-
sor or network failures, the system will find that the corre-
sponding leaf node does not index these tablets when check-
ing its bitmap, and will wait for these lost tablets perpetu-
ally. The indexed STR-tablets will be held in memory and
cannot be persisted. In order to avoid this, we set a timer
for every leaf node. When a new tablet is inserted into a
leaf node, the timer of the leaf node will be reset and start
counting from 0. In the check process, EdgeDB also deter-
mines whether the timer of the leftmost leaf node exceeds the
pre-defined time threshold. If so, the tablets without being
indexed will be regarded as lost tablets. EdgeDB executes
the write operation only for the existing tablets. If EdgeDB
receives the lost tablets after their corresponding leaf nodes
are reclaimed, the system keeps these tablets in memory, and
flushes them to disks periodically.

VOLUME 7, 2019 142301



Y. Yang et al.: EdgeDB: Efficient Time-Series Database for Edge Computing

We can reclaim these TMTree nodes in a timely manner
after its indexed tablets have been completely flushed into
storage devices. As a result, TMTree does not consume too
much memory space. With TMTree, we not only reduce the
number of I/O operations by deferring and aggregating small
writes, but also potentially improve the inter-tablet join query
performance, since the STR-tablets are stored sequentially on
disks. When launching an inter-tablet query with a given time
range, the system splits this time range into n tablet windows.
And for each tablet window, EdgeDB only needs one read
operation to fetch all data tuples produced by all sensors
within the corresponding window. Afterwards, the system
extracts desired results and sends them to users. Therefore,
EdgeDB can reduce the number of read operations greatly
when processing inter-tablet join query, and can potentially
gain a higher inter-tablet join query performance.

IV. EVALUATION
In this section, we evaluate the efficacy of EdgeDB by
comparing it against two time-series databases: BTrDB,
a leading open-source time-series database system; and
InfluxDB, the most popular time-series database according
to DB-Engines Ranking [7]. The main evaluation metrics
include insert, write and query performances, memory over-
head and insert speed of TMTree.

We implement EdgeDB based on BTrDB using 2652 lines
of go code. According to our design principles, we rewrite
the index structure and query processing flow, and add the
TMTree module to optimize the write procedure. The param-
eter K for the TPTree and TMTree structures is set at 64 in
EdgeDB.

All experiments run on a testing machine with an Intel
Xeon CPU E5-2650 2.00GHz processor and 32GB of mem-
ory. The testing machine is an off-the-shelf low-end server
with the peak power of 150W, which is considered acceptable
for a typical edge node in terms of processing capacity and
power consumption [17]. The operating system is 64-bit
Ubuntu 14.04, and the file system is ext4. The storage subsys-
tem in our server contains a RAID-0 array containing 5West-
ern Digital 4TB HDDs, and a Samsung 250GB 750 EVO
SSD. The peak write bandwidths are about 768MB/s for
RAID, and 500MB/s for SSD, respectively, using the Linux
dd command.

We use a real-world dataset acquired from a Gas sensor
array under dynamic gas mixtures during 12 hours [8], [30].
The dataset has 4,178,504 data tuples, and each tuple includes
a timestamp and 18 sampling values, which means that the
dataset can be transformed into 18 time-series data streams,
each of which contains 4,178,504 16 byte time-value pairs
(8-byte timestamp, 8-byte value). We can further generate
a large number of synthesized data streams and pairs with
the dataset by adding small and random deviations into the
raw sampling values. In addition, we also add the location
information for each stream in order to merge correlated
streams with the property.

A. INSERT PERFORMANCE
In this set of experiments, we evaluate the insert performance
of EdgeDB. There are 7 types of inserts, i.e., InfluxDB,
BTrDB, and 5 EdgeDB types. Each EdgeDB insert type
corresponds to a different number of streams processed in
batch (i.e., 1, 2, 4, 8, and 16) by classifying with location
property. For BTrDB and InfluxDB, they process time-series
data based on the single-stream approach. Every stream sends
millions of sampling points (i.e., time-value pairs) in total to
these systems, 4,096 points at a time.Weflush all data to disks
every five seconds.

Figure 5 shows the insert performance with various types
of inserts as the number of streams increases. The insert
performance of InfluxDB is much lower than those of the
other two systems, and its highest performance is only 712k
points per second. This is mainly caused by its logging mech-
anism and write amplification of LSM-tree-like structure.
The logging mechanism is important to support recovery for
key-value store. However, the high data redundancy in time-
series data collected from high-sampling-frequency sensors
makes the loss of small amounts of data tolerable [1], [29].
Therefore, such loggingmechanismmight be unnecessary for
time-series data stores. For BTrDB and EdgeDB, when the
number of streams is small, the processing capability of the
machine cannot be fully utilized, and the insert throughput is
low.When the number of streams is greater than 64, both sys-
tems start to deliver insert performances that are approaching
their peaks. Note that when the number of the merged streams
in EdgeDB is set to 1, its insert throughput is lower than
BTrDB, because EdgeDB performs more processing steps,
such as inserting tablets into TMTree, that are not necessary
for only a merged stream. EdgeDB outperforms BTrDBwhen
EdgeDB merges more than 4 streams to process together.
In particular, when EdgeDB processes 16 streams in batches
EdgeDB[16], EdgeDB achieves up to 2.2× speedup over
BTrDB when using RAID. This is due to the multi-stream
merging mechanism that processes multiple data streams in
batches. TMTree can defer and merge many small writes into
a large sequential write, resulting in higher data processing
speed and higher write performance. In addition, when using
SSD, we can still achieve similar performance improvement.

FIGURE 5. Insert throughput as a function of the number of streams.
BTrDB and InfluxDB process all data streams based on the single-stream
approach; EdgeDB[x]: every tablet organizes x data streams to be
processed in batch (x: 1, 2, 4, 8, 16). The final set of experiments use SSD
as the storage device, and others use RAID.

142302 VOLUME 7, 2019



Y. Yang et al.: EdgeDB: Efficient Time-Series Database for Edge Computing

But the highest performance of EdgeDB on SSD is slightly
lower than that on RAID, this is because SSD has a lower
write performance compared to RAID.

B. WRITE PERFORMANCE
In order to evaluate the effectiveness of the TMTree tech-
nique, we conduct a set of experiments to measure and com-
pare the write throughput and the number of write operations
of EdgeDB and BTrDB when writing different amounts of
data.

To measure the write throughput, we change the number
of streams from 24 to 768, and every stream sends millions
of data points to both systems. EdgeBD merges 12 streams
together to process in batches. We flush all data to disks
every five seconds. Figure 6 shows the maximum write per-
formance that BTrDB and EdgeDB can achieve when pro-
cessing different numbers of data points with different storage
devices. While EdgeDB consistently outperforms BTrDB,
EdgeDB’s advantage over the latter is much more significant
when using RAID than SSD. The maximum write through-
puts for EdgeDB and BTrDB are 721MB/s, and 531MB/s
respectively. The reason for EdgeDB performing comparably
to or only slightly better than BTrDB for SSD is because
SSD provides higher IOPS for write and can process a large
number of write operations per second. The write throughput
of EdgeDB almost saturates the sequential-write throughput
of the storage devices.

FIGURE 6. Write throughput as a function of the number of streams on
RAID (*_R) or SSD (*_S), when periodically (i.e., 5s) flushing tablets into
disks.

To understand the impact of flushing frequency on the per-
formance, a higher frequency means that the amount of data
lost is smaller when the node crashes or powers off. However,
frequently flushing also degrades the writing performance
due to the increasing number of small I/Os. We force writes
to disks once tablets are ready to be written (i.e., once tablets
are indexed for BTrDB, or once all tablets in leaf node of
TMTree are available for EdgeDB). The write throughputs
with high flushing frequency are shown in Figure 7, where
EdgeDB is shown to have 3.6× higher write throughput
than BTrDB, and the disk utilization of BTrDB is close
to 100%, whereas EdgeDB only consumes 32.33% of disk
bandwidth.

To measure the number of write operations issued by each
system while processing a given number of streams, we vary
the number of streams from 1 to 16, and each stream sends

FIGURE 7. Write throughput at high flushing frequency, i.e., processing
1,000 streams. The write throughput is measured in two randomly
selected stable 100-second windows, one for each system. The average
write throughputs for EdgeDB and BTrDB are 135.48MB/s and 37.35MB/s,
respectively.

the same number (1,000,000) of data points into both systems.
Figure 8 reports the experimental results, which indicate that
the number of write operations in BTrDB is directly propor-
tional to the number of streams while this number remains
constant in EdgeDB. Due to the lack of write optimization in
the former, when finishing processing a tablet, BTrDB needs
to write this tablet to hard disks, resulting in one write opera-
tion for each tablet and the number of write operations being
proportional to the number of tablets and hence the number of
streams. For EdgeDB, the number of tablets is independent of
the number of streams, but the size of each write operation is
proportional to the number of streams, due to its multi-stream
merging mechanism.

FIGURE 8. The number of write operations as a function of the number of
streams.

Hence, by using TMTree, EdgeDB defers and batches
many small writes into a large sequential write, as a result,
EdgeDB can reduce the number of write operations, and
improve the disk utilization, and make full use of write band-
width of the underlying devices.

C. QUERY PERFORMANCE
For time-series databases, there are two important types of
queries: one for aggregated values of a stream within a spec-
ified time range, referred to as aggregation query, and the
other for the raw tuples of one or more streams within a
time range, referred to as join query. In this subsection,
we evaluate the performances of aggregation query and join
query of EdgeDB. For each query, the index data and original
data are only stored on disks, whereas the TPTree_attrs of
all TPTrees are kept in memory.

VOLUME 7, 2019 142303



Y. Yang et al.: EdgeDB: Efficient Time-Series Database for Edge Computing

1) AGGREGATION QUERY
Since the aggregated values of the tablets are kept in internal
nodes of TPTrees, we use the query latency of internal node
to measure the aggregation query latency.

Figure 9 shows the query latency and the number of
read operations when querying the on-disk internal nodes of
TPTrees in EdgeDB and BTrDB respectively.When querying
lower-layer nodes, the latency of layer-by-layer query in
BTrDB becomes higher, and the number of read operations
also increases. On the other hand, EdgeDB uses TPEI and
optimizes the disk layout of the index data, which enables the
file offset of queried nodes to be easily calculated to fetch
the requested data with a single I/O operation. For HDD,
the latency of an aggregation query is close to a disk access
latency (about 8ms), and up to 63% lower than the latency in
BTrDB. Since SSD has extremely low access latency (about
100µs), the latency mainly depends on the time of accessing,
migrating and parsing the nodes. In this case, EdgeDB only
needs to process a node when querying, whereas BTrDB
must process a number of nodes increasing with depth of the
tree.

FIGURE 9. Latency results (bars) and the number of read operations
(lines) of aggregation query when accessing the internal nodes in
different layers of TPTrees with RAID (*_R) or SSD (*_S) as the underlying
storage device.

In addition, for InfluxDB, the execution time of the
aggregation query is nearly proportional to the length of
the queried time range, and it takes up to 54ms to obtain
the maximal value of 1024 points (which is the size of a
shard in EdgeDB) of a stream with a continuous time range.
Therefore, InfluxDB significantly underperforms EdgeDB,
and even BTrDB.

When the queried time range is not aligned with the
time window of any internal node, meaning that EdgeDB
needs to fetch the leaf nodes containing raw points to com-
pute the aggregated results, EdgeDB still gain performance
improvement by avoiding fetching unnecessary on-disk inter-
nal nodes. More generally, the proposed index TPEI can
reduce the response time for all time-range queries due to the
optimized query procedure.

Furthermore, the memory usage of TPEI is at most 53MB
for a stream as shown in Figure 10, much less that the space
required to keep all index data (e.g., 20GB for a year’s data)
in memory, EdgeDB can reduce the memory usage greatly
without incurring a high latency penalty.

FIGURE 10. Memory usage of two index structures (TPEI in EdgeDB,
TPTree in BTrDB) for a stream during two days.

2) JOIN QUERY
The join queries in this paper contain intra-tablet join queries
and inter-tablet join queries. Wemeasure the performances of
these two types of join queries. To evaluate the performance
of intra-tablet join query, we insert 16 time-series streams into
each system, and each stream contains millions of data points.
BTrDB and InfluxDB follow the single-stream approach to
organize data points from every stream into a table, then
build an index for every table separately; whereas EdgeDB
organizes all data streams together, and then builds an index
for them. For an intra-tablet join query which queries multiple
correlated streams’ data within a given time range, BTrDB
and InfluxDB need to query every stream separately. Even
though they can use multi-threading to process the queries
in parallel, the number of I/O operations is not reduced and
these I/Os cannot be easily parallelized, especially for HDDs.
On the other hand, EdgeDB can query and fetch the involved
data points in batches, entailing a (much) smaller number of
larger I/O operations than BTrDB and InfluxDB. We specify
the queried time range to contain 65,536 points from each
stream.

Figure 11 shows the latency results for intra-tablet join
queries as a function of the number of streams when using
RAID. InfluxDB is the slowest, due to its inefficient index
structures. For BTrDB and EdgeDB, as the number of streams
increases, the intra-tablet query latency of BTrDB increases
more significantly. This is because BTrDB needs more I/O
operations to read more data, whereas EdgeDB requires
almost the same number of read operations to fetch these
data. EdgeDB achieves up to 57.3% decrease in intra-tablet
query latency compared with BTrDB. The EdgeDB_WL and
BTrDB_L in Figure 12 show the intra-tablet query perfor-

FIGURE 11. Latency of intra-tablet join query as a function of the number
of streams using RAID.

142304 VOLUME 7, 2019



Y. Yang et al.: EdgeDB: Efficient Time-Series Database for Edge Computing

FIGURE 12. Latency results (bars) and the number (lines) of join query as
a function of the number of streams using SSD. BTrDB_L: the latency of
(intra-tablet or inter-tablet) join query; EdgeDB_WL(AL): the latency of
intra-tablet (inter-tablet) query.

mances using SSD. EdgeDB can still achieve 43.1% perfor-
mance improvement due to fewer I/O operations, even though
SSD provides higher read performance.

We evaluate the performance of inter-tablet join query by
querying data streams from different tablets within a given
time range. To avoid effects of intra-tablet join query, in the
following experiments, EdgeDB also processes each stream
separately, but stores the streams within the same time ranges
together. For BTrDB and InfluxDB, the query requires fetch-
ing the data collected by every stream separately, meaning
that querying for n streams’ data requires n simple query
operations. However, EdgeDB needs only one read oper-
ation to fetch all data collected by all streams within a
tablet window, since these data within the same tablet window
are stored on disks sequentially by using the TMTree.We also
specify the queried time range to contain 65,536 points
from each stream. Figure 13 compares join query perfor-
mances among the three systems with the different numbers
of streams when using RAID as the storage device. The
query performance of InfluxDB is again significantly lower
than the other two systems. When querying data produced
by a small number of streams, BTrDB has similar perfor-
mance to EdgeDB, due to their similar query procedure
under this circumstance. However, as the number of queried
streams grows, EdgeDB’s well-designed data layout on disks
allows it to provide a better join query performance than
BTrDB, achieving up to 55.9% reduction in query response
time.

FIGURE 13. Latency results of inter-tablet join query as a function of the
number of streams using RAID.

For SSD, EdgeDB can still achieve small performance
improvement as presented in Figure 12. In addition, when
querying in EdgeDB, there is no significant change in the

number of read operations, regardless of the number of
streams. While in the BTrDB system, the number of read
operations is proportional to the number of streams. In sum-
mary, the main cause of performance degradation in EdgeDB,
as the number of streams increases, is because it has to read
and process more data for each read operation. In addition,
BTrDB also induces a large number of discontinuous I/Os as
it fetches requested data from different files, resulting in a
poor query performance, especially for HDD.

D. MEMORY USAGE AND INSERT SPEED OF TMTREE
TMTree is an in-memory and auxiliary index structure
designed to merge tablets together in order to reduce I/O
operations. As such, TMTree should not consume sub-
stantial memory resource, while maintaining high insert
performance.

To measure the memory usage of TMTree, we spawn
1,000 threads to simulate 1,000 sensors to send tablets into
TMTree. Since different sensors have different network con-
ditions, we set four different data transmission delays for all
sensors as listed in the figure title of Figure 14. Every thread
sends a new tablet each 4 seconds. And before sending a
tablet, every thread will sleep for its pre-defined transmission
delay. Upon receiving the tablet, TMTree inserts it into the
leaf node.

FIGURE 14. Memory usage of TMTree when inserting tablets. We setup
four different network conditions for all sensors, including a less-than 5s
transmission delay for 90% sensors, a less-than 30s delay for 5% sensors,
a less-than 60s delay for 3% sensors, a less-than 120s delay for 2%
sensors.

Figure 14 shows the number of TMTree nodes in memory
when using TMTree to index these tablets. As tablets are
continuously inserted into TMTree, EdgeDB needs to create
the internal nodes and leaf nodes to index these tablets, and
cannot reclaim any nodes due to not indexing enough tablets.
After about 120 seconds, the first leaf node is full, and these
indexed tablets can be written to disks, and the leaf node
can be reclaimed. Since then, we can reclaim old nodes in
a timely manner, and create new nodes for incoming tablets.
As a result, the total number of nodes remains steady, about
30 (at most 8KB for a node). Thus, EdgeDB just needs to
allocate 240KB memory space for each TMTree.

In addition, wemeasure the insert performance of TMTree.
The average insert speed is 53 thousand tablets per second,
and it is enough for EdgeDB with hundreds or thousands of
data points in each tablet.

VOLUME 7, 2019 142305



Y. Yang et al.: EdgeDB: Efficient Time-Series Database for Edge Computing

V. CONCLUSION
We propose an efficient time-series database EdgeDB for
edge nodes with three novel mechanisms. First, the multi-
stream merging mechanism is proposed to organize multi-
ple correlated streams, which can be queried together and
processed in batches. Second, EdgeDB adopts a memory-
efficient index, TPEI, to improve the time-range query per-
formance by optimizing the disk layout of index. Finally,
EdgeDB maximizes write throughput of disks by using
TMTree to reduce small writes. The extensive experiments
driven by real sensor datasets show that EdgeDB achieves
higher write throughput, higher query performance, better
insert throughput, and lower resource requirement than exist-
ing time-series databases.

REFERENCES

[1] N. Agrawal and A. Vulimiri, ‘‘Low-latency analytics on colossal data
streams with summarystore,’’ in Proc. 26th Symp. Oper. Syst. Princ., 2017,
pp. 647–664.

[2] M. P. Andersen and D. E. Culler, ‘‘BTrDB: Optimizing storage system
design for timeseries processing,’’ in Proc. 14th USENIX Conf. File Stor-
age Technol. (FAST), 2016, pp. 39–52.

[3] M. Buevich, A.Wright, R. Sargent, and A. Rowe, ‘‘Respawn: A distributed
multi-resolution time-series datastore,’’ inProc. IEEE 34th Real-Time Syst.
Symp. (RTSS), Dec. 2013, pp. 288–297.

[4] Cassandra. (Jan. 2018). Apache Cassandra. [Online]. Available:
http://cassandra.apache.org/

[5] H. Chihoub and C. Collet, ‘‘A scalability comparison study of data man-
agement approaches for smart metering systems,’’ in Proc. 45th Int. Conf.
Parallel Process. (ICPP), Aug. 2016, pp. 474–483.

[6] Datafloq. (2018). Self-Driving Cars Will Create 2 Petabytes of Data.
[Online]. Available: https://datafloq.com/read/self-driving-cars-create-2-
petabytes-data-annually/172

[7] DB-Engines. (Jan. 2018). [Online]. Available: https://db-engines.com/en/
ranking/time+series+dbms

[8] J. Fonollosa, S. Sheik, R. Huerta, and S. Marco, ‘‘Reservoir computing
compensates slow response of chemosensor arrays exposed to fast varying
gas concentrations in continuous monitoring,’’ Sens. Actuators B, Chem.,
vol. 215, pp. 618–629, Aug. 2015.

[9] M. Gabel, A. Schuster, and D. Keren, ‘‘Communication-efficient dis-
tributed variance monitoring and outlier detection for multivariate time
series,’’ inProc. IEEE 28th Int. Parallel Distrib. Process. Symp.,May 2014,
pp. 37–47.

[10] A. Giachanou and F. Crestani, ‘‘Tracking sentiment by time series analy-
sis,’’ in Proc. 39th Int. ACM SIGIR Conf. Res. Develop. Inf. Retr. (SIGIR),
2016, pp. 1037–1040.

[11] D. Hong, H. Wang, and K. Whitehouse, ‘‘Clustering-based active learning
on sensor type classification in buildings,’’ in Proc. 24th ACM Int. Conf.
Inf. Knowl. Manage. (CIKM), 2015, pp. 363–372.

[12] Influxdata. (Jan. 2018). [Online]. Available: https://www.influxdata.com/
time-series-platform/

[13] S. K. Jensen, T. B. Pedersen, and C. Thomsen, ‘‘ModelarDB: Modular
model-based time series management with spark and cassandra,’’ Proc.
VLDB Endowment, vol. 11, no. 11, pp. 1688–1701, 2018.

[14] A. Jha, S. Ray, B. Seaman, and I. S. Dhillon, ‘‘Clustering to forecast
sparse time-series data,’’ in Proc. IEEE 31st Int. Conf. Data Eng. (ICDE),
Apr. 2015, pp. 1388–1399.

[15] A. Jonathan, M. Ryden, K. Oh, A. Chandra, and J. Weissman, ‘‘Nebula:
Distributed edge cloud for data intensive computing,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 11, pp. 3229–3242, Nov. 2017.

[16] G. Luo, K. Yi, S.-W. Cheng, Z. Li, W. Fan, C. He, and Y. Mu, ‘‘Piecewise
linear approximation of streaming time series data with max-error guaran-
tees,’’ in Proc. IEEE 31st Int. Conf. Data Eng. (ICDE), Seoul, South Korea,
Apr. 2015, pp. 173–184.

[17] X. Lyu, H. Tian, and L. Jiang, ‘‘Selective offloading in mobile edge
computing for the green Internet of Things,’’ IEEE Netw., vol. 32, no. 1,
pp. 54–60, Jan./Feb. 2018.

[18] F. Mei, Q. Cao, H. Jiang, and J. Li, ‘‘SifrDB: A unified solution for write-
optimized key-value stores in large datacenter,’’ inProc. ACMSymp. Cloud
Comput. (SoCC), Carlsbad, CA, USA, Oct. 2018, pp. 477–489.

[19] F. Mei, Q. Cao, H. Jiang, and L. T. Tintri, ‘‘LSM-tree managed storage
for large-scale key-value store,’’ in Proc. Symp. Cloud Comput. (SoCC),
Santa Clara, CA, USA, Sep. 2017, pp. 142–156.

[20] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, ‘‘The log-structured
merge-tree (LSM-tree),’’ Acta Inform., vol. 33, no. 4, pp. 351–385, 1996.

[21] ORACLE. (Jan. 2018). MySQL Home Page. [Online]. Available:
https://www.mysql.com/

[22] T. Pelkonen, S. Franklin, P. Cavallaro, Q. Huang, J. Meza, J. Teller,
and K. Veeraraghavan, ‘‘Gorilla: A fast, scalable, in-memory time series
database,’’ Proc. VLDB Endowment, vol. 8, no. 12, pp. 1816–1827, 2015.

[23] J. Qi, R. Zhang, K. Ramamohanarao, H. Wang, Z. Wen, and D. Wu,
‘‘Indexable online time series segmentation with error bound guarantee,’’
World Wide Web, vol. 18, no. 2, pp. 359–401, 2015.

[24] T. Rabl, M. Sadoghi, H.-A. Jacobsen, S. Gómez-Villamor,
V. Muntés-Mulero, and S. Mankovskii, ‘‘Solving big data challenges
for enterprise application performance management,’’ Proc. VLDB
Endowment, vol. 5, no. 12, pp. 1724–1735, 2012.

[25] REDIS. (Jan. 2018). Redis Home Page. [Online]. Available: http://redis.io/
[26] S. Rhea, E. Wang, E. Wong, E. Atkins, and N. Storer, ‘‘LittleTable:

A time-series database and its uses,’’ in Proc. ACM Int. Conf. Manage.
Data (SIGMOD), 2017, pp. 125–138.

[27] M. Stonebraker and A. Weisberg, ‘‘The VoltDB main memory DBMS,’’
IEEE Data Eng. Bull., vol. 36, no. 2, pp. 21–27, Jun. 2013.

[28] S. B. Taieb, J. Yu, M. N. Barreto, and R. Rajagopal, ‘‘Regularization in
hierarchical time series forecasting with application to electricity smart
meter data,’’ in Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4474–4480.

[29] D. Trihinas, G. Pallis, andM.D. Dikaiakos, ‘‘ADMin: Adaptivemonitoring
dissemination for the Internet of Things,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), May 2017, pp. 1–9.

[30] (Jan. 2018).UCI. Uc IrvineMachine Learning Repository. [Online]. Avail-
able: http://archive.ics.uci.edu/ml/datasets

[31] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, S. N. Sinha,
A. Kapoor, M. Sudarshan, and S. Stratman, ‘‘FarmBeats: An IoT platform
for data-driven agriculture,’’ in Proc. 14th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2017, pp. 515–529.

[32] L. Wang, R. Cai, T. Z. J. Fu, J. He, Z. Lu, M. Winslett, and Z. Zhang,
‘‘Waterwheel: Realtime indexing and temporal range query processing
over massive data streams,’’ in Proc. IEEE 34th Int. Conf. Data Eng.
(ICDE), Paris, France, Apr. 2018, pp. 269–280.

[33] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, ‘‘Mobile-edge comput-
ing: Partial computation offloading using dynamic voltage scaling,’’ IEEE
Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.

[34] L. Wei and J. M. Mellor-Crummey, ‘‘Automated analysis of time series
data to understand parallel program behaviors,’’ in Proc. 32nd Int. Conf.
Supercomput. (ICS), Beijing, China, Jun. 2018, pp. 240–251.

[35] Y. Zhao, C. Qian, L. Gong, Z. Li, and Y. Liu, ‘‘LMDD: Light-weight
magnetic-based door detection with your smartphone,’’ in Proc. 44th Int.
Conf. Parallel Process. (ICPP), Sep. 2015, pp. 919–928.

YANG YANG received the B.S. degree in soft-
ware engineering from the Nanjing University
of Aeronautics and Astronautics, in 2015. He is
currently pursuing the Ph.D. degree with the
Wuhan National Laboratory for Optoelectronics,
Huazhong University of Science and Technol-
ogy. He was involved in optimizing time-series
databases. His research interests include the file
system and NVM storage.

142306 VOLUME 7, 2019



Y. Yang et al.: EdgeDB: Efficient Time-Series Database for Edge Computing

QIANG CAO received the B.S. degree in applied
physics from Nanjing University, in 1997, and
the M.S. degree in computer technology and the
Ph.D. degree in computer architecture from the
Huazhong University of Science and Technology,
in 2000 and 2003, respectively, where he is cur-
rently a Full Professor with the Wuhan National
Laboratory for Optoelectronics. His research inter-
ests include computer architecture, large-scale
storage systems, and performance evaluation.

He is also a Senior Member of the China Computer Federation (CCF)
and ACM.

HONG JIANG received the B.Sc. degree in com-
puter engineering from the Huazhong Univer-
sity of Science and Technology, Wuhan, China,
in 1982, the M.A.Sc. degree in computer engineer-
ing from the University of Toronto, Toronto, ON,
Canada, in 1987, and the Ph.D. degree in com-
puter science from Texas A&M University, Col-
lege Station, TX, USA, in 1991. He has been with
the University of Nebraska–Lincoln, since 1991,
where hewas aWilla Cather Professor of computer

science and engineering. He served as a Program Director with the National
Science Foundation, from January 2013 to August 2015. He has graduated
16 Ph.D. students who upon their graduations either landed academic tenure-
track positions in the Ph.D.-granting U.S. institutions or were employed by
major U.S. IT corporations. He is currently the Chair and a Wendell H.
Nedderman Endowed Professor with the Computer Science and Engineering
Department, University of Texas at Arlington. He has more than 300 publica-
tions inmajor journals and international conferences in these areas, including
the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE
TRANSACTIONS ON COMPUTERS, the PROCEEDINGS OF THE IEEE, the ACM Trans-
actions on Architecture and Code Optimization, the ACM Transactions on
Storage, the Journal of Parallel and Distributed Computing, ISCA, MICRO,
USENIX ATC, FAST, EUROSYS, LISA, SIGMETRICS, ICDCS, IPDPS,
MIDDLEWARE, OOPLAS, ECOOP, SC, ICS, HPDC, INFOCOM, and
ICPP. His current research interests include computer architecture, computer
storage systems and parallel I/O, high-performance computing, big data
computing, cloud computing, and performance evaluation. His research has
been supported by NSF, DOD, the State of Texas and the State of Nebraska,
and industry. He is a member of the ACM.

VOLUME 7, 2019 142307


	INTRODUCTION
	BACKGROUND AND MOTIVATION
	EDGE COMPUTING OF IoT
	EXISTING DATABASES
	DATA ORGANIZATION
	WRITING MECHANISM
	INDEXING MECHANISM

	MOTIVATION

	EDGEDB DESIGN
	MERGING: MULTI-STREAM DATA ORGANIZATION
	INDEXING: TIME-PARTITIONED ELASTIC INDEX
	STORING: WRITE OPTIMIZATION

	EVALUATION
	INSERT PERFORMANCE
	WRITE PERFORMANCE
	QUERY PERFORMANCE
	AGGREGATION QUERY
	JOIN QUERY

	MEMORY USAGE AND INSERT SPEED OF TMTREE

	CONCLUSION
	REFERENCES
	Biographies
	YANG YANG
	QIANG CAO
	HONG JIANG


