
A Fast Filtering Mechanism to Improve
Efficiency of Large-Scale Video Analytics

Chen Zhang , Qiang Cao , Senior Member, IEEE, Hong Jiang ,

Wenhui Zhang , Student Member, IEEE, Jingjun Li, and Jie Yao,Member, IEEE

Abstract—Surveillance cameras are ubiquitous around us. Emerging full-feature object-detectionmodels can analyze surveillance

videoswith high accuracy but consumemuch computation. Directly applying thesemodels for practical scenarioswith large-scale

cameras is prohibitively expensive. This, however, is wasteful and unnecessary considering that user-defined anomalies occur rarely

among these videos. Therefore, we propose FFS-VA, amulti-stage Fast FilteringMechanism for Video Analytics, to make video analytics

much cost-effective. FFS-VA filters out the frameswithout the user-defined events by two stream-specialized filters and a cheap full-

functionmodel, to reduce the number of frames reaching the full-featuremodel. FFS-VA presents a global feedback-queue approach to

balance the processing speeds of different filters in intra-streamand inter-streamprocesses. FFS-VA designs a dynamic batch technique

to achieve a trade-off between throughput and latency. FFS-VA can also efficiently scale tomultiple GPUs.We evaluate FFS-VA against

the state-of-the-art YOLOv3 under the same hardware and videoworkloads. The experimental results show that under a 12.88 percent

target-object occurrence rate on two GPUs, FFS-VA can support up to 30 concurrent video streams (15�more than YOLOv3) in the

online case, and obtain 10� speedup when offline analyzing a stream, with an accuracy loss of less than 2 percent.

Index Terms—Filters, frames, video analytics

Ç

1 INTRODUCTION

AN INCREASING number of surveillance cameras with
low cost and high quality have been deployed in key

public areas all over a city (e.g., street corners, shopping
malls, and office buildings), to monitor potential accidents as
well as record critical clues. In traditional practice, the video
surveillance collects live streams to an operational center for
further manual observations, which is labor-intensive, error-
prone and cost expensive. Automatic video analysis based
on object detection has been introduced recently to mitigate
human intervention while significantly improving the per-
formance and accuracy. The cases of automatic analysis for
surveillance videos can be categorized into two main types:
(1) real-time analysis to detect anomalies; and (2) post-facto
analysis to look for a certain event retroactively.

Early automatic analysis methods [1] employ support vec-
tor machine, but its accuracy and function are limited [2].
Benefitting from the recent development in complex model
structures based on neural network (NN), the accuracy and

speed of object detection have been significantly improved.
In 2014, R-CNN [3] first achieves 53.7 percent mean average
precision (mAP) on PASCAL VOC 2010 [4]. Afterwards, SSD
[5] (74.3 percent mAP, 59 frame per second (FPS)), R-FCN [6]
(83.6 percent mAP, 5 FPS), YOLOv2 [7] (76.8 percent mAP,
67 FPS), and YOLOv3 [8] (30 FPS) have been proposed to con-
tinuously improve both accuracy and detection speed, mak-
ing real-time online analysis and high-speed offline analysis
for video streams feasible in practical scenarios.

However, these existing full-feature object-detectionmod-
els are extremely computationally hungry. A powerful GTX
Titan X GPU only supports one video stream at 30 FPS
with YOLOv3 model. Considering that a typical video sur-
veillance generally deploys hundreds of cameras, these full-
featuremodels are ill-equipped to perform real-time analysis
for large-scale video streams directly, due to their unaccept-
ably high hardware cost.

Fortunately, in large-scale video analytics, a typical anom-
alous event occurs rarely and when it does occur it appears
in a tiny fraction of all frames. For example, even if a serious
traffic jam takes place on the main route of a big city, the
average blocked time in a day is just less than 5 percent [9].
Therefore, passing all frames over these accurate butweighty
models actually wastes considerable computational capabil-
ity, which is totally unnecessary. The key idea is to fast filter
out most frames that are not related to user-defined events
while leaving the remaining frames to be accurately ana-
lyzed by the final full-feature NNmodel.

To efficiently employ these highly accurate object detec-
tion models on limited computing devices to achieve large-
scale high-resolution video analytics, we propose FFS-VA, a
fast filtering mechanism, to dramatically reduce the number

� C. Zhang, Q. Cao, W. Zhang, and J. Li are with the Wuhan National
Laboratory for Optoelectronics, Key Laboratory of Information Storage
System ofMinistry of Education, HuazhongUniversity of Science and Tech-
nology, Wuhan 430074, China. E-mail: {hust_zchen, caoqiang, jingjunli}
@hust.edu.cn, singularity_x@outlook.com.

� H. Jiang is with the University of Texas at Arlington, Arlington, TX 76019.
E-mail: hong.jiang@uta.edu.

� J. Yao is with the School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan 430074, China.
E-mail: jackyao@hust.edu.cn.

Manuscript received 2 Aug. 2019; revised 1 Dec. 2019; accepted 26 Jan. 2020.
Date of publication 30 Jan. 2020; date of current version 8 May 2020.
(Corresponding author: Qiang Cao.)
Recommended for acceptance by Y. Han.
Digital Object Identifier no. 10.1109/TC.2020.2970413

914 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 6, JUNE 2020

0018-9340� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 10,2020 at 15:17:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5209-4705
https://orcid.org/0000-0001-5209-4705
https://orcid.org/0000-0001-5209-4705
https://orcid.org/0000-0001-5209-4705
https://orcid.org/0000-0001-5209-4705
https://orcid.org/0000-0001-9124-0533
https://orcid.org/0000-0001-9124-0533
https://orcid.org/0000-0001-9124-0533
https://orcid.org/0000-0001-9124-0533
https://orcid.org/0000-0001-9124-0533
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0001-9875-0229
https://orcid.org/0000-0001-9875-0229
https://orcid.org/0000-0001-9875-0229
https://orcid.org/0000-0001-9875-0229
https://orcid.org/0000-0001-9875-0229
mailto:hust_zchen@hust.edu.cn
mailto:caoqiang@hust.edu.cn
mailto:jingjunli@hust.edu.cn
mailto:singularity_x@outlook.com
mailto:hong.jiang@uta.edu
mailto:jackyao@hust.edu.cn

of frames actually reaching the full-feature reference model
by filtering out vast amounts of frames that do not satisfy
the conditions of the user-defined events (e.g., frames with-
out target objects or with a number less than a predefined
threshold of target objects) to support both fast offline anal-
ysis and large-scale online analysis.

FFS-VA is a pipelinedmulti-stage filtering system and each
stage is equipped with a specific model to filter out frames
with a certain feature.Considering thatmost surveillance cam-
eras are of a fixed viewpoint, we design and train a stream-
specialized difference detector (SDD) to remove frames only
containing background and a stream-specialized network
model (SNM) to identify target-object frames. The remaining
frames are further screened by a cheap full-function Tiny-
YOLO-Voc model (T-YOLO), that is shared by multiple
streams, to filter out frames whose target objects are fewer
than a predefined threshold. Finally, the surviving frames are
fed into an ultimate full-feature reference model (Reference
NN) for high-accuracy analysis. FFS-VA is designed to run on
the mainstream heterogeneous servers with several GPUs
and CPUs. Fig. 1 shows the filtering structure of FFS-VA over
one video stream.

There are four key challenges in FFS-VA that need to be
addressed. (1) For a mainstream server with two GPUs (at
least), the workloads should be evenly distributed on CPUs
and GPUs of the heterogeneous server to achieve a high per-
formance. (2) Theoretically, the number of frames processing
in the several stages within a stream is gradually decreasing
due to filtering. Accordingly, the filter at a later stage is also
slower than one at an earlier stage in processing speed.
Unfortunately, due to the unpredictable video contents the
number of frames entering each stage varies significantly
over time. How to dynamically balance the video loads
among filters within a stream and among multiple streams is
a key problem. (3) For the network model executed on the
GPU (e.g., SNM), in order to process a frame, the correspond-
ing network model, image data, and the predicted result
must be loaded between the CPU memory and the GPU
memory. To reduce the overhead of frequent data exchange,
a large and static batch size is intuitively better for obtaining
high computational efficiency but at the cost of lengthened
processing latency. In amulti-stage stream processing system
with multiple CNNs, the impact of batch size is considerable.
So it is necessary to dynamically trade off at runtime between
latency and throughput based on the video contents. (4) If
there are multiple GPUs available in the system, all of them
can be used to improve the performance of offline analysis
and online analysis. To efficiently parallel the GPUs without
affecting the order of frames in a stream, it also demands to
appropriately assign all tasks to these GPUs at runtime.

FFS-VA uses the next several techniques to solve the
above challenges. (1) If just two GPUs are available on a
server, all SDDs are executed on the CPU, both SNMs and
T-YOLO are executed on a single GPU. The Reference NN
runs on another GPU alone. To achieve a high computa-
tional efficiency, adding a queue between any two consecu-
tive stages unlocks all stages from synchronous lock steps,
enabling them to be executed concurrently. (2) FFS-VA
builds a global feedback approach to orchestrate the proc-
essing speeds of all stages based on their respective queue
controls. (3) FFS-VA adopts a dynamic batch technique to
dynamically determine batch size according to current
video contents in a short period of time. (4) If multiple
GPUs are configured on a server, a dynamic GPU schedul-
ing method is utilized to allocate stages to GPUs automati-
cally at runtime. And then FFS-VA presents four GPU
parallel schemes to make multiple GPUs run efficiently and
ensure the frame order during processing a video stream.

Leveraging these system-level optimizations, FFS-VA is
able to efficiently perform both online and offline video ana-
lytics on large-scale video streams. Experimental results
show that, compared with the state-of-the-art YOLOv3
model with the same hardware environment consisting of
two CPUs and two GPUs, FFS-VA supports up to 15� more
concurrent video streams in online video analysis, and
obtains 10� speedup in offline video analysis, with a negli-
gible accuracy loss of less than 2 percent. Besides, as the
number of GPUs increases, FFS-VA can support real-time
detection for more video streams. In addition, we also ana-
lyze the performance differences between YOLOv2 model
and YOLOv3 model in terms of throughput and accuracy,
and show the impact of the improvement of Reference NN
model on system performance.

In summary, the key contributions of our work are:

1) We propose a pipelined multi-stage fast filtering
mechanism for large-scale video analytics (FFS-VA)
in both online and offline scenarios.

2) FFS-VA introduces a global feedback-queue approach
to control the processing speeds of all filters in both
intra-stream and inter-stream processes. FFS-VA
designs a dynamic batch technique with a video-
content-based batch-size adjustment to automatically
trade off between latency and throughput.

3) FFS-VA adopts a scheduling method to dynamically
allocate stages on GPUs. To efficiently perform a
stage on multiple GPUs, FFS-VA further designs
four GPU parallel schemes under different scenarios.

4) We implement a FFS-VA prototype system to com-
pare it with the state-of-the-art YOLOv3, which indi-
cates that FFS-VA improves the overall throughput
by up to 15� under the same hardware environment.

The rest of this paper is organized as follows. Section 2
introduces the background of video analysis and key ob-
servations that motivate this research. The design and
implementation of FFS-VA are presented in Sections 3 and 4
respectively. Section 5 evaluates the performance, sensitiv-
ity of key design parameters, batch technique, scalability
and limitations of FFS-VA. Prior studies most relevant to
FFS-VA are reviewed in Section 6. Section 7 concludes
the paper.

Fig. 1. FFS-VA adds three filters before the Reference NN to filter out
frames that are not related to the user-defined events.

ZHANG ETAL.: FAST FILTERING MECHANISM TO IMPROVE EFFICIENCYOF LARGE-SCALE VIDEO ANALYTICS 915

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 10,2020 at 15:17:20 UTC from IEEE Xplore. Restrictions apply.

2 BACKGROUND AND MOTIVATION

2.1 Convolutional Neural Network Models

Optical Flow [10], Support Vector Machine (SVM)[1], and
Convolutional Neural Network (CNN) [11] can all be used
for the recognition of specific targets. The insight of Optical
Flow is matching pixels between images using temporal
and gradient information. SVM builds linear decision
hyperplanes in the feature space to perform classification.
The main idea of CNN is to learn the features of targets by
dealing with numerous images and updating the weights of
artificial neurons. Since CNN has great image recognition
capabilities and can recognize the characteristics of the tar-
get objects easily and accurately, it has been widely devel-
oped in recent years. In what follows, we briefly introduce
the typical CNNmodels for video analysis.

CNN consists of a series of connected layers, including
convolutional layer (CONV), fully connected layer (FC),
pooling layer (POOL), and so on. The CONV layer is respon-
sible for extracting local features from high-resolution fea-
ture maps. The POOL layer is in charge of organizing the
local features from the CONV layer and abstracting them
into a low-resolution feature map. The FC layer is used to
output the actual prediction based on the outcome of preced-
ing layers. By combining several such layers in a certain
order and configuring all layers with appropriate weights, a
CNNmodel is formed.

Once the CNN model is determined, it can be used for
further inferencing on a video stream by passing all frames
in the video stream one by one or in batches. For each video
frame, the CNN gives a predicted probability of whether
target objects occur in this frame.

2.2 Object Detection

Object detection technology has been widely used to auto-
matically analyze video contents, such as detecting acci-
dents [12] and traffic congestion [13], searching a certain
object [14], understanding the flow of vehicles and pedes-
trians to provide users with the most reasonable traffic plan-
ning [15], etc., which greatly reduce the cost of manpower.

In terms of the use of spatial-temporal information on
video frames, Nicolas Ballas et al. [16] and Lai Jiang et al.
[17] correct the detection results by using relevant timing
and context information, which greatly improve the accu-
racy of object detection. For static image detection, the
accuracy of R-CNN (53.7 percent mAP) [3], fast R-CNN
(65.7 percent mAP) [18], faster R-CNN (70.4 percent mAP)
[19], and R-FCN (83.6 percent mAP) [6] has been continually
improved, but the execution speed of these full-feature
object detection techniques remains relatively low and inad-
equate for real-time detection. Recently, advanced methods
such as YOLOv2 (67 FPS) [7], SSD (59 FPS) [5], and YOLOv3
(30 FPS) [8] have been developed to achieve real-time detec-
tion, but they are also computationally expensive as a pow-
erful GTX Titan X GPU merely supports the analysis of no
more than two concurrent video streams in real time. So in
a limited hardware environment, using these advanced
models to perform real-time detection for large-scale video
streams is a huge challenge.

In fact, there are two methods that are usually used to
speed up the inference process of CNNmodels: compression

and specialization. The commonly used compression meth-
ods include removing some CONV layers and FC layers [20],
reducing the feature size of models [7], and matrix pruning
[21]. The general compression methods usually achieve a
huge increase in execution speed at the expense of accuracy
unless the compression is performed efficiently and effec-
tively. On the other hand, specialization refers to the CNN
models are trained by using the dataset in specific conditions
or scenes. So the generality requirements for these models
are sacrificed, and if they are used in other conditions or
scenes the accuracy may drop dramatically. Due to only
one specific context is considered, these specialized models
can be both accurate and fast. Certainly, both of these two
methods are used in this paper.

2.3 Motivation

As a fundamental requirement for large-scale surveillance
video analysis, users expect to know whether their con-
cerned anomalous events occur in a timely manner. The
applicable scenarios for video analysis can be roughly clas-
sified into two categories: offline and online. In the offline
case, all stored videos need to be processed as fast as possi-
ble to capture interesting scenes. In the online case, an ana-
lytic system is expected to support more live streams while
timely determining any anomaly and providing warning
for the upcoming risks.

Indeed, the frames without target objects generally are
not worth further analyzing and need to be filtered out. The
computationally expensive full-feature models should only
process the frames with the target object(s). Therefore, we
define the target object ratio (TOR) as

TOR ¼ numtarget�object�frames=numall�frames; (1)

where numall�frames is the total number of all frames in a
video stream during a given period of time, and
numtarget�object�frames is the number of frames containing the
target objects. TOR can help characterize the frequency of
target-object frames that appear in a video slice. TOR is pri-
marily determined by video contents, objectively reflecting
the actual utilization of a video analytic system. For large-
scale surveillance videos, TOR is generally low in long-
period videos, which means that the anomalous events are
actually infrequent for all monitored videos. According to
the analysis results of numerous webcams [22], the target-
object occurrence rate in a day is only 8 percent.

Therefore, under the actual low TOR, passing all frames
over a full-feature model such as YOLOv3 is a huge waste
of computational resources. This insight motivates us to
design an effective and efficient fast filtering system to iden-
tify the frames with anomalous events from massive video
frames. And then only those identified frames are worth
performing over the subsequent full-feature model to fur-
ther extract interesting information. Therefore, we design
three types of preceding filters and a pipelined multi-filter
architecture to achieve the aforementioned goal.

Additionally, the fast filtering system should evenly dis-
tribute all tasks on CPUs and GPUs, exploiting the maximal
potential of the underlying hardware to boost the overall
performance under the promised latency and negligible
accuracy loss. Besides, If multiple GPU devices are available

916 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 6, JUNE 2020

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 10,2020 at 15:17:20 UTC from IEEE Xplore. Restrictions apply.

in the server, they can be used to improve the performance
of online analysis and offline analysis. We will elaborate on
these issues in detail next.

3 DESIGN

3.1 Overview of FFS-VA

Fig. 2 illustrates the architectural overview of FFS-VA on a
server with two GPU devices, which consists of three types
of filters: (1) specialized difference detectors (SDDs), (2) spe-
cialized network models (SNMs), and (3) a globally shared
object detection model Tiny-YOLO-Voc (T-YOLO).

3.1.1 Main Functions

First, target events, such as the occurrences of cars, persons,
etc., as well as their counts, need to be predefined by
users. For each given video stream, both SDD and SNM are
specialized for it and its predefined event. The two filters
are then followed by a T-YOLO model that is globally
shared by all streams. As a result, FFS-VA supports various
target events are detected in multiple concurrent video
streams.

In the FFS-VA, SDD is dedicated to filtering out back-
ground frames. SNM is used to identify the target-object
frames and filter out the non-target-object frames. After-
wards, T-YOLO is employed to filter out the frames contain-
ing fewer than a threshold number of target objects. Finally,
the surviving frames are input to the full-feature reference
model for final high-accuracy identification and analysis.
The details of filters are illustrated in Section 3.3. For clarity
and meaningful evaluation, we choose the state-of-the-art
full-feature model, YOLOv3, as the Reference NN model for
FFS-VA in this paper.

3.1.2 Pipeline Design

The three preceding filters and final Reference NN model
form a four-stage pipelined architecture. Each filter is con-
nected by its corresponding input and output queues for
reading and forwarding frames. For each video stream, a
prefetching thread is specifically created to capture video
frames from cameras or disks. In fact, all frames of a video
stream should pass its dedicated SDD, the very first filter
along the pipeline. And then, the number of frames proc-
essed by each subsequent filter decreases gradually in pro-
portion to the filtering rate of the preceding filter. For better
performance, the processing speed of each filter in the pipe-
line also exhibits gradual decrease accordingly. Note that
the input frame rate of each stage is varied with the

fluctuation of video contents over time. In order to dynami-
cally balance loads across varied filters, we propose a global
feedback-queue approach, as detailed in Section 4.3.1, to
coordinate the processing speeds of various filters. In addi-
tion, a dynamic batch technique also be introduced to help
trade off between throughput and latency automatically at
runtime, which is illustrated in Section 4.3.2.

Considering the varied computational complexity of fil-
ters and Reference NN, in order to fully exploit the potential
of the hardware, SDDs are executed on the CPUs, and
SNMs and T-YOLO are executed on a single GPU. The Ref-
erence NNmodel uses another GPU alone. Besides, the run-
time scheduling in the system (e.g., feedback queue and
dynamic batch) is also controlled by the CPU. In FFS-VA,
each filter is associated with an independent thread.
Through the parallel and pipelined structure, FFS-VA
achieves a high analyzing throughput. Although only two
GPUs are used in this part, FFS-VA can conveniently scale
the processing capacity to a server with more GPUs or a
server cluster, which will be discussed in Section 4.4.

3.2 Formal Description

We provide a theoretical description based on the system
with three filters and a Reference NN, which can help
understand the key criteria of the filtering mechanism. This
description can also be extended to the other system with
more filters and various models.

3.2.1 Throughput

In Fig. 2, when one stream runs on the system and V frames
are processed, the passing ratios of these frames in the three
filters and the Reference NN are r1, r2, r3, and r4 respec-
tively (their corresponding filtering ratios are 1� r1, 1� r2,
1� r3, and 1� r4). In this case, the number of frames out-
putted by the Reference NN can be calculated as

Voutput ¼ V � r1 � r2 � r3 � r4: (2)

The overall filtering ratio of the system is defined as

RF ¼ ðV � VoutputÞ=V ¼ 1� r1 � r2 � r3 � r4: (3)

Suppose the detection speeds of three filters and Reference
NN are s1, s2, s3, and s4 respectively. Considering the four
stages can be executed concurrently, the total execution
time is presented as

T ¼ max
V

s1
;
V � r1
s2

;
V � r1 � r2

s3
;
V � r1 � r2 � r3

s4

� �
: (4)

Similarly, the Equations (5) and (6) show the overall fil-
tering ratio and execution time of FFS-VA for the analysis of
N video streams. Thus the actual throughput of the system
can be considered as the ratio of the total number of input
frames to the execution time (Equation (7))

RF ¼ 1�
PN

i¼1 V
i
outputPN

i¼1 V
i

¼ 1�
PN

i¼1 V
i � ri1 � ri2 � ri3 � ri4PN

i¼1 V
i

(5)

Fig. 2. Architecture of FFS-VA on two GPUs.

ZHANG ETAL.: FAST FILTERING MECHANISM TO IMPROVE EFFICIENCYOF LARGE-SCALE VIDEO ANALYTICS 917

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 10,2020 at 15:17:20 UTC from IEEE Xplore. Restrictions apply.

T ¼ max

 PN
i¼1 V

i

s1
;

PN
i¼1 V

i � ri1
s2

;

PN
i¼1 V

i � ri1 � ri2
s3

;

PN
i¼1 V

i � ri1 � ri2 � ri3
s4

! (6)

Xput ¼
PN

i¼1 V
i

T
: (7)

Based on the above definitions, the filtering ratio of FFS-
VA is mainly related to the contents of video streams and
can be significantly affected by the actual passing ratio at
each stage in practice. In addition, except for the filtering
ratio, the detection speeds of stages are another factors that
affects the actual throughput. Given the video loads show a
downward trend due to filtering, the detection speeds of fil-
ters and Reference NN should also be gradually decreasing
(i.e., s1 > s2 > s3 > s4).

3.2.2 Latency

The video frames outputted by the Reference NN satisfy all
the conditions of the user-defined events, and their process-
ing latency is also a key metric. We define the processing
latency of a frame as the time interval between it incoming
and leaving the system. In Equation (8), it is divided into
three parts: Lservice, Lwait, and Lsync

L ¼ Lservice þ Lwait þ Lsync: (8)

Lservice means the sum of processing time on all stages,
which is mainly related to hardware configurations, the
complexity of models, and batch size. Lwait is the queue
time of frames, which is affected by resource competition,
queue depth, video contents, and so on. And Lsync is defined
as the sum of synchronous time between multiple GPUs at
each stage. Lsync is negligible unless one of the stages is
assigned to more than one GPU.

In short, Lservice can be shortened with more powerful
computing devices or smaller batch size. Besides, reason-
able system configurations and runtime scheduling need to
be utilized to reduce Lwait. And Lsync can be optimized by
designing and using appropriate GPU parallel schemes.

3.2.3 Accuracy

In fact, it is possible for a frame to be recognized by the Ref-
erence NN but filtered out by its preceding filters, i.e., a
false negative. Of course, if a frame unrelated to the user-
defined event passes all stages, this is called as a false posi-
tive. To quantitatively analyze the accuracy of the system,
we define the error rate as

ErrorRate ¼
PN

i¼1 FNi þ FPiPN
i¼1 Vi

; (9)

where FNi and FPi refer to the number of false negatives
and false positives respectively among Vi frames in a stream
i. Then the accuracy is described as

Acc ¼ 1� ErrorRate: (10)

Since the last stage of the system is the Reference NN,
which serves as the accuracy baseline of the system, and all

output frames have to go through this stage, so there are no
false positives in output frames in practice.

3.2.4 Scalability

If there are idle GPUs available in the server, they can be
used to improve the performance of the system. More GPU
devices can mitigate resource competition in intra-stream
and inter-stream processes as well as can increase the detec-
tion speeds of filters and Reference NN (i.e., s1, s2, s3, and
s4). So the system throughput can also be significantly
improved. But multiple GPUs also introduce some extra
scheduling overheads, such as stage allocations on GPUs,
transferring data between CPU memory and GPU memory,
and collecting the analysis results synchronously from the
GPUs. These overheads lead to that the increase in the
throughput is not proportional to the increase in the number
of GPUs.

In addition, the scalable approach cannot reduce the
latency L since the processing time of all stages Lservice is
not shortened. On the contrary, in order to guarantee the
frame order in a stream, a synchronous or reordering pro-
cess is required when collecting analysis results from multi-
ple GPUs, which introduces a little synchronous time Lsync.

More importantly, under different video loads, the opti-
mal stage allocations are varied. For example, when an
anomaly occurs in FFS-VA, idle GPUs are more suitable for
speeding up the processing of the Reference NN because of
its expensive computation. But for the scenes without
anomalies, T-YOLO stage is more likely to become the bot-
tleneck of the system and needs to be assigned more GPUs.
The differences of stage allocations on GPUs inevitably
affect the detection speed and the system throughput even
with the same number of GPUs.

3.3 Detailed Design of Filters

3.3.1 Specialized Difference Detector (SDD)

As the first filter of the system, SDD is responsible for
foreground segmentation [23] and determines whether a
unlabeled frame is a background frame. Commonly used
foreground segmentation methods include Averaging, Sin-
gle Gaussian, Kalman filter, Gaussian Mixture Model, and
so on. In FFS-VA, all SDDs use Averaging method because
of its fast execution speed (Fig. 3).

In fact, SDD calculates the distance between the reference
image (i.e., background image) and the unlabeled frame to
determine whether these two images are identical. For sim-
plicity, the reference image is usually computed as the aver-
age of dozens of background frames. The distance between
two images can be characterized by Mean Square Error
(MSE), Normalized Root Mean Square Error (NRMSE), or
Sum of Absolute Differences (SAD). Take MSE as an

Fig. 3. An example of SDD. The subtracted frame highlights the car that
entering the scene.

918 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 6, JUNE 2020

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 10,2020 at 15:17:20 UTC from IEEE Xplore. Restrictions apply.

example, if MSE is larger than the threshold ddiff , an obvi-
ous content change is construed to have occurred in the cur-
rent unlabeled frame. Otherwise, the frame is considered as
a background frame. Note that most surveillance cameras
are deployed in a fixed viewpoint. Hence, the background
frames can be safely discarded.

Naturally, the threshold ddiff has a critical affect on the
filtering ratio and accuracy. A low ddiff may result in poor
filtering ratio of SDD, while a high ddiff can lead to a high
error rate. Furthermore, the threshold ddiff may vary greatly
in different scenes. For example, a video with a mostly
empty sidewalk (a static background) might have a small
ddiff . However, a background with changing light color and
intensity in the same scene (a dynamic background) results
in a larger ddiff . In addition, weather, light intensity, etc. can
all contribute to the value of MSE [23], so the filtering ratio
of SDD varies greatly at different scenes.

SDD processes 100*100-pixel images at 100K FPS (0.9M
multiplication operations and 1.8M addition operations per
30 frames). In the FFS-VA, the detection speed of SDD is
600� faster than the reference model YOLOv3 (7.1G multi-
plication operations and 34.8G addition operations per 30
frames), as demonstrated in Section 5.

3.3.2 Specialized Network Model (SNM)

Another key filter used in FFS-VA is SNM. SNM utilizes a
specialized CNN to detect whether a video frame contains
target objects. Generic models can classify and recognize
thousands of object classes no matter what the scenes are,
but the generality of these methods leads to huge computa-
tional overhead and long execution time. On the contrary,
SNM can only identify a class of predefined target objects in
the specific video stream, and thus trading off reducing the
generality for boosting its speed (70� real-time). In addi-
tion, for a fixed-angle camera, the position and the moving
trail of the target objects in the scene are relatively fixed. In
this case, using SNM for rapid image recognition can also
ensure the accuracy to be over 95 percent [24].

In fact, SNM is a three-layer CNN (CONV, CONV, and
FC). The design and training process is shown in Section 2.1.
When a video frame is inferred by SNM, SNM first outputs
a predicted probability c of the target object appearing in
the frame. If c is below the threshold clow, no target object is
considered to be in the frame. If c is higher than chigh, the
frame is a target-object image. Otherwise, it is unsure
whether the frame is target-object or non-target-object.

In ourdesign, threshold tpre is utilized (between clow and chigh)
at runtime to help SNM distinguish target-object frames and
non-target-object frames, which is shown in Section 4.2. SNM
puts the target-object frames (c � tpre) into the T-YOLO queue,
and the non-target-object frames (c < tpre) are filtered out.

Experiments show that SNM processes 50*50-pixel
images at 5K FPS using about 200 KB GPU memory (159.7M
multiplication operations and 422.8M addition operations
per 30 frames). It is 60� faster than the reference model
YOLOv3 on the real hardware platform.

3.3.3 Tiny-YOLO-Voc (T-YOLO)

The third filter of FFS-VA is a cheap and compressed object
detection network, T-YOLO [25], which is used to filter out

the frames whose the number of target objects is less than a
certain level. Other object detection networks, such as
YOLO, SSD, and R-FCN, due to the slow execution speed
caused by more layers and more classes, are not used in our
filtering system preferentially. As a compressed model, T-
YOLO just consists of 9 CONV layers and 6 POOL layers,
and is trained by the VOC dataset with 20 classes. Benefit-
ting from fewer classes and smaller model size, T-YOLO
can perform at up to 220 FPS for 416*416 pixel images with
just 1.2 GB GPU memory usage (1.3G multiplication opera-
tions and 5.1G addition operations per 30 frames).

T-YOLO can recognize multiple target objects in one
image (Fig. 4). First, T-YOLO divides the input image into
13*13 grid cells automatically. Each grid cell predicts 5
bounding boxes and confidence scores for these boxes. If the
confidence score exceeds the threshold (e.g., 0.2), one target
object is considered to appear in the image. By combining
the individual grid cell detections, the total number of target
objects appearing in the video frame can be obtained.

As the filter is shared among all video streams, T-YOLO
needs to traverse each T-YOLO queue of all streams one by
one and extracts at most numt�yolo video frames from the
queue for detection, skipping the stream if its queue is empty.

Here we employ a generic model to identify tens of clas-
ses for two main reasons: 1) For different video streams,
sharing the same model can reduce the switch overhead of
loading different models from CPU memory to GPU mem-
ory (e.g., 1.2 GB for T-YOLO). 2) We not only support to
detect different target objects for different video streams,
but also support the detection of multiple target objects
within a video stream in the later stages, to facilitate the
understanding of the scene.

3.4 About False Negatives

In video surveillance, users are particularly concerned
about missing scenes rather than missing frames. Given a
live stream with 30 FPS, target objects could continuously
appear in a series of frames. Even if just a few legible frames
are identified, the scene is in fact correctly identified. This
means that the rest of the frames pertaining to the scene can
be considered redundant or duplicate and filtered out with-
out affecting the detection of the target scene.

Take SNM stage as an example, false negatives in this
stage can be categorized into two cases. On one case where a
merely partial appearance of target objects (Fig. 5a), i.e.,
incomplete target object (e.g., head of vehicle) appears, can
be identified by the Reference NN but missed by the filters
(e.g., SNM and T-YOLO). Nevertheless, its subsequent fra-
mes in the same scene can contain entire target objects that
SNM and T-YOLO are able to correctly detect (Fig. 5b). In
this case, the scene is considered correctly detected. On the

Fig. 4. Examples of object detections.

ZHANG ETAL.: FAST FILTERING MECHANISM TO IMPROVE EFFICIENCYOF LARGE-SCALE VIDEO ANALYTICS 919

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 10,2020 at 15:17:20 UTC from IEEE Xplore. Restrictions apply.

other hand, if dozens of continuous frames containing the
complete target objects are filtered out incorrectly, then the
scene is considered lost. The latter case should be avoided as
much as possible. Similarly, in T-YOLO stage, not identifying
all target objects can also cause false negatives.

Considering false negatives do not necessarily result in
scene loss, so the FN in Equation (9) refers to the number of
false negatives that actually cause the scene loss in practice.

In fact, if we slightly relax the filtering condition of a filter
(e.g., set the filtering threshold slightly below the target
threshold required by the models or anomalous events) and
forward a little more frames to the follow-up filters (the latter
filter can detect the results of the previous again), the false
negatives could be reduced. Therefore, the cascaded struc-
ture and relaxed filtering conditions can prevent excessive fil-
tering errors. Andwe elaborate on these issues in Section 5.3.

4 IMPLEMENTATION

4.1 Training SDD and SNM

We apply the model training method mentioned in
NoScope [24] to train specialized models (i.e., SDDs and
SNMs) for each video stream. For a video stream, we first
extract a representative fraction of the video and label its
video frames by using YOLOv3. These labeled data are
divided into two subsets as a training dataset and a test
dataset. The former is used to train a SDD and a SNM for
each video stream and the latter is used to select a set of
suitable thresholds for ddiff , clow, and chigh to meet the
requirement for accuracy and execution speed by compar-
ing the predicted results against the real truths.

Different from NoScope, which uses specialized models
to query for target-object frames in a single off-line video
and only extracts one frame from every 30 frames, FFS-VA
designs the specialized filters to filter out the non-target-
object video frames from large-scale video streams in both
online and offline modes. For each online video stream,
FFS-VA is designed to process at a rate of at least 30 FPS. In
addition, the main metric of NoScope is throughput, but
FFS-VA also pays attention to latency.

Before each filter is executed, the raw frames need to be
resized to meet the filter’s default feature size. The resizing
times of SDD, SNM, and T-YOLO are about 40, 150, and 400
us respectively. Accordingly, the raw frames always exist in
the system unless these frames are filtered by any one filter.

4.2 Filter Control

4.2.1 FilterDegree

Although the two thresholds in SNM, clow and chigh, basi-
cally determine the prediction of a video frame, the values

between the two thresholds may also be acceptable. Because
different video streams have different clow and chigh values,
the choice for tpre can vary. So we compute the tpre value as
follows:

tpre ¼ ðchigh � clowÞ � FilterDegreeþ clow: (11)

FilterDegree is a parameter set by users, which reflects the agg-
ressiveness of filtering in SNM stage. When FilterDegree ¼ 1
(tpre ¼ chigh), the output frames have a high credibility,
but it increases the probability of false negatives. When
FilterDegree ¼ 0 (tpre ¼ clow), more frames pass to the T-
YOLO filter in this case, which bring a heavier burden to the
T-YOLOfilter. Therefore, FilterDegree can directly affect filter-
ing ratio of SNM and accuracy of FFS-VA. In our system, the
cases tpre < clow and tpre > chigh are not considered. This is
because values within this range would result in a dramati-
cally increase of error rate (e.g., 2.4 percent) or a remarkable
decrease of throughput (e.g., 60 percent).

4.2.2 NumberofObjects

NumberofObjects refers to the filtering threshold in T-YOLO
stage, which controls the filtering conditions of the T-YOLO
model. Normally, NumberofObjects is required to be equal to
the intensity of the target objects in the predefined events
(i.e., target threshold). But NumberofObjects may be less than
the target threshold in the case of relaxing filtering
condition.

In the running process of the T-YOLO filter, if the number
of target objects appearing in a frame is less thanNumberofOb-
jects, the target object is considered to have a low intensity,
which is outside the scope of the user’s interest. Otherwise, it
is likely that some unexpected events have occurred.

In fact, T-YOLO cannot only monitor the intensity of the
target object, achieving purposeful filtering based on user
needs, but also catch and correct the false positives of SNM.
For example, if a non-target-object frame is passed by the
SNM accidentally, T-YOLO can still filter out the frame by
counting the number of target objects, reducing the false
positives of FFS-VA.

4.3 System Optimization

In this section we introduce two methods to optimize
throughput and latency of FFS-VA.

4.3.1 Feedback Queue

Note that the processing speed of one type of filter is often
different from that of another. SDD processes about 10�
faster than SNM and 100� faster than T-YOLO. Because of
the fluctuation of video contents over time, the number of
video frames processed by each filter also varies over time.
When frames arrive in bursts, their processing filter threads
are able to compete for hardware resources with each other
seriously and even block.

Sine resource competition between different filters exists
in both intra-stream and inter-stream processes, it is neces-
sary to balance the execution speeds of these filters at
runtime. Therefore, we propose a global feedback-queue
approach. First, FFS-VA controls the detecting speed of a fil-
ter at an earlier stage in the pipeline by detecting the queue

Fig. 5. A false negative case but without missing scene.

920 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 6, JUNE 2020

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 10,2020 at 15:17:20 UTC from IEEE Xplore. Restrictions apply.

depth of the filter at a later stage. For example, when the T-
YOLO queue depth exceeds a threshold, the SNM thread
automatically slows down or even gets blocked, and stops
pushing frames to the T-YOLO queue until the T-YOLO
queue depth is blow the threshold. As long as the system
can keep at least 30 FPS for each video stream, the stream is
being analyzed in real time. In addition, for some video
streams, the number of target-object frames varies greatly
over time. To balance loads among video streams, T-YOLO
filter extracts a different number of frames from different
queues in one cycle. For the video streams with a long T-
YOLO queue depth, FFS-VA extracts up to numt�yolo frames
from the queue per cycle. Otherwise, a fewer number of
frames are processed by the T-YOLO filter in this cycle.

The setting of the queue depth thresholds is important.
Too small an threshold may reduce the detection speeds of
filters (e.g., s2), even the system throughput Xput, due to
the filters at later stages cannot get enough frames (e.g., a
batch) from their queues at a time. On the contrary, too large
an threshold will increase feasible overloads and queue
time Lwait since too many frames are cached in the queue.
Unless otherwise stated, we initially and empirically deter-
mine 2, 10, 10 and 10 as the queue depth thresholds of SDD
queues, SNM queues, T-YOLO queues, and the Reference
NN queue respectively.

4.3.2 Dynamic Batch

Since each video stream has its own SNM, it causes the GPU
to load these models frequently when processing frames
coming from different video streams. The data exchange
overhead significantly lowers the overall computational effi-
ciency. Intuitively, feeding a batch of frames to the GPU and
processing them at a time can greatly reduce the amount of
model and image data loading. For example, when the batch
size is 30, the loading frequency is reduced by 30�.

Feedback-queue indeed achieves a higher throughput by
static batch. However, a triggering strategy based on a fixed
number of input frames per batch can lead to unnecessary
delay. First, if the number of frames in the queue is less than
the batch size, in order to compose a batch of data, waiting
for the remaining frames can introduce some delay (i.e.,
Lwait). In addition, even if enough frames exist in the queue,
the batch processing itself can also introduce additional
latency (i.e., Lservice), especially for a large batch size. All of
these will result in a long latency for the system.

In order to solve these problems, we propose a dynamic
batch technique based on the feedback-queue approach. If
there are enough video frames in the SNM queue, to get a
high throughput, SNM pops out a batch of (BatchSize, e.g.,
30) images from the queue for SNM prediction. Otherwise,
the frames are popped from the SNM queue until the queue
is empty to guarantee a low system latency. Note that
although batch processing is used in SNM, when we pop (or
push) frames from (or to) a queue, the chronological order of
video frames needs to be strictly guaranteed. We elaborate
the reasons in Section 4.4. In fact, dynamic batch can also be
applicable to other CNN models for a better trade-off
between throughput and latency. Experimental results show
that compared with using the feedback-queue approach
alone, the dynamic batch technique reduces the average

latency by 27 percent while lowering the throughput by only
6 percent, ensuring better real-time performance.

4.4 Scalability

We previously described the design of FFS-VA based on the
typical systemwith two GPUs. Indeed, FFS-VA also can scale
to the server with more GPUs, to provide larger processing
capacity for both offline and online analysis. It introduces a
new challenge how to reasonably and dynamically allocate
streams and their relevant stages across multiple GPUs with
workload variation, to ensure the high efficiency of hardware.

As aforementioned, the models in the latter two stages
are highly consumptive in computation (e.g., T-YOLO at
200 FPS and Reference NN at 30 FPS per GPU). When TORs
of the streams are in a low level, only a few of frames can
arrive at T-YOLO and then Reference NN. In this case, two
working GPUs are enough. Nevertheless, when target
events occur in one or more streams immediately, the loads
can overload these two GPUs. The extra idle GPUs are grad-
ually activated to share the heavier-load stages.

Specifically, FFS-VA adopts a utilization-based schedul-
ing method. It measures the GPU utilizations of the T-
YOLO stage and Reference NN stage every three seconds.
When the average utilization of a GPU (or GPUs) perform-
ing T-YOLO stage in five minutes exceeds a threshold (e.g.,
75 percent), FFS-VA activates an idle GPU to join this stage.
When the average utilization is lower than 20 percent, one
of the working GPUs will be deactivated. It is similar for the
stage of Reference NN. To ensure normal operations of the
system, FFS-VA guarantees that at least one GPU runs on
each of these two stages. We design two interfaces Activa-
teGPUDevice() and InactivateGPUDevice() to be responsible
for the allocation and release of the two models on GPUs at
runtime. The specific operations are implemented by tra-
versing each layer of the NN model as well as calling
CUDA interfaces cudaMalloc(), cudaMemcpy, and cudaFree().

When multiple GPUs share the same stage, FFS-VA
needs to further determine how to assign frames of streams
to the GPUs. Notice that the chronological order of frames
in a stream should be strictly kept after these frames passing
a stage, thereby guaranteeing the functional correctness
of FFS-VA. To achieve this goal, we present four parallel
schemes according to the scheduling granularity (stream,
batch in a stream, or frame in a batch) and the parallel mode
of GPUs (asynchronous or synchronous) as SMa, BMa,
FMa, and FMs (Fig. 6). SMameans that each stream (stream
granularity) is fixedly allocated to a GPU. In this case, each
GPU traverses its own involving streams and extracts a
batch of frames for processing. BMa means that each GPU
can serve all streams but merely alternatively and exclu-
sively extracts a batch of frames (batch granularity) in a
stream at a time. FMa means that all GPUs work for a batch
of frames (frame granularity) in a stream simultaneously in
a frame-level asynchronous manner. The specific number of
processing the frames depends on the computing power of
the GPUs. However, the processed frames need to be reor-
dered in a buffer to maintain their chronological order. FMs
means that all GPUs work for a batch of frames (frame gran-
ularity) in a stream simultaneously but in a frame-level syn-
chronous way. These frames are orderly allocated to all
GPUs in turn, and each GPU gets one video frame at a time.

ZHANG ETAL.: FAST FILTERING MECHANISM TO IMPROVE EFFICIENCYOF LARGE-SCALE VIDEO ANALYTICS 921

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 10,2020 at 15:17:20 UTC from IEEE Xplore. Restrictions apply.

These four schemes have their own advantageous sce-
narios. FMa and FMs are advantageous in the cases with
small number of streams since all GPUs can serve one
stream simultaneously. SMa has a better latency due to a
batch of frames is serially processed without inter-frame
synchronization and reordering process. BMa does well in
heterogeneous environments. FFS-VA can well support
these four parallel schemes. The experimental performance
analysis for these four schemes will be further explained in
Section 5.5.

5 EVALUATION

5.1 Experimental Setup

We use two real-world public videos, Jackson and Coral, as
our evaluation workloads. Jackson describes the scenes of
various vehicles (e.g., car, bus, truck, etc.) traveling at a
crossroad. Coral describes the scenes of people watching
colorful fish in an aquarium. Their relevant information is
summarized in Table 1. Each video contains about one mil-
lion video frames in the time span of one day. We extract
typical non-overlapping video clips from each video file to
simulate multiple video streams. Even for the same video,
the number of target objects varies greatly with time. Hence,
we can analyze the impact of scenes with different TOR val-
ues on the filtering performance. For fairness, the feature
sizes of YOLOv3 used in both FFS-VA and the baseline are
similar to be set as 416*416.

Hardware Platform. We perform our experiments on a
platform with four NVIDIA Geforce GTX 1080 GPUs, two
GTX Titan X GPUs, dual Intel Xeon E5-2683 v3 CPU, and
128 GB DRAM. The multi-core CPUs provide good support
for multi-threaded evaluation workload.

First, we explore the system performance of FFS-VA in
online and offline situation. Second, we analyze the sensitiv-
ity of filtering thresholds in FFS-VA to the overall system
accuracy and filtering ratio. And then, we study the impact
of batch techniques on the throughput and latency. Finally,
the performance of FFS-VA deployed into a multi-GPU
environment is demonstrated. For the sake of simplicity, we
select 5,000 consecutive frames from each video stream to
perform the inference tasks.

5.2 System Performance

Fig. 7 shows the average throughput and latency as a func-
tion of the number of video streams with 0.129 TOR on two
GTX 1080 GPUs.

Offline Analysis. With a single video stream, which repre-
sents the offline analysis performance, the maximum thro-
ughput that FFS-VA can support is 592 FPS, which is 10� and
6� that supported by YOLOv3 and YOLOv2 respectively.
Compared with YOLOv3 the total execution time of FFS-VA
is reduced by 90.9 percent. In addition, for a 55 GB video file,
the entire system uses less than 8 GB CPU memory, which
implies greatly increased support capacity for long-time
high-resolution video files.

Online Analysis. Experiments show that our system can
support up to 31 video streams for real-time detection, which
is 15 � more than what YOLOv3 can support. Although the
throughput of YOLOv2 is about 2� than YOLOv3 in the off-
line situation, both of them can only support real-time analy-
sis of no more than 3 concurrent video streams. Besides,
dynamic batch technique has a 27 percent lower latency than
using feedback-queue approach alone in most cases, but at
the cost of 6 percent reduction in throughput caused by the
small batch size. Moreover, it is necessary to note that
although FFS-VA has a latency of several seconds, these
delays are insignificant and tolerable in some applications,
such as intelligent video surveillance [26].

For video streams with 1.000 TOR as an extreme case,
Fig. 8 shows that FFS-VA can only support 5 video streams
in real time. This is because SDDs and SNMs filter out fewer
video frames and most of the frames are still fed to the
T-YOLO for filtering, limiting the amount of increase in
the overall throughput. In addition, the offline detection
throughput has also dropped noticeably in our experimental
platform, and the overall execution time is only 67 percent
shorter than the YOLOv3. This is because, on the same hard-
ware platform, only T-YOLO performs efficient filtering on
one GPU and another GPU is used to perform YOLOv3,
while the baseline YOLOv3 can perform on both two GPUs.

TABLE 1
Information of Evaluation Videos

Video Name Resolution Object FPS TOR

Coral 1280*720 Person 30 FPS 50%
Jackson 600*400 Car 30 FPS 8%

Fig. 6. Four parallel schemes are presented according to the scheduling granularity and the parallel mode.

Fig. 7. The average throughput and latency as a function of the number
of video streams with a TOR value of 0.129.

922 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 6, JUNE 2020

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 10,2020 at 15:17:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 9 presents the ratio of frames executed in each filter
with different TOR during the day. SDD filters out few
frames due to frequent movement and video contents
change in the daytime. The filtering ratio of SNM is largely
related to the TOR. And T-YOLO can all work well in any
case. It is worth noting that different time periods, weather,
occlusion, video contents, illumination, etc., may all affect
the performance of the three filters, and we only show a
small part of them here.

5.3 Sensitivity of Key Thresholds

Next, we use offline video streams to examine how two key
thresholds, FilterDegree and NumberofObjects, impact the fil-
tering ratio and accuracy of FFS-VA. To verify the accuracy,
all the filtered frames by FFS-VA are completely detected by
the reference model YOLOv3.

5.3.1 FilterDegree

Fig. 10a illustrates the effect of the FilterDegree threshold on
the number of output frames and the filtering error rate for
the car detection (TOR=0.186). As the threshold increases,
more frames whose prediction probability c is between clow
and chigh are filtered out, so the error rate also rises accord-
ingly. Fig. 10b shows the results of person detection
(TOR=1.000). The adjustment of the FilterDegree value has lit-
tle effect on the filtering ratio and error rate in this case. This is
because during the entire observed time period, the aquarium
is in the tourist peak and all frames contain many persons,
which prevents SNM fromfiltering out any video frame.

5.3.2 NumberofObjects

In Fig. 11a, for car detection, as NumberofObjects increases,
the number of output frames decreases significantly (about
80 percent). This is because, in this video, the size of a car is

relatively large in a scene that can only contain no more
than three target objects. Fig. 11b illustrates the case of per-
son detection. The number of output frames gradually
decreases with the increase of NumberofObjects.

5.3.3 Accuracy Analysis

To better understand the error rate, we first analyzed the
false-negative frames for car detection with a TOR value of
0.186. Fig. 12a illustrates the statistics of these error frames.
The cases of one isolated single-error frame (SEF) and 2-3
continuously-error frames (CEF) do not affect the correct
identification of the scene. In addition, a series of consecu-
tive error frames whose size is less than a certain level (e.g.,
30 frames) is usually caused by a distinguish criterion for
partial-appearance of target object between T-YOLO and
YOLOv3. In this case where there are many consecutive
error frames, it is because a single partially appeared vehicle
is waiting for traffic lights. By analyzing these images, we
observe that about 50 frames out of a total of 5,000 frames
are those with actual scene losses (< 2%). In addition, by
comparing the statistics of error frames based on YOLOv2
and YOLOv3, we find that the proportion of one isolated
SEF and 2-3 CEF in YOLOv3 is smaller, and YOLOv3 has a
stronger and more stable recognition ability than YOLOv2.

In addition, as shown in Fig. 11b, the error rate is rela-
tively high. This is due to for the detection of small and dense
targets, such as persons in the crowd, T-YOLO generally

Fig. 9. The ratio of frames executed in each filter. The processing speeds
of the four stages at runtime are about 20K FPS, 2K FPS, 200 FPS, and
30 FPS, respectively.

Fig. 8. The average throughput and latency as a function of the number
of video streams with a TOR value of 1.000.

Fig. 10. The throughput and error rate as a function of FilterDegree.

Fig. 11. Number of output frames and error rate as a function of
NumberofObjects.

Fig. 12. (a) Statistics of error frames in 5000 consecutive video frames.
(b) The error rate as a function of NumberofObjects by relaxing filtering
conditions.

ZHANG ETAL.: FAST FILTERING MECHANISM TO IMPROVE EFFICIENCYOF LARGE-SCALE VIDEO ANALYTICS 923

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 10,2020 at 15:17:20 UTC from IEEE Xplore. Restrictions apply.

identifies fewer target objects than YOLOv3, resulting in a
high error rate. In this case, Fig. 12b shows that if one or two
object misjudgment can be tolerated by relaxing the filtering
threshold, the error rate will be greatly reduced (57.2 and
91.5 percent respectively). Even if relaxing filtering condi-
tions may have a little impact on the filtering ratio of the sys-
tem (about 12.6 and 22.2 percent respectively), it is
worthwhile to ensure the overall accuracy of the system (<
2%). Therefore, it exists a trade-off between accuracy and fil-
tering ratio. Moreover, in the process of accuracy analysis for
filtered frames, the error rate of using YOLOv2 as Reference
NN is slightly higher than that of YOLOv3 in terms of com-
plete matching. This is because YOLOv2 occasionally misses
a few target objects during the detection process so that more
frames are filtered incorrectly.

In short, the experiments show that thanks to the relaxed
filtering conditions and the cascaded structure, the actual
cases of missing scenes are less than 2 percent in our system,
which is arguably negligible.

5.4 Batch Technique

We analyze the impacts of the static batch without feed-
back-queue, feedback-queue, and dynamic batch techniques
on average throughput and latency over 10 video streams.

5.4.1 Throughput of FFS-VA

Fig. 13a shows the average throughput of the static batch,
feedback-queue, and the dynamic batch techniques respec-
tively with 0.203 TOR. When BatchSize is low, these three
methods can process a full batch of video frames at a time
from the SNM queue. While SNM processes the current
batch of video frames, SDD quickly pushes enough video
frames to the SNM queue to form the next batch of video
frames, thus having little impact on the throughput. When
BatchSize is high, for the static batch technique, the through-
put can still continue to increase with sufficient data pro-
vided by SNM queues. For the feedback-queue approach,
the wait for a batch of frames increases the execution time,
resulting in a slight decrease in throughput (about 8 per-
cent). For the dynamic batch technique, the smaller batch
size further leads to a decrease in computation efficiency.

Fig. 14a shows the experimental results with 0.980 TOR.
In this case, most of the frames are eventually executed by
T-YOLO model no matter what the BatchSize value is.
Therefore, BatchSize has little effect on the throughput.

5.4.2 Average Latency

Fig. 13a shows that when BatchSize is small, the difference in
average latency between the feedback-queue and the

dynamic batch techniques is very small. As BatchSize
increases, more video frames need to wait a period of time
in the feedback-queue because of the fixed batch size. For
the dynamic batch technique, since the batch size can be
adjusted automatically according to video contents, the
average latency is basically unchanged. Due to the same
queue management method, for video streams with 0.980
TOR, the average latency has a similar trend in Fig. 14b.

In summary, for videos with a low TOR value, the feed-
back-queue approach has a greater throughput, and the
dynamic batch technique has a smaller average latency. For
videos with a high TOR value, there is not much difference
in throughput between the feedback-queue and dynamic
batch techniques, but the dynamic batch technique has a
lower average latency and should be considered first.

5.5 Scalability

We take T-YOLO stage as an example to evaluate the
throughput and latency of four GPU parallel schemes on a
server with three homogenous GPU devices. Then, for het-
erogeneous GPU devices, the performance of these four par-
allel schemes on the Reference NN stage is demonstrated.
Finally, we show the scale performance of system as a func-
tion of TOR in online and offline cases.

Throughput. In Fig. 15a, since all GPUs can serve the same
video stream at a time, FMa and FMs work well when there
is a few video streams in FFS-VA. As the number of video
streams increases, BMa achieves the best performance. This
is because, in BMa, multiple GPUs only need to alterna-
tively process a batch of frames of streams, without syn-
chronizing and reordering process. For SMa, due to uneven
distribution of streams on the GPUs, only when the number
of video streams is an integer multiple of the number of
GPUs, FFS-VA can achieve the load balance and the peak
performance.

Latency. In Fig. 15b, due to without inter-frame synchro-
nization (i.e., smaller Lsync), SMa and BMa exhibit a short
latency. Switching video streams over multiple GPUs makes
the latency of BMa slightly higher than the SMa. Besides, the
extra reordering process also significantly increases the
latency of FMa.

Heterogeneous GPU Environment. Fig. 15c shows the
throughput of the four parallel schemes on the Reference
NN stage over three GPU configurations: (1) three GTX
1080 GPUs (Con1); (2) two GTX 1080 GPUs and one GTX
Titan X GPU (Con2); and (3) one GTX 1080 GPU and two
GTX Titan X GPUs (Con3). Since GTX Titan X GPU is more
powerful than GTX 1080 GPU, the throughput of Con3 is
higher than Con2 and Con1 in all cases. However, due to

Fig. 13. Throughput and latency under different batch techniques with
TOR 0.203.

Fig. 14. Throughput and latency under different batch techniques with
TOR 0.980.

924 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 6, JUNE 2020

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 10,2020 at 15:17:20 UTC from IEEE Xplore. Restrictions apply.

frequent inter-frame synchronization and inter-stream syn-
chronization, the slowest GPU (or GPUs) limits the overall
throughput of the system. Therefore, improving GPU con-
figurations have little impact on the performance of FMs
and SMa. In contrast, the throughput of BMa is improved
considerably as the GPU capacity improves.

Scale Performance. Based on the previous analysis, TOR
has a pivotal impact on the maximum number of video
streams supported by FFS-VA. Therefore, we discuss the
impact of the number of GPUs on the overall performance
under different TORs with BMa. In fact, we assign two,
three, and four GTX 1080 GPUs to FFS-VA respectively in
the three experiments. Fig. 16a shows that the maximum
number of video streams supported by FFS-VA increases as
TOR decreases in the online case. Moreover, for a system
configured with four GPUs, the overall performance has
been improved by up to 122 and 45 percent than the system
configured with two GPUs and three GPUs respectively. In
addition, we also measure the impact of the number of
GPUs on the latency. The results show that the latency
remains essentially the same regardless of the number of
GPUs. This is because, on the one hand, additional GPUs
increase the detection speeds of filters but do not reduce
processing time (i.e., Lservice). On the other hand, the syn-
chronous time Lsync of BMa is too small compared with the
processing time Lservice and the queue time Lwait.

For offline scenarios, in Fig. 16b, as TOR increases, the
throughput also shows a downward trend. When TOR is
small in a video slice, few target-object frames exist, and the
throughput is mainly determined by the detection speed
of SNM. As a result, adding GPUs to T-YOLO stage and Ref-
erence NN stage has little effect on the throughput. With
TOR increasing, growing frames arrive at the latter two
stages. Comparedwith the server with two GPUs, deploying

three and four GPUs can improve the throughput by 62 and
100 percent respectively. However, even with utilization-
based scheduling method to allocate stages dynamically at
runtime, using extra GPUs does not bring the same amount
of performance gains. Due to the existence of scheduling
overheads, the throughput improvement from adding the
second GPU is about 20 percent lower than adding the first
GPU. With more additional GPUs, new performance bottle-
necks are gradually emerging.

5.6 Limitations and Remedies

While the FFS-VA filtering system is shown to be highly
effective in real-time object detection for large-scale video
streams, there remain some limitations.

Target Object Rate Sensitivity. In practice, a sudden TORs
increase in video streams can lead to poor filtering ratio,
even if the probability of multiple videos having their TORs
increase simultaneously is extremely low. If necessary, we
can temporarily store these video frames in a storage sys-
tem, to be processed later. For some latency-sensitive
scenes, it is necessary to use more GPUs or a server cluster
to provision for peak-load periods.

Error Rate. The reason for the cases of relative high error
rate is the performance difference between T-YOLO and the
reference model YOLOv3. Deep compression [27] (e.g.,
pruning, sparsity constraint) can transform a larger but more
accurate NN model to a tiny model without compromising
the accuracy of the prediction, resulting in a 3� throughput
improvement [28]. Therefore, we can replace T-YOLO with
a high-accuracy mode that was deeply compressed to obtain
a low error rate.

Scene Switch. We train SDD and SNM models for each
fixed-angle camera and specific target object, so the changes
of video scene may affect the detection accuracy. If the scene
change in the video is periodic (e.g., alternating between
day and night), the training data just needs to include repre-
sentative frames under all conditions. However, when the
scene changes dramatically or the function and position of
the camera have changed, the previous specialized models
will no longer work. If there are no saved models in the past
that can match the current environment, a new network
model needs to be trained according to the new scene,
which takes about one hour.

Single Target Object. In this paper, we assume that there is
only one user-interested target object for each video stream.
If multiple target objects exist in a video stream, the structure
of the specialized networkmodel only needs to be changed to
support the identification of all the target objects in the video.

Fig. 15. The performance of four GPU parallel schemes.

Fig. 16. The scale performance as a function of TOR in online and offline
cases.

ZHANG ETAL.: FAST FILTERING MECHANISM TO IMPROVE EFFICIENCYOF LARGE-SCALE VIDEO ANALYTICS 925

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 10,2020 at 15:17:20 UTC from IEEE Xplore. Restrictions apply.

6 RELATED WORK

Prior studies relevant to FFS-VA can be classified into sixmain
categories,model cascades, object detection, videomonitoring,
model specialization, streamprocessing, and video analysis.

Model Cascades. Cascade is defined as a sequence of clas-
sifiers to improve inference speed. Paul Viola et al. [29] pro-
posed the first cascade, the Viola-Jones detector, which
cascades traditional image processing features. The sub-
windows which are not rejected by an initial classifier are
processed by a sequence of classifiers. If any classifier rejects
the sub-window, no further processing is performed. Recent
work has concentrated on learning cascades. [30] achieves
an optimal trade-off between accuracy and speed by learn-
ing a complexity aware cascade. [31] configured a CNN cas-
cade for real-world face detection to accurately differentiate
faces from the backgrounds. [32] proposed a cascaded
regression approach for facial point detection to make more
accurate predictions. In our filtering system, we use a cas-
cade to filter out video frames that we do not care about,
not specific to the features. Besides, FFS-VA focuses on
improving the processing throughput of the system rather
than the effectiveness of a single model.

Object Detection. SPPnet [33] and Fast R-CNN [18] have
achieved a very high accuracy for the image object detec-
tion, by using region proposal object detection methods.
OverFeat [34] and YOLO [35] have achieved a high detec-
tion speed by skipping the proposal step altogether, and
predicting bounding boxes and confidences for multiple
categories directly. Our goal is to increase the throughput of
the overall system using these models and some other mod-
els for filtering in practice.

Video Monitoring. Video monitoring involves many tasks,
including vehicle tracking [36], object detection [37] and so
on. Each task has been tailored for a specific system (e.g.,
vehicle counting [38], license plate detection [27], cars or
pedestrians tracking [39]). And the main target objects are
car and pedestrian. Our filtering system focuses on video
analysis, and several objects (e.g., dogs, cats) can be detected
in FFS-VA to facilitate the understanding of the scene if
needed. Besides, more event-related details (e.g., detail
behavior analysis) can be fine-grainedly detected by the
back-end network model instead of just trajectory analysis.

Model Specialization. Compared with generic models, spe-
cialized models can guarantee a high throughput and accu-
racy by sacrificing generality in the same hardware
environment. Both NoScope [24] and Foucs [40] use this
technique in cheap CNN to help query for target-object
frames in a off-line video faster. In contrast, FFS-VA pays
more attention to the analysis of more real-time video
streams through model specialization. In addition, FFS-VA
also analyzes the impact of video content fluctuation (e.g.,
TOR) on real-time system performance instead of just get-
ting the target-object frames.

StreamProcessing.The general streamprocessing challenges,
such as distributed execution, fault tolerance, and real-time
performance, have received widespread attention in various
stream processing system [41]. In contrast, FFS-VA focuses on
supporting more video streams on the same hardware device
for high-accuracy fine-grained analysis by utilizingCNNmod-
els, which is orthogonal to these advancedworks.

Video Analysis. In terms of information retrieval on videos,
there are several techniques widely used to analyze video
contents, such as semantic video search [42], spatio-temporal
information-based video retrieval [43], and shot boundary
detection [44]. The main goal of FFS-VA is to build a filtering
system for video analysis. Benefit from low coupling struc-
ture and strict order guarantee for video frames, these
advanced video analysis methods can be integrated into one
stage of our system conveniently if necessary.

7 CONCLUSION

In real life, there are a lot of camera resources to be
explored. And NN makes it easy to extract semantic infor-
mation from these videos. However, its computational effi-
ciency is low. Besides, the huge number of video frames in
the large-scale video streams also poses a great challenge to
neural network. In response, we propose a filtering system
that equips a SDD model, a SNM model, and a global T-
YOLO model for each video stream, filtering out the video
frames that the users are not concerned about in the video
stream, and reducing the number of video frames that need
to be detected by the full-feature model. The experimental
results show that our filtering system provides 5-15� scal-
ability improvement over the state-of-the-art YOLOv3. In
addition, the reference model in this paper is an object
detection network, but FFS-VA can also be applied to other
fields, such as face recognition, by configuring other appro-
priate reference models.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
their valuable comments and helpful suggestions. This work
was supported in part byNational key research anddevelop-
ment program of China (Grant No. 2018YFA0701804), Crea-
tive Research Group Project of NSFC No.61821003, NSFC
No. 61872156, Fundamental Research Funds for the Central
Universities No. 2018KFYXKJC037, the US National Science
Foundation under Grant No.CCF-1704504 and No.CCF-
1629625, and Alibaba Group through Alibaba Innovative
Research (AIR) Program.

REFERENCES

[1] Y. Lin et al., “Large-scale image classification: Fast feature extrac-
tion and SVM training,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2011, pp. 1689–1696.

[2] Z. Wang, Z. Wang, H. Zhang, and X. Guo, “A novel fire detection
approach based on CNN-SVM using tensorflow,” in Proc. Int.
Conf. Intell. Comput., 2017, pp. 682–693.

[3] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmen-
tation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014,
pp. 580–587.

[4] M. Everingham, L. J. V. Gool, C. K. I. Williams, J. M. Winn, and
A. Zisserman,“The pascal visual object classes (VOC) challenge,”
Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–338, 2010.

[5] W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Eur.
Conf. Comput. Vis., 2015, pp. 21–37.

[6] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object detection via
region-based fully convolutional networks,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2016, pp. 379–387.

[7] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., 2016, pp. 6517–6525.

926 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 6, JUNE 2020

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 10,2020 at 15:17:20 UTC from IEEE Xplore. Restrictions apply.

[8] J. Redmon and A. Farhadi, “YOLOv3: An incremental improve-
ment,” CoRR, vol. abs/1804.02767, 2018. [Online]. Available:
http://arxiv.org/abs/1804.02767

[9] H. Wang, K. Rudy, J. Li, and D. Ni, “Calculation of traffic flow
breakdown probability to optimize link throughput,” Appl. Math.
Modelling, vol. 34, no. 11, pp. 3376–3389, 2010.

[10] A. OttlikandH.-H. Nagel, “Initialization of model-based vehicle
tracking in video sequences of inner-city intersections,” Int. J.
Comput. Vis., vol. 80, no. 2, pp. 211–225, 2008.

[11] W. Yin, K. Kann, M. Yu, and H. Sch€utze, “Comparative study
of CNN and RNN for natural language processing,” CoRR,
vol. abs/1702.01923, 2017. [Online]. Available: http://arxiv.org/
abs/1702.01923

[12] L. Huang, Z. Li, andB. Wang, “Detection of abnormal traffic video
images based on high-dimensional fuzzy geometry,” Autom. Con-
trol Comput. Sci., vol. 51, no. 3, pp. 149–158, 2017.

[13] L. Li, L. Chen, X. Huang, and J. Huang, “A traffic congestion esti-
mation approach from video using time-spatial imagery,” in Proc.
1st Int. Conf. Intell. Netw. Intell. Syst., 2008, pp. 465–469.

[14] H. Wei, C. Yang, and Q. Yu, Efficient Graph-Based Search for Object
Detection. Amsterdam, The Netherlands: Elsevier, 2017.

[15] G. Mo and S. Zhang, “Vehicles detection in traffic flow,” in Proc.
Int. Conf. Netw. Comput., 2010, pp. 751–754.

[16] N. Ballas, L. Yao, C. Pal, and A. C. Courville, “Delving deeper into
convolutional networks for learning video representations,” in
Proc. 4th Int. Conf. Learn. Representations, Y. Bengio and Y. LeCun,
Eds. 2016. [Online]. Available: http://arxiv.org/abs/1511.06432

[17] L. Jiang, M. Xu, and Z. Wang, “Predicting video saliency with
object-to-motion CNN and two-layer convolutional LSTM,”
CoRR, vol. abs/1709.06316, 2017. [Online]. Available: http://
arxiv.org/abs/1709.06316

[18] R. B. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.,
2015, pp. 1440–1448.

[19] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 2015, pp. 91–99.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. 3rd Int. Conf.
Learn. Representations, Y. Bengio and Y. LeCun, Eds. 2015. [Online].
Available: http://arxiv.org/abs/1409.1556

[21] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights
and connections for efficient neural network,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2015, pp. 1135–1143.

[22] Jackson, “Town-square-southwest,” 2017. [Online]. Available:
https://www.seejh.com/webcams/jacksonhole/jackson/town-
square-southwest

[23] N. E. Buch, S. A. Velastin, and J. Orwell, “A review of computer
vision techniques for the analysis of urban traffic,” IEEE Trans.
Intell. Transp. Syst., vol. 12, no. 3, pp. 920–939, Sep. 2011.

[24] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia,
“NoScope: Optimizing neural network queries over video at
scale,” Proc. VLDB Endowment, vol. 10, no. 11, pp. 1586–1597, 2017.

[25] A. Zainab, “Real-time object detection,” 2017. [Online]. Available:
https://blog.mindorks.com/detection-on-android-using-tensorflow-
a3f6fe423349

[26] A. C. Nazare Jr, and W. R. Schwartz, “A scalable and flexible
framework for smart video surveillance,” Comput. Vis. Image
Understanding, vol. 144, no. C, pp. 258–275, 2016.

[27] C.Anagnostopoulos, I.Anagnostopoulos, I. D. Psoroulas, V. Loumos,
and E. Kayafas, “License plate recognition from still images and
video sequences: A survey,” IEEE Trans. Intell. Transp. Syst., vol. 9,
no. 3, pp. 377–391, Sep. 2008.

[28] S. Han et al., “EIE: Efficient inference engine on compressed deep
neural network,” in Proc. Annu. Int. Symp. Comput. Archit., 2016,
pp. 243–254.

[29] P. A. Viola and M. J. Jones, “Rapid object detection using a
boosted cascade of simple features,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2001, pp. 511–518.

[30] Z. Cai, M. J. Saberian, and N. Vasconcelos, “Learning complexity-
aware cascades for deep pedestrian detection,” in Proc. IEEE Int.
Conf. Comput. Vis., 2015, pp. 3361–3369.

[31] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, “A convolutional
neural network cascade for face detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 5325–5334.

[32] Y. Sun, X. Wang, and X. Tang, “Deep convolutional network
cascade for facial point detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2013, pp. 3476–3483.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in
deep convolutional networks for visual recognition,” in Proc. Eur.
Conf. Comput. Vis., 2014, pp. 346–361.

[34] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun, “OverFeat: Integrated recognition, localization and
detection using convolutional networks,” in Proc. 2nd Int. Conf.
Learn. Representations, Y. Bengio and Y. LeCun, Eds. 2014. [Online].
Available: http://arxiv.org/abs/1312.6229

[35] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You
only look once: Unified, real-time object detection,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 779–788.

[36] B. Tian, Q. Yao, Y. Gu, K. Wang, and Y. Li, “Video processing
techniques for traffic flow monitoring: A survey,” in Proc. Int.
IEEE Conf. Intell. Transp. Syst., 2011, pp. 1103–1108.

[37] J. B. KimandH. J. Kim, “Efficient region-based motion segmenta-
tion for a video monitoring system,” Pattern Recognit. Lett., vol. 24,
no. 1–3, pp. 113–128, 2003.

[38] H. Zhang, G. Ananthanarayanan, P. Bod�ık, M. Philipose, P. Bahl,
and M. J. Freedman, “Live video analytics at scale with approxi-
mation and delay-tolerance,” in Proc. USENIX Conf. Netw. Syst.
Des. Implementation, 2017, pp. 377–392.

[39] B. Babenko, M. Yang, and S. J. Belongie, “Robust object tracking
with online multiple instance learning,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 33, no. 8, pp. 1619–1632, Aug. 2011.

[40] K. Hsieh et al., “Focus: Querying large video datasets with low
latency and low cost,” in Proc. USENIX Conf. Operating Syst. Des.
Implementation, 2018, pp. 269–286.

[41] H. Zhang, G. Ananthanarayanan, P. Bod�ık, M. Philipose, P. Bahl,
and M. J. Freedman, “Live video analytics at scale with approxi-
mation and delay-tolerance,” in Proc. USENIX Conf. Netw. Syst.
Des. Implementation, 2017, pp. 377–392.

[42] H. H. Kim and Y. H. Kim, “Semantic video search using tagso-
nomies,” in Proc. 73rd ASIS&T Annu. Meet. Navigating Streams Inf.
Ecosyst., 2010, pp. 1–2.

[43] S. Verstockt, O. Janssens, S. V. Hoecke, and R. V. de Walle,
“Spatio-temporal video retrieval by animated sketching,” in Proc.
Int. Conf. Comput. Vis. Theory Appl., 2013, pp. 723–728.

[44] S. H. Abdulhussain, A. R. Ramli, M. I. Saripan, B. M. Mahmmod,
S. A. R. Al-Haddad, and W. A. Jassim, “Methods and challenges
in shot boundary detection: A review,” Entropy, vol. 20, no. 4,
2018, Art. no. 214.

Chen Zhang received the BS degree in electro-
magnetic wave propagation and antenna from
Xidian University, Xi’an, China, in 2016. He is cur-
rently working toward the PhD degree in the
Wuhan National Laboratory for Optoelectronics,
Huazhong University of Science and Technology,
Wuhan, China. His research interests include
video analysis and neural network.

Qiang Cao (Senior Member, IEEE) received the
BS degree in applied physics from Nanjing Uni-
versity, Nanjing, China, in 1997, and the MS
degree in computer technology and the PhD
degree in computer architecture from the Huaz-
hong University of Science and Technology,
Wuhan, China, in 2000 and 2003, respectively.
He is currently a full professor of the Wuhan
National Laboratory for Optoelectronics, Huaz-
hong University of Science and Technology. His
research interests include computer architecture,

large scale storage systems, and performance evaluation. He is a
senior member of the China Computer Federation (CCF) and a member
of the ACM.

ZHANG ETAL.: FAST FILTERING MECHANISM TO IMPROVE EFFICIENCYOF LARGE-SCALE VIDEO ANALYTICS 927

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 10,2020 at 15:17:20 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1702.01923
http://arxiv.org/abs/1702.01923
http://arxiv.org/abs/1511.06432
http://arxiv.org/abs/1709.06316
http://arxiv.org/abs/1709.06316
http://arxiv.org/abs/1409.1556
https://www.seejh.com/webcams/jacksonhole/jackson/town-square-southwest
https://www.seejh.com/webcams/jacksonhole/jackson/town-square-southwest
https://blog.mindorks.com/detection-on-android-using-tensorflow-a3f6fe423349
https://blog.mindorks.com/detection-on-android-using-tensorflow-a3f6fe423349
http://arxiv.org/abs/1312.6229

Hong Jiang received the BSc degree in com-
puter engineering from the Huazhong University
of Science and Technology, Wuhan, China, in
1982, the MASc degree in computer engineering
from the University of Toronto, Toronto, Canada,
in 1987, and the PhD degree in computer science
from the Texas A&M University, College Station,
Texas, in 1991. He is currently a chair and Wen-
dell H. Nedderman endowed professor with
Department of Computer Science and Engineer-
ing, University of Texas at Arlington. His present

research interests include computer architecture, computer storage sys-
tems and parallel I/O, high performance computing, big data computing,
cloud computing, and performance evaluation.

Wenhui Zhang (Student Member, IEEE) received
the BS degree in mathematics from Wuhan Uni-
versity, Wuhan, China, in 2011. He is currently
working toward the PhD degree at the Wuhan
National Laboratory for Optoelectronics, Huaz-
hong University of Science and Technology,
Wuhan, China. His research interests include
erasure codes, storage systems, and parallel
algorithms. He is a student member of the ACM.

Jingjun Li received the BS degree in computer
science and technology from the Huazhong Uni-
versity of Science and Technology, Wuhan,
China, in 2016. He is currently working toward
the master’s degree at the Wuhan National Labo-
ratory for Optoelectronics, Huazhong University
of Science and Technology. His main research
interests include computer architecture, machine
learning, and large scale key-value storage
systems.

Jie Yao (Member, IEEE) received the BS degree
in computer science and technology and the MS,
and PhD degrees in computer architecture from
the Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2001, 2004, and 2009,
respectively. He is currently a lecturer with the
Huazhong University of Science and Technology.
His research interests include computer architec-
ture, large scale storage systems, and perfor-
mance evaluation. He is a member of the China
Computer Federation (CCF) and ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

928 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 6, JUNE 2020

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 10,2020 at 15:17:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

